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Abstract We propose the Bayesian adaptive Lasso (BaLasso) for variable selection
and coefficient estimation in linear regression. The BaLasso is adaptive to the sig-
nal level by adopting different shrinkage for different coefficients. Furthermore, we
provide a model selection machinery for the BaLasso by assessing the posterior con-
ditional mode estimates, motivated by the hierarchical Bayesian interpretation of the
Lasso. Our formulation also permits prediction using a model averaging strategy. We
discuss other variants of this new approach and provide a unified framework for vari-
able selection using flexible penalties. Empirical evidence of the attractiveness of the
method is demonstrated via extensive simulation studies and data analysis.

Keywords Bayesian Lasso · Gibbs sampler · Lasso · Scale mixture of normals ·
Variable selection

1 Introduction

Consider the linear regression problem

y = μ1n + Xβ + ε,
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222 C. Leng et al.

where y is an n × 1 vector of responses, X is an n × p matrix of covariates and ε is
an n × 1 vector of iid normal errors with mean zero and variance σ 2. As is usual in
regression analysis, our major interests are to estimate β = (β1, ..., βp)

′, to identify
its important covariates and to make accurate predictions. Without loss of generality,
we assume y and X are centered so that μ is zero and can be omitted from the
model.

For simultaneous variable selection and parameter estimation, Tibshirani (1996)
proposed the least absolute shrinkage and selection operator (Lasso) by minimizing
the squared error with a constraint on the �1 norm of β

min
β

(y − Xβ)′(y − Xβ) + λ

p∑

j=1

|β j |, (1)

where λ > 0 is the tuning parameter controlling the amount of penalty. The Lasso can
be efficiently computed by the least angle regression algorithm Efron et al. (2004),
Osborne et al. (2000), and gives consistent models provided that the irrepresentable
condition on the design matrix is satisfied and λ is chosen suitably Zhao and Yu
(2006). However, if this condition does not hold, the Lasso chooses the wrong model
with non-vanishing probability, regardless of the sample size and how λ is chosen Zou
(2006), Zhao and Yu (2006). To address this issue, Zou (2006) and Wang et al. (2007)
proposed to use adaptive Lasso (aLasso) that gives consistent model selection.

The Lasso estimator can be interpreted as the posterior mode in a Bayesian context
Tibshirani (1996). Yuan and Lin (2005) studied an empirical Bayes method targeting at
finding this mode. Park and Casella (2008) studied Bayesian Lasso (BLasso) to exploit
model inference via posterior distributions. Hans (2010) considers a formal Bayesian
approach to exploring model uncertainty with Lasso type priors on parameters in
submodels. Griffin and Brown (2011) have previously considered generalizing the
Bayesian Lasso in various ways including the use of separate scale parameters for
different coefficients in the Laplace prior with gamma mixing distributions for the
scale parameters. This is similar to the priors we use here, but Griffin and Brown
(2011) focused on finding posterior mode estimates via an EM algorithm whereas
our objectives here are somewhat broader. In particular we aim to investigate MCMC
computational methods for these priors, estimates of regression coefficients other than
the mode, different choices for smoothing parameters, model averaging strategies
which explore model uncertainty for predictive purposes and generalizations beyond
the linear model. Although the Lasso was originally designed for variable selection,
the BLasso loses this attractive property, not setting any of the coefficients to zero. A
post hoc thresholding rule may overcome this difficulty but it brings the problem of
threshold selection. Alternatively, Kyung et al. (2010) recommended to use the credible
interval on the posterior mean. Although it gives variable selection, this suggestion
fails to explore the uncertainty in the model space. On the other hand, the so-called
spike and slab prior, in which the scale parameter for a coefficient is a mixture of a
point mass at zero and a proper density function such as normal or double exponential
Yuan and Lin (2005), allows exploration of model space at the expense of increased
computation for a full Bayesian posterior.
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Bayesian adaptive Lasso 223

This work is motivated by the need to explore model uncertainty and to achieve
parsimony. With these objectives, we consider the following adaptive Lasso estimator:

min
β

(y − Xβ)′(y − Xβ) +
p∑

j=1

λ j |β j |, (2)

where different penalty parameters are used for the regression coefficients. Naturally,
for the unimportant covariates, we should put larger penalty parameters λ j on their
corresponding coefficients. A variant of (2) was considered by Zou (2006) and Wang
et al. (2007), in which the penalty parameters λ j have the form λ j = λw j with
the weights w j computed from some preliminary estimates and the single unknown
penalty parameter λ selected using, e.g., cross-validation. Our treatment is completely
different and is from a Bayesian perspective. We do not impose any particular form
on the λ j , and propose a hierarchical model to alleviate the problem of dealing with
many penalty parameters λ j . This hierarchical model provides an efficient way to
either estimate the parameter vector λ = (λ1, ..., λp)

′ or generate samples from its
posterior distribution. By plugging these samples into (2), we can solve for β using
fast algorithms developed for Lasso Efron et al. (2004), Figueiredo et al. (2007) and
subsequently obtain an array of (sparse) models. These models can be used not only
for variable selection and exploring model uncertainty, but also for prediction with
a variety of methods akin to Bayesian model averaging. We refer to this method as
Bayesian adaptive Lasso (BaLasso).

The BaLasso also permits a unified treatment for a wide range of models with
flexible penalties, using the least squares approximation Wang et al. (2007) at least
for data sets with large sample sizes. The extension encompasses generalized linear
models, Cox’s model and other parametric models as special cases. We outline novel
applications of BaLasso when structured penalties are present, for example, grouped
variable selection Yuan and Lin (2006) and variable selection with a prior hierarchical
structure Zhao et al. (2009).

The rest of the paper is organized as follows. The Bayesian adaptive Lasso frame-
work is presented in Sect. 2. We propose two approaches for estimating the tuning
parameter vector λ and give an explanation for the shrinkage adaptivity. Section 3
discusses model selection and Bayesian model averaging. In Sect. 4, the finite sample
performance of BaLasso is illustrated via simulation studies, and analysis of two real
datasets. Section 5 presents a unified framework which deals with various models and
structured penalties. Section 6 gives concluding remarks. A Matlab implementation
is available from the authors’ homepage.

2 Bayesian adaptive Lasso

The �1 penalty corresponds to a conditional Laplace prior Tibshirani (1996) as

π(β|σ 2) =
p∏

j=1

λ

2
√

σ 2
e−λ|β j |/

√
σ 2

,
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which can be represented as a scale mixture of normals with an exponential mixing
density Andrews and Mallows (1974)

λ

2
e−λ|z| =

∫ ∞

0

1√
2πs

e−z2/(2s) λ
2

2
e−λ2s/2ds.

This motivates the following hierarchical Bayesian Lasso (BLasso) model (Park
and Casella 2008)

y|X, β, σ 2 ∼ Nn(Xβ, σ 2 In)

β|σ 2, τ 2
1 , ..., τ 2

p ∼ Np(0p, σ
2 Dτ ) (3)

Dτ = diag(τ 2
1 , ..., τ 2

p)

with the following priors on σ 2 and τ = (τ 2
1 , ..., τ 2

p)

σ 2, τ 2
1 , ..., τ 2

p ∼ π(σ 2)

p∏

j=1

λ2

2
e−λ2τ 2

j /2 (4)

for σ 2 > 0 and τ 2
1 , ..., τ 2

p > 0. Park and Casella (2008) suggested using the improper
prior π(σ 2) ∝ 1/σ 2 to model the error variance.

As discussed in the introduction, different shrinkage parameters should be used for
different coefficients. This motivates us to replace (4) in the hierarchical structure by
a more adaptive penalty

σ 2, τ 2
1 , ..., τ 2

p ∼ π(σ 2)

p∏

j=1

λ2
j

2
e−λ2

j τ
2
j /2

. (5)

The major difference of this formulation is to allow different λ j , one for each
coefficient. Intuitively, the Lasso estimate, as the posterior mode, will be more accurate
if small penalty is applied to those covariates that are important and large penalty is
applied to those which are unimportant. Indeed, as we will see in Sect. 2.2 and in later
numerical experiments, in the posterior distribution, the λ j s for zero β j s will be much
larger than those λ j s for nonzero β j s.

By integrating out the τ 2
j s in the model (3) and (5), we see that the prior of β

conditional on σ 2 is

π(β|σ 2) =
p∏

j=1

λ j

2
√

σ 2
e−λ j |β j |/

√
σ 2

.

Similarly to Park and Casella (2008), we show in the Appendix that the poste-
rior π(β, σ 2|y), given any choice of the λ j s, is unimodal. Unimodality is important
because it makes the Gibbs sampler converge more rapidly and point estimates more
meaningful (Park and Casella 2008).
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The Gibbs sampling scheme to generate samples from the hierarchical model (3)
and (5) is as follows. The full conditional distribution of β is multivariate normal with
mean A−1 X ′y and variance σ 2 A−1, where A = X ′ X + D−1

τ . The full conditional
for σ 2 is inverse-gamma with shape parameter (n − 1)/2 + p/2 and scale parameter
(y − Xβ)′(y − Xβ)/2+β ′ D−1

τ β/2. The full conditional for 1/τ 2
j is inverse-Gaussian

with mean μ̃ j = λ jσ/|β j | and scale λ̃ j = λ2
j , where the inverse-Gaussian density is

given by

f (x) =
√

λ̃ j

2π
x−3/2 exp

{
− λ̃ j (x − μ̃ j )

2

2(μ̃ j )2x

}
, x > 0.

2.1 Choosing the Bayesian adaptive Lasso parameters

We discuss two approaches for choosing the BaLasso parameters λ j : the empirical
Bayes (EB) method and the hierarchical Bayes approach using hyper-priors. The EB
approach aims to estimate the λ j via marginal maximum likelihood, while the hierar-
chical Bayes approach uses hyperpriors on the λ j which enables posterior inference
on these shrinkage parameters.

Empirical Bayes (EB) approach. A natural choice is to estimate the BaLasso parame-
ters λ j by marginal maximum likelihood. However, in our framework, the marginal
likelihood for the λ j is not available in closed form. To deal with such a problem,
Casella (2001) proposed a multi-step approach based on an EM algorithm with the
expectation in the E-step being approximated by the average from the Gibbs sampler.
The updating rule then for λ j is easily seen to be

λ
(k)
j =

√√√√
2

E
λ

(k−1)
j

(τ 2
j |y)

, (6)

where λ
(k)
j is the estimate of λ j at the kth stage and the expectation E

λ
(k−1)
j

(.) is

approximated by the average from the Gibbs sampler with the hyper-parameters are
set to λ

(k−1)
j .

Casella’s method may be computationally expensive because many Gibbs sampler
runs are needed. Atchade (2011) proposed a single-step approach based on stochastic
approximation which can obtain the MLE of the hyper-parameters using a single Gibbs
sampler run. In our framework, making the transformation λ j = es j , the updating rule
for s j can be seen as (Atchade 2011, Algorithm 3.1)

s(n+1)
j = s(n)

j + an

(
2 − e2s(n)

j τ 2
n+1, j

)
,

where s(n)
j is the value of s j at the nth iteration, τ 2

n, j is the nth Gibbs sample of τ 2
j , and

{an} is a sequence of step-sizes such that

an ↘ 0,
∑

an = ∞,
∑

a2
n < ∞.
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In the following simulation, an is set to 1/n. Strictly speaking, choosing a proper
an is an important problem of stochastic approximation which is beyond the scope of
this paper. In practice, an is often set after a few trials by justifying the convergence
of iterations graphically.

Hierarchical Bayes approach. Alternatively, the λ j themselves can be treated as ran-
dom variables and join the Gibbs updating by using an appropriate prior on λ2

j . Here
for simplicity and numerical tractability, we take the following gamma prior Park and
Casella (2008)

π(λ2
j ) = δr


(r)
(λ2

j )
r−1e−δλ2

j . (7)

The advantage of using such a prior is that the Gibbs sampling algorithm can be
easily implemented. More specifically, when this prior is used, the full conditional of
λ2

j is gamma with shape parameter 1 + r and rate parameter τ 2
j + δ. This specification

allows λ2
j to join the other parameters in the Gibbs sampler.

As a first choice, we can fix hyper-parameters r and δ to some small values in order
to get a flat prior. Alternatively, we can fix r and use an empirical Bayes approach to
estimate δ. The updating rule for δ Casella (2001) can be seen as

δ(k) = pr
∑p

j=1 Eδ(k−1) (λ2
j |y)

.

Theoretically, we need not worry so much about how to select r because parameters
that are deeper in the hierarchy have less effect on inference (Lehmann and Casella
1998, p. 260). In our simulation study and data analysis, we use r = 0.1 which gives
a fairly flat prior and stable results.

2.2 Adaptive shrinkage

By allowing different λ j , adaptive shrinkage on the coefficients is possible. We demon-
strate the adaptivity by a simple simulation in which a data set of size 50 is generated
from the model

y = β1x1 + β2x2 + σε

with β = (3, 0)′, σ = 1, ε ∼ N (0, 1), x1, x2 ∼ N (0, 1).
Because β1 �= 0, β2 = 0 we expect that the EB and posterior estimates of λ2 will be

much larger than that of λ1. As a result, a heavier penalty is put on β2 so that β2 is more
likely to be shrunken to zero. This phenomenon is demonstrated graphically in Fig. 1.
Figure 1a, b plots 10,000 Gibbs samples (after discarding 10,000 burn-in samples)
for λ1 and λ2 (note that not λ2

1, λ2
2), respectively. The posterior distribution of λ2 is

central around a value of 22 which is much larger than 0.39, the posterior median of
λ1. Figure 1c, d shows the trace plots of iterations λ

(n)
1 , λ

(n)
2 from Atchade’s method.

Marginal maximum likelihood estimates of λ1 and λ2 are 0.39 and 19, respectively. In
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Fig. 1 a, b Gibbs samples for λ1 and λ2, respectively. c, d Trace plot for λ
(n)
1 and λ

(n)
2 by Atchade’s

method
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Fig. 2 Plots of EB and posterior estimates of λ2 versus β2

Fig. 2 we plot EB and posterior mean estimates of λ2 versus β2 when β2 varies from
0 to 5. Clearly, both the EB and the posterior estimates of λ2 decrease as β2 increases,
which demonstrates that lighter penalty is applied for stronger signals.
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3 Inference

3.1 Estimation and model selection

For the adaptive Lasso, the usual methods to choose the shrinkage parameter vector λ

would be computationally demanding. From the Bayesian perspective, one can draw
MCMC samples based on BaLasso and get an estimated posterior quantity for β.
Like the original Bayesian Lasso; however, a full posterior exploration gives no sparse
models and would fail as a model selection method. Here, we take a hybrid Bayesian-
frequentist point of view in which coefficient estimation and variable selection are
simultaneously conducted by plugging in an estimate of λ into (2), where λ might
be the marginal maximum likelihood estimator, posterior median or posterior mean.
Hereafter these suggested strategies are abbreviated as BaLasso-EB, BaLasso-Median,
and BaLasso-Mean, respectively.

With the presence of a posterior sample, we also propose another strategy for explor-
ing model uncertainty. Let {λ(s)}N

s=1 be Gibbs samples drawn from the hierarchical

model (3), (5) and (7). For the sth Gibbs sample λ(s) = (λ
(s)
1 , ..., λ

(s)
p )′, we plug λ(s)

into (2) and then record the frequencies of each variable being chosen out of N sam-
ples. The final chosen model consists of those variables whose frequencies are not
less than 0.5. This strategy will be abbreviated as BaLasso-Freq. The chosen model is
somewhat similar in spirit to the so-called median probability (MP) model proposed
by Barbieri and Berger (2004). As we will see in Sect. 4, all of our proposed strategies
have surprising improvement in terms of variable selection over the original Lasso
and the adaptive Lasso.

By writing the posterior distribution of λ and β as

π(λ, β|y) = π(λ|y)π(β|λ, y),

the BaLasso-Median or BaLasso-Mean estimator of β, with λ fixed at its point estimate
accordingly, can be considered as a point estimator of the coefficient vector. If we are
interested in standard errors of the coefficient estimation and predictions, the Bayesian
adaptive Lasso provides an easy way to compute Bayesian credible intervals. This can
be done straightforwardly, because we can summarize the Gibbs samples from the
posterior distribution of the parameters in any way we choose.

3.2 A model averaging strategy

When model uncertainty is present, making inferences based on a single model may be
dangerous. Using a set of models helps to account for this uncertainty and can provide
improved inference. In the Bayesian framework, Bayesian model averaging (BMA)
is widely used for prediction. BMA generally provides better predictive performance
than a single chosen model, see Raftery et al. (1997), Hoeting et al. (1999) and refer-
ences therein. For making inference via multiple models, we use the hierarchical model
approach for estimating λ and refer to the strategy outlined below as BaLasso-BMA.
It should be emphasized, however, that our model averaging strategy is unrelated to
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the usual formal Bayesian treatment of model uncertainty. Rather, our idea is simply
to use an ensemble of sparse models for prediction obtained from sampling the poste-
rior distribution of smoothing parameters and considering different sparse conditional
mode estimates of regression coefficients for the smoothing parameters so obtained.

Let � = (x�, y�) be a future observation and D = (X, y) be the past data. The
posterior predictive distribution of � is given by

p(�|D) =
∫

p(�|β)p(β|λ, D)dβp(λ|D)dλ. (8)

Suppose that we measure predictive performance via a logarithmic scoring rule
(Good 1952), i.e., if g(�|D) is some distribution we use for prediction then our
predictive performance is measured by log g(�|D) (where larger is better). Then for
any fixed smoothing parameter vector λ0

E(log p(�|D) − log p(�|λ0, D)) =
∫

log
p(�|D)

p(�|λ0, D)
p(�|D)d�

is nonnegative because the right hand side is the Kullback–Leibler divergence between
p(�|D) and p(�|λ0, D). Hence prediction with p(�|D) is superior in this sense to
prediction with p(�|λ0, D) with any choice of λ0.

Our hierarchical model (3), (5) and (7) offers a natural way to estimate the predictive
distribution (8), in which the integral is approximated by the average from Gibbs
samples of λ. For example, in the case of point prediction for y� with squared error
loss, the ideal prediction is

E(y�|D) =
∫

x ′
�E(β|λ, D)p(λ|D)dλ = x ′

�E(β|D),

where E(β|D) can be estimated by the mean of Gibbs samples for β. Write β̂λ as
the conditional posterior mode for β given λ. One could approximate x ′

�E(β|D) by
replacing E(β|D) with the conditional posterior mode β̂

λ̂
for some fixed value λ̂ of λ.

However, this ignores uncertainty in estimating the penalty parameters. An alternative
strategy is to replace E(β|D, λ) in the integral above with β̂λ and to integrate it out
accordingly. This should provide a better approximation to the full Bayes solution than
the approach which uses a fixed λ̂. In fact, we predict E(y�|D) by s−1 ∑s

i=1 x ′
�β̂λ(i)

where λ(i), i = 1, ..., s, denote MCMC samples drawn from the posterior distribution
of λ. Note that this approach has advantages in interpretation over the fully Bayes’
solution. By considering the models selected by the conditional posterior mode for
different draws of λ from p(λ|y), we gain an ensemble of sparse models that can
be used for interpretation. As will be seen in Sect. 4, when there is model uncer-
tainty, BaLasso-BMA provides an ensemble of sparse models and may have bet-
ter predictive performance than conditioning on a single fixed smoothing parameter
vector λ.
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4 Examples

In this section, we study the proposed methods through numerical examples. These
methods are also compared to Lasso, aLasso and BLasso in terms of variable selection
and predictions. We use the least angle regression algorithm of Efron et al. (2004) for
Lasso and aLasso in which fivefold cross-validation is used to choose shrinkage para-
meters. In the adaptive Lasso, we either use the least squares estimate (Examples 1 and
2) or the Lasso estimate (Example 3) as the preliminary estimate. For the optimization
problem (2), we use the gradient projection algorithm developed by Figueiredo et al.
(2007).

4.1 Simulation

Example 1 (Simple example) We simulate data sets from the model

y = x ′β + σε, (9)

where β = (3, 1.5, 0, 0, 2, 0, 0, 0)′, x j follows N(0,1) marginally and the corre-
lation between x j and xk is 0.5| j−k|, and ε is iid N(0,1). We compare the performance
of the proposed methods in Sect. 3.1 to that of the original Lasso and adaptive Lasso.
The performance is measured by the frequency of correctly fitted models over 100
replications. The simulation results are summarized in Table 1 and suggest that the
proposed methods perform better than Lasso and aLasso in model selection.

Example 2 (Difficult example) For the second example, we use Example 1 in Zou
(2006), for which the Lasso does not give consistent model selection, regardless of the
sample size and how the tuning parameter λ is chosen. Here β = (5.6, 5.6, 5.6, 0)′
and the correlation matrix of x is such that cor(x j , xk) = −0.39, j < k < 4 and
cor(x j , x4) = 0.23, j < 4.

The experimental results are summarized in Table 2 in which the frequencies of
correct selection are shown. As expected, the frequency of the model being correctly
chosen by Lasso is consistently small. For all the other methods, the frequencies of
correct selection go to 1 as n increases and σ decreases. In general, our proposed
method for model selection performs better than aLasso.

Table 1 Frequency of correctly fitted models over 100 replications for Example 1

n σ Lasso aLasso BaLasso-Freq BaLasso-Median BaLasso-Mean BaLasso-EB

30 1 50 71 86 86 97 78

3 17 8 35 34 18 39

60 1 66 76 81 79 100 83

3 44 38 54 53 55 46

120 1 73 76 87 87 100 87

3 58 55 81 81 97 86
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Table 2 Frequency of correctly fitted models over 100 replications for Example 2

n σ Lasso aLasso BaLasso-Freq BaLasso-Median BaLasso-Mean BaLasso-EB

60 9 0 5 8 8 9 12

120 5 10 45 66 65 66 51

300 3 12 65 83 83 85 83

300 1 12 100 100 100 100 100

Table 3 Frequency of correctly fitted models over 100 replications for Example 3

n σ aLasso BaLasso-Freq BaLasso-Median BaLasso-Mean BaLasso-EB

50 1 23 40 40 41 38

3 24 37 35 35 33

5 8 29 28 30 28

100 1 40 100 100 100 100

3 38 99 99 99 98

5 21 87 89 87 86

200 1 100 100 100 100 100

3 90 100 100 100 98

5 77 95 98 98 96

Example 3 (Large p example) The variable selection problem with large p (even larger
than n) is recently an active research area. We consider an example of this kind in which
p = 100 with various sample sizes n = 50, 100, 200. We set up a sparse recovery
problem in which most of coefficients are zero except β j = 5, j = 10, 20, ..., 100.

Table 3 summarizes our simulation results, in which the design matrix is simulated
as in Example 1. BaLasso-Freq, BaLasso-Median, BaLasso-Mean and BaLasso-EB
perform satisfactorily in this example and outperform aLasso in variable selection.

Example 4 (Prediction) In this example, we examine the predictive ability of BaLasso-
BMA experimentally. As discussed in Sect. 3.2, when there is model uncertainty,
making predictions conditioning on a single fixed parameter vector is not optimal
predictively. Suppose that the dataset D is split into two sets: a training set DT and
prediction set DP . Let � = (x�, y�) ∈ DP be a future observation and ŷ� be a pre-
diction of y� based on DT . We measure the predictive performance by the prediction
squared error (PSE)

PSE = 1

|DP |
∑

�∈DP

|y� − ŷ�|2. (10)

We compare PSE of BaLasso-BMA to that of BaLasso-Mean in which ŷ� = x ′
�β̂

where β̂ is the solution to (2) with smoothing parameter vector fixed at the posterior
mean of λ. We also compare the predictive performance of BaLasso-BMA to that of
the Lasso, aLasso, and the original Bayesian Lasso (BLasso). The implementation of
BLasso is similar to BaLasso except that BLasso has a single smoothing parameter.
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Table 4 Prediction squared error averaged over 100 replications for the small-p case

nT = n P σ Lasso aLasso BLasso BaLasso-Mean BaLasso-BMA

30 1 2.029 1.976 1.276 1.175 1.165

3 17.43 17.37 10.88 15.51 11.06

5 42.74 42.13 29.43 41.32 29.56

10 126.6 126.2 109.6 123.9 109.9

100 1 1.449 1.436 1.044 1.077 1.032

3 12.69 12.58 9.662 9.627 9.485

5 34.89 34.79 25.79 27.55 25.83

10 117.6 117.5 105.7 118.2 106.5

200 1 1.279 1.274 1.018 1.036 1.014

3 11.44 11.40 9.424 9.326 9.320

5 31.30 31.18 25.32 25.36 25.19

10 120.7 120.7 103.9 108.8 104.3

Table 5 Prediction squared error averaged over 100 replications for the large-p case

nT = n P σ Lasso aLasso BLasso BaLasso-Mean BaLasso-BMA

100 1 3.501 4.173 9.574 1.673 1.234

3 15.49 17.70 27.42 10.88 10.42

5 34.45 39.81 42.43 28.66 28.19

10 149.3 178.1 161.0 124.5 117.6

200 1 2.468 2.417 5.231 1.110 1.072

3 17.11 17.09 15.12 10.42 10.22

5 44.49 44.39 33.92 27.18 27.06

10 148.1 147.5 136.1 112.0 108.9

We first consider a small-p case in which data sets are generated from model (9)
but now with β = (3, 1.5, 0.1, 0.1, 2, 0, 0, 0)′. By adding two small effects we
expect there to be model uncertainty. Table 4 presents the prediction squared errors
averaged over 100 replications with various factors nT (size of training set), n P (size
of prediction set) and σ . The experiment shows that BaLasso-BMA performs slightly
better than BLasso and BaLasso-Mean, and much better than the Lasso and aLasso.

Similarly, we consider a large-p case as in Example 3 but now with β10 = β20 =
β30 = β40 = β50 = 0.5 in order to get model uncertainty. The results are summarized
in Table 5. Unlike for the small-p case, BLasso now performs surprisingly badly. This
may be due to the fact that BLasso uses the same shrinkage for every coefficient. As
shown, BaLasso-BMA outperforms the others.

4.2 Real examples

Example 5 (Body fat data) Percentage of body fat is one important measure of health,
which can be accurately estimated by underwater weighing techniques. These tech-
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Table 6 Body fat example:
summarized data

Predictor Predictor Mean SD
number

Y Percent body fat (%) 18.89 7.72

X1 Age (years) 44.89 12.63

X2 Weight (pounds) 178.82 29.40

X3 Height (in.) 70.31 2.61

X4 Neck circumference (cm) 37.99 2.43

X5 Chest circumference (cm) 100.80 8.44

X6 Abdomen circumference (cm) 92.51 10.78

X7 Hip circumference (cm) 99.84 7.11

X8 Thigh circumference (cm) 59.36 5.21

X9 Knee circumference (cm) 38.57 2.40

X10 Ankle circumference (cm) 23.10 1.70

X11 Extended biceps circumference 32.27 3.02

X12 Forearm circumference (cm) 28.66 2.02

X13 Wrist circumference (cm) 18.23 0.93

niques often require special equipment and are sometimes not convenient, thus fitting
percent body fat to simple body measurements is a convenient way to predict body fat.
Johnson (1996) introduced a data set in which percent body fat and 13 simple body
measurements (such as weight, height and abdomen circumference) are recorded for
252 men (see Table 6 for the summarized data). This data set was also carefully ana-
lyzed by Hoeting et al. (1999). Following Hoeting et al., we omit the 42nd observation
which is considered as an outlier. Previous diagnostic checking (Hoeting et al. 1999)
showed that it is reasonable to assume a linear regression model.

We first consider the variable selection problem. We center the variables so that the
intercept is not considered. Lasso chooses X1, X2, X3, X4, X6, X7, X8, X11, X12,

X13 in the final model with a BIC value 712.16, while aLasso has one fewer variable
X3 with a BIC value 709.46. Here, given a set of covariates, the BIC value of the
corresponding model is computed in the usual way after performing maximum like-
lihood estimation. BaLasso-Freq, BaLasso-Median, BaLasso-Mean and BaLasso-EB
all choose X1, X2, X4, X6, X8, X11, X12, X13, one fewer variable (X7) than
aLasso. The BIC value for BaLasso is 708.92, smaller than that of Lasso and aLasso.
A simple analysis shows that X3 and X7 are highly correlated to X6 (the correlation
coefficients are 0.89 and 0.92, respectively). Additionally, X6 is the most important
predictor (Hoeting et al. 1999). Thus removing X3 and X7 from the model helps to
avoid the multicollinearity problem. To conclude, BaLasso chooses the simplest model
with the smallest BIC.

We now proceed to explore model uncertainty inherent in this dataset. Let M(λ)

be the model selected with respect to shrinkage parameter vector λ. We define the
posterior model probability (PMP) of a model M to be

p(M |D) =
∫

λ:M(λ)=M
p(λ|D)dλ.
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Table 7 Body fat example: 10 models with highest posterior model probability

Models PMP (%)

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

1 1 0 1 0 1 0 1 0 0 1 1 1 2.23

1 1 0 0 0 1 0 1 0 0 0 1 1 2.03

1 1 0 0 0 1 0 0 0 0 1 0 1 1.80

0 1 0 0 0 1 0 0 0 0 1 0 1 1.77

1 1 0 1 0 1 0 1 0 0 0 1 1 1.63

1 1 0 1 0 1 0 0 0 0 1 0 1 1.57

1 1 0 1 0 1 1 1 0 0 1 1 1 1.43

0 1 0 1 0 1 0 0 0 0 1 0 1 1.43

0 1 0 0 0 1 0 0 0 0 0 1 1 1.43

0 1 0 0 0 1 0 1 0 0 0 1 1 1.43

Note that this is not a posterior model probability in the usual sense in formal Bayesian
model comparison, but simply represents the uncertainty of the sparsity structure in
the conditional posterior mode estimate induced by the uncertainty in the posterior
distribution on the smoothing parameter. From the Gibbs samples of λ, it is straight-
forward to estimate these PMPs. Table 7 presents 10 models with highest PMP which
indicates high model uncertainty. The model with highest posterior probability and
these 10 mostly selected models account for only 2.23 and 16.8 % of the total posterior
model probability, respectively. With this model uncertainty, using a single model for
prediction may be risky.

We now examine the predictive performance of the approaches. To this end, we
split the dataset (without standardizing) into two parts: the first 150 observations
are used as the training set, the remaining observations are used as the prediction
set. The out-of-sample predictive squared errors (PSEs) of aLasso, BaLasso-Mean,
BaLasso-Median, BaLasso-EB, BLasso and BaLasso-BMA are 18.92, 18.28, 19.79,
19.00, 18.69, 18.13, respectively. Thus, for this dataset, BaLasso-BMA has the best
predictive performance.

Example 6 (Prostate cancer data) Stamey et al. (1989) studied the correlation between
the level of prostate antigen (lpsa) and a number of clinical measures in men: log can-
cer volume (lcavol), log prostate weight (lweight), age, log of the amount of benign
prostatic hyperplasia (lbph), seminal vesicle invasion (svi), log of capsular penetra-
tion (lcp), Gleason score (gleason), and percentage of Gleason scores 4 or 5 (pgg45).
We assume a linear regression model between the response lpsa and the 8 covariates.
We first consider the variable selection problem. The data set of size 97 is standard-
ized so that the intercept β0 is excluded. Table 8 summarizes the selected smoothing
parameters and estimated coefficients by various methods. Note that, for Lasso and
aLasso there is just one smoothing parameter and putting the values on the first row
as presented in the table does not mean these parameters are only associated with the
first predictor.
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Table 8 Prostate cancer example: selected smoothing parameters and coefficient estimates

Selected λ Coefficient estimate β̂

BaLasso BaLasso BaLasso Lasso aLasso BaLasso BaLasso BaLasso Lasso aLasso
-EB -Median -Mean -EB -Median -Mean

1.24 1.19 1.39 2.40 1.86 0.563 0.562 0.563 0.561 0.568

1.59 1.50 1.76 0.436 0.436 0.436 0.357 0.437

332.75 841.05 1066 0 0 0 −0.015 0

55.78 16.67 20.41 0 0 0 0.1 0

1.15 1.08 1.27 0.587 0.594 0.580 0.432 0.510

97.61 86.56 113.2 0 0 0 0 0

89.77 78.69 105.12 0 0 0 0 0

754.38 1241.70 1823.7 0 0 0 0.005 0
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Fig. 3 Prostate cancer example: BaLasso-Mean estimates (asterisk) and the corresponding (equal-tailed)
95 % credible intervals (solid line). Posterior mean BLasso estimates (open diamond) and the corresponding
(equal-tailed) 95 % credible intervals (dashed line)

The EB estimation here is implemented using the stabilized Algorithm 2.2 of
Atchade (2011), in which the compact sets are selected to be ⊗[−n − 1, n + 1],
and the step-size an = 2/n is obtained after a few trials by justifying the convergence
of iterations λ(n) graphically. As shown in Table 8, BaLasso-EB, BaLasso-Mean and
BaLasso-Median give very similar estimates for λ j corresponding to nonzero coef-
ficients, but fairly different estimates for λ j corresponding to zero coefficients. The
effects of increased penalty parameters on the zero coefficients are obvious: smaller
shrinkage is applied to the nonzero coefficients and larger shrinkage is applied to those
which should be removed.

Figure 3 shows the BaLasso-Mean estimates and their corresponding 95 % credible
intervals (solid line). These credible intervals are computed using Gibbs sampling with
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Table 9 Prostate cancer
example: 10 models with highest
posterior model probability

Models PMP (%)

1 2 5 27.9

1 2 5 8 16.1

1 4 5 6.3

1 2 4 5 8 5.9

1 2 8 5.7

1 2 4 5 5.1

1 2 3 5 8 4.9

1 2 3 4 5 8 4.9

1 4 5 8 3.2

1 2 3.1

the Lasso parameter vector λ fixed at its posterior mean estimate. For comparison,
Fig. 3 also shows the original BLasso estimates and their corresponding 95 % credible
intervals (dashed line), with the single Lasso parameter λ fixed at its posterior mean
estimate. All the estimates are well within their credible intervals. We can see that the
credible intervals of the BaLasso-Mean is slightly narrower than that of the original
BaLasso.

The adaptive Lasso and all of the proposed strategies (including BaLasso-Freq also)
for variable selection produce the same model whose BIC is −25.19, while BIC of
the model selected by Lasso is −21.38. Therefore, the model chosen by our methods
is favorable.

Table 9 presents 10 models with highest PMP. The mostly selected model is the same
as the one selected by aLasso and our methods. In comparison to the previous example,
the presence of model uncertainty is not very clear in this case. The model with the
highest posterior probability accounts for 27.9 % of the total which is considerably
large. Moreover, this probability is also considerably different from that of the model
with second highest posterior probability.

To examine the predictive performance, we split the data set (without standardizing)
into two sets: the first 50 observations form the training set DT , the rest form the
prediction set DP . The PSEs of aLasso, BLasso, BaLasso-Median, BaLasso-BMA
are 1.89, 1.91, 1.91, 1.86, respectively. Therefore, although the presence of model
uncertainty is not very clear, BaLasso-BMA still provides comparable and slightly
better estimates in terms of prediction.

5 A unified framework

So far, we have focused on BaLasso for linear regression. This section extends the
BaLasso to more complex models such as generalized linear models, Cox’s models,
with other penalties, such as the group penalty (Yuan and Lin 2006) and the composite
absolute penalty (Zhao et al. 2009). This unified framework enables us to study variable
selection in a much broader context.

Denote by L(β) the minus log-likelihood. In order to use the BaLasso developed
for linear regression, we approximate L(β) by the least squares approximation (LSA)
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as in Wang and Leng (2007)

L(β) ≈ L(β̃) + ∂L(β̃)

∂β
(β − β̃) + 1

2
(β − β̃)′ ∂

2L(β̃)

∂β∂β ′ (β − β̃)

= constant + 1

2
(β − β̃)′
̂−1(β − β̃),

where β̃ is the MLE of β and 
̂−1 := ∂2L(β̃)/∂β2. To use the BaLasso for a general
model, the sampling distribution of y, conditional on β, can be approximately written
as

y|β ∼ exp

(
−1

2
(β − β̃)′
̂−1(β − β̃)

)
.

And we only need to update the hierarchical model for y in the linear model using this
expression while keeping other specifications intact. Now we discuss in detail three
novel applications of BaLasso for models with flexible penalties.

BaLasso with LSA. The frequentist adaptive Lasso for general models estimates β by
minimizing

L(β) +
∑

λ j |β j |. (11)

Its Bayesian version is the following

y|β ∼ exp

(
−1

2
(β − β̃)′
̂−1(β − β̃)

)
,

β|τ 2 ∼ Np(0, Dτ ), Dτ = diag(τ 2),

τ 2|λ2 ∼
p∏

j=1

λ2
j

2
e−λ2

j τ
2
j /2

,

λ2 ∼
p∏

j=1

(λ2
j )

r−1e−δλ2
j ,

where τ 2 := (τ 2
1 , ..., τ 2

p)′, λ2 := (λ2
1, ..., λ

2
p)

′. Note that we no longer have σ 2 in the
hierarchy. The full conditionals are specified by

β|y, τ 2, λ2 ∼ Np((
̂
−1 + D−1

τ )−1
̂−1β̃, (
̂−1 + D−1
τ )−1),

1

τ 2
j

= γ j |y, β, λ2 ∼ inverse-Gaussian

(
λ j

|β j | , λ
2
j

)
, j = 1, ..., p,

λ2
j |y, β, τ 2 ∼ gamma

(
r + 1, δ + τ 2

j

2

)
, j = 1, ..., p.

123



238 C. Leng et al.

BaLasso for group Lasso. The adaptive group Lasso Yuan and Lin (2006) for general
models minimizes

L(β) +
J∑

j=1

λ j‖β j‖l2 , (12)

where β j is the coefficient vector of the j th group, j = 1, ..., J . The corresponding
Bayesian hierarchy is as follows:

y|β ∼ exp

(
−1

2
(β − β̃)′
̂−1(β − β̃)

)
,

β j |τ 2 ∼ Nm j (0, τ 2
j 11m j ), j = 1, ..., J

τ 2
j |λ2 ∼ gamma

(
m j + 1

2
,
λ2

j

2

)
, j = 1, ..., J

λ2
j ∼ gamma(r, δ), j = 1, ..., J,

where m j is the size of group j , 11m j is the identity matrix of order m j . This prior was
also used by Kyung et al. (2010) for grouped variable selection in linear regression.

The full conditionals can be obtained as follows. Let X̃ be the square root matrix of

̂−1 and ỹ := X̃ β̃. Write X̃ = [X̃1, ..., X̃ J ] with block matrices X̃ j of size p × m j .
We have

β j |y, β− j , τ
2, λ2 ∼ Nm j

⎛

⎝A−1
j X̃ ′

j (ỹ −
∑

j ′ �= j

X̃ j ′β j ′), A−1
j

⎞

⎠ ,

1

τ 2
j

= γ j |y, β, λ2 ∼ inverse Gaussian

(
λ j

‖β j‖ , λ2
j

)
,

λ2
j |y, β, τ 2 ∼ gamma

(
r + m j + 1

2
, δ + τ 2

j

2

)
, j = 1, ..., J,

where β− j = (β1, ..., β j−1, β j+1, ..., βJ )′ and A j = X̃ ′
j X̃ j + (1/τ 2

j )11m j .

BaLasso for composite absolute penalty. We now consider the group selection problem
in which a natural ordering among the groups is present. By j → j ′, we mean that
group j should be added into the model before another group j ′, i.e., if group j ′ is
selected then group j must be included in the model as well. We extend the composite
absolute penalty Zhao et al. (2009) by allowing different tuning parameters for different
groups

∑

group j

λ j‖(β j , βall j ′: j→ j ′)‖l2 ,

where β j is a coefficient vector and this penalty represents some hierarchical structure
in the model. From this, the desired prior for β is the multi-Laplace
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π(β) ∝ exp

⎛

⎝
∑

j

λ j‖(β j , β j ′: j→ j ′)‖l2

⎞

⎠ ,

which can be expressed as the following normal-gamma mixture

∫ (
1

2πτ 2
j

) k j
2

exp

(
−‖(β j , β j ′: j→ j ′)‖2

2τ 2
j

)
(

λ2
j

2

) k j +1
2

(τ 2
j )

k j +1
2 −1



(

k j +1
2

) exp

(
−λ2

jτ
2
j

2

)
dτ 2

j

= exp
(
λ j‖(β j , β j ′: j→ j ′)‖

)
, (13)

where k j := m j + ∑
j ′: j→ j ′ m j ′ . Similar to the Bayesian formulations before, this

identity leads to the idea of using a hierarchical Bayesian formulation with a normal
prior for β|τ 2 and a gamma prior for τ 2

j . More specifically, the prior for β|τ 2 will be

β|τ 2 ∝ exp

⎛

⎝−
∑

j

‖(β j , β j ′: j→ j ′)‖2

2τ 2
j

⎞

⎠=
∏

j

exp

⎛

⎝−1

2

⎛

⎝ 1

τ 2
j

+
∑

j ′: j ′→ j

1

τ 2
j ′

⎞

⎠ ‖β j‖2

⎞

⎠ .

This suggests that the hierarchical prior for β j |τ 2 is independently normal with
mean 0 and covariance matrix (1/τ 2

j + ∑
j ′: j ′→ j 1/τ 2

j ′)
−111m j , j = 1, ..., J . We

therefore have the following hierarchy

y|β ∼ exp

(
−1

2
(β − β̃)′
̂−1(β − β̃)

)
,

β j |τ 2 ∼ Nm j

(
0, σ 2

j 11m j

)
, where σ 2

j :=
⎛

⎝ 1

τ 2
j

+
∑

j ′: j ′→ j

1

τ 2
j ′

⎞

⎠
−1

τ 2
j |λ2 ∼ gamma

(
k j + 1

2
,
λ2

j

2

)

λ2
j ∼ gamma(r, δ) for j = 1, ..., J.

It is now straightforward to derive the full conditionals as follows

β j |y, β− j , τ
2, λ2 ∼ Nm j

⎛

⎝A−1
j X̃ ′

j (ỹ −
∑

j ′ �= j

X̃ j ′β j ′), A−1
j

⎞

⎠ ,

1

τ 2
j

= γ j |y, β, λ2 ∼ inverse Gaussian

(
λ j

‖(β j , β j ′: j→ j ′)‖ , λ2
j

)
,

λ2
j |y, β, τ 2 ∼ gamma

(
r + k j + 1

2
, δ + τ 2

j

2

)
, j = 1, ..., J,
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Table 10 Example 1: Frequency of correctly fitted models over 100 replications

n Lasso aLasso BaLasso

200 3 (2.15) 35 (3.97) 36 (6.19)

300 5 (2.42) 42 (4.07) 90 (5.10)

500 4 (2.66) 41 (4.00) 100 (5.00)

The numbers in parentheses are average numbers of zero-coefficients estimated. The oracle average number
is 5

where β− j = (β1, ..., β j−1, β j+1, ..., βJ )′ and A j = X̃ ′
j X̃ j + (1/σ 2

j )11m j .
We now assess the usefulness of this unified framework by three examples. For

brevity, we only report the performance of various methods in terms of model selection.

Example 7 (BaLasso in logistic regression) We simulate independent observations
from Bernoulli distributions with probabilities of success

μi = P(yi = 1|xi , β) = exp(5 + x ′
iβ)

1 + exp(5 + x ′
iβ)

,

where β = (3, 1.5, 0, 0, 2, 0, 0, 0)′, and xi = (xi1, ..., xip)
′ ∼ Np(0, 
) with

σi j = 0.5|i− j |. We compare the performance of the BaLasso to that of the Lasso and
the aLasso. The performance is measured by the frequency of correct fitting and aver-
age number of zero coefficients over 100 replications. The weight vector in aLasso is
as usual assigned as ŵ = 1/|β̂(0)|, where β̂(0) is the MLE. The shrinkage parameters
in Lasso and aLasso are tuned by fivefold cross-validation. Table 10 presents the sim-
ulation result for various sample size n. The aLasso in this example works better than
the Lasso. The suggested BaLasso works very well, especially when the sample size
n is large. In addition, the BaLasso often produces sparser models than the others do.

Example 8 (BaLasso for group selection) We consider in this example the group
selection problem in a linear regression framework. We follow the simulation setup
of Yuan and Lin (2006). A vector of 15 latent variables Z ∼ N15(0, 
) with σi j =
0.5|i− j | are first simulated. For each latent variable Zi , a 3-level factor Fi is determined
according to whether Zi is smaller than �−1(1/3), larger than �−1(2/3) or in between.
The factor Fi then is coded by two dummy variables. There are totally 30 dummy
variables X1, ..., X30 and 15 groups with β j = (β2 j−1, β2 j )

′, j = 1, ..., J = 15.
After having the design matrix X , a vector of responses is generated from the following
linear model

y = Xβ + ε, ε ∼ Nn(0, 11), (14)

where most of β j = 0 except β1 = (−1.2, 1.8)′, β3 = (1, 0.5)′, β5 = (1, 1)′.
We compare the performance of the BaLasso to that of the gLasso in Yuan and Lin
(2006) and the adaptive group Lasso agLasso in Wang and Leng (2008) in terms of
frequencies of correct fitting and average numbers of not-selected factors over 100
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Table 11 Example 8: Frequency of correctly fitted models and average numbers (in parentheses) of not-
selected factors over 100 replications

n gLasso agLasso BaLasso

100 5 (6.64) 22 (9.60) 15 (14.86)

200 8 (6.92) 48 (10.72) 90 (12.04)

500 7 (7.24) 70 (11.34) 100 (12.00)

The oracle average number is 12

Table 12 Example 9: frequency of correctly fitted models and average numbers (in parentheses) of not-
selected effects over 100 replications

n gLasso agLasso BaLasso

100 18 (4.25) 45 (5.45) 72 (7.28)

200 36 (5.16) 88 (6.78) 100 (7.00)

500 34 (5.24) 96 (6.92) 100 (7.00)

The oracle average number is 7

replications. We follow Wang and Leng (2008) to take the weights ŵ j = 1/‖β̂MLE
j ‖

with β̂MLE
j are the MLE of β j . The tuning parameters in gLasso and agLasso are

tuned using AIC with the degrees of freedom as in Yuan and Lin (2006). We use 1,000
values of λ equally spaced from 0 to λmax to search for the optimal value. Table 11
reports the simulation result. Both gLasso and agLasso seem to select unnecessarily
large models and have low rate of correct fitting. In contrast, the BaLasso seems to
produce more parsimonious models when n is small. In general, the BaLasso works
much better than the others in terms of model selection.

Example 9 (BaLasso for main and interaction effect selection) In this example we
demonstrate the BaLasso with composite absolute penalty for selecting main and
interaction effects in a linear framework. We consider the model II of Yuan and Lin
(2006). First, four factors are created as in the previous example, each factor is then
coded by two dummy variables. The true model is generated from (14) with main
effects β1 = (3, 2)′, β2 = (3, 2)′ and interaction β1·2 = (1, 1.5, 2, 2.5)′. There
are totally 10 groups (4 main effects and 6 second-order interaction effects) with the
natural ordering in which main effects should be selected before their corresponding
interaction effects. We use the BaLasso formulation with composite absolute penalty
to account for this ordering. Table 12 reports the simulation results. We observe that
both gLasso and agLasso sometimes select effects in a “wrong” order (interactions
are seclected while the corresponding main effects are not). As a result, they have low
rates of correct fitting. The BaLasso always produce the models with effects in the
“right” order. This fact has been theoretically proven in Zhao et al. (2009). In general,
the BaLasso outperforms its competitors.

Note that in order to use the Bayesian adaptive Lasso developed for linear regression,
we approximate the log-likelihood by the Taylor series expansion. A sample size much
larger than the dimensionality is required for an accurate approximation.
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6 Conclusion

We have proposed the Bayesian adaptive Lasso approach which is novel in two aspects.
First, we use an adaptive penalty and have proposed methods for tuning parameter
selection and estimation. Second, we have proposed to use the posterior mode of the
regression coefficients given the shrinkage parameters from their posterior for model
averaging. Our approach retains the attractiveness of the usual Lasso in producing
sparse models, while providing an easy way to construct credible intervals for esti-
mates of interest. Moreover, due to its Bayesian nature, an ensemble of sparse models,
produced as the posterior mode estimates, can be used for model averaging. Thus, our
approach provides a novel and natural treatment of exploration of model uncertainty
and predictive inference. Finally, we have proposed a unified framework which can
be applied to select groups of variables (Yuan and Lin 2006) and other constrained
penalties (Zhao et al. 2009) in more general models. Empirically, we have shown its
attractiveness compared to its competitors.

Model selection consistency is often of primary interest to frequentists. This is not
theoretically shown in the current paper, although the simulation examples suggest that
the BaLasso estimates enjoy model selection consistency. A potential way is to show
that large-sample properties of the tuning parameters selected by the proposed methods
satisfy developed conditions in the literature, such as those in Zhao and Yu (2006).

Appendix

We show here that the posterior π(β, σ 2|y) is unimodal. The main idea of the proof
is taken from Park and Casella (2008). The log posterior, after ignoring all constants
that are independent of β and σ 2, is

f (β, σ 2) = −1

2
(n + p + 2) log σ 2 − 1√

σ 2

p∑

j=1

λ j |β j | − 1

2σ 2 ‖y − Xβ‖2. (15)

We need to show that f (β, σ 2) as a function of β and σ 2 is unimodal for any given
λ j ≥ 0, j = 1, ..., p. Following Park and Casella (2008), we use the transformation

φ j = β j√
σ 2

, j = 1, ..., p and ρ = 1√
σ 2

, (16)

and write (15) in the new coordinates φ = (φ1, ..., φp)
′ and ρ

h(φ, ρ) = (n + p + 2) log(ρ) −
p∑

j=1

λ j |φ j | − 1

2
‖ρy − Xφ‖2. (17)

The transformation in (16) is 1-to-1 and continuous, therefore unimodality of f (β, σ 2)

is equivalent to unimodality of h(φ, ρ). We can show that h(φ, ρ) is unimodal by
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showing that it is a convex function on its domain. It is easy to see that the first two
terms in (17) are convex in (φ, ρ). For the third term, note that its Hessian matrix is

−
(

X ′ X 0
0 y′y

)
,

which is negative definite. Because a multivariate function is concave if its Hessian
matrix is negative definite (see, e.g. Bazaraa et al. 2006, Chapter 3), the third term is
concave in (φ, ρ).

Acknowledgments The authors would like to thank the referees for the insightful comments which helped
to improve the manuscript. The final part of this work was done while M.-N. Tran was visiting the Vietnam
Institute for Advanced Study in Mathematics. He would like to thank the institute for supporting the visit.

References

Andrews, D. F., Mallows, C. L. (1974). Scale mixtures of normal distributions. Journal of the Royal
Statistical Society, Series B, 36, 99–102.

Atchade, Y. F. (2011). A computational framework for empirical Bayes inference. Statistics and Computing,
21, 463–473.

Barbieri, M. M., Berger, J. O. (2004). Optimal predictive model selection. The Annals of Statistics, 32,
870–897.

Bazaraa, M. S., Sherali, H. D., Shetty, C. M. (2006). Nonlinear Programming (3rd ed.). New Jersey: Wiley.
Casella, G. (2001). Empirical Bayes Gibbs sampling. Biostatistics, 2, 485–500.
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R. (2004). Least angle regression (with discussion). The

Annals of Statistics, 32, 407–451.
Figueiredo, M., Nowak, R., Wright, S. (2007). Gradient projection for sparse reconstruction: application to

compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing:
Special Issue on Convex Optimization Methods for Signal Processing, 1(4), 586–598.

Good, I. J. (1952). Rational decisions. Journal of the Royal Statistical Society, Series B, 14, 107–114.
Griffin, J. E., Brown, P. J. (2011). Bayesian hyper-lassos with non-convex penalization. Australian and New

Zealand Journal of Statistics, 53, 423–442.
Hans, C. (2010). Model uncertainty and variable selection in Bayesian Lasso regression. Statistics and

Computing, 20, 221–229.
Hoeting, J. A., Madigan, D., Raftery, A. E., Volinsky, C. T. (1999). Bayesian model averaging: a tutorial.

Statistical Science, 14, 382–417.
Johnson, R. W. (1996). Fitting percentage of body fat to simple body measurements. Journal of Statistics

Education, 4(1), 265–266.
Kyung, M., Gill, J., Ghosh, M., Casella, G. (2010). Penalized regression, standard errors and Bayesian

Lassos. Beyesian Statistics, 5, 369–412.
Lehmann, E. L., Casella, G. (1998). Theory of Point Estimation (2nd ed.). New York: Springer.
Osborne, M. R., Presnell, B., Turlach, B. A. (2000). A new approach to variable selection in least squares

problems. IMA Journal of Numerical Analysis, 20, 389–404.
Park, T., Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Association, 103,

681–686.
Raftery, A. E., Madigan, D., Hoeting, J. A. (1997). Bayesian model averaging for linear regression models.

Journal of the American Statistical Association, 92, 179–191.
Stamey, T., Kabalin, J., McNeal, J., Johnstone, I., Freiha, F., Redwine, E., et al. (1989). Prostate specific

antigen in the diagnosis and treatment of adenocarcinoma of the prostate ii. radical prostatectomy treated
patients. Journal of Urology, 16, 1076–1083.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical
Society, Series B, 58, 267–288.

Wang, H., Leng, C. (2007). Unified Lasso estimation via least squares approximation. Journal of the
American Statistical Association, 52, 5277–5286.

123



244 C. Leng et al.

Wang, H., Leng, C. (2008). A note on adaptive group Lasso. Computational Statistics and Data Analysis,
52, 5277–5286.

Wang, H., Li, G., Tsai, C. L. (2007). Regression coefficients and autoregressive order shrinkage and selection
via the Lasso. Journal of the Royal Statistical Society, Series B, 69, 63–78.

Yuan, M., Lin, Y. (2005). Efficient empirical Bayes variable selection and estimation in linear models.
Journal of the American Statistical Association, 100, 1215–1225.

Yuan, M., Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of
the Royal Statistical Society, Series B, 68, 49–67.

Zhao, P., Yu, B. (2006). On model selection consistency of Lasso. Journal of Machine Learning Research,
7, 2541–2563.

Zhao, P., Rocha, G., Yu, B. (2009). The composite absolute penalties family for grouped and hierarchical
variable selection. The Annals of Statistics, 37, 3468–3497.

Zou, H. (2006). The adaptive Lasso and its oracle properties. Journal of the American Statistical Association,
101, 1418–1429.

123


	Bayesian adaptive Lasso
	Abstract
	1 Introduction
	2 Bayesian adaptive Lasso
	2.1 Choosing the Bayesian adaptive Lasso parameters
	2.2 Adaptive shrinkage

	3 Inference
	3.1 Estimation and model selection
	3.2 A model averaging strategy

	4 Examples
	4.1 Simulation
	4.2 Real examples

	5 A unified framework
	6 Conclusion
	Appendix
	Appendix
	Acknowledgments
	References


