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Abstract Based on a random sample of size n from an unknown d-dimensional den-
sity f , the nonparametric estimations of a single integrated density partial derivative
functional as well as a vector of such functionals are considered. These single and
vector functionals are important in a number of contexts. The purpose of this paper
is to derive the information bounds for such estimations and propose estimates that
are asymptotically optimal. The proposed estimates are constructed in the frequency
domain using the sample characteristic function. For every d and sufficiently smooth
f , it is shown that the proposed estimates are asymptotically normal, attain the opti-
mal Op(n−1/2) convergence rate and achieve the (conjectured) information bounds.
In simulation studies the superior performances of the proposed estimates are clearly
demonstrated.

Keywords Bandwidth selection · Characteristic function · Convergence rate ·
Cross-validation · Multivariate kernel estimate · Nonparametric information bound

1 Introduction

For every d ≥ 1, let X be an n×d data matrix of random vectors x = (x1, . . . , xd) (we
use the row-vector convention throughout the paper) where x1, . . . , xn are independent
observations drawn from an unknown d-dimensional density f (x). Let us write

ψr =
∫

�d
fr(x) f (x) dx = E fr(x1), |r| = 2m, m = 0, 1, 2, . . . (1)
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866 T.-J. Wu et al.

where r = (r1, . . . , rd), ri ≥ 0 and fr(x) denotes a partial derivative of f of order
|r| with |p| = ∑d

j=1 p j for any vector p = (p1, . . . , pd) satisfying p j ≥ 0 for all j .
If all the components of r are even, say, r = 2m for some m = (m1, . . . ,md), then
using integration by parts, we can express ψr = ψ2m as

ψ2m = (−1)|m|θm with θm =
∫

�d
{ fm(x)}2 dx, |m| = 0, 1, 2, . . . . (2)

Indeed, (2) holds under Condition (C2m) where Condition (Ck) = { fk ∈ L1(�d) and
fs ∈ L1(�d) is absolutely continuous for all s = (s1, . . . , sd)with 0 ≤ |s| ≤ |k|−1}.
Let ⊗ denote the Kronecker product. For m = 0, 1, . . ., define the vector

ψ2m =
∫

�d
D⊗2m f (x) f (x) dx (say) = (ψri )1≤i≤d2m , |ri | = 2m for all i (3)

where ri = (ri,1, . . . , ri,d) and D⊗2m f = D f ⊗ · · · ⊗ D f is the 2m-th Kronecker
power of the vector D f = (∂ f/∂x1, . . . , ∂ f/∂xd). Thus, D⊗2m f ∈ �d2m

is a vector
containing all the partial derivatives of order 2m and ψ2m ∈ �d2m

is one containing
all the ψr’s with |r| = 2m (including possible multiplicities arising from the fact that
for smooth enough f the mixed partial derivatives may be equal).

Nonlinear functionals (1)–(2) and vector functionals (3) are of distinct interest from
the viewpoint of actual applications. For example, the functionals θm, 1 ≤ |m| ≤ 2,
and the vector ψ4 appear in the asymptotically (plug-in) optimal bandwidth for d-
dimensional histograms, frequency polygons and density estimates (cf. Scott 1992;
Wand and Jones 1994; Duong and Hazelton 2003) and in the rescaling factor for testing
of multimodality based on kernel density estimates (cf. Fisher et al. 1994). Also, θ0
(here and below, c = (c, c, . . . , c, c) for any constant c) can be applied to projection
pursuit because θ0 appears in the d-dimensional Friedman–Tukey projection index (cf.
Silverman 1986), and log θ0 is an upper bound for the d-dimensional negative Shannon
entropy (we have E{log f (x1)} ≤ log{E f (x1)} = log θ0 by Jensen’s inequality).
Furthermore, let f j denote the j th marginal density, the functionals

∫
� f 2

j (x) dx, 1 ≤
j ≤ d appear in the asymptotic variance of the d-dimensional Wilcoxon-type rank
test, in the asymptotic relative efficiency of such rank test relative to the Hotelling’s T 2

test (cf. Puri and Sen 1971) and in the weed emergence index for measuring the spread
of the probability distribution of the cumulative hydrothermal time at emergence (cf.
Cao et al. 2011).

In the past, most work for estimating (2) has focused on the univariate case, while
the multivariate case has been largely neglected. This may be due to the fact that it
is technically more difficult to calibrate multivariate density partial derivatives (see
the beginning of Sect. 2 for further descriptions of the challenge and difficulty). For
d = 1, some work on estimating (2) includes Hall and Marron (1987, 1991a), Bickel
and Ritov (1988), Aldershof (1991), Jones and Sheather (1991), Wu (1995), Cheng
(1997), Laurent (1997), Martinez and Olivares (1999), Giné and Mason (2008) and
Chacón and Tenreiro (2012), among others. Also, results on estimating (2) with f
being supported in [0, 1] are given by Fan (1991), who dealt with a white noise model
(see also Donoho and Nussbaum 1990), Goldstein and Messer (1992) and Efromovich
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Density partial derivative functionals 867

and Low (1996a,b). Additional result on estimating (2) with contaminated sample is
given by Delaigle and Gijbels (2002).

For d ≥ 2, Wand (1992) (see also Wand and Jones 1994) proposed an estimate,
denoted by θ̂WJ

m herein, of (2) which is the multivariate version of the estimate of Jones
and Sheather (1991). The θ̂WJ

m utilizes the form (1) and is a kernel-based estimate of
(1) with the kernel being a spherically symmetric pdf. Wand and Jones (1994) proved
that the MSE (mean squared error) E{θ̂WJ

m −θm}2 converges to zero quickly as n → ∞
if the same non-adaptive (non-data-driven) bandwidth of the form An−1/(2+d+2|m|) is
used in every coordinate direction where A depends on the kernel and the unknown∑d

i=1 θm+ei with ei ’s denoting the standard unit vectors in �d . Although their result
provides very significant insight into the theoretical issue of choosing bandwidth and
kernel, their θ̂WJ

m in general can not achieve the optimal MSE convergence rate O(n−1).
In addition, the θ̂WJ

m is not immediately applicable in practice because the asymptot-
ically optimal bandwidth depends on the unknown

∑d
i=1 θm+ei . Recently, Duong

and Hazelton (2003) and Chacón and Duong (2010) (see also Duong and Hazelton
2005a,b, Chacón and Duong 2011 and Chacón et al. 2011) have shown that it can be
beneficial to estimate the functionals (1) satisfying |r| = 2m for a fixed m all at once,
instead of estimating each of them separately; and proposed to estimate the vector
functionals (3) by multistage methods which are modifications and generalizations of
the aforementioned methods of Wand (1992) and Wand and Jones (1994).

The purpose of this paper is fourfold. First, the nonparametric information bound
for estimating a single functional ψr with even |r| (while θm is a special case) is
given (see Theorem 3). Secondly, we propose a nonparametric estimate of ψr which
is asymptotically efficient if the non-adaptive bandwidth in each coordinate direction
varies freely in a specific range (see Lemma 1). Thirdly, we propose an adaptive band-
width selector which falls into the just-mentioned range in probability (see Lemma 2)
and thus makes our estimate of ψr adaptive and immediately applicable in practice.
Moreover, for all d, r and sufficiently smooth f , our adaptive estimate of ψr is shown
to be asymptotically normal, attains the optimal Op(n−1/2) error convergence rate and
achieves the best possible constant coefficient in this convergence (see Theorem 1).
Fourthly, we propose an adaptive estimate of the vector functionals ψ2m , as a modifi-
cation and generalization of our estimate of ψr, and prove it is asymptotically normal,
attains the optimal Op(n−1/2) error convergence rate and achieves the (conjectured)
best possible constant covariance matrix in this convergence (see Theorem 2). Sections
2.1 and 2.3 give the details of the proposed estimates. Section 2.2 contains the main
theoretical results. In Sect. 3, for d = 2 and 3, simulation studies are carried out and
the superior performance of the proposed adaptive estimates is clearly demonstrated.
Section 4 is devoted to proofs.

2 The proposed method

The proposed estimates are constructed in the Fourier domain and the estimate of ψr
is mainly an extension to higher d of the univariate estimate of (1.2) of Wu (1995).
We have chosen such extension because that univariate estimate achieves the opti-
mal Op(n−1/2) error convergence rate, attains the information bound and performs
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superiorly in simulation studies. However, the extension is challenging and requires
non-trivial work due to complications and difficulties caused by (i) the correlation
between the bandwidths in different coordinate directions and (ii) the curse of dimen-
sionality (as termed by Bellman 1961, which describes the rapid growth in the diffi-
culty of problems as d increases, and the cost of an algorithm was observed to grow
exponentially in d).

2.1 The proposed estimates

Throughout the paper,
∫

is shorthand for
∫
�d . For any vectors t = (t1, . . . , td) and

p = (p1, . . . , pd), we denote tp = ∏d
j=1 t

p j
j and use t ≤ p to mean t j ≤ p j for

all j (similarly, t < p). Also, for ease of writing, we shall say a vector is large
[small, resp.] if its Euclidean norm ‖ · ‖ is large [small, resp.]. Furthermore, we use
φg(t) = ∫

exp(ixt′)g(x) dx to denote the Fourier transform of any g ∈ L1(�d) ∪
L2(�d), R(T) the d-dimensional rectangular region [−T1, T1]× · · ·× [−Td , Td ], and
R′(T) = �d \ R(T) where T = (T1, . . . , Td) > 0. For the rest, we set |r| = 2m for
some fixed m ≥ 0. For sufficiently smooth f , we can express ψr as

ψr = (2π)−d(−1)m
∫

tr|φ f (t)|2 dt, |r| = 2m. (4)

Indeed, if f satisfies Condition (Cr) [as defined immediately below (2)], then
φ fr(t) = (−1)mtrφ f (t) (cf. Hewitt and Stromberg 1969, pages 414–415) and
φ fr∗ f̃ (t) = φ fr (t)φ f̃ (t) = (−1)mtr|φ f (t)|2 where ∗ denotes convolution and

φ f̃ (t) = φ f (−t) with f̃ being defined by f̃ (x) = f (−x) for all x. Further, if

tr|φ f (t)|2 ∈ L1(�d) (as ensured by requiring p0 > m + (d/2) in Condition (A)
below), then by Fourier inversion formula (see, e.g., Rektorys 1969, page 1136), we
get ψr = ∫

fr(−x) f (−x) dx = ( fr ∗ f̃ )(0) = (2π)−d
∫
φ fr∗ f̃ (t) dt, and hence (4).

By utilizing the form (4), a kernel-based estimate of ψr is obtained if φ f is replaced
by φ f̂ in (4) where f̂ is the following multivariate product kernel estimate of f :

f̂ (x) = (nh1 · · · hd)
−1

n∑
i=1

⎧⎨
⎩

d∏
j=1

K ((x j − xi j )/h j )

⎫⎬
⎭ . (5)

Here, the same symmetric univariate kernel K is used in each coordinate direction, but
with a different bandwidth h j for each direction. We remark that any d-dimensional
spherically symmetric kernel can be used in (5). The product kernel is used here to
avoid the technical difficulties involved in the analysis of unconstrained estimators.
For cases where there is much to be gained by selecting a full bandwidth matrix
(which contains d(d + 1)/2 smoothing parameters), the readers are referred to Wand
and Jones (1993), Wand and Jones (1994), Duong and Hazelton (2005a,b), Chacón
(2009), Chacón and Duong (2010, 2011) and Chacón et al. (2011), among others.

Since the present problem is estimating ψr, we need have no qualms over using
higher-order kernels. We shall choose the “sync kernel” K∞(x) = (πx)−1 sin x,

123



Density partial derivative functionals 869

−∞ < x < ∞, a symmetric and infinite-order kernel. For advantages of using
K∞ see Davis (1975, 1977), Ibragimov and Khas’minskii (1982), Devroye (1988,
1992), Hall and Marron (1988) and Wu (1995). Note that K∞ ∈ L2(�) \ L1(�) and
φK∞(·) = I[−1,1](·) with I (·) denoting the indicator function. Let

φ̃(t) = n−1
n∑

j=1

exp(itx′
j ) (6)

denote the sample characteristic function and f̂T the product sync-kernel estimate
resulting from replacing K by K∞ and h j by T −1

j , 1 ≤ j ≤ d in (5). Then φ f̂T
(t) =

φ̃(t)
∏d

j=1 I[−Tj ,Tj ](t j ). Replacing φ f in (4) by φ f̂T
results in the family of estimates

ψ̃r(T) = (2π)−d(−1)m
∫

R(T)
tr|φ̃(t)|2 dt, |r| = 2m (7)

ofψr where the cutoff value T must satisfy min1≤ j≤d Tj → ∞ and n−1Tm+1 → 0 as
n → ∞ (see Remark 1 below). When r = 2m, the estimate (7) can be viewed as the
sync-kernel, Fourier domain, multivariate version of the “diagonals-in” estimate of (2)
proposed by Jones and Sheather (1991) (see Wu 1995 for details). The performance
of (7) depends heavily on how well the cutoff value T can be selected. It was pointed
out by Wu and Tsai (2004) (see also Chiu 1991) that φ̃(t) at large ‖t‖ is dominated
by sample variation and does not contain much information about f . Therefore, (7)
would have large variation if T is too large and large negative bias if T is too small.

For estimating the single functional ψr the proposed adaptive cutoff value T̂r =
(T̂r,1, . . . , T̂r,d) is the minimizer of

CV∞
r (T) = 2d+1Tr+1

{
(n + 1)

d∏
i=1

(ri + 1)

}−1

−
∫

R(T)
|tr||φ̃(t)|2 dt, T > 0

(8)

(see Remark 1 below for an explanation) and the proposed adaptive estimate of ψr is

ψ̃r(T̂r) = (2π)−d(−1)m
∫

R(T̂r)

tr|φ̃(t)|2 dt. (9)

Note that T̂r and CV∞
r (T) reduce to those proposed in Wu and Tsai (2004) when

r = 0, and to those in Wu (1995) when d = 1.

Remark 1 By arguments similar to those in deriving (2.3)–(2.5) of Wu (1995) (see
Lemma 3 herein), (5)–(8) of Wu (1997) and (10)–(13) of Wu and Tsai (2004), we can
quickly see that (8) is an unbiased estimate of a sharp upper bound, up to a constant
factor and a constant shift, of the risk E[{ψ̃+

r (T)}1/2 − {ψ+
r }1/2]2 where ψ+

r and
ψ̃+

r (T) are quantities resulting from replacing tr by |tr| in (4) and (7), respectively;
and, moreover, when r = 2m, (8) is the product sync-kernel (recalling the above f̂T),
Fourier domain version of the cross-validation (CV) score, up to a constant factor, for
estimating fm with badwidth h = (T −1

1 , . . . , T −1
d ) (cf. Chacón and Duong 2013; Wu
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1997). Next, suppose n ≥ 2 is fixed and the data matrix X is given. Rewrite (8) as
CV∞

r (T) = ∫
R(T) |tr|{2/(n + 1)− |φ̃(t)|2} dt. By the fact that φ̃(t) is continuous and

φ̃(0) = 1, we get CV∞
r (T) → 0 as ‖T‖ → 0 and CV∞

r (T) < 0 for all T in a small
neighborhood about 0. Also, after some computations we see that CV∞

r (T) → ∞
as ‖T‖ → ∞. This, together with the continuity of CV∞

r (T), implies that a global
minimizer of CV∞

r (T) exists over T > 0. See also Stone (1984) for an argument
showing the existence of a minimizer of the usual CV score.

Next, we consider the problem of estimating the �d2m
-vector functionals ψ2m . In

view of (3) and (7)–(9), we propose to estimate ψ2m by

ψ̃2m(T̂2m) = (ψ̃ri (T̂2m))1≤i≤d2m (10)

where the cutoff T̂2m is the minimizer of

SCV∞
2m(T) =

∑
r:|r|=2m

CV∞
r (T), T > 0. (11)

For reasons and advantages of using a common cutoff value for the estimation of
all components of ψ2m , the readers are referred to Duong and Hazelton (2003) and
Chacón and Duong (2010), among others. Note that the arguments in Remark 1 also
show, when n ≥ 2 is fixed and X is given, a global minimizer of SCV∞

2m(T) exists
over T > 0.

2.2 Main theoretical results

The notion of smoothness of f can be expressed in terms of the decay rate of |φ f (t)|.
Throughout we assume that Condition (A) holds for some r with |r| = 2m, where

Condition (A) Relation (4) holds and for some finite p0 > m + (d/2), it holds that∏d
i=1 |ti |pi |φ f (t)| = O(1) as

∏d
i=1 |ti |pi → ∞ for every non-negative vector p

satisfying |p| = p0.

Remark 2 If Condition (A) holds with p0 > |m| + d for some m, then by the Fourier
inversion formula, fm exists and is bounded over �d . The following are examples
of densities fulfilling or not fulfilling Condition (A): (i) a d-variate normal mix-
ture density satisfies Condition (A) for any r, (ii) a d-variate Pareto or exponen-
tial density does not satisfy Condition (A) because it has a jump discontinuity and
does not satisfy (4) for any r, and (iii) the Mckay’s bivariate gamma with density
f (x1, x2) = {�(a)�(b)}−1λa+bxa−1

1 (x2 − x1)
b−1e−λx2 , x2 > x1 > 0, a, b, λ > 0

and characteristic function φ f (t) = (1− i t2/λ)−b(1− i(t1 + t2)/λ)−a (see, e.g., Kotz
et al. 2000, page 432) fulfills Condition (A) for every r if min{a, b} > |r| + 1 and
p0 = min{a, b}.

The next lemma shows that ψ̃r(T) (see (7)) is asymptotically efficient for estimating
ψr (see Theorem 3 herein) and ψ̃2m(T) (see (10)) is conjectured to be asymptotically
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Density partial derivative functionals 871

efficient for estimating ψ2m (see Remark 3) if the non-adaptive T is selected from a
specific range.

Lemma 1 For any d and r with |r| = 2m assume Condition (A) with p0 > 2m + d.
Then as n → ∞,

E{n(ψ̃r(T)− ψr)
2} → 4Var{ fr(x1)} (12)

provided that the non-adaptive cutoff value T satisfies

min
1≤ j≤d

Tj → ∞, max
1≤ j≤d

Tj = O(n1/(2p0)), (13)

g+
r (T) = O(n−1+{(2m+d)/(2p0)}) (14)

with g+
r (T) := ∫

∪d
j=1{t:|t j |>Tj } |tr||φ f (t)|2 dt

(= ∫R′(T) |tr||φ f (t)|2 dt
)
. Further, for

all the ri ’s (see (3)) assume Condition (A) with p0 > 2m + d. Put σi j =
Cov( fri (x1), fr j (x1)). Then

E{n(ψ̃2m(T)− ψ2m)
′(ψ̃2m(T)− ψ2m)} → 4(σi j )1≤i, j≤d2m , n → ∞ (15)

provided that T satisfies (13) and g+
ri
(T) = O(n−1+{(2m+d)/(2p0)}) for all 1 ≤ i ≤

d2m .

We remark that (15) implies the mean squared Euclidean-norm error E{n‖ψ̃2m(T)−
ψ2m‖2} converges to 4

∑d2m

i=1 σ
2
i i as n → ∞. Also, we note that the condition

c0n1/(2p0) ≤ Tj ≤ c1n1/(2p0) for all 1 ≤ j ≤ d and all sufficiently large n, where c1 ≥
c0 > 0 are absolute constants, is sufficient for (13)–(14) to hold. The next lemma shows
that both T̂r and T̂2m (see (8) and (11)) are in the desired range, as specified in Lemma 1.

Lemma 2 For any d and r with |r| = 2m assume Condition (A). Then as n → ∞,

max
1≤ j≤d

T̂r, j = Op(n
1/(2p0)), g+

r (T̂r) = Op(n
−1+{(2m+d)/(2p0)}) (16)

(g+
r is defined in Lemma 1 above). Further, for all the ri ’s (see (3)) assume Condition

(A). Then

max
1≤ j≤d

T̂2m, j = Op(n
1/(2p0)) (17)

and

g+
ri
(T̂2m) = Op(n

−1+{(2m+d)/(2p0)}) for all 1 ≤ i ≤ d2m . (18)

The main results concerning the asymptotic property of our adaptive estimate
ψ̃r(T̂r) and ψ̃2m(T̂2m) (see (9) and (10)) are contained in the next two theorems,
and Lemma 2 is the key to prove them.
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Theorem 1 For any d and r with |r| = 2m assume Condition (A). Then, the following
two assertions hold:

(i) ψ̃r(T̂r)− ψr =
{

Op(n−1+{(2m+d)/(2p0)}), if p0 < 2m + d,
Op(n−1/2 logdn), if p0 = 2m + d.

(ii) If p0 > 2m + d, then

n1/2{ψ̃r(T̂r)− ψr} → N
(
0, 4Var{ fr(x1)}

)
in law.

Theorem 2 For any d and all the ri ’s (see (3)) assume Condition (A). Let 1d2m denote
a vector of dimension d2m with all entries equaling 1. Then the following two assertions
hold:

(i) ψ̃2m(T̂2m)− ψ2m =
⎧⎨
⎩

Op(n−1+{(2m+d)/(2p0)})1d2m , if p0 < 2m + d,

Op(n−1/2 logdn)1d2m , if p0 = 2m + d.
(ii) If p0 > 2m + d, then (see (15) for the definition of σi j )

n1/2{ψ̃2m(T̂2m)− ψ2m} → N
(
0, 4(σi j )1≤i, j≤d2m

)
in law.

The next theorem gives the information bound, in the sense of Koshevnik and Levit
(1976), for any nonparametric estimate ψ̂r of ψr = ψr( f ). This extends the result of
Bickel and Ritov (1988) to the multivariate case.

Theorem 3 For any d and r with |r| = 2m, let Fd = { f : Condition (A) holds with
p0 > 2m + d}. Then

lim
C→∞ lim inf

n→∞ inf
ψ̂r

sup
g∈Hn( f,C)

Eg{n(ψ̂r − ψr(g))
2} ≥ 4Var{ fr(x1)}

where Hn( f,C) = {g: g ∈ Fd , ‖g1/2 − f 1/2‖2 ≤ Cn−1/2} is a Hellinger ball in the
neighborhood of f with ‖ · ‖2

2 = ∫ {·(x)}2 dx.

Remark 3 We note that fr is bounded if f ∈ Fd (see Remark 2). Moreover, Theo-
rems 1–3 indicate that the order p0, which dominates the decay rate of φ f , is cru-
cial. For p0 > 2m + d, both ψ̃r(T̂r) and ψ̃2m(T̂2m) are

√
n-consistent and ψ̃r(T̂r)

achieves the information bound, i.e., achieves the best possible constant coefficient
in this convergence. We conjecture that ψ̃2m(T̂2m) also does so, i.e., 4(σi j )1≤,i, j≤d2m

is the best possible constant covariance matrix in the convergence in the sense that if
n1/2(ψ̂2m −ψ2m) → N

(
0,�

)
in law where ψ̂2m is any vector estimate, then the con-

stant covariance matrix � exceeds 4(σi j )1≤,i, j≤d2m by a non-negative definite matrix

(a related conjecture is that 4
∑d2m

i=1 σ
2
i i is the smallest possible limiting mean squared

Euclidean-norm error for
√

n-convergent vector estimates. See the remark made imme-
diately below Lemma 1). For smaller p0, ψ̃r(T̂r) and ψ̃2m(T̂2m) are still consistent but
with slower convergence rate. Borrowing the terminology from Efromovich and Low
(1996a,b), we may call p0 > 2m +d a regular case and m + (d/2) < p0 ≤ 2m +d an
irregular case. We conjecture that in the irregular case the rates described in Theorem
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3(i) and Theorem 2(i) are the best possible rates (in a minimax sense, see Efromovich
and Low 1996a,b for details) for adaptive estimates and hence ψ̃r(T̂r) and ψ̃2m(T̂2m)

are rate-optimal. In the present paper, we do not attempt to prove this conjecture
because its proof seems complicated and involved. We will report the complete proof
in the future. We believe that Efromovich and Low’s methods (who only dealt with
the case d = 1 and f is compactly supported) can be extended to general d and f ,
with sufficient additional effort.

Remark 4 If r = 2m (then |m| = m), then the estimation of ψr reduces to that of θm
(see (2)). Now, if Condition (Cm) holds, then |φ fm(t)|2 = t2m|φ f (t)|2. If, in addition,
fm ∈ L2(�d), then θm = (2π)−d

∫ |φ fm(t)|2 dt by Parseval’s formula. Thus

θm = (2π)−d
∫

t2m|φ f (t)|2 dt. (19)

Evidently, the sufficient conditions for (19) are essentially weaker than those for (4).
It can be easily seen that if we replace (4) by (19) in Condition (A), then (16) and
assertion (i) of Theorem 1 (with ψr being replaced by (−1)mθm there) remain true.

2.3 The modification of the proposed estimates

It is well known that the bandwidth selected by CV has a tendency toward under-
smoothing. Thus, CV∞

r (T) (recalling Remark 1) and SCV∞
2m(T) will occasionally

select unduly large cutoff values (i.e., small bandwidths) T̂r and T̂2m , respectively.
In order to reduce such chance, we propose a modification which extends the ones
in Chiu (1992) and Wu (1995, 1997) (from d = 1 to general d) and Wu and Tsai
(2004) (from r = 0 to general r). Let L̂r and L̂2m denote the open rays (half-lines)
starting from the origin and passing through T̂r and T̂2m , respectively. We focus on
finding cutoff values smaller than T̂r and T̂2m along the one-dimensional rays L̂r and
L̂2m , respectively. The simulation study in Sect. 3 shows that our scheme (see below)
along L̂r and L̂2m is computationally efficient and performs quite well. Therefore, our
scheme is sufficient from a practical point of view (here we have also overcome the
curse of dimensionality, see the beginning of Sect. 2). In what follows, all derivations
and solutions are confined to points on L̂r or L̂2m , as the case may be.

We first consider the modification of T̂r along L̂r. The basic idea is to use T̂r,mod as
the cutoff value unless φ̃(t) at larger t contains significant information about f , while
T̂r,mod = min{T̂r,loc, T̂r,u}. Here Tr,loc is the smallest local minimizer (which plays
a pivotal role, see Hall and Marron 1991b) of CV∞

r (T) and T̂r,u is a minimizer of
|B̂r(T, u)|, where B̂r(T, u) is an estimate of the bias Br(T) = Eψ̃r(T)− ψr using a
reference density u. Thus T̂r,u is an estimate of the minimizer of |Br(T)| (which plays
an important role, see e.g., Sheather and Jones 1991). The details are given below.

First, for any fixed n it can be shown that (see Lemma 5 herein)

Var{CV∞
r (t)− CV∞

r (s)} ∼ 2n−2
d∏

i=1

{
(t2ri +1

i − s2ri +1
i )/(2ri + 1)

}
(4π)dψ0 (20)
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as s → ∞ and t − s → ∞. Substituting ψ̃0(T̂0) for ψ0 leads to an estimate V̂r(s, t),
say, of (20). Next, (38) herein implies that Br(T) is not estimable, i.e., there does
not exist any unbiased estimate of Br(T) for each fixed n. Following a multivariate
version of the scale-model approach for f in Park and Marron (1990), we use

B̂r(T, u)=(−1)mn−1(2π)−d

⎧⎨
⎩

d∏
j=1

∫ Tj

−Tj

t
r j
j dt j

⎫⎬
⎭+ ψ̃r(T)−

⎧⎨
⎩

d∏
j=1

σ̂
r j +1
j

⎫⎬
⎭

−1

ψr(u)

(21)

to estimate Br(T), where u is a reference density with covariance matrix equaling the
identity matrix I and σ̂ j , the estimate of the s.d. of the marginal pdf f j , equals min{s.d.
of x1 j , . . . , xnj , (interquartile range of x1 j , . . . , xnj )/1.349} (cf. Silverman 1986, page
47) [as an alternative, the hybrid scale measure by Janssen et al. (1995) may also be
used here]. It is easy to see if all r j ’s are even, B̂r(T, u) is strictly monotone and the
equation B̂r(T, u) = 0 has the unique solution T̂r,u . On the other hand, if some of
the r j ’s are odd, then on the right side of (21), the first term is zero and, moreover,
ψr(u) = 0 if u is the N (0, I) density. In this case, T̂r,u is taken to be the smallest
solution to B̂r(T, u) = 0. We define the following modification of CV∞

r (T) beyond
T̂r,mod (see Remark 5 below for an explanation):

CV∗
r(T) = CV∞

r (T)+ z.99{V̂r(T̂r,mod,T)}1/2 I [T > T̂r,mod], T ∈ L̂r (22)

where I [·] denotes the indicator function, z.99 = 2.33 is the .99th quantile of N (0, 1).
Other quantiles like z.975 may be used (of course, quantiles of t-distribution may be
preferred for very small sample size).

The modified cutoff value T̂∗
r is the minimizer of CV∗

r(T). This results in the fol-
lowing modified adaptive estimate (which is recommended in practice) ofψr, namely,

ψ̃r(T̂∗
r) = (2π)−d(−1)m

∫
R(T̂∗

r )

tr|φ̃(t)|2 dt. (23)

Remark 5 Note that CV∗
r(T) modifies CV∞

r (T) beyond T̂r,mod by adding the non-
negative increasing weight function z.99{V̂r(T̂r,mod,T)}1/2. Evidently, T̂∗

r ≈ T̂r,mod
if the weight function is large in magnitude and increases fast in T, i.e., if φ̃(t) is
dominated by sample variation. Moreover, we note that both T̂r,loc and T̂r,u will
occasionally select unduly large values, and taking T̂r,mod as the minimum of these
two values can significantly improve the practical performance of the estimate (23).
Indeed, our simulation study shows that very frequently T̂r,mod equals T̂r,loc or T̂r,u
according as the underlying density is far away from normal or not.

Remark 6 Clearly, the inequalities T̂r,mod ≤ T̂∗
r ≤ T̂r and g+

r (T̂r,mod) ≥ g+
r (T̂

∗
r) ≥

g+
r (T̂r) hold (see (14)). Now, the first-order relation in (16) holds for both T̂r,mod and

T̂∗
r . Thus, if φ f (t) decays in some regular way (e.g., exponential decay or algebraic
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decay) so that the second order relation in (16) holds for T̂r,mod, then it also hold for
T̂∗

r . Consequently, Theorem 1 holds for ψ̃r(T̂∗
r).

We next consider the modification of T̂2m along L̂2m . The ideas are similar to those
in deriving (20)–(23). Put T̂2m,mod = min{T̂2m,loc, T̂2m,u}. Here T̂2m,loc is the smallest
local minimizer of SCV∞

2m(T) and T̂2m,u is the minimizer of the squared Euclidean
distance

∑
r:|r|=2m B̂2

r (T, u), as an estimate of
∑

r:|r|=2m B2
r (T) (by arguments similar

to those near the end of Remark 1, we can show that a global minimizer exists). For
any fixed n it can be shown that as s → ∞ and t − s → ∞ (see Lemma 5 herein),

Var{SCV∞
2m(t)− SCV∞

2m(s)} =
∑
r1,r2

σ∞
r1,r2

∼ 2n−2(4π)dψ0

∑
r1,r2

⎧⎨
⎩

2∏
i=1

d∏
j=1

{
(t

2ri, j +1
j − s

2ri, j +1
j )/(2ri, j + 1)

}1/2

⎫⎬
⎭ (24)

where the summation is over {(r1, r2) : |ri | = 2m, i = 1, 2} and σ∞
r1,r2

=
Cov

{
CV∞

r1
(t)−CV∞

r1
(s),CV∞

r2
(t)−CV∞

r2
(s)
}

(noting that σ∞
r,r reduces to (20)). Sub-

stituting ψ̃0(T̂0) for ψ0 leads to an estimate V̂2m(s, t), say, of (24). The modified
cutoff value T̂∗

2m is the minimizer of

SCV∗
2m(T) = SCV∞

2m(T)+ z.99{V̂2m(T̂2m,mod,T)}1/2 I [T > T̂2m,mod], T ∈ L̂2m

(25)

and the modified adaptive estimate (which is recommended in practice) of ψ2m is

ψ̃2m(T̂
∗
2m) = (ψ̃ri (T̂

∗
2m))1≤i≤d2m (26)

(recalling (11)). Finally, we mention that for the preceding (24)–(26), results similar
to those in Remarks 5–6 also hold with trivial modifications (e.g., replacing T̂r,mod,
T̂r,loc, T̂r,u and (23) in Remark 5 by T̂2m,mod, T̂2m,loc, T̂2m,u and (26), respectively; and
replacing (16) and Theorem 1 in Remark 6 by (17)–(18) and Theorem 2, respectively).

3 Simulation results

We have carried out simulation studies to compare the performance of (i) our estimate
θ̃∗

m = (−1)|m|ψ̃2m(T̂∗
2m) (see (23)) with θ̂WJ

m (see Sect. 1) in the case of estimating

θm = (−1)|m|ψ2m (see (2)); and (ii) our estimate ψ̃
∗
2m (=ψ̃2m(T̂

∗
2m), see (26)) with

ψ̂
DH
2m,k (the k-stage estimate by Duong and Hazelton (2003) where a single bandwidth

is used in their pilot selector) and ψ̂
CD
2m,k (the k-stage estimate by Chacón and Duong

(2010) where an unconstrained pilot bandwidth matrix is used) in the case of estimating
the vectorψ2m , while N (0, I) is used as both the kernel and reference density (see (21))
for our estimates; and N (0, I) and N (0,Sn) with Sn denoting the sample covariance
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Table 1 Parameters for 11 example normal mixture densities

(a) Bivariate density
∑k

j=1 ω j N (μ j1, μ j2, σ
2
j1, σ

2
j2, ρ j )

#1 Normal I N (0, 0, 1, 1, 0) (i.e., N (0, I))

#2 Normal II N
(

0, 0, 1
4 , 1, 0

)

#3 Skewed 1
5 N (0, 0, 1, 1, 0)+ 1

5 N

(
1
2 ,

1
2 ,
(

2
3

)2
,
(

2
3

)2
, 0

)

+ 3
5 N

(
13
12 ,

13
12 ,

(
5
9

)2
,
(

5
9

)2
, 0

)

#4 Kurtotic 2
3 N

(
0, 0, 1, 4, 1

2

)
+ 1

3 N

(
0, 0,

(
2
3

)2
,
(

1
3

)2
,− 1

2

)

#5 Bimodal I 1
2 N (−2, 0, 1, 1, 0)+ 1

2 N (2, 0, 1, 1, 0)

#6 Bimodal II 1
2 N

(
1,−1,

(
2
3

)2
,
(

2
3

)2
, 3

5

)
+ 1

2 N

(
−1, 1,

(
2
3

)2
,
(

2
3

)2
, 3

5

)

#7 Bimodal III 1
2 N

(
1,−1,

(
2
3

)2
,
(

2
3

)2
, 7

10

)
+ 1

2 N

(
−1, 1,

(
2
3

)2
,
(

2
3

)2
, 0

)

#8 Trimodal I 9
20 N

(
− 6

5 ,
6
5 ,
(

3
5

)2
,
(

3
5

)2
, 3

10

)
+ 9

20 N

(
6
5 ,− 6

5 ,
(

3
5

)2
,
(

3
5

)2
,− 3

5

)

+ 1
10 N

(
0, 0,

(
1
4

)2
,
(

1
4

)2
, 1

5

)

#9 Trimodal II 3
7 N

(
−1, 0,

(
3
5

)2
,
(

7
10

)2
, 3

5

)
+ 3

7 N

(
1, 2

√
3

3 ,
(

3
5

)2
,
(

7
10

)2
, 0

)

+ 1
7 N

(
1,− 2

√
3

3 ,
(

3
5

)2
,
(

7
10

)2
, 0

)

(b) Trivariate density
∑k

j=1 ω j N (μ j1, μ j2, μ j3, σ
2
j1, σ

2
j2, σ

2
j3, ρ j12, ρ j13, ρ j23)

#10 Normal N (0, 0, 0, 1, 1, 1, 0, 0, 0) (i.e., N (0, I))

#11 Skewed 1
5 N (0, 0, 0, 1, 1, 1, 0, 0, 0)+ 1

5 N
(

1
2 ,

1
2 ,

1
2 , (

2
3 )

2, ( 2
3 )

2, ( 2
3 )

2, 0, 0, 0
)

+ 3
5 N

(
13
12 ,

13
12 ,

13
12 , (

5
9 )

2, ( 5
9 )

2, ( 5
9 )

2, 0, 0, 0
)

matrix are used as the kernel and reference density, respectively for the estimates θ̂WJ
m ,

ψ̂
DH
2m,k and ψ̂

CD
2m,k . See their papers for details of their reference density approach.

We also include in the comparison, as a special case of our ψ̃
∗
2m , the estimate ψ̃

∗
2m,S

which uses the same cutoff value in every coordinate direction and is obtained by
minimizing the scores resulting from setting T1 = · · · = Td in (11), (21) and (25) and
T̂ ∗

2m,1 = · · · = T̂ ∗
2m,d in (26).

For d = 2 and d = 3, we generate 100 replications of data sets of various sizes
n (n = 200, 500 for d = 2 and n = 500, 900 for d = 3) from each of the normal
mixture densities given in Table 1. Densities #1–#4, #10 and #11 are unimodal, #5–#7
bimodal and #8–#9 trimodal. From the (asymptotic) relative efficiency point of view,
it is adequate to use the same smoothing parameter in every coordinate direction for
all these densities except for densities #2, #4 and #9, while for the latter three densi-
ties different smoothing parameters should be used in different coordinate directions
(see Wand and Jones 1993 for details. The problem addressed by these two authors,
although related to the questions studied in the present paper, is not the same). We
remark that densities #1, #5 and #10 are considered by Sain et al. (1994), while den-
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Density partial derivative functionals 877

sities #2, #3, #4, #6, #7, #8 and #9 are essentially the same as densities (A), (C), (D),
(G), (H), (I) and (K), respectively, in Wand and Jones (1993). Figure 1 presents the
contour plots of the bivariate densities #1–#9 and Fig. 2 the isosurface plots (see, e.g.,
Panaretos and Konis 2012) of the trivariate densities #10 and #11. For each sample,
we apply the fast Fourier transform (FFT) to evaluate φ̃(t). The actual implementation
is the same as that in Wu and Tsai (2004), and the details are omitted.

For comparison of the above estimates, say, θ̂n or ψ̂n , we choose to compare the
sample mean squared relative error MSRE (θ̂n) = k−1∑k

i=1(θ̂ni/θm −1)2 or the sam-
ple mean squared Euclidean-norm relative error MSNRE (ψ̂n) = k−1∑k

i=1 ‖ψ̂ni −
ψ2m‖2/‖ψ2m‖2, respectively where k = 100 and θ̂ni and ψ̂ni are the estimates based
on the i-th replication.

Figures 3 and 4 plot MSRE (θ̂n) for θ̂n = θ̃∗
m, θ̃∗

m,S and θ̂WJ
m versus m, 0 ≤ |m| ≤ 3,

for all the above densities. They show that in general the level of difficulty of estimating

# 1 Normal I # 2 Normal II # 3 Skewed

# 4 Kurtotic # 5 Bimodal I # 6 Bimodal II

# 7 Bimodal III # 8 Trimodal I # 9 Trimodal II
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1
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1

2
3

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Fig. 1 Contour plots of the bivariate densities #1–#9 defined in Table 1
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Fig. 2 Isosurface plots of the trivariate densities #10 (left) and #11 (right) defined in Table 1

θm increases with |m|. Moreover, they clearly show that θ̃∗
m is conclusively better than

θ̂WJ
m for all the cases except mainly when (i) n = 200 and the density is #3, #4 (at

m = (2, 0), (3, 0)) or #5 (at m = (0, 2), (1, 2), (0, 3)) and (ii) n = 500 and the
density is #3 (at |m| = 3) or #10 (at |m| = 2 and m = (1, 0, 2), (0, 1, 2)). For these
cases, θ̂WJ

m is (slightly) better than θ̃∗
m. Thus, overall speaking, θ̃∗

m is superior to θ̂WJ
m

when the sample size is relatively large or the underlying density is far away from
normal (e.g., multimodal), and θ̃∗

m is essentially comparable (superior for density #1,
but inferior for density #3) to θ̂WJ

m when the sample size is relatively small and the
underlying density is not far away from normal (e.g., skewed unimodal). In addition,
Figs. 3 and 4 show that overall θ̃∗

m is comparable (superior for densities #1, #2, #4, #6,
#8, and #9, but inferior for densities #3, #5, #7, #10 and #11) to θ̃∗

m,S . Figures 5 and
6 show the relative biases and s.e.’s (standard errors) of the estimates. They indicate
that (i) θ̃∗

m and θ̃∗
m,S have smaller biases, but larger s.e.’s, than θ̂WJ

m for almost all

cases except for densities #1–#3, (ii) θ̃∗
m has slightly larger s.e.’s than θ̃∗

m,S in general
and (iii) the biases of all estimates tend to increase with |m| and, in particular, they
underestimate θm, |m| = 3 quite severely for densities #4 or #8, both are far away
from normal.

Tables 2 and 3 show MSNRE(ψ̂n) in estimating the vector functionals ψ4 (i.e.,

2m = 4) for ψ̂n = ψ̃
∗
4, ψ̃

∗
4,S , ψ̂

DH
4,1 , ψ̂

CD
4,1, ψ̂

DH
4,2 and ψ̂

CD
4,2. They show (i) for the sample

sizes considered, ψ̃
∗
4,S is overall the best among all estimates. In particular, ψ̃

∗
4,S is

the best for densities #1, #6 and #7, and either the second or third best for the other
densities, (ii) ψ̃

∗
4 is the best for densities #2 (at n = 200), #4, #8 (at n = 500) and #9,

and the second best for densities #6–#7, (iii) ψ̂
DH
4,2 performs superiorly for densities

#3, #8 and #11 and very well for density #4, (iv) for normal densities #1 and #10, ψ̂
DH
4,1

and ψ̃
∗
4,S perform the best, followed by ψ̂

CD
4,1 and ψ̃

∗
4, (v) ψ̂

CD
4,1 performs superiorly for

density #2 (at n = 500), and ψ̂
CD
4,2 performs very well for densities #3 (at n = 500) and

#9 and (vi) for density #5, ψ̂
DH
4,1 performs the best, followed by ψ̃

∗
4,S and ψ̂

DH
4,2 . Tables 2
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Fig. 3 Plot of the sample mean squared relative error MSRE (θ̂n) = (100)−1∑100
i=1(θ̂ni /θm − 1)2 versus

m, 0 ≤ |m| ≤ 3 for θ̂n = θ̃∗
m (solid line), θ̃∗

m,S (dotted-and-dashed line) and θ̂WJ
m (dashed line) based on

100 Monte Carlo replication of samples of size n = 200 (open circle) and 500 (soliddot) from the bivariate
densities #1–#9
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Fig. 4 Plot of the sample mean squared relative error MSRE(θ̂n) = (100)−1∑100
i=1(θ̂ni /θm − 1)2 versus

m, 0 ≤ |m| ≤ 3 for θ̂n = θ̃∗
m (solid line), θ̃∗

m,S (dotted-and-dashed line) and θ̂WJ
m (dashed line) based on

100 Monte Carlo replication of samples of size n = 500 (open circle) and 900 (solid dot) from the trivariate
densities #10–#11, where m1m2m3 stands for (m1,m2,m3)
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Fig. 5 (The setups are the same as in Fig. 3) Plot of the sample mean relative bias B̄
θ̂n

=
(100)−1∑100

i=1(θ̂ni /θm − 1) = ¯̂
θn/θm − 1 for θ̂n = θ̃∗

m (solid circle), θ̃∗
m,S (open square) and θ̂WJ

m

(open circle) along with B̄
θ̂n

± σ̂n (vertical lines) where σ̂n is the estimated s.e. of θ̂n/θm (which is used,

instead of the s.e. of ¯̂
θn/θm, for ease of graphical presentation)
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Fig. 6 (The setups are the same as in Fig. 4) For caption see Fig. 4

and 3 also show that for most cases, our estimates have larger s.e.’s and smaller biases
than the other estimates. Thus, overall speaking, ψ̃

∗
4 and ψ̃

∗
4,S perform superiorly or

comparably (especially when n is relatively large) according as the underlying density
is far away from normal or not.

Finally, we note that Tables 2 and 3 show that in the estimation of ψ4, ψ̃
∗
4 performs

better than ψ̃
∗
4,S for densities #8 (trimodal) and #2, #4 and #9 (while different band-

widths should be used in different coordinate directions, see above). By simulation
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Table 2 Simulation results for estimating vector ψ4 with bivariate data

Density #1 #2 #3

n = 200 n = 500 n = 200 n = 500 n = 200 n = 500

ψ̃
∗
4 .435 (.059) .239 (.028) .185 (.023) .113 (.012) .347 (.028) .169 (.022)

ψ̃
∗
4,S .176 (.025) .084 (.009) .267 (.014) .178 (.009) .163 (.012) .119 (.012)

ψ̂
DH
4,1 .291 (.045) .121 (.017) .542 (.056) .258 (.019) .166 (.011) .163 (.008)

ψ̂
CD
4,1 .345 (.058) .135 (.019) .289 (.054) .097 (.016) .194 (.011) .173 (.008)

ψ̂
DH
4,2 .749 (.123) .277 (.047) 1.48 (.207) .588 (.061) .161 (.011) .083 (.007)

ψ̂
CD
4,2 1.11 (.232) .392 (.069) .899 (.181) .300 (.049) .243 (.022) .100 (.007)

Density #4 #5 #6

n = 200 n = 500 n = 200 n = 500 n = 200 n = 500

ψ̃
∗
4 .785 (.019) .595 (.018) .479 (.079) .167 (.024) .315 (.025) .147 (.011)

ψ̃
∗
4,S .882 (.013) .742 (.011) .145 (.011) .070 (.005) .251 (.014) .140 (.010)

ψ̂
DH
4,1 .899 (.003) .859 (.003) .097 (.007) .064 (.005) .720 (.005) .653 (.004)

ψ̂
CD
4,1 .986 (.001) .980 (.001) .481 (.007) .404 (.004) .904 (.001) .859 (.001)

ψ̂
DH
4,2 .791 (.008) .701 (.008) .255 (.039) .134 (.024) .524 (.008) .426 (.007)

ψ̂
CD
4,2 .962 (.003) .928 (.002) .477 (.031) .281 (.016) .668 (.005) .531 (.005)

Density #7 #8 #9

n = 200 n = 500 n = 200 n = 500 n = 200 n = 500

ψ̃
∗
4 .316 (.022) .196 (.015) .513 (.018) .462 (.012) .419 (.020) .260 (.016)

ψ̃
∗
4,S .288 (.017) .187 (.012) .513 (.016) .474 (.010) .433 (.018) .274 (.012)

ψ̂
DH
4,1 .724 (.006) .655 (.005) .646 (.009) .623 (.006) .708 (.007) .649 (.005)

ψ̂
CD
4,1 .927 (.001) .895 (.001) .748 (.006) .730 (.005) .663 (.009) .598 (.006)

ψ̂
DH
4,2 .556 (.010) .453 (.010) .492 (.013) .470 (.010) .528 (.012) .433 (.009)

ψ̂
CD
4,2 .774 (.005) .651 (.005) .679 (.007) .670 (.005) .430 (.014) .329 (.011)

Sample means of the squared Euclidean-norm relative error D = ‖ψ̂n − ψ4‖2/‖ψ4‖2 are given for
n = 200, 500 from each of the bivariate densities #1–#9 (100 replications in each case). The value inside
the parentheses is the estimated standard error of D̄

studies, we find that this pattern can also be observed in the estimation of the vectorsψ2
and ψ6 at the sample size n specified in Tables 2 and 3. Moreover, as n becomes large
(n = 900, 1,600 in our simulation setup), ψ̃

∗
2m will outperform ψ̃

∗
2m,S, 1 ≤ m ≤ 3,

for most of the 11 densities considered. The details of the simulation results are not
presented here to save space. The complete results can be found at http://www.stat.
ncku.edu.tw/faculty_private/tjwu/.

In summary, Figs. 3 and 4 and Tables 2 and 3 reveal that over a wide range of
smooth density shapes and at practical sample sizes, the overall performance of the
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Table 3 Simulation results for
estimating vector ψ4 with
trivariate data

The note for Table 2 holds
except now n = 500, 900 and
densities are the trivariate
#10–#11

Density #10 #11

n = 500 n = 900 n = 500 n = 900

ψ̃
∗
4 .345 (.102) .185 (.036) .221 (.014) .156 (.006)

ψ̃
∗
4,S .154 (.021) .113 (.014) .171 (.008) .134 (.005)

ψ̂
DH
4,1 .147 (.014) .085 (.008) .211 (.009) .197 (.006)

ψ̂
CD
4,1 .169 (.015) .097 (.008) .300 (.010) .246 (.007)

ψ̂
DH
4,2 .439 (.039) .241 (.021) .093 (.007) .072 (.004)

ψ̂
CD
4,2 .566 (.048) .323 (.026) .279 (.020) .191 (.011)

proposed estimates θ̃∗
m, θ̃∗

m,S (0 ≤ |m| ≤ 3), ψ̃
∗
2m and ψ̃

∗
2m,S (2m = 4) are quite good.

In addition, they reveal that for smooth densities the convergence rates, as n → ∞,
of the proposed estimates to their target values are fast. This agrees with the earlier
theoretical results. Finally, it should be mentioned that our algorithm is fairly time
efficient. For example, using a PC with Pentium D processor running at 2.8 Ghz CPU
and 1 GB RAM, it takes only ∼7.848 CPU s to finish the computation of all the ten
estimates θ̃∗

m, 0 ≤ |m| ≤ 3, based on a sample of size n = 500 from the bivariate
N (0, I) density.

4 Proofs

For any d-dimensional measurable set A, we set W1,r(A) = ∫
A tr|φ̃0(t)|2 dt,

W2,r(A) = ∫
A trφ f (−t)φ̃0(t) dt and W3,r(A) = ∫

A tr{|φ̃(t)|2 − |φ f (t)|2} dt where
φ̃0 = φ̃ − φ f . Also, let W +

j,r(A) be the quantity resulting from replacing tr by
|tr| in W j,r(A), j = 1, 2, 3. Note that W3,r(A) = W1,r(A) + 2Re(W2,r(A)) and
Re(W2,r(A)) = W2,r(A) if A = −A (similar equations also hold for the W +

j,r(A)’s).

The notations W 0
j,r(A) = W j,r(A)−EW j,r(A) and W +,0

j,r (A) = W +
j,r(A)−EW +

j,r(A)
shall be used.

In the sequel, C > 0 denotes a finite generic constant that does not depend on n,
(·)i, j is shorthand for matrix (·)1≤i, j≤d2m , and 1p×q denotes a (p × q)-matrix with

all entries equaling 1. Also, according to our previous notation, rc = ∏ j
m=i r c

m for

any r = (ri , . . . , r j ) and c = (c, c, . . . , c, c). Thus, for example, r1 = ∏ j
m=i rm ,

r−1/2 = ∏ j
m=i r−1/2

m , etc.

Lemma 3 It holds that E φ̃(t) = φ f (t). Also, the following result concerning cumu-
lant holds:

cum(φ̃(t1), φ̃(t2)) = {φ f (t1 + t2)− φ f (t1)φ f (t2)}/n. (27)

Hence V ar{φ̃(t)} (=E |φ̃0(t)|2) = n−1(1 − |φ f (t)|2) and E |φ̃(t)|2 = (n −
1)n−1|φ f (t)|2 + n−1.
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Lemma 4 The following hold for any t1 and t2:

cum(|φ̃0(t1)|2, φ̃0(t2))

= n−2
{

2|φ f (t1)|2φ f (t2)− φ f (−t1)φ f (t1 + t2)− φ f (t1)φ f (t2 − t1)
}

; (28)

cum(φ̃0(t1), φ̃0(−t1), φ̃0(t2), φ̃0(−t2))

= n−3
{

2
∑
a,b

φ f (a)φ f (b)φ f (−a − b)− 6|φ f (t1)|2|φ f (t2)|2

−|φ f (t1 + t2)|2 − |φ f (t1 − t2)|2
}

(29)

where the summation is over {(a,b) : a = t1 or − t1,b = t2 or − t2}. Furthermore,
for any s ≥ 2, it holds uniformly in t1, . . . , ts that

cum(φ̃(t1), . . . , φ̃(ts)) = O(n−s+1), n → ∞. (30)

The preceding two lemmas are Lemma 1 and Lemma A.1, respectively, of Wu and
Tsai (2004). They are stated here to make this article self-contained.

Lemma 5 For any A = R(T), R(T) \ R(S), or �d , where S < T < ∞,

Cov{W3,r1(A),W3,r2(A)} = 2n−2{Q1,r1,r2(A)− Q3,2,r1(A)Q3,2,r2(A)}
+4(n−1 − 3n−2){Q2,r1,r2(A)− Q3,2,r1(A)Q3,2,r2(A)}
+n−3 Q4,r1,r2(A) (31)

and

Cov{W +
3,r1
(A),W +

3,r2
(A)} = 2n−2{Q+

1,r1,r2
(A)− Q+

3,2,r1
(A)Q+

3,2,r2
(A)}

+4(n−1 − 3n−2){Q+
2,r1,r2

(A)

−Q+
3,2,r1

(A)Q+
3,2,r2

(A)} + n−3 Q+
4,r1,r2

(A) (32)

where Q j,r1,r2(A) and Q3,i,r(A) are quantities resulting from replacing |tr1
1 ||tr2

2 | and
|tr| by tr1

1 tr2
2 and tr in Q+

j,r1,r2
(A) and Q+

3,i,r(A), respectively ( j = 1, 2 and 4), with

Q+
1,r1,r2

(A) =
∫

A

∫
A

|tr1
1 ||tr2

2 ||φ f (t1 + t2)|2 dt1 dt2,

Q+
2,r1,r2

(A) =
∫

A

∫
A

|tr1
1 ||tr2

2 |φ f (−t1)φ f (−t2)φ f (t1 + t2) dt1 dt2,

Q+
3,i,r(A) =

∫
A

|tr|φ f (t)|i dt, i = 1, 2,

and Q+
4,r1,r2

(A) satisfies |Q+
4,r1,r2

(A)| ≤ 2Q+
1,r1,r2

(A)+ 14Q+
3,1,r1

(A)Q+
3,1,r2

(A).

123



886 T.-J. Wu et al.

Proof of Lemma 5 Let c(t1, t2) and d(t1, t2) denote the left-hand sides of (27) and
(29), respectively. By Lemmas 3 and 4,

Cov{W1,r1(A),W1,r2(A)} =
∫

A

∫
A

tr1
1 tr2

2 cum(|φ̃0(t1)|2, |φ̃0(t2)|2) dt1 dt2

=
∫

A

∫
A

tr1
1 tr2

2 {2c(t1, t2)c(−t1,−t2)+ d(t1, t2)} dt1 dt2

= 2n−2{Q1,r1,r2(A)− 2Q2,r1,r2(A)

+Q3,2,r1(A)Q3,2,r2(A)} + n−3 Q4,r1,r2(A), (33)

nCov{W2,r1(A),W2,r2(A)} =
∫

A

∫
A

tr1
1 tr2

2 φ f (−t1)φ f (−t2)cum(φ̃0(t1), φ̃0(t2)) dt1 dt2

= Q2,r1,r2(A)− Q3,2,r1(A)Q3,2,r2(A) (34)

and

Cov{W1,r1(A),W2,r2(A)} =
∫

A

∫
A

tr1
1 tr2

2 φ f (−t2)cum(|φ̃0(t1)|2, φ̃0(t2)) dt1 dt2

= 2n−2{Q3,2,r1(A)Q3,2,r2(A)− Q2,r1,r2(A)}. (35)

The proof of Eq. (31) follows by noting that

Cov{W3,r1(A),W3,r2(A)} = Cov{W1,r1(A)+ 2W2,r1(A),W1,r2(A)+ 2W2,r2(A)}.
(36)

Now, (33)–(36) remain true if we replace W by W +, Q by Q+ and trk
k by |trk

k | (k = 1, 2)
throughout. This establishes (32). ��

For the rest of the paper, |r| = 2m and |ri | = 2m for all occurrences of r and ri ,
1 ≤ i ≤ d2m .

Proof of Lemma 1 First, we derive (15). We note that |Q3,2,r| ≤ Q+
3,1,r and

|Q2,ri ,r j | ≤ Q+
3,1,ri

Q+
3,1,r j

. The condition p0 > 2m + d entails Q+
3,1,r(�d) < ∞

and fr is bounded over �d (see Remark 3). Now,

(−1)m(2π)d(ψ̃r(T)− ψr) = W1,r(R(T))+ 2W2,r(R(T))− gr(T) (37)

where gr(T) denotes the quantity resulting from replacing |t|r by tr in g+
r (T) (noting

that Q3,2,r(R′(T)) = gr(T)). By Lemma 3 and the fact EW2,r(R(T)) = 0,

(−1)m(2π)d Br(T) = n−1
∫

R(T)
tr dt − n−1 Q3,2,r(R(T))− gr(T) (38)

where Br(T) = Eψ̃r(T) − ψr denotes the bias. Consequently, n|Bri (T)Br j (T)| →
0 as n → ∞ under the conditions of the present lemma. Next, by (37),
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(2π)2dVar{ψ̃2m(T)} = (σ ∗
3,ri ,r j

(R(T))i, j where σ ∗
k,ri ,r j

(A) = Cov{Wk,ri (A),
Wk,r j (A)}. This, together with (31), (34) and the fact that

Q+
1,ri ,r j

(R(T)) ≤ Tri

∫
R(T)

∣∣tr j
2

∣∣
∫

|φ f (t1 + t2)|2 dt1 dt2 ≤ CTri +r j +1 (39)

(here and below C does not depend on T either), yields

(2π)2dVar{ψ̃2m(T)}=4(σ ∗
2,ri ,r j

(R(T))i, j + Cn−2(Tri +r j +1)i, j + O(n−2)1d2m×d2m .

(40)

Now, since Q+
3,1,r(�d) < ∞, we get, by arguments similar to those immediately

below (4), fr(x) = (2π)−d
∫
(−1)me−itx′

trφ f (t) dt for all x. It follows that

(2π)2dE{ fri (x1) fr j (x1)} =
∫ ∫

tri
1 t

r j
2 φ f (t1)φ f (t2)

{ ∫
e−i(t1+t2)x′

f (x) dx
}

dt1 dt2

= Q2,ri ,r j (�d)

and, similarly, (2π)dE{ fr(x1)} = (−1)m Q3,2,r(�d). In view of (34),

σ ∗
2,ri ,r j

(�d) = (2π)2dn−1Cov{ fri (x1), fr j (x1)}, (41)

|nσ ∗
2,ri ,r j

(A)| ≤ 2Q+
3,1,ri

(A)Q+
3,1,r j

(A), A = R′(T) or �d . (42)

Equations (41) and (42) and an application of the Cauchy–Schwarz inequality yield

|nσ ∗
2,ri ,r j

(R(T))− (2π)2dCov{ fri (x1), fr j (x1)}|

≤ C

{ ∏
k∈{i, j}

Q+
3,1,rk

(R′(T))+ Q+
3,1,ri

(R′(T))Q+
3,1,r j

(�d)

×Q+
3,1,r j

(R′(T))Q+
3,1,ri

(�d)

}
. (43)

Now, the condition that min1≤ j≤d Tj →∞ as n →∞ implies I [t∈ R(T)]|tr||φ f (t)|→
|tr||φ f (t)| at every t. Since Q+

3,1,r(�d) < ∞, we get from the Dominated Convergence

Theorem that Q+
3,1,r(R(T)) = ∫

�d I [t ∈ R(T)]|tr||φ f (t)|dt → Q+
3,1,r(�d) and,

consequently, Q+
3,1,r(R

′(T)) = o(1). This, together with (38), (40) and (43), leads to
(15) immediately. Next, (14) can be derived with trivial modifications (setting ri = r
for all i = 1, . . . , d2m) to all the foregoing arguments. This completes the proof. ��
Proof of Lemma 2 The proof extends that of Lemma 2 of Wu and Tsai (2004) from
r = 0 to general r. First , we prove (17). Throughout,

∑
r is shorthand for

∑
r:|r|=2m .

Define ϕ̃∗(T) = ∑
r(−1)mψ̃+

r (T) (see (7) and Remark 1). From (8), (11) and the fact
that SCV∞

2m(T̂2m) ≤ SCV∞
2m(T) for all T > 0, we get
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∑
r

(r + 1)−1T̂r+1
2m −

∑
r

(r + 1)−1Tr+1 ≤ 2−1(n + 1)(π)d(ϕ̃∗(T̂2m)− ϕ̃∗(T))

(44)

for all T > 0. Pick any fix any ε from interval (2−1/(4m+2), 1) and set

u2p0
n = 2nεM0(2m + 1){(2p0 − 2m − 1)(2ε2(2m+1) − 1)}−1 (45)

where supt{
∏d

i=1 |ti |pi |φ(t)|} ≤ M1/2
0 for all non-negative p satisfying |p| = p0. In

what follows, we suppress the subscript 2m in T̂2m = (T̂2m,1, . . . , T̂2m,d) and denote
r̃ = (r2, . . . , rd), T̂−1 = (T̂2, T̂3, . . . , T̂d) (similarly, T−1, etc.), Pt̂−1

[·] = P[·|T̂−1 =
t̂−1] and Jk = R(unε

−(k+1), t̂−1) \ R(un, t̂−1), k = 0, 1, . . .. By (44),

Pt̂−1
[T̂1 > (1 − ε)−1un]

= Pt̂−1

⎡
⎣ ⋂

r:|r|=2m

{
(r + 1)−1T̂ r1+1

1 t̂r̃+1
−1 > (r + 1)−1(1 − ε)−1(r1+1)ur1+1

n t̂r̃+1
−1

}
⎤
⎦

≤ Pt̂−1

[∑
r

(r + 1)−1T̂ r1+1
1 t̂r̃+1

−1 > (1 − ε)−1
∑

r

(r + 1)−1ur1+1
n t̂r̃+1

−1

]

≤
∞∑

k=0

Pt̂−1

[
2−1(n + 1)(π)d(ϕ̃∗(T̂)− ϕ̃∗(un, t̂−1)) > ε

∑
r

(r + 1)−1T̂ r1+1
1 t̂r̃+1

−1 ,

unε
−k < T̂1 ≤ unε

−(k+1)

]

≤
∞∑

k=0

Pt̂−1

[
2−(d+1)(n + 1)

∑
r

W +,0
3,r (Jk) >

∑
r

(r + 1)−1ε(r1+1)(1−k)ur1+1
n t̂r̃+1

−1

−q∗
k (t̂−1)

]
(46)

where q∗
k (t̂−1) = 2−(d+1)(n + 1)

∑
r
∫

Jk
|tr|E|φ̃(t)|2 dt. By Lemma 3 and (45),

q∗
k (t̂−1) = (n + 1)(2n)−1

∑
r

(r + 1)−1(ε−(k+1)(r1+1) − 1)ur1+1
n t̂r̃+1

−1

+2−(d+1)n−1(n2 − 1)
∑

r

∫
Jk

|tr||φ f (t)|2 dt

≤ n + 1

2n

∑
r

(r + 1)−1ur1+1
n t̂r̃+1

−1

{
ε−(k+1)(r1+1)+ (n−1)M0(r1 + 1)u−2p0

n

2p0 − r1 − 1

}

≤
∑

r

(r + 1)−1ur1+1
n t̂r̃+1

−1 ε
(1−k)(r1+1)

{
n + 1

2n

{
ε−2(r1+1) + 2ε2(r1+1)−1

2ε2(r1+1)

}}
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≤
∑

r

(r + 1)−1ur1+1
n t̂r̃+1

−1 ε
(1−k)(r1+1){(6ε2(r1+1) + 1)(8ε2(r1+1))−1}

≤ Cε
∑

r

(r + 1)−1ur1+1
n t̂r̃+1

−1 ε
(1−k)(r1+1) (47)

for all n ≥ 2 + 4(2ε2(r1+1) − 1)−1, where Cε = maxr(6ε2(r1+1) + 1)(8ε2(r1+1))−1 <

1; and the second inequality follows from u−2p0
n ≤ (2p0 − r1 − 1)(2ε2(2m+1) −

1){2nεM0(r1 + 1)}−1, ε2(2m+1) ≤ ε2(r1+1) and ε(k+1)(r1+1) ≤ ε. Now, by ψ0 < ∞
and arguments similar to (39),

Q+
1,r,r(Jk) ≤ Cψ0u2r1+1

n t̂2r̃+1
−1 ε−(k+1)(2r1+1) (48)

(here and below, C does not depend on k either). By Cauchy–Schwarz inequality,
Q+

3,1,r(Jk) ≤ C{ur1+1
n t̂r̃+1

−1 ε
−(k+1)(r1+1)}1/2{Q+

3,2,r(Jk)}1/2 and, consequently,

Q+
2,r,r(Jk) ≤

∫
Jk

|tr2
2 ||φ f (−t2)|{Q+

3,2,r(Jk)}1/2
{∫

Jk

|tr1
1 ||φ f (t1 + t2)|2 dt1

}1/2

dt2

≤ {Q+
3,2,r(Jk)}1/2

{
ur1

n ε
−(k+1)r1 t̂r̃−1

}1/2
ψ

1/2
0 Q+

3,1,r(Jk)

≤ Cψ1/2
0 {u2r1+1

n t̂2r̃+1
−1 ε−(k+1)(2r1+1)}1/2 Q+

3,2,r(Jk). (49)

It follows from the fact Q+
3,2,r(Jk) ≤ M0

∫
Jk

|tr1−2p0
1 ||tr̃−1| dt ≤ Cu−(2p0−r1−1)

n t̂r̃+1
−1 ,

(48), (49), Lemma 5 and an application of (generalized) cr -inequality that

Var

{∑
r

W +,0
3,r (Jk)

}
≤ Cd,m

∑
r

Var
{
W +,0

3,r (Jk)
}

≤ Cd,m

∑
r

C
{

n−2u2r1+1
n t̂2r̃+1

−1 ε−(k+1)(2r1+1)

+n−1u2r1+(3/2)−2p0
n t̂2r̃+(3/2)

−1 ε−(k+1)(2r1+1)/2
}

(50)

where Cd,m is the cardinality of {r : |r| = 2m}. Applying Chebyshev’s inequality
(P[|X | >∑s

i=1 ci ] ≤ EX2/c2
j for any 1 ≤ j ≤ s if all ci ’s are positive) to (46) and

using (47) and (50),

Pt̂−1
[T̂1 > (1 − ε)−1un]

≤ (n + 1)2Cd,m

22(d+1)(1 − Cε)2

∞∑
k=0

∑
r

{
Var
{
W +,0

3,r (Jk)
}
/
[
(r+1)−1ur1+1

n t̂r̃+1
−1 ε

(1−k)(r1+1)]2}

≤ C(n + 1)2
{

n−2u−1
n t̂−1

−1

∑
r

(r + 1)2
∞∑

k=0

εk−4r1−3
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+n−1u−1/2−2p0
n t̂−1/2

−1

∑
r

(r + 1)2
∞∑

k=0

ε[(k−3)(2r1+3)+4]/2
}

≤ C{u−1
n t̂−1

−1 +u−1/2
n t̂−1/2

−1 }. (51)

Let an = E
{(

1 − I [T̂1−1 > u−1/2
n ])PT̂−1

[T̂1 > (1 − ε)−1un]}. Rewrite (11) as

SCV∞
2m(T) = ∑

r
∫

R(T) |tr|{{2/(n + 1) − |φ f (t)|2} + {|φ f (t)|2 − |φ̃(t)|2}} dt. By
the facts φ f (t) is continuous, φ f (0) = 1 and for any fixed T > 0 it holds that

supt∈R(T)

∣∣|φ̃(t)|2 − |φ f (t)|2
∣∣ a.s.→ 0 as n → ∞ (see Theorem 2.1 of Csörgő 1981),

we get for some T0 > 0, T̂ > T0 a.s. as n → ∞. Therefore, I [T̂1−1 > u−1/2
n ] a.s.→ 1

as n → ∞ and, consequently, an = o(1) by the Bounded Convergence Theorem. It
follows from (51) that

P[T̂1 > (1 − ε)−1un] = an + E
{

I
[
T̂1−1 > u−1/2

n1

]
PT̂−1

[
T̂1 > (1 − ε)−1un

]}

= o(1)+ O(n−1/(8p0)) = o(1). (52)

Similarly, we can show that P[T̂ j > (1 − ε)−1un] = o(1) for all 2 ≤ j ≤ d,
and so (17) holds. Next, we prove, (18). Put g∗

2m(T) = ∑
r g+

r (T) and let T0
2m =

(T 0
2m,1, . . . , T 0

2m,d) denote the minimizer of the score function S∗
2m(T) resulting

from replacing |φ̃(t)|2 by |φ f (t)|2 in (11) (the subscript 2m will be suppressed
in what follows). Evidently, (18) is proved if we show g∗(T) = O(zn) where
zn = n−1+{(2m+d)/2p0}. By the equation ∂S∗(T0)/∂T1 = 0,

2
∑

r

{(T0−1)
r̃+1(n + 1)−1(r̃ + 1)−1}

= 2−d
∑

r

∫
R(T0−1)

|tr̃−1|{|φ f (T
0
1 , t−1)|2 + |φ f (−T 0

1 , t−1)|2} dt−1

≤ M0(T
0
1 )

−2p0
∑

r

{(T0−1)
r̃+1(r̃ + 1)−1}. (53)

It follows that T 0
1 ≤ bn where bn = {M0n}1/2p0 . Similarly, we get T 0

j ≤ bn

for all 2 ≤ j ≤ d. This, together with the inequality 2d+1(n + 1)−1∑
r(r +

1)−1{br+1
n − (T0)r+1} ≥ g∗(T0) − g∗(bn) where bn = (bn, bn, . . . , bn, bn),

implies g∗(T0) = O(zn). Put �n = (γn, γn, . . . , γn, γn) where γn = γ n1/2p0

and γ � (much larger than) max{bn, (1 − ε)−1un}n−1/2p0 . Then T0 ≤ �n and
P[T̂ ≤ �n] → 1 by (52). Therefore, eventually in n, T̂ is also the minimizer of
˜SCV

∞
2m(T) = 2d+1(n + 1)−1∑

r(r + 1)−1Tr+1 + g̃∗(T) over 0 < T ≤ �n , where
g̃∗(T) = ∑

r
∫

R(�n)\R(T) |tr||φ̃(t)|2 dt. By Lemma 3 and the fact g∗(T0) = O(zn),

we get g̃∗(T0) = Op(zn) and, consequently,

g̃∗(T̂) ≤ 2d+1(n + 1)−1
∑

r

(r + 1)−1{(T0)r+1 − T̂r+1}+ g̃∗(T0) = Op(zn). (54)
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Define g∗
j (T) = ∑

r
∫
{t:|t j |>Tj } |tr||φ f (t)|2 dt. Then g∗

j (T) ≤ g∗(T) ≤ ∑d
j=1 g∗

j (T)

and therefore g∗
j (T

0) = O(zn) for all j . Since g∗
j (T̂)I [T̂ j ≥ T 0

j ] ≤ g∗
j (T

0), (18) will

be proved if we prove that L1 j L2 j = Op(zn) for all j , where L1 j = I [T̂ j < T 0
j ]

and L2 j = g∗
j (T̂) − g∗

j (T
0). It can be seen that L1 j L2 j = L1 j

∑
r Q+

3,2,r(R(T
0) \

R(T̂0
j ))+�̂∗

j where T̂0
j denotes the vector resulting from replacing the j-th component

T 0
j by T̂ j in T0 and 0 ≤ �̂∗

j ≤ C
∑

i �= j g∗
i (T

0) = O(zn). By Lemma 3 and Markov

inequality, W +
1,r(R(T

0)) = Op(zn). This, together with (7), (17) and Cauchy–Schwarz
inequality, implies

L1 j L2 j = L1 j

{
−
∑

r

W +
3,r(RT0,T̂0

j
)+ (2π)d(ϕ̃∗(T0)− ϕ̃∗(T̂0

j ))

}
+ �̂∗

j

≤ L1 j

{∑
r

W +
1,r(R(T

0))+ 2
∑

r

∣∣W +
2,r(RT0,T̂0

j
)
∣∣+ g̃∗(T̂)

}
+ �̂∗

j

≤ L1 j

{∑
r

W +
1,r(R(T

0))+ g̃∗(T̂)

+2
∑

r

{
Q+

3,2,r(RT0,T̂0
j
)W +

1,r(RT0,T̂0
j
)
}1/2

}
+ �̂∗

j

≤ Op(zn)+ Op(z
1/2
n )L1/2

2 j L1 j (55)

where RT0,T̂0
j

= R(T0) \ R(T̂0
j ). Put L3 j = L1 j I [L2 j > zn]. Multiplying (55) by

L−1/2
2 j L3 j yields L1/2

2 j L3 j ≤ Op(z
1/2
n ). Hence L2 j L2

3 j = L2 j L1 j I [L2 j > zn] =
Op(zn). The proof of (18) follows by noting that L2 j L1 j I [L2 j ≤ zn] ≤ zn . Finally,
(16) can be derived with trivial modifications (e.g., replacing SCV∞

2m by CV∞
r and

T̂2m by T̂r; and dropping
∑

r and
⋂

r:|r|=2m) to all the foregoing arguments. This
completes the proof. ��
Proof of Theorem 1 The proof follows from that of Theorem 2 below with trivial
modifications (replacing T̂2m by T̂r for a fixed r). ��
Proof of Theorem 2 By (54) we get, for all p0>m+d/2, {ϕ̃∗(�n)−ϕ̃∗(T̂2m)}I [T̂2m ≤
�n] = Op(zn) and, consequently, {ψ̃r(�n) − ψ̃r(T̂2m)}I [T̂2m ≤ �n] = Op(zn) for
all r. This, together with the fact P[T̂2m ≤ �n] → 1 (as established below (53)),
leads to ψ̃r(�n)− ψ̃r(T̂2m) = Op(zn) for all p0 > m + d/2. Hence the theorem will
be proved if we show that assertions (i) and (ii) remain true if T̂2m is replaced by �n

throughout. Now, by (37),

(−1)m(2π)d(ψ̃r(�n)− ψr) = W1,r(R(�n))+ 2W2,r(R(�n))− gr(�n). (56)

By Lemma 3 and routine computation, W1,r(R(�n)) = Op(zn), gr(�n) = Op(zn)

and E|W2,r(R(�n))| ≤ O(n−1/2)Q+
3,1,r(R(�n)) for all p0 > m + d/2. Further,

123



892 T.-J. Wu et al.

Q+
3,1,r(R(�n)) ≤ Cn(2m+d−p0)/(2p0) if p0 < 2m + d and Q+

3,1,r(R(�n)) ≤ C logd n

if p0 = 2m + d. Therefore, assertion (i) remains true with T̂2m being replaced
by �n . For the rest we assume p0 > 2m + d. Now, |W1,r(R(�n))| = op(n−1/2),
|gr(�n)| = op(n−1/2) and |W2,r(R′(�n))| = op(n−1/2) (by (42)). Thus, by (56), the
vectors 2n1/2(W2,r1(�d), . . . ,W2,rd2m (�d)) and n1/2(−1)m(2π)d(ψ̃2m(�n)−ψ2m)

have the same asymptotic distribution. In view of (41) and by the Cramér–Wold
device, it suffices to show the k-th order cumulant of any linear combination

2n1/2∑d2m

i=1 ai W2,ri (�d), where ai ’s are constants, converges to zero for all k ≥ 3.
But this can be seen by noting that such k-th order cumulant is equal to

nk/2
∑

v1,...,vd2m

Ck,v1,...,vd2m

d2m∏
i=1

avi
i

∫
�d

· · ·
∫

�d

d2m∏
i=1

Si∏
j=Si−1+1

tri
j

×
k∏

j=1

φ f (−t j )cum(φ̃0(t1), . . . , φ̃0(tk)) dt1 · · · dtk = O(n−(k/2)+1) (57)

where S0 = 0, Si = ∑i
j=1 v j , Ck,v1,...,vd2m > 0 is a constant not depending

on n, the summation is taken over the region {(v1, . . . , vd2m ): 0 ≤ vi ≤ k, i =
1, . . . , d and

∑d2m

i=1 vi = k} and the last equality is from (30). This completes the
proof. ��
Proof of Theorem 3 The proof straightforwardly extends that of Theorem 2(i) of
Bickel and Ritov (1988) from d = 1 to general d. Let { f (v), v ≥ 1} be a sequence
of densities from Fd . We denote s(v) = ( f (v))1/2 and s = f 1/2. In order to prove
the theorem it suffices to show ψr is (Frèchet) pathwise differentiable along paths
satisfying

‖s(v) − s‖2 → 0 and ‖( f (v)r − fr)s‖2 → 0, v → ∞ (58)

with derivative 4{ fr − ψr} f 1/2 because then, as at the end of the proof of Theorem
2(i) of Bickel and Ritov (1988), the information bound forψr is ‖2{ fr −ψr} f 1/2‖2

2 =
4Var{ fr(x1)}, where the last equality can be seen from (1). Write, with some abuse of
notation, ψr(s) = ψr( f )(=ψr) and ψr(s(v)) = ψr( f (v)). Using integration by parts,
we get

∫
fr(x) f (v)(x) dx = ∫

f (x) f (v)r (x) dx and, therefore, ψr(s(v)) − ψr(s) =
2V1+V2 with V1 = ∫

fr(x){ f (v)(x)− f (x)} dx and V2 = ∫ { f (v)(x)− f (x)}{ f (v)r (x)−
fr(x)} dx. By (1), (58) and Remark 3,

V2 =
∫

{s(v)(x)− s(x)}2{ f (v)r (x)− fr(x)} dx

+2
∫

s(x){s(v)(x)− s(x)}{ f (v)r (x)− fr(x)} dx

≤ ‖s(v) − s‖2
2 sup

x∈�d
| f (v)r (x)+ fr(x)| + 2‖s(v) − s‖2 ‖( f (v)r − fr)s‖2

= o(‖s(v) − s‖2) (59)
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and

V1 =
∫

fr(x) f (v)(x) dx − ψr(s) =
∫

{ fr(x)− ψr(s)} f (v)(x) dx

=
∫

{ fr(x)− ψr(s)} { f (v)(x)− f (x)} dx

=
∫

{ fr(x)− ψr(s)} 2s(x){s(v)(x)− s(x)} dx

+
∫

{ fr(x)− ψr(s)} {s(v)(x)− s(x)}2 dx

= 〈2{ fr − ψr}s, s(v) − s〉 + O(‖s(v) − s‖2
2) (60)

where 〈·, ·〉 denotes the usual inner product. It follows that as v → ∞,

∣∣∣ψr(s
(v))− ψr(s)− 〈4{ fr − ψr}s, s(v) − s〉

∣∣∣ = o(‖s(v) − s‖2).

This leads to the desired (Frèchet) derivative of ψr, and the proof is completed. ��
Acknowledgments The authors are grateful to an Associate Editor and two referees for many valuable
suggestions which significantly improved the quality and presentation of the paper. In particular, the critical
suggestions by the referees of including the study of estimating the vector functionals (3), at both the
theoretical- and practical-levels, led the authors to reconstruct the modified procedure of Sect. 2.3 that
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