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Abstract This article considers the estimation for bivariate distribution function (d.f.)
F0(t, z) of survival time T and covariate variable Z based on bivariate data where T
is subject to right censoring. We derive the empirical likelihood-based bivariate non-
parametric maximum likelihood estimator F̂n(t, z) for F0(t, z), which has an explicit
expression and is unique in the sense of empirical likelihood. Other nice features of
F̂n(t, z) include that it has only nonnegative probability masses, thus it is monotone
in bivariate sense. We show that under F̂n(t, z), the conditional d.f. of T given Z
is of the same form as the Kaplan–Meier estimator for the univariate case, and that
the marginal d.f. F̂n(∞, z) coincides with the empirical d.f. of the covariate sample.
We also show that when there is no censoring, F̂n(t, z) coincides with the bivariate
empirical d.f. For discrete covariate Z , the strong consistency and weak convergence
of F̂n(t, z) are established. Some simulation results are presented.
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1 Introduction

In the analysis of survival data, we often encounter situations where the response vari-
able is the survival time T and is subject to right censoring, but the p -dimensional
vector Z of covariates with components such as treatments, gender, etc., are completely
observable. For simplicity of presentation, here we consider the case that covariate Z
is a scalar rather than a vector, i.e., Z with dimension p = 1, noting that the general-
ization of our results in this article to multivariate case with p > 1 is straightforward.
Specifically, suppose that

(T1, Z1), (T2, Z2), . . . , (Tn, Zn) (1)

is a random sample of (T, Z), but the actually observed survival data are the bivariate
data with one coordinate subject to random right censoring as follows:

(V1, δ1, Z1), (V2, δ2, Z2), . . . , (Vn, δn, Zn), (2)

where Vi = min{Ti , Ci }, δi = I {Ti ≤ Ci }, and Ci is the right censoring variable
with distribution function (d.f.) FC and is independent of (Ti , Zi ). We call (2) the
BD1RC data. In practice, if one wishes to use the nonparametric approach (i.e., with-
out imposing any model assumptions) in the study of the relation between the right
censored response variable T and the completely observable covariate variable Z , a
natural thing to do is to estimate the bivariate distribution function (d.f.) F0(t, z) of
(T, Z) based on observed survival data. In this article, we derive the bivariate non-
parametric maximum likelihood estimator (BNPMLE) F̂n(t, z) for F0(t, z) based on
BD1RC data (2) using the empirical likelihood method (Owen 1988), and study its
asymptotic properties under certain conditions.

To our best knowledge, there are currently no published works on the problem
we consider here. In Akritas (1994), an estimator F̂A for F0(t, z) with BD1RC data
(2) was constructed using the conditional survival distribution and kernel estimator
approach, thus estimator F̂A is kernel and bandwidth dependent, and is not a maximum
likelihood estimator in any sense. One related problem was studied by Lin and Ying
(1993) who constructed the estimator for F0(t, z) based on the bivariate sample (1)
that is subject to the same univariate right censoring on both components Ti and Zi

simultaneously. Another related and more complicated problem is the estimator for
F0(t, z) based on the so-called bivariate right censored data, i.e., each component of
(Ti , Zi ) in the bivariate sample (1) is subject to its own right censoring variable. Such a
problem was considered by Dabrowska (1988, 1989), among others. The estimator by
Dabrowska (1988) and those by others were constructed mainly based on or related to
the representation of the bivariate survival function in terms of distribution functions
of the data; see van der Laan (1996) for a nice review and discussion on this topic. A
problem less related to our problem in this article is the bivariate right censored data
considered by van der Laan (1996) under a different setting where the bivariate right
censoring vector is discrete and is always observed. The work most closely related
to ours is that by Ren and Gu (1997), where they constructed a bivariate distribution
function estimator based on bivariate survival data which is subject to double censoring
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in one coordinate. Since right censoring is a special case of double censoring, our above
BD1RC data (2) is a special case of that considered in Ren and Gu (1997). The estimator
by Ren and Gu (1997) was given by the product of the empirical distribution estimator
for FZ (z) and the conditional NPMLE for P{T ≤ t | Z ≤ z}, which is the univariate
version of the NPMLE for doubly censored data given by Mykland and Ren (1996).

In comparison to the problems with the bivariate data subject to double censoring,
univariate right censoring and bivariate right censoring studied by Ren and Gu (1997),
Lin and Ying (1993), and Dabrowska (1988), respectively, our BD1RC data (2) prob-
lem is encountered far more frequently in practical situations, thus its solution is of
important interest because the BNPMLE F̂n(t, z) for F0(t, z) based on BD1RC data
(2) provides tools for the studies of related nonparametric inference problems.

In terms of methodology, most estimators proposed for bivariate data subject to
censoring are ad hoc, and either are kernel and bandwidth dependent (e.g., Akritas
1994) or contain negative probability masses; see discussions in van der Laan (1996).
For instance, both bivariate distribution estimators by Dabrowska (1988) and Ren and
Gu (1997) contain negative probability masses, thus not monotone in bivariate sense.
In this context, the method of solving the self-consistency equation for censored data
(Efron 1967) via the EM algorithm (Dempster et al. 1977; Turnbull 1976) is a possible
procedure for finding the maximum likelihood distribution estimator. However, this
approach as a general methodology has its limitation for censored bivariate data; see
Dabrowska (1988), van der Laan (1996), among others. With all these in mind, we
consider the empirical likelihood method (Owen 1988) for the problem studied in this
article.

It is well known that the generality of the empirical likelihood approach in the
contexts of censored data and nonparametric inferences is very attractive and useful.
In particular, with the usual constraints or relevant estimating equations imposed, the
resulting NPMLE based on the empirical likelihood does not contain any negative
probability masses, thus it is monotone in bivariate sense for the problem under con-
sideration here. However, despite these nice properties, it is also well known that the
computation based on the empirical likelihood can be very challenging, often precisely
due to these imposed constraints and/or the estimating equations. We show in this paper
that when the computation issue is or can be resolved, the empirical likelihood method
can indeed provide very nice solution for the censored bivariate data problem.

The main results of this article are organized as follows. In Sect. 2, we derive the
empirical likelihood-based bivariate nonparametric maximum likelihood estimator
(BNPMLE) F̂n(t, z) for F0(t, z) with BD1RC data (2), which has an explicit expres-
sion and is unique in the sense of empirical likelihood. We show that under BNPMLE
F̂n(t, z), the conditional distribution function of T given Z is of the same form as
the Kaplan–Meier estimator for the univariate case, while the marginal d.f. F̂n(∞, z)
coincides with the empirical d.f. of the covariate sample Z1, . . . , Zn in (2). We also
show that when there is no censoring, BNPMLE F̂n(t, z) coincides with the bivariate
empirical d.f. of sample (1). At the end of Sect. 2, we provide some discussions on the
structure of the BNPMLE F̂n(t, z) and its extension to the case of p -variate covariate
Z with p > 1, and we also discuss the relation of our BNPMLE F̂n(t, z) to the estima-
tors by Akritas (1994) and by Ren and Gu (1997), respectively. In Sect. 3, we show that
if the covariate variable Z in (2) is discrete, then our BNPMLE F̂n(t, z) is uniformly
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916 J.-J. Ren, T. Riddlesworth

strong consistent and converges to a centered Gaussian process as n → ∞. Sec-
tion 4 presents some simulation results which compare the performance of BNPMLE
F̂n(t, z) and the bivariate distribution estimator F̂RG(t, z) by Ren and Gu (1997). All
proofs are given in Sect. 5.

It should be noted that our empirical likelihood-based BNPMLE F̂n(t, z) can be
expressed as an integral of the conditional NPMLE, i.e., the Kaplan–Meier estimator
in the univariate case; for details see Remark 1 at the end of Sect. 2. This is a quite
interesting discovery in this article on the empirical likelihood-based distribution esti-
mators. As pointed out in Remark 1, such a formulation is somewhat related to the
conditional survival distribution approach used by Akritas (1994) for constructing his
estimator F̂A, but it has nothing to do with the derivation of our BNPMLE F̂n(t, z),
because F̂n(t, z) is an empirical likelihood-based maximum likelihood estimator.

2 Nonparametric maximum likelihood estimator

To derive the bivariate maximum likelihood estimator (BNPMLE) for bivariate d.f.
F0(t, z) of (T, Z) based on the BD1RC data (2), we let

U1 < · · · < Um be all distinct values among V1, . . . , Vn

Y1 < · · · < Yq be all distinct values among Z1, . . . , Zn (3)

and let FC and fC denote the d.f. and density function of censoring variable Ci ,
respectively. Since the essential idea of the empirical likelihood method is to consider
those d.f.’s with support on observed data points (see Owen 1988) as the candidates for
the NPMLE of F0(t, z), we treat F0(t, z) as a “discrete” bivariate d.f. in the following
derivation of its empirical likelihood function. Note that with a “discrete” F0(t, z), the
likelihood of BD1RC data (2) is given by

n∏

i=1

P{V = Vi , δ = δi , Z = Zi }

=
n∏

i=1

(P{Ti = Vi , Ti ≤ Ci , Z = Zi })δi (P{Ci = Vi , Ti > Ci , Z = Zi })1−δi

=
n∏

i=1

(P{T = Vi , Z = Zi }F̄C (Vi ))
δi (P{T > Vi , Z = Zi } fC (Vi ))

1−δi , (4)

which is proportional to
n∏

i=1

(P{T = Vi , Z = Zi })δi (P{T > Vi , Z = Zi })1−δi

=
n∏

i=1

(dF0(Vi , Zi ))
δi (F0(∞, dZi ) − F0(Vi , dZi ))

1−δi

=
m∏

i=1

q∏

j=1

(dF0(Ui , Y j ))
δi j (F0(∞, dY j ) − F0(Ui , dY j ))

ni j −δi j , (5)
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where dF0(t, z) = P{T = t, Z = z}, F0(t, dz) = F0(t, z) − F0(t, z−), and

ni j =
n∑

k=1

I {Vk = Ui , Zk = Y j }; δi j =
n∑

k=1

I {Vk = Ui , δk = 1, Zk = Y j } (6)

for 1 ≤ i ≤ m, 1 ≤ j ≤ q. Thus, the empirical likelihood function for bivariate
distribution function F0(t, z) of (T, Z) with BD1RC data (2) is given by

L(F) =
m∏

i=1

q∏

j=1

(
dF(Ui , Y j )

)δi j
(
F(∞, dY j ) − F(Ui , dY j )

)ni j −δi j , (7)

where F is any bivariate d.f., and by denoting PF as the probability under F we have
dF(t, z) = PF {T = t, Z = z} and F(t, dz) = PF {T ≤ t, Z = z} = F(t, z) −
F(t, z−). Observe that (6) implies n1 j + · · · + nmj ≥ 1 for any 1 ≤ j ≤ q, and that
ni j = 0 implies δi j = 0. Hence, letting

m j = max {k | nkj > 0}, 1 ≤ j ≤ q (8)

we have ni j = δi j = 0 for all 1 ≤ j ≤ q, m j < i ≤ m; in turn, empirical likelihood
function (7) for F0 is equivalently written as

L(F) =
q∏

j=1

m j∏

i=1

(dF(Ui , Y j ))
δi j (F(∞, dY j ) − F(Ui , dY j ))

ni j −δi j . (9)

To find the BNPMLE for F0 based on empirical likelihood function (9), we restrict
all possible candidates to those bivariate d.f.’s that assign all their probability masses
to points (Ui , Y j ) and line segments L j = {(t, Y j ) ∈ R

2 ; t > Um} for 1 ≤ i ≤
m, 1 ≤ j ≤ q, which writes likelihood function (9) as follows:

L(F) =
q∏

j=1

m j∏

i=1

(pi j )
δi j

⎛

⎝
m j +1∑

k=i+1

pkj

⎞

⎠
ni j −δi j

≡ L( p), (10)

where

p = (p11 · · · pm1 + 1, 1 · · · p1q · · · , pmq + 1, q ) (11)

F(t, z) =
m∑

i=1

q∑

j=1

qi j I {Ui ≤ t, Y j ≤ z}, for t ≤ Um, z ∈ R (12)
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satisfy qi j = PF {T = Ui , Z = Y j } for 1 ≤ i ≤ m, 1 ≤ j ≤ q; and satisfy

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pi j = qi j = dF(Ui , Y j ) = PF { T = Ui , Z = Y j }, for 1 ≤ j ≤ q, 1 ≤ i ≤ m j

qm + 1, j = PF { (T, Z) ∈ L j } = PF { T > Um, Z = Y j }, for 1 ≤ j ≤ q

pm j + 1, j = PF { T > Um j , Z = Y j } =
∑m+1

i=m j +1
qi j , for 1 ≤ j ≤ q

∑q

j=1

∑m j +1

i=1
pi j =

∑m+1

i=1

∑q

j=1
qi j = 1.

(13)

Hence, the BNPMLE F̂n(t, z) for F0(t, z) is the solution that maximizes above like-
lihood function L(F) = L( p) in (10).

It should be noted that if m j < m, the values of qi j ’s for m j < i ≤ m have no
effects to the value of likelihood function (10). Thus, we can only derive the BNPMLE
in terms of p (11) for L( p). Let p̂ denote the solution of the following optimization
problem:

⎧
⎪⎨

⎪⎩

max L( p) =
∏q

j=1

∏m j

i=1
(pi j )

δi j

(∑m j +1

k=i+1
pkj

)ni j −δi j

subject to: 0 ≤ pi j ≤ 1, for 1 ≤ j ≤ q, 1 ≤ i ≤ m j ;
∑q

j=1

∑m j +1

i=1
pi j = 1.

(14)

With proofs deferred to Sect. 5, the theorem below gives the solution and properties
of p̂.

Theorem 1 For any 1 ≤ i ≤ m, 1 ≤ j ≤ q, we denote

Ni j = ni j + · · · + nmj =
n∑

k=1

I {Vk ≥ Ui , Zk = Y j }. (15)

Then, the solution p̂ of (14) is unique and satisfies the following:

(i) For any 1 ≤ j ≤ q, 1 ≤ i ≤ m j , we have p̂i j > 0 if and only if δi j > 0;

(ii) For any 1 ≤ j ≤ q, 1 ≤ i ≤ m j , we have
∑m j +1

k=i p̂k j > 0;

(iii) For any 1 ≤ j ≤ q, with notation
∏0

k=1 ck ≡ 1 we have

⎧
⎪⎨

⎪⎩

p̂i j =
(

δi j
Ni j

) (
N1 j
n

)∏i−1

k=1

(
1 − δk j

Nk j

)
, for 1 ≤ i ≤ m j

p̂m j + 1, j = N1 j
n −

∑m j

i=1
p̂i j .

(16)

Although Theorem 1 shows that the BNPMLE is unique in terms of p in (11), such
uniqueness does not seem obvious in terms of F as given by (12)–(13), because if
m j < m and pm j + 1, j > 0 for some 1 ≤ j ≤ m, it is not obvious how probability mass
pm j + 1, j is distributed among qm j + 1, j , . . . , qmj , qm + 1, j . To deal with this issue, we
notice that (6), (8) and (15) imply that for any 1 ≤ j ≤ q,
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{
nm j , j > 0 ⇒ N1 j ≥ N2 j ≥ · · · ≥ Nm j , j > 0

ni j = δi j = Ni j = 0, for m j < i ≤ m when m j < m.
(17)

This means that points (Ui , Y j ) for m j < i ≤ m are not observed among (Vk, Zk)’s in
data (2), thus by the usual empirical likelihood treatment these points (Ui , Y j ) are not
assigned any probability masses, i.e., we have in (12)–(13) that for any 1 ≤ j ≤ q,

qi j = 0, for m j < i ≤ m (18)

pm j + 1, j = PF { T > Um j , Z = Y j } = qm + 1, j = PF { T > Um, Z = Y j }. (19)

Hence, in sense of the empirical likelihood method the BNPMLE F̂n(t, z) for F0(t, z)
is uniquely given by the following same formula (16) of p̂i j ’s due to (17)–(19):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F̂n(t, z) =
∑m

i=1

∑q

j=1
q̂i j I {Ui ≤ t, Y j ≤ z}, for t ≤ Um, z ∈ R

q̂i j =
(

δi j
Ni j

) (
N1 j
n

)∏i−1

k=1

(
1 − δk j

Nk j

)
, for 1 ≤ i ≤ m, 1 ≤ j ≤ q

q̂m + 1, j = PF̂n
{ T > Um, Z = Y j } =

(
N1 j
n

)
−
∑m

i=1
q̂i j , for 1 ≤ j ≤ q

(20)

where 0/0 is set as 0 whenever it occurs. With proofs given in Sect. 5, the following
corollaries give further properties of the BNPMLE F̂n(t, z).

Corollary 1 The BNPMLE F̂n(t, z) in (20) can be expressed by

F̂n(t, z) =
q∑

j=1

PF̂n
{Z = Y j }F̂n(t | Z = Y j )I {Y j ≤ z}, for t ≤ Um, z ∈ R (21)

where under bivariate d.f. F̂n, we have PF̂n
{Z = Y j } = N1 j/n, and F̂n(t | Z = Y j )

is the conditional d.f. of T given Z = Y j satisfying

¯̂Fn(t | Z = Y j ) = PF̂n
{T > t | Z = Y j } =

∏

Uk≤t

(
1 − δk j

Nk j

)
, for t ≤ Um, 1 ≤ j ≤ q.

(22)

Corollary 2 For BNPMLE F̂n(t, z) in (20), the marginal d.f. F̂n(∞, z) of Z coincides
with the empirical d.f. of sample Z1, . . . , Zn in (2).

Corollary 3 When there is no censoring in data (2), BNPMLE F̂n(t, z) in (20) coin-
cides with the bivariate empirical d.f. of the sample (1).

Remark 1 Structure of BNPMLE F̂n(t, z). Note that F̂n(t | Z = Y j ) given in (22) is the
Kaplan–Meier estimator in the univariate case with variable t , denoted as F̂K M (t | Y j ).
Thus, from Corollary 2, we know that F̂n(t, z) shown in (21) is the sum of the products
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of the marginal NPMLE F̂n,Z (z) ≡ F̂n(∞, z) for FZ (z) and the conditional NPMLE
F̂K M (t | z) for F0(t | Z = z). This implies that (21) can be expressed as:

F̂n(t, z) =
∫ z

−∞
PF̂n

{T ≤ t, | Z = u}d F̂n,Z (u) =
∫ z

−∞
F̂K M (t | u)d F̂n(∞, u)

(23)

for t ≤ Um, z ∈ R, where the first part of the equation is the idea that Akritas (1994)
used to construct his kernel-based estimator for F0(t, z). In contrast, our BNPMLE F̂n

here is an empirical likelihood-based MLE, thus is not kernel and bandwidth depen-
dent; and the second part of Eq. (23) holding for the resulting empirical likelihood-
based BNPMLE F̂n is an interesting new discovery in this article, but as shown above
it is not the derivation tool used for obtaining the BNPMLE. Another matter worthy
of mentioning is that with some algebraic work, it can be shown that the marginal d.f.
of F̂n(t,∞) of T is not the Kaplan–Meier estimator in the univariate case; a special
and easier case for this study is when there are no ties among Vi ’s and there are no ties
among Zi ’s. Due to a different method used, the marginal distribution of the bivariate
distribution estimator with bivariate right censored data (a more difficult problem,
of course) constructed by Dabrowska (1988) is the Kaplan–Meier estimator in the
univariate case, but her estimator is not monotone and contains negative probability
masses (see page 1485 of Dabrowska 1988). In contrast, our estimator F̂n(t, z) in (20)
is the unique maximum likelihood estimator in the sense of empirical likelihood, and
is monotone with only nonnegative probability masses.

Remark 2 Relation to the Estimator by Ren and Gu (1997). In Ren and Gu (1997), a
bivariate distribution function estimator F̂RG(t, z) was constructed based on bivariate
survival data which is subject to double censoring in one coordinate. Since right
censoring is a special case of double censoring, our BD1RC data (2) is a special case
of that considered in Ren and Gu (1997). Their estimator F̂RG(t, z) is given by the
product of the empirical distribution estimator for FZ (z) and the conditional NPMLE
for P{T ≤ t | Z ≤ z}, thus its marginal d.f. F̂RG(t,∞) coincides with the NPMLE in
the univariate case for doubly censored data given by Mykland and Ren (1996). From
Chang and Yang (1987), we know that when there is no left censoring, the NPMLE
by Mykland and Ren (1996) is the same as the Kaplan–Meier estimator. Thus, with
our BD1RC data (2) the marginal distribution F̂RG(t,∞) of the estimator by Ren
and Gu (1997) is the Kaplan–Meier estimator in the univariate case. Hence, estimator
F̂RG(t, z) with our BD1RC data (2) is different from our BNPMLE F̂n(t, z) in (20),
and is not the maximum likelihood estimator in the sense of empirical likelihood.
Moreover, estimator F̂RG(t, z) with our BD1RC data (2) is not monotone and contains
negative probability masses.

Remark 3 Extension to p-variate covariate Z with p > 1. If Zi ’s in (2) is p -variate
with p > 1, then we let Y j ∈ R

p in (3), now without ordering, represent all distinct
vectors of Z1, . . . , Zn . Following the proofs of Theorem 1, we can show that the
empirical likelihood NPMLE F̂n(t, z) for F0(t, z) is given by (20) with Y j ≤ z and
Z = Y j replaced by Y j ≤ z and Z = Y j , respectively, where (Y j ≤ z) ≡ (Y1 j ≤
z1, . . . , Ypj ≤ z p).
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3 Asymptotic properties for discrete covariate

In the analysis of survival data, we often encounter the situation where the covariates Z
are discrete or categorical. For instance, in practice covariate variable Z may represent
treatment levels or methods. With the proofs deferred to Sect. 5, the following theorems
establish some asymptotic results of our BNPMLE F̂n(t, z) given by (20) with BD1RC
data (2) where the covariate variable Z is discrete.

Theorem 2 For BD1RC data (2), assume that covariate variable Z is discrete with
q possible values given by the second line of (3), and assume that those conditions
required in Corollary 1.2 of Stute and Wang (1993) hold for distributions of lifetime
variable T and continuous censoring variable C. Then,

sup
0≤t≤τV , z∈R

|F̂n(t, z) − F0(t, z)| a.s.→ 0, as n → ∞ (24)

where τV is given as in Stute and Wang (1993).

Theorem 3 For BD1RC data (2), assume that covariate variable Z is discrete with
q possible values given by the second line of (3), and assume that those conditions
in Gill (1983) hold for distributions of lifetime variable T and censoring variable C.
Then,

√
n(F̂n − F0) weakly converges to a centered Gaussian process as n → ∞.

Remark 4 Above Theorem 2 and Theorem 3 give asymptotic results when the covari-
ate variable Z in BD1RC data (2) is discrete, which, of course, is of special importance
in the analysis of survival data; in fact, based on our BNPMLE F̂n(t, z) in this paper
Ren and Riddlesworth (2012) constructed the empirical likelihood ratio confidence
interval for conditional survival probabilities of T given discrete covariate Z = z0.
However, for the case when Z is continuous, the methods used in our proofs for these
theorems do not apply, because for continuous Z , quantity q in Eq. (21) is not a fixed
constant when n → ∞. Thus, the proofs for continuous covariate variable Z are much
more involved technically and need further studies. For now, some simulation results
on F̂n with continuous covariate Z are presented and discussed in the next section.

4 Simulations

This section presents some simulation results on our BNPMLE F̂n(t, z) given by (20)
with right censored data (2), where both cases with discrete and continuous covariate
variable Z are under consideration. Since our BD1RC data (2) is a special case of
that considered by Ren and Gu (1997) (see above Remark 2 in Sect. 2), here we also
make comparison between BNPMLE F̂n(t, z) and the bivariate distribution estimator
F̂RG(t, z) by Ren and Gu (1997) for right censored data (2).

One practical issue in the actual computation of BNPMLE F̂n(t, z) that needs to be
noted is that in (20) we have q̂m + 1, j > 0 for some js, which is the same issue as that
with the Kaplan–Meier estimator in the univariate case. Due to equation (19), a natural
thing to do is to evenly distribute the probability mass q̂m + 1, j , whenever positive, to
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points (Um j +1, Y j ), . . . , (Um, Y j ). This is done in all our simulation computations for

F̂n(t, z); noting that something similar is routinely done for the univariate Kaplan–
Meier estimator.

Let Exp(μ) represent the exponential distribution with meanμ. Our simulation stud-
ies consider right censored data (2) with FT = Exp(1) as the d.f. of T, FC = Exp(3)

the d.f. of right censoring variable C , and FZ = U{1, 2, 3, 4, 5} the d.f. of discrete
covariate variable Z , where (T, C) is independent of Z and U{1, 2, 3, 4, 5} repre-
sents the uniform distribution on points 1, 2, 3, 4, 5. To compare the performance of
F̂n(t, z) and F̂RG(t, z) with the d.f. F0(t, z) of (T, Z), we generate 1000 such sam-
ples (2) with n = 50, 100, 200, 500, 1000, respectively. For each n, Table 1 includes
the right censoring percentage of the generated samples, and includes the simulation
average of ‖F̂n − F0‖ and ‖F̂RG − F0‖ with the simulation standard deviation (s.d.)
given in the parenthesis, where the uniform norm ‖ · ‖ is taken over all sample points
(Vi , Zi ), i = 1, . . . , n.

To compare the performance of F̂n(t, z) and F̂RG(t, z) with continuous covariate
variable Z , we conduct the simulation studies in Table 1 with FZ = U(0, 1) as the
d.f. of Z , and include the results in Table 2, where U(0, 1) represents the uniform
distribution on interval (0, 1). Moreover, the simulation studies in Table 1 are repeated
with FC = Exp(3) and FT |Z = Exp(Z) as the conditional d.f. of T given Z , and the
results are included in Table 3, where Z is a continuous r.v. with p.d.f. fZ (z) = 2/z2

if 1 < z < 2; 0, elsewhere.

Remark 5 It should be noticed that in Table 1, the covariate variable Z is discrete,
while in Tables 2, 3, Z is continuous. It also should be noticed that in Tables 1, 2,

Table 1 Comparison of F̂n, F̂RG , F0 with right censored samples

Sample size Average ‖F̂n − F0‖ (s.d.) Average ‖F̂RG − F0‖ (s.d.) Censoring %

n = 50 0.1345 (.0399) 0.1337 (.0391) 25.1

n = 100 0.1007 (.0273) 0.0996 (.0271) 25.1

n = 200 0.0739 (.0200) 0.0735 (.0198) 25.2

n = 500 0.0484 (.0122) 0.0482 (.0122) 25.1

n = 1000 0.0349 (.0089) 0.0348 (.0089) 25.1

Distributions FT = Exp(1), FC = Exp(3), FZ = U{1, 2, 3, 4, 5}

Table 2 Comparison of F̂n, F̂RG , F0 with right censored samples

Sample size Average ‖F̂n − F0‖ (s.d.) Average ‖F̂RG − F0‖ (s.d.) Censoring %

n = 50 0.1286 (.0387) 0.1332 (.0381) 25.1

n = 100 0.0971 (.0282) 0.0999 (.0279) 25.1

n = 200 0.0741 (.0204) 0.0747 (.0193) 25.2

n = 500 0.0506 (.0131) 0.0499 (.0121) 25.1

n = 1000 0.0395 (.0107) 0.0366 (.0088) 24.9

Distributions FT = Exp(1), FC = Exp(3), FZ = U(0, 1)
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Table 3 Comparison of F̂n, F̂RG , F0 with right censored samples

Sample size Average ‖F̂n − F0‖ (s.d.) Average ‖F̂RG − F0‖ (s.d.) Censoring %

n = 50 0.1286 (.0386) 0.1366 (.0400) 31.6

n = 100 0.0988 (.0284) 0.1033 (.0284) 31.6

n = 200 0.0764 (.0222) 0.0771 (.0210) 31.4

n = 500 0.0553 (.0142) 0.0511 (.0119) 31.4

n = 1000 0.0451 (.0106) 0.0366 (.0092) 31.6

Distributions FT |Z = Exp(Z), FC = Exp(3), F ′
Z (z) = 2z−2 I {1 < z < 2}

lifetime variable T and covariate variable Z are independent, while in Table 3, T and
Z are dependent. Nonetheless, clearly all Tables 1, 2, 3 show that our BNPMLE F̂n

and the bivariate distribution estimator F̂RG by Ren and Gu (1997) perform similarly,
and that with rather high censoring percentages, the estimation errors decrease as
the sample size n increases. As already mentioned in Remark 2 of Sect. 2, F̂RG has
negative probability masses, while our BNPMLE F̂n has only nonnegative probability
masses, which is a desirable property for a bivariate distribution estimator in practice.
Moreover, Ren and Gu (1997) showed that under mild conditions with discrete or
continuous Z , we have ‖F̂RG − F0‖ a.s.→ 0 and F̂RG converges to a centered Gaussian
process as n → ∞. Evidently, our results in Table 1 support our Theorems 2-3 in
Sect. 3 on the asymptotic properties of BNPMLE F̂n with discrete covariate variable
Z , and our results in Tables 2, 3 indicate that our Theorems 2-3 may very well hold
for F̂n with continuous covariate variable Z .

5 Proofs

Proof of Theorem 1 (i)–(ii) The proofs for Parts (i)–(ii) are given in three separate
cases as follows. If δi j > 0, then we have p̂i j > 0 in order to have L( p̂) > 0 in (10);

in turn, we have
∑m j +1

k=i p̂k j ≥ p̂i j > 0.
If δi j = 0 and ni j > 0, then in (10) we have for p̂:

(
p̂i j

)δi j

⎛

⎝
m j +1∑

k=i+1

p̂k j

⎞

⎠
ni j −δi j

=
⎛

⎝
m j +1∑

k=i+1

p̂k j

⎞

⎠
ni j

> 0, (25)

which implies
∑m j +1

k=i p̂k j ≥ ∑m j +1
k=i+1 p̂k j > 0. Assume p̂i j > 0. Then, if letting

p̃i j = 0, p̃m j + 1, j = ( p̂i j + p̂m j + 1, j ) and p̃kl = p̂kl for the rest of 1 ≤ l ≤ q, 1 ≤
k ≤ (ml + 1), we have L( p̃) > L( p̂) because in (10) we have

m j∏

k=1

( p̂k j )
δk j

⎛

⎝
m j +1∑

l=k+1

p̂l j

⎞

⎠
nk j −δk j
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=
{

i−1∏

k=1

( p̂k j )
δk j ( p̂k + 1, j + · · · + p̂i j + · · · + p̂m j + 1, j )

nk j −δk j

}

×
⎛

⎝
m j +1∑

k=i+1

p̂k j

⎞

⎠
ni j { m j∏

k=i+1

( p̂k j )
δk j ( p̂k + 1, j + · · · + p̂m j + 1, j )

nk j −δk j

}

<

{
i−1∏

k=1

( p̃k j )
δk j ( p̃k + 1, j + · · · + p̃i j + · · · + p̃m j + 1, j )

nk j −δk j

}

×
⎛

⎝
m j +1∑

k=i+1

p̃k j

⎞

⎠
ni j { m j∏

k=i+1

( p̃k j )
δk j ( p̃k + 1, j + · · · + p̃m j + 1, j )

nk j −δk j

}
(26)

due to (25) and the facts: ( p̂i j + p̂m j + 1, j ) = ( p̃i j + p̃m j + 1, j ), p̃m j + 1, j > p̂m j + 1, j .

But L( p̃) > L( p̂) is a contradiction. Hence, we have p̂i j = 0.
If δi j > 0 and ni j = 0, then we have i < m j due to (8) and (18), and we

have
∑m j +1

k=i p̂k j ≥ ( p̂m j , j + p̂m j + 1, j ) > 0, because with nm j , j > 0, from the

proofs above we know that δm j , j > 0 implies p̂m j , j > 0, and δm j , j = 0 implies

p̂m j , j = 0, p̂m j + 1, j > 0. Assume p̂i j > 0. Then, if letting p̃i j = 0, p̃m j , j =
( 1

2 p̂i j + p̂m j , j ), p̃m j + 1, j = ( 1
2 p̂i j + p̂m j + 1, j ) and p̃kl = p̂kl for the rest of 1 ≤ l ≤

q, 1 ≤ k ≤ (ml + 1), we have

( p̂m j , j )
δm j , j ( p̂m j + 1, j )

nm j , j −δm j , j < ( p̃m j , j )
δm j , j ( p̃m j + 1, j )

nm j , j −δm j , j , (27)

in turn, we have L( p̃) > L( p̂) because in (10) we have

m j∏

k=1

( p̂k j )
δk j

⎛

⎝
m j +1∑

l=k+1

p̂l j

⎞

⎠
nk j −δk j

=
{

i−1∏

k=1

( p̂k j )
δk j ( p̂k + 1, j + · · · + p̂i j + · · · + p̂m j , j + p̂m j + 1, j )

nk j −δk j

}

×
⎧
⎨

⎩

m j −1∏

k=i+1

( p̂k j )
δk j ( p̂k + 1, j + · · · + p̂m j , j + p̂m j + 1, j )

nk j −δk j

⎫
⎬

⎭

×
{
( p̂m j , j )

δm j , j ( p̂m j + 1, j )
nm j , j −δm j , j

}

<

{
i−1∏

k=1

( p̃k j )
δk j ( p̃k + 1, j + · · · + p̃i j + · · · + p̃m j , j + p̃m j + 1, j )

nk j −δk j

}

×
⎧
⎨

⎩

m j −1∏

k=i+1

( p̃k j )
δk j ( p̃k + 1, j + · · · + p̃m j , j + p̃m j + 1, j )

nk j −δk j

⎫
⎬

⎭

123



Empirical likelihood BNPMLE with right censored data 925

×
{
( p̃m j , j )

δm j , j ( p̃m j + 1, j )
nm j , j −δm j , j

}
(28)

due to (27) and the facts: ( p̂i j + p̂m j , j + p̂m j + 1, j ) = ( p̃i j + p̃m j , j + p̃m j + 1, j ), p̃m j , j >

p̂m j , j , p̃m j + 1, j > p̂m j + 1, j . But L( p̃) > L( p̂) is a contradiction. Hence, we have

p̂i j = 0. �

Proof of Theorem 1 (iii) and Uniqueness From Theorem 1 (ii), we consider the fol-
lowing substitution for 1 ≤ j ≤ q, 1 ≤ i ≤ m j :

ai j = pi j

bi j
and bi j =

m j +1∑

k=i

pk j > 0, (29)

which imply

bi+1, j =
m j +1∑

k=i+1

pkj = bi j − pi j and 1 − ai j = bi+1, j

bi j
. (30)

Since

q∏

j=1

m j∏

i=1

(1 − ai j )
Ni+1, j =

q∏

j=1

m j∏

i=1

(
bi+1, j

bi j

)

=
q∏

j=1

(b2 j )
n2 j +···+nm j , j

(b1 j )
n2 j +···+nm j , j

× (b3 j )
n3 j +···+nm j , j

(b2 j )
n3 j +···+nm j , j

× · · · × (bm j +1, j )
nm j +1, j

(bm j , j )
nm j +1, j

=
q∏

j=1

(b2 j )
n2 j (b3 j )

n3 j · · · (bm j , j )
nm j , j

(b1 j )
n2 j +···+nm j , j

(bm j +1, j )
nm j +1, j

=
⎛

⎝
q∏

j=1

m j∏

i=1

(bi j )
ni j

⎞

⎠

⎛

⎝
q∏

j=1

1

(b1 j )
n1 j +···+nm j , j

⎞

⎠

=
⎛

⎝
q∏

j=1

m j∏

i=1

(bi j )
ni j

⎞

⎠
/⎛

⎝
q∏

j=1

(b1 j )
N1 j

⎞

⎠ ,
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from (29)–(30) we can write (10) as

L( p) =
q∏

j=1

m j∏

i=1

(ai j bi j )
δi j (bi+1, j )

ni j −δi j

=
q∏

j=1

m j∏

i=1

(ai j bi j )
δi j ((1 − ai j )bi j )

ni j −δi j

=
⎛

⎝
q∏

j=1

m j∏

i=1

(bi j )
ni j

⎞

⎠

⎛

⎝
q∏

j=1

m j∏

i=1

(ai j )
δi j (1 − ai j )

ni j −δi j

⎞

⎠

=
⎛

⎝
q∏

j=1

m j∏

i=1

(1 − ai j )
Ni+1, j

⎞

⎠

⎛

⎝
q∏

j=1

(b1 j )
N1 j

⎞

⎠

⎛

⎝
q∏

j=1

m j∏

i=1

(ai j )
δi j (1 − ai j )

ni j −δi j

⎞

⎠

=
⎛

⎝
q∏

j=1

(b1 j )
N1 j

⎞

⎠

⎛

⎝
q∏

j=1

m j∏

i=1

(ai j )
δi j (1 − ai j )

Ni j −δi j

⎞

⎠ ≡ G(a, b). (31)

From Theorem 1 (i)–(ii) and (29)–(30), we know that a solution that maximizes G(a, b)

satisfies: b1 j > 0; ai j > 0 if δi j > 0; 0 ≤ ai j < 1 if (Ni j − δi j ) > 0. Thus, the
optimization problem (14) is equivalent to:
⎧
⎪⎨

⎪⎩

max log G(a, b) =
(∑q

j=1
N1 j log b1 j

)
+ G1(a)

subject to: 0 ≤ ai j ≤ 1, 0 < b1 j ≤ 1, for 1 ≤ j ≤ q, 1 ≤ i ≤ m j ;
∑q

j=1
b1 j = 1,

(32)

where setting 0 log 0 = 0 whenever it occurs, we have

G1(a) =
q∑

j=1

m j∑

i=1

(δi j log ai j + (Ni j − δi j ) log(1 − ai j )). (33)

Since at least one of δi j and Ni j − δi j is positive for any 1 ≤ j ≤ q, 1 ≤ i ≤ m j

due to (17), thus for G1(a) in (33) we have

∂G1

∂ai j
=
(

δi j

ai j
− Ni j − δi j

1 − ai j

)
,

∂2G1

∂a2
i j

= −
(

δi j

a2
i j

+ Ni j − δi j

(1 − ai j )2

)
< 0,

∂2G1

∂ai j ∂akl
= 0,

(34)

where (i, j) �= (k, l), and 0/0 is set as 0 whenever it occurs. Hence, G1(a) is concave
and is uniquely maximized by

âi j = δi j

N1 j
, 1 ≤ j ≤ q, 1 ≤ i ≤ m j . (35)
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Using Lagrange multipliers, it can be shown by Theorem 4.3.8 of Bazaraa et al.
(1993) that

∑q
j=1 N1 j log b1 j subject to 0 < b1 j ≤ 1, 1 ≤ j ≤ q and

∑q
j=1 b1 j = 1

is uniquely maximized by

b̂1 j = N1 j

n
, 1 ≤ j ≤ q. (36)

The uniqueness of p̂ and the proof of Theorem 1 (iii) follow from the uniqueness
of (35)–(36) and from noticing that

b̂1 j =
m j +1∑

i=1

p̂i j , 1 ≤ j ≤ q (37)

and that (29)–(30) and (35)–(36) imply for 1 ≤ j ≤ q, 1 ≤ i ≤ m j :

p̂i j = âi j b̂i j (1 − â1 j ) · · · (1 − âi−1, j ) =
(

δi j

Ni j

)(
N1 j

n

) i−1∏

k=1

(
1 − δk j

Nk j

)
. (38)

�
Proof of Corollary 1 For any t ≤ Um, z ∈ R, from (20) we have

F̂n(t, z) =
m∑

i=1

q∑

j=1

{(
δi j

Ni j

)(
N1 j

n

) i−1∏

k=1

(
1 − δk j

Nk j

)
I {Ui ≤ t, Y j ≤ z}

}

=
q∑

j=1

m∑

i=1

(
N1 j

n

){i−1∏

k=1

(
1 − δk j

Nk j

)
−

i∏

k=1

(
1 − δk j

Nk j

)}
I {Ui ≤ t, Y j ≤ z}

=
q∑

j=1

(
N1 j

n

)⎧⎨

⎩1 −
∏

Uk≤t

(
1 − δk j

Nk j

)⎫⎬

⎭ I {Y j ≤ z}. (39)

Since (20) implies

PF̂n
{Z = Y j } = PF̂n

{T ≤ Um, Z = Y j } + PF̂n
{T > Um, Z = Y j } =

(
N1 j

n

)
, (40)

then under F̂n in (39) the conditional d.f. of T given Z = Y j is given by

F̂n(t | Z = Y j ) = PF̂n
{T ≤ t | Z = Y j } = PF̂n

{T ≤ t, Z = Y j }
PF̂n

{Z = Y j }

= F̂n(t, Y j ) − F̂n(t, Y j−)

N1 j/n
=

(N1 j/n)
{

1 −∏
Uk≤t

(
1 − δk j

Nk j

)}

N1 j/n

= 1 −
∏

Uk≤t

(
1 − δk j

Nk j

)
, (41)

where t ≤ Um . Hence, (21)–(22) follow from (39)–(41). �
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Proof of Corollary 2 From (20), we have that for any (t, z) ∈ R
2,

F̂n(t, z) =
m∑

i=1

q∑

j=1

q̂i j I {Ui ≤ t, Y j ≤ z} +
q∑

j=1

q̂m + 1, j I {t > Um, z = Y j }, (42)

which, by (15), gives the marginal d.f. of Z as follows:

F̂n(∞, z) = PF̂n
{T ≤ Um, Z ≤ z} + PF̂n

{T > Um, Z ≤ z}

= F̂n(Um, z) +
q∑

j=1

PF̂n
{T > Um, Z = Y j }I {Y j ≤ z}

=
q∑

j=1

m∑

i=1

q̂i j I {Y j ≤ z} +
q∑

j=1

q̂m + 1, j I {Y j ≤ z}

=
q∑

j=1

{(
m∑

i=1

q̂i j

)
+ q̂m + 1, j

}
I {Y j ≤ z} =

q∑

j=1

(
N1 j

n

)
I {Y j ≤ z}

= n−1
q∑

j=1

n∑

k=1

I {Zk = Y j }I {Y j ≤ z} = n−1
n∑

k=1

I {Zk ≤ z}. (43)

�
Proof of Corollary 3 When there is no censoring, in (6) we have ni j = δi j for all
1 ≤ i ≤ m, 1 ≤ j ≤ q. Thus, from (20) and (15) we have for 1 ≤ i ≤ m, 1 ≤ j ≤ q:

q̂i j =
(

ni j

Ni j

)(
N1 j

n

) i−1∏

k=1

(
1 − nkj

Nk j

)
=
(

ni j

Ni j

)(
N1 j

n

) i−1∏

k=1

(
Nk+1, j

Nk j

)

=
(

ni j

Ni j

)(
N1 j

n

){
N2 j

N1 j
· N3 j

N2 j
× · · · × Ni, j

Ni−1, j

}
=
(ni j

n

)
. (44)

Thus, from (6) we have in (20):

F̂n(t, z) = n−1
m∑

i=1

q∑

j=1

ni j I {Ui ≤ t, Y j ≤ z}

= n−1
m∑

i=1

q∑

j=1

n∑

k=1

I {Vk = Ui , Zk = Y j }I {Ui ≤ t, Y j ≤ z}

= n−1
n∑

k=1

m∑

i=1

q∑

j=1

I {Vk = Ui ≤ t, Zk = Y j ≤ z}

= n−1
n∑

k=1

I {Vk ≤ t, Zk ≤ z}, (45)

which is the bivariate empirical d.f. of sample (1). �
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Proof of Theorem 2 In (3), for all possible values of Z we denote the following:

zk = Yk, Pk = P{Z = zk}, F0k(t) = P{T ≤ t | Z = zk}, (46)

where k = 1, . . . , q. Then, the bivariate d.f. F0(t, z) of (T, Z) can be expressed as

F0(t, z) = P{T ≤ t, Z ≤ z} =
∑

zk≤z

P{T ≤ t, Z = zk} =
∑

zk≤z

Pk F0k(t). (47)

From (3), (15) and (21), we have

P̂k ≡ PF̂n
{Z = zk} = n−1

n∑

i=1

I {Vi ≥ U1, Zi = zk} = n−1
n∑

i=1

I {Zi = zk}. (48)

Since F̂nk(t) ≡ F̂n(t | Z = zk) in (22) is the Kaplan–Meier estimator for F0k(t) in
(46) as in the univariate case, then from (21), (47)–(48) and Corollary 1.2 of Stute and
Wang (1993) we know that (24) follows from

sup
0≤t≤τV , z∈R

|F̂n(t, z) − F0(t, z)| = sup
0≤t≤τV , z∈R

|
∑

zk≤z

P̂k F̂nk(t) − F0(t, z)|

≤
q∑

k=1

(|P̂k − Pk | + sup
0≤t≤τV

|F̂nk(t) − F0k(t)|),

(49)

because for each 1 ≤ k ≤ q, P̂k is a strong consistent estimator for Pk and F̂nk(t) is
a uniform strong consistent estimator for F0k(t). �
Proof of Theorem 3 Using the notations in the proof of Theorem 5, since F̂nk(t) is the
Kaplan–Meier estimator for F0k(t) in the univariate case, then from (21), (47)–(48)
and Gill (1983) we know that the proof follows from

√
n[F̂n(t, z) − F0(t, z)] =√

n
q∑

k=1

[P̂k F̂nk(t) − Pk F0k(t)]I {zk ≤ z}

=
q∑

k=1

(
P̂k

√
n[F̂nk(t) − F0k(t)]

+√
n(P̂k − Pk)F0k(t)

)
I {zk ≤ z}

w⇒
q∑

k=1

(PkGk + Zk F0k(t))I {zk ≤ z}, as n → ∞ (50)

because for each 1 ≤ k ≤ q,
√

n(P̂k − Pk) weakly converges to zero-mean normal
r.v. Zk and

√
n[F̂n(t, z) − F0(t, z)] weakly converges to centered Gaussian process

Gk as n → ∞. �
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