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Abstract We discuss a new class of spatially varying, simultaneous autoregressive
(SVSAR) models motivated by interests in flexible, non-stationary spatial modelling
scalable to higher dimensions. SVSAR models are hierarchical Markov random fields
extending traditional SAR models. We develop Bayesian analysis using Markov chain
Monte Carlo methods of SVSAR models, with extensions to spatio-temporal contexts
to address problems of data assimilation in computer models. A motivating application
in atmospheric science concerns global CO emissions where prediction from computer
models is assessed and refined based on high-resolution global satellite imagery data.
Application to synthetic and real CO data sets demonstrates the potential of SVSAR
models in flexibly representing inhomogeneous spatial processes on lattices, and their
ability to improve estimation and prediction of spatial fields. The SVSAR approach
is computationally attractive in even very large problems; computational efficiencies
are enabled by exploiting sparsity of high-dimensional precision matrices.
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1 Introduction

Applied studies in multiple areas involving spatial and spatio-temporal systems
increasingly challenge our modelling and computational abilities as data volumes
increase. Similarly, as spatial scales move to increasingly high resolution, there is an
almost inevitable increase in complexity and diversity of dependency patterns. Tradi-
tional spatial models often fail to capture the complex dependence structure in the data,
whereas more complicated spatially adaptive models are usually so computationally
demanding that their application potential is limited.

Challenging motivating applications arise in inverse estimation and data assim-
ilation in computer modelling. A specific applied context is in atmospheric chem-
istry, where spatially and temporally aggregated satellite sensor measurements of
atmospheric carbon monoxide (CO) concentrations are to be used to evaluate and
integrate with predictions from a computer model; one main goal is prediction of
ground-level source fluxes of CO at regional scales around the globe. A chemical
transport model—a deterministic, forward simulation computer model—determines
responses of the atmospheric CO concentrations to the regional source fluxes, and data
assimilation aims to combine these computer model predictions with actual satellite
retrieval data representing globally varying CO levels in the atmosphere over time.
There is an increasing interest in analyzing the satellite retrievals at finer spatial and
temporal resolutions to better understand process-level drivers of emissions (Arellano
et al. 2004, 2006; Chevallier et al. 2005a,b; Chevallier 2007; Chevallier et al. 2009a,b;
Meirink et al. 2008; Kopacz et al. 2009, 2010). Global lattices have 105–106 grid points
and applications involve repeat observations over the year; as resolution increases, the
interest in dealing with spatial inadequacies is increasing. Predictions from computer
models of atmospheric chemistry have errors with spatial dependencies due to various
reasons, including assumed forms of transport fields that are inputs to the models.
Our modelling approach aims to address the need to incorporate such unstructured
dependencies through spatially non-stationary fields on the lattice.

A traditional approach to lattice data uses continuously indexed geostatistical spa-
tial process models after spatially aggregating over the areal units that define the
lattice grid cells (or points). These approaches do not, however, scale well with lat-
tice dimension. For example, deformation approaches (Sampson and Guttorp 1992),
spatial moving-average models (Higdon et al. 1999) and other non-stationary covari-
ance models incorporate spatial dependencies through the covariance structure of
a Gaussian process. Bayesian posterior sampling algorithms for these models are
prohibitively slow for large lattices as they require full (non-sparse) matrix inver-
sions/Cholesky decompositions in every iteration. The computational cost is O(n3)

floating point operations (FLOPs) where n is the number of point realizations from
the continuous spatial process. Typically, n is much larger than the lattice size since
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Spatially varying SAR models and Bayesian inference 475

the regional aggregations use Monte Carlo integration with many points from each
areal unit. Dimension reduction approximations (e.g., Higdon 1998; Gneiting 2002;
Fuentes 2002) are rarely applicable here, due to the need to integrate the resulting
continuous process over the region.

In contrast, Markov random field (MRF) models offer a more useful framework
for high-resolution spatial lattice data. Gaussian MRF models involve sparse struc-
ture of defining precision matrices of Gaussian distributions. This yields reductions in
computational complexity—typically, from O(n3) to O(nb2) where b is the minimal
bandwidth of the sparse matrices involved (Rue 2001; Rue and Held 2005; Golub and
Loan 1996). Construction of meaningful sparse precision matrices for spatial lattices
is, however, non-trivial. One general approach is conditional autoregressive (CAR)
modelling (Besag 1974; Besag and Kooperberg 1995), where all conditional distri-
butions are specified as regressions on the neighboring realizations. This approach
exploits the connection between the Gaussian precision matrix and the conditional
distributions to model spatial associations, since more concentrated conditional distri-
butions imply higher spatial association in the neighborhoods, and vice-versa. Spar-
sity comes through local parametrization of the conditionals. However, symmetry and
positive-definiteness of the CAR precision matrix remain a major concern for exten-
sions beyond simple parametric forms. Two noteworthy adaptive extensions are due
to Brewer and Nolan (2007) and Reich and Hodges (2008) who have developed non-
stationary generalizations of the intrinsic CAR model. Another relevant development
is in Dobra et al. (2011), where priors for precision matrices of Gaussian graphical
models (Jones et al. 2005; Jones and West 2005) use the CAR structure to adaptively
incorporate spatial non-stationarities.

A more attractive and, for larger problems, computationally feasible approach is
based on extensions of simultaneous autoregressive (SAR) models (Whittle 1954).
SAR models are MRFs that are increasingly popular in spatial econometrics (Anselin
1988) and other areas, but have as yet been less well-explored and exploited in main-
stream spatial statistics in environmental and natural science applications. Our interests
in the SAR model stem from its naturally symmetric and positive-definite precision
matrix, the corresponding sparsity structure, and the ability to embed the basic structure
in more elaborate hierarchical non-stationary extensions. To enable this development,
we introduce the class of spatially varying SAR (SVSAR) models. We do this by mod-
elling observed spatial data on the lattice as arising from conditional SAR models,
and then by modelling the spatial dependence parameter field of this data-level model
as itself arising as a latent SAR model. This hierarchical Markov random field struc-
ture thus incorporates “locally stationary” features within a “globally non-stationary”
framework. We develop Markov chain Monte Carlo (MCMC) methods for Bayesian
model exploration, fitting and prediction, with extensions to spatio-temporal contexts.

Section 2 discusses theoretical aspects of SAR models and their sparse Markovian
structure, then Sect. 3 introduces the new SVSAR models. Section 4 discusses prior
specification and MCMC analysis for SVSAR models, with some supporting technical
details in the Appendix. Section 5 explores analysis of a synthetic data set generated to
resemble the CO data assimilation problem; analysis of simulated data yields insights
into model fit and predictive performance, and shows substantial dominance of the
SVSAR model over SAR approaches. Section 6 discusses SVSAR model analysis of
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the real CO satellite imagery data and assimilation with computer model predictions.
Some summary comments appear in Sect. 7.

2 Simultaneous autoregressive models

Regions V = {A1, . . . , An} are said to form a lattice of an area D if A1 ∪ . . .∪ An = D
and Ai ∩ A j = ∅ for all i �= j . For each region Ai , suppose that a scalar quantity yi

is measured over that region. An SAR model on y = (y1, . . . , yn)′ is defined via a
system of autoregressive equations

yi = μi +
∑

j : j �=i

φ
wi j

wi+
(y j − μ j ) + εi , εi ∼ N (0, τ 2), i = 1, . . . , n, (1)

wherewi i = 0 andwi+ = ∑
j wi j . Hereφ is often referred to as the spatial dependence

parameter. The inherent sparse structure of SAR models is based on many of the wi j

being zero, so that each yi is regressed on only a neighboring subset of y j values
corresponding to those non-zero values. For example,

wi j =
{

1, if Ai shares a common edge or border with A j for i �= j,
0, otherwise.

(2)

In addition, non-zero wi j values may incorporate location-specific information, such as
distance between centroids of neighboring regions. The matrix W = (wi j ) is called the
proximity matrix. The simultaneous specification in (1) leads to the joint distribution
y ∼ N (μ, Q−1) (Anselin 1988) where μ = (μ1, . . . , μn)′ and the precision matrix is

Q = τ−2(In − φW̃ )′(In − φW̃ ) (3)

with W̃ = (wi j/wi+) and In the n ×n identity matrix. The SAR precision matrix Q is
symmetric and positive semi-definite for any proximity matrix W, any φ and τ 2 > 0;
it is positive definite if φλ �= 1 for each of the eigenvalues λ of W̃ . Any continuous
prior on φ, therefore, defines Q to be almost surely positive-definite.

Conditional dependence neighborhoods implied by the simultaneous autoregres-
sive specification (1) are larger than the neighborhoods defined by the wi j . Refer to the
neighborhoods defined by the proximity matrix as W-neighborhoods. Two regions are
conditionally dependent if they are W-neighbors or if they have least one common W-
neighbor. Consequently, Q is less sparse than W . To see this, note that the (complete)
conditional distribution of yi given y−i = (y1, . . . , yi−1, yi+1, . . . , yn)′ is normal with

E(yi | y−i ) = μi − Q−1
i i

∑

j : j �=i

Qi j (y j − μ j ) and V (yi | y−i ) = Q−1
i i . (4)

For any i �= j, note that
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τ 2 Qi j = −φ

(
wi j

wi+
+ w j i

w j+

)
+ φ2

∑

k

wkiwk j

w2
k+

(5)

while the diagonal elements are defined by

τ 2 Qii = 1 + φ2
∑

k

w2
ki

w2
k+

. (6)

Now yi is conditionally independent of y j (i �= j) if, and only if, Qi j = 0. The
non-zero values define the conditional dependence graph of the joint distribution
(e.g., Jones et al. 2005; Jones and West 2005). Assuming the practically relevant
cases of φ �= 0, we see that Qi j �= 0 if wi j and w j i are non-zero (via first order
W -terms in Qi j ), or if there exists a k such that both wki and wk j are non-zero (via
second order product of W -terms in Qi j ). In other words, yi and y j (i �= j) are con-
ditionally dependent in the SAR model if Ai and A j are W-neighbors, or if they have
a common W-neighbor Ak . We refer to the neighborhoods in the SAR conditional
dependence graph as the G-neighborhoods. If the W-neighborhoods are defined by
centered (2p+1)× (2p+1) squares on a regular lattice, all interior G-neighborhoods
are centered (4p + 1) × (4p + 1) squares; see Fig. 1 for an example with p = 1.

The SAR complete conditional distributions are important in generalizing the model
for spatial non-stationarities. Without loss of generality here, suppose a zero mean
process, setting μi = 0 for all i . Defined by the expressions in (4), (5) and (6), note that
the location and concentration of p(yi |y−i ) are monotonic in φ ∈ (0, 1). For φ close to
zero, the conditional mean is close to zero and the conditional variance is close to τ 2. As
φ increases to one, the conditional mean increases to a weighted average of the y j in the
G-neighborhood of Ai , and the conditional variance decreases. The parameter τ scales
conditional variability. All conditional distributions behave in the same way. That is,
increasing φ and decreasing τ 2 shift the conditional means towards their neighborhood
averages (under the assumption of zero μi ), while decreasing conditional variances.
The resulting conditional distributions are more concentrated at each lattice point,
which generates a smoother random field. Our generalized SVSAR model developed
in the next section defines a parametrization that allows varying spatial smoothness in
different parts of the lattice through varying conditional distributions.

Fig. 1 a Centered (2p + 1) × (2p + 1) W-neighborhood of a SAR model on a regular lattice with p = 1.
b Corresponding interior G-neighborhoods that are centered (4p + 1) × (4p + 1) squares
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Note that it is not essential to restrict to 0 < φ < 1 to define a valid model. An SAR
model with φ larger than but close to 1 represents a strongly spatially smooth random
field, whereas a small negative value of φ gives rise to negligible spatial dependen-
cies. In both cases, the conditional distributions behave as intended; in addition, the
precision matrices are symmetric and positive-definite.

3 Spatially varying simultaneous autoregressive models

Our spatially varying generalization of the SAR model has region-specific defining
parameters, allowing spatial dependencies and levels of smoothness to vary across the
lattice. In region Ai , region-specific parameters φi and τ 2

i are introduced. The SVSAR
system of simultaneous autoregressive equations is then

yi = μi +
∑

j : j �=i

φi
wi j

wi+
(y j − μ j ) + εi , εi ∼ N (0, τ 2

i ), i = 1, . . . , n. (7)

The new hierarchical model adopts an SAR prior on the φ-field defined by the location-
specific φi quantities; this allows the imposition of spatial smoothness on the field of
φi coefficients. Specifically, we adopt the following system of simultaneous autore-
gressive equations:

φi = m +
∑

j : j �=i

ρ
wi j

wi+
(φ j − m) + ei , ei ∼ N (0, σ 2), i = 1, . . . , n. (8)

With φ = (φ1, . . . , φn)′, Δφ = diag(φ), Γφ = diag(τ 2
1 , . . . , τ 2

n ) and 1n denoting the
n × 1 vector of ones, the full hierarchical model then has the form

y | φ ∼ N (μ,Ω−1
φ ), Ωφ = (In − ΔφW̃ )′ Γ −1

φ (In − Δφ W̃ ), (9)

φ ∼ N (m1n,Λ
−1), Λ = σ−2(In − ρW̃ )′(In − ρW̃ ). (10)

The parameters ρ and σ 2 determine the level of spatial smoothness in the φ field,
while the scalar m defines the mean. Setting σ 2 = 0 is equivalent to using the spatially
homogeneous SAR model from Sect. 2 where each φi = m. In the data field model
of Eq. (9), the precision matrix Ωφ is symmetric, and almost surely positive-definite
under the continuous prior on the φ field. The φ field precision matrix Λ has the same
sparsity structure as Ωφ . In both cases, the G-neighborhoods for a given W are as
discussed in Sect. 2.

One useful extension of the general model is to link the two parameters (φi , τi )

within region, setting τ 2
i = τ 2

i (φi ) to be a decreasing function of φi . This reflects the
fact that simultaneous increases in φi and decreases in τ 2

i are necessary for increasing
spatial smoothness. Our models introduce a specific form of dependence, namely
τ 2

i (φi ) = τ 2 exp (−κφi ) for some κ > 0 to do this.
Adaptivity to locally varying spatial associations can be observed through the

implied complete conditional distributions for the (yi |y−i ) as for the SAR model.
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The SVSAR implies that the conditional dependence graphical structure has moments
as in (4), but now the controlling elements of Q are given for each i and j �= i by

Qi j = −
(

τ−2
i φi

wi j

wi+
+ τ−2

j φ j
w j i

w j+

)
+

∑

k

τ−2
k φ2

k
wki wk j

w2
k+

,

Qii = τ−2
i +

∑

k

τ−2
k φ2

k
w2

ki

w2
k+

.

For given τi the conditional mean and variance of yi depend functionally on those
(φ j , τ j ) values in its G-neighborhood. If (10) defines a spatially smooth φ field then
all φ j values in the G-neighborhood are similar; relationships between the conditional
distributions with φ j in the G-neighborhood are similar to the relationships between
the SAR conditionals and φ, as discussed in Sect. 2. In a neighborhood where the
local φ j values are small, the conditional mean of yi will be close to μi and the
conditional variance close to τ 2

i . The conditional distribution is relatively flat in this
case; consequently, there is little local smoothing. If theφ j values in a neighborhood are
closer to one, the conditional mean is closer to a weighted average of the G-neighboring
y j and the conditional variance is smaller than τ 2

i . Here, the conditional distribution is
concentrated around the neighboring realizations and, therefore, it causes strong local
smoothing. In neighborhoods between these two extremes, as the φ-values change
from zero to one, the conditional distributions shift in location from the overall regional
average μi to the neighborhood average realizations and become more concentrated.
As a general matter, cases where the φ field lacks spatial smoothness are of far less
practical importance.

4 Prior specification and posterior computation

In Sect. 3, we discussed how local smoothness and global adaptability in the SVSAR
φ field effectively accommodates non-stationarities in the data. This is reflected in
prior distributions on ρ and σ 2. We use a Beta prior for ρ with density concentrated
near one, and a conditionally conjugate inverse-Gamma prior for σ 2 with density
concentrated over small positive values. Our prior for m reflects our belief on average
spatial smoothness in the data field, either through a truncated normal distribution, or
through a uniform distribution on (0, 1). In more elaborate models,μ could be specified
via a regression model based on candidate predictor variables; such context specific
extensions are deferred to future work. Finally, we use a conditionally conjugate
inverse-Gamma prior for the global scaling τ 2 appearing in the region-specific τ 2

i =
τ 2

i (φi ) terms.
MCMC involves operations with matrices Ωφ and Λ whose sparsity is controlled

by W . For example, band-Cholesky decompositions of these sparse matrices are much
faster than complete Cholesky decompositions. On an R × C rectangular lattice with
proximity matrix W defined by centered (2p+1)×(2p+1) neighborhoods, computing
band-Cholesky decomposition takes O(n3

1n2 p2) FLOPs where n1 = min(R, C) and
n2 = max(R, C) (Rue 2001; Rue and Held 2005). Typically, p is much smaller than R
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and C so this yields what can be a very substantial O(p2/n2
2) reduction in computing

time.
Conditional updating of the φ field is the key and most challenging task. Consider

first the case of small lattices. Given values of (y, μ, τ 2, m, ρ, σ 2) together denoted
simply by −, the density of the complete conditional posterior for φ is

p(φ | −) ∝ |Ωφ |1/2 exp

{
−1

2

(
φ′Qφφ − 2φ′bφ + cφ

)}

where Qφ = (ΔaΓ −1
φ Δa + Λ), bφ = {ΔaΓ −1

φ (y − μ) + Λ(m1n)} and cφ = (y −
μ)′Γ −1

φ (y −μ), and in which a = W̃ (y −μ) and Δa = diag(a); see the Appendix for
details of this derivation. A Metropolis–Hastings (MH), complete blocked updating
step has been developed and works well in our examples. We need an MH proposal
distribution to generate candidate fieldsφ∗ based on a current fieldφ.Based on the form
of the conditional posterior above, a natural choice is (φ∗|φ) ∼ N (φ∗|Q−1

φ bφ, Q−1
φ ),

resembling the exact conditional. A candidate φ∗ is sampled from the proposal and
then accepted with probability

α(φ) = min

{
1,

p(φ∗ | −) N (φ | Q−1
φ∗ bφ∗ , Q−1

φ∗ )

p(φ | −) N (φ∗ | Q−1
φ bφ, Q−1

φ )

}
.

Note that the matrix Qφ has the same sparsity structure as Ωφ and Λ, so our com-
ment about sparse matrix computations applies directly to the sampling and density
evaluations associated with this acceptance ratio.

Complete blocked updating of φ does not work well for large lattices. The Gaussian
proposal tends to become increasingly dissimilar to the conditional distribution as lat-
tice size increases, resulting in reduced Metropolis–Hastings acceptance probabilities.
In this situation, we use blocked variants that update smaller blocks of φ conditional
on the remaining values of the field; the version used here works well in yielding
reasonable acceptance probabilities across our examples to date. Consider updating
of φS , a sub-vector of φ. Now extending the conditioning values − to also include
current values of the remaining φ field, the conditional posterior has density p(φS|−)

proportional to

|Ωφ |1/2 exp

[
−1

2

{
φ′

S Qφ,S,S φS − 2φ′
S

(
bφ,S − Qφ,S,c[S] φc[S]

) + cφ,S
}]

.

Here c[S] represents the complement-set of S, while uI (or uφ,I ) denotes the sub-
vector of the vector u (or uφ) with elements in index set I . Similarly, Uφ,I,J is the sub-
matrix of the matrix Uφ with row indices in I and column indices in J and cφ,I denotes
cφ,I = (yI −μI )

′ Γ −1
φ,I,I (yI −μI ). Following the ideas and strategy for complete block

sampling, we propose candidate samples from a proposal distribution constructed to
imitate the exponential part of this conditional for the block S. That is, draw candidates
φ∗

S from the normal proposal with mean Q−1
φ,S,S (bφ,S − Qφ,S,c[S] φc[S]) and precision

matrix Q−1
φ,S,S, with the resulting MH test for acceptance based on probability
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α(φS) = min

⎧
⎨

⎩1,
p(φ∗

S | −) N
(
φS | Q−1

φ∗,S,c[S] (bφ∗,S − Qφ∗,S,c[S] φc[S]), Q−1
φ∗,S,S

)

p(φS | −) N
(
φ∗

S | Q−1
φ,S,S (bφ,S − Qφ,S,c[S] φc[S]), Q−1

φ,S,S

)

⎫
⎬

⎭ .

Sparsity in Qφ reduces computational costs of the term Qφ,S,c[S] φc[S] to O(|n[S]|2)
FLOPs, where n[S] is the index set of G-neighbors of S outside S. The proposal sam-
pling costs only O(|S|3) FLOPs, where |S| is the sub-block size. Density evaluations in
the acceptance probability calculation require band-Choleskey decomposition of the
entire Ωφ for each sub-block, which requires O(nb2) FLOPs for matrix-bandwidth
b. However, sequentially updating appropriately selected subsets of φ substantially
reduces this cost, as illustrated below.

To illustrate the selection of the block S, consider an R × C regular rectangular
lattice where the proximity matrix is defined with centered (2p + 1) × (2p + 1)

neighborhoods. Rows and columns of φ are convenient blocks for updating the φ field
in this case. We index the φ field in column-major format and update consecutive
columns of φ from left to right. When the sub-block is the cth column of the φ field,
n[S] is only 2p columns from both sides, as shown in Fig. 2. Moreover, while updating
the cth column, the left-Cholesky decomposition Lφ of Ωφ can reuse C(c − 1) top
rows of Lφ from the earlier decomposition; this induces huge reductions in computing
time with even modest dimensional lattices. A row-major indexing and row-sweep
updating of φ is equally efficient. We recommend alternating between row-sweep and
column-sweep updating of φ in every alternative iteration with occasional random
single-cell updating for better mixing of the chain.

Conditionally updating m, τ 2 and σ 2 in the MCMC uses easy Gibbs steps to sample
from their respective truncated normal and two inverse-Gamma complete conditional
distributions. Updating ρ is performed with a random-walk Metropolis–Hastings step,

Fig. 2 Blocking for computations on the R × C regular rectangular lattice with W-neighborhoods based
on centered (2p + 1) × (2p + 1) squares. The column enclosed in the solid-line box has G-neighborhood
of 2p columns in each side, marked by the dashed box
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where the step-size is defined adaptively during the burn-in phase of the MCMC, and
later kept fixed.

Before proceeding to examples and application, we note extensions of the MCMC
analysis to address the potential for missing data. In our CO application, multiple
lattice locations suffer missing data over time, so that this is a very real practical issue.
The data field model of the SVSAR is a precision matrix model, which is convenient
for handling missing observations. Let M denote the index set of missing observations
in a lattice and H its complementary set. Assuming ignorable missingness, we can
treat the missing observations yM as unknown parameters and then sample them at
each of the MCMC iterations. The relevant conditional predictive distributions are
simply

p(yM | yH ,−) = N
(
μM − Ω−1

M,MΩM,H (yH − μH ),Ω−1
M,M

)

where yH is the observed data sub-vector, μM and μH are sub-vectors of μ for the
missing and observed subsets, ΩM,M is the sub-matrix of Ω with row and column
indices in M and ΩM,H is the sub-matrix with row indices in M and column indices
in H . Actual sampling from this distribution requires Cholesky decomposition of a
|M | × |M | matrix ΩM,M and solving a linear system of dimension |M | (Rue 2001;
Rue and Held 2005), which does not add measurably to the computational complexity
of the overall analysis in realistic problems with small degrees of missing data.

Another extension of general importance, as well as used in our application below,
is to address multiple observations y1, . . . , yT on the same underlying random φ field.
The conditional posteriors for the φ field and τ parameter now include a product of
T terms of the same functional forms. The resulting conditional posteriors are then
sampled using the same Metropolis–Hastings method for φ and direct sampler for τ ,
with the obvious modifications. Conditional updating of m, ρ and σ 2 in the MCMC
remains unaffected.

5 Synthetic data analysis

We first illustrate the SVSAR model using a synthetic dataset. The lattice is borrowed
from our real data example which consists of 4◦ latitude × 5◦ longitude grid-boxes
spanning 50◦N–50◦S of the Earth. The resulting lattice is a 26×72 regular rectangular
grid with n = 1872 grid-cells, with its left and right edges wrapped around. We
generated a smoothly varying φ field on this lattice from a known model with realistic
characteristics; see Fig. 3a. Given this true φ field, we then simulated five replicate,
independent data fields ỹ1, . . . , ỹ5 using the SVSAR data-model with proximity matrix
based on centered 3 × 3 W-neighborhoods. We use τ 2 = 1 and κ = 6.75 in (9) to
specify Γφ . Variations in the φ field give rise to varying degree of spatial smoothness
in the synthetic data fields, which can be seen in the spatial plot of ỹ1 in Fig. 4. We
flag a total of 79 observations as missing spread across these 5 data fields, mimicking
the missing-data pattern in our real data application.

One objective is to investigate the extent to which the SVSAR model can dis-
cover the “true” φ field from the data fields, and compare the SVSAR model with
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Spatially varying SAR models and Bayesian inference 483

Fig. 3 a A φ field on the 26 × 72 lattice discussed in Sect. 5 that is used to simulate spatial random fields.
b Posterior expectation of the SVSAR φ field based on MCMC samples from analysis of the synthetic data
set {ỹi , i = 1, . . . , 4} as discussed in Sect. 5. c A randomly selected MCMC sample of the SVSAR φ field
in the same analysis

Fig. 4 One of the 5 simulated data fields, ỹ1, based on the synthetic φ field of Fig. 3a. The deep blue
grid-cells mark missing observations

a simple SAR model in terms of goodness-of-fit to the synthetic data. Hence, we fit
a zero-mean SVSAR model and a zero-mean SAR model, the latter with precision
matrix parameterized as δ−2(In − ηW̃ )′(In − ηW̃ ). The models are defined using
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the same, true proximity matrix. We fit these two models to a data set defined by
four repeat observational fields {ỹi , i = 1, . . . , 4}. The data field ỹ5 is held back
as “test data” for predictive evaluations. A uniform (0, 1) distribution is specified as
prior for SVSAR parameter m and SAR parameter η. An inverse-Gamma(6, 5) distri-
bution (mean 1, coefficient of variation 0.5) is specified as prior distribution for the
data variance parameters, namely τ 2 in SVSAR and δ2 in the SAR model. Spatial
smoothness in the SVSAR φ field is enforced with the Beta(5, 1) prior for ρ and
an inverse-Gamma(6, 0.005) prior for σ 2. In each analysis, the MCMC is initialized
with all parameters at their respective prior means. The MCMC for the SVSAR model
alternates between row-sweeps and column-sweeps for updating φ, with occasional
updating of random single-cells. Chains are run for 50000 iterations after burn-in of
10000 iterations; multiple subjective and quantitative assessments were evaluated and
confirm satisfactory mixing and MCMC convergence for practicable purposes.

We use the following measures to compare our models: (i) the deviance information
criterion (DIC) (Spiegelhalter et al. 2002), (ii) average in-sample log likelihood based
on data {ỹi , i = 1, . . . , 4}, and (iii) the posterior-predictive log-likelihood of the
test-sample ỹ5. The DIC is the mean posterior deviance of a model penalized by
the effective number of parameters; a lower DIC score implies a better model. DIC is
particularly suitable for comparing hierarchical models based on Markov chain Monte
Carlo.

The posterior mean deviance is D̄ = Eθ |x {D(θ)} where D(θ) = −2 log p(x |θ) +
2 log h(x) is the “Bayesian deviance” of the model for data x and with parameters
θ . Here p(x |θ) denotes the likelihood function and h(x) is a fully specified stan-
dardizing term that is function of the data alone. The overall summary D̄ is trivially
estimated from the MCMC samples. The effective number of parameters of the model
is computed as pD = D̄ − D(θ̄), where θ̄ is the posterior mean of θ or some other
measure of central tendency. Deviance is a model complexity measure that does not
require specification of the total number of unknown parameters; the latter are typically
meaningless—and hard to define—in complex hierarchical models where parameters
often outnumber observations. DIC is defined as DIC = D̄ + pD . We focus on the
difference of DIC scores between the SVSAR and SAR models; the standardizing
term h(x) is simply set to zero as it is the same for both models, and the difference
makes its value irrelevant.

From analysis of the synthetic training data set {ỹi , i = 1, . . . , 4}, Fig. 3 shows
the posterior mean and a randomly selected posterior sample of the SVSAR φ field
alongside the “true” field. Visual inspection of these fields reveals that the posterior
successfully recovers the prominent highs and lows in the φ field on a correct scale.
To illustrate the dominance of the SVSAR model, we show DIC comparison scores
in Table 1. The DIC score and in-sample log likelihood both indicate very substantial
support for the SVSAR model relative to the SAR. The effective number of parameters
for the SAR model is a little less than the sum of total of the number of missing obser-
vations in the four data fields, which is 67, and the total number of model parameters,
which is 2. This reduction in dimension can be attributed to the spatial smoothing in
the missing observations induced by the SAR model. The corresponding number for
the SVSAR model is much lower than the sum of the number of missing observations
and the number of model parameters, 67 + 1876 = 1943. This arises as the SVSAR
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Table 1 Model comparison
scores for the synthetic data
analysis in Sect. 5

Model SAR SVSAR

Deviance information criteria −25383.68 −26228.80

Effective number of parameters 68.75 294.04

Average in-sample log-likelihood 12726.22 13261.42

Posterior predictive log-likelihood of ỹ5 3202.16 3290.08

φ field is parsimoniously smooth while capturing all essential non-stationarities in
the data. Most critically, the posterior-predictive log-likelihood of ỹ5 provides really
strong evidence in support of the SVSAR model.

6 Inverse estimation of CO source fluxes

Our application adaptively models spatial non-stationarities in an inverse estimation
study of carbon monoxide (CO) source fluxes. The study uses the setup of Arellano
et al. (2004) where satellite sensor measurements of atmospheric CO concentrations
(Level 2 V3 MOPITT daytime column CO retrievals from the TERRA satellite) from
April to December 2000 are used to estimate CO emissions from 15 source categories.
The source categories consist of CO emissions from fossil fuel and biofuel combustion
in 7 geographical regions, biomass burning in 7 geographical regions and oxidation
of biogenic isoprene and monoterpenes on a global scale. Measurements from 50◦N–
50◦S of the Earth are gridded at 4◦ × 5◦ resolution and averaged every month to yield
monthly measurements on a 26 × 72 regular rectangular lattice, where left and right
edges of the lattice are wrapped around. Our quality control criteria require at least
5 days of observations in the month for a grid-cell to be considered valid, marking a
total of 139 observations missing over 9 months.

The canonical model for this inverse problem is given by

yt = Kt x + εt , εt ∼ N (0, Sε), t = 1, . . . , 9, (11)

where yt is the 1872 × 1 vector of atmospheric CO concentration measurements in
month t , x is the 15 × 1 vector of source fluxes and Kt is the Jacobian matrix of a
computer driven atmospheric chemical transport model. In this study, the matrix Kt

is derived from the GEOS-Chem model, which is a global 3-D chemical transport
model driven by meteorological information. The scale of the elements of the data
in each yt , and hence of elements in both Kt x and εt , is parts per billion (ppb), that
of the assessed atmospheric concentrations of CO. The scale of the CO from source
elements in x is teragrams per year, denoted by Tg/year−1. The random vector εt

accounts for measurement errors and inaccuracies in the linear approximation of the
chemical transport model, as well as representativeness errors arising from differences
in resolution between the measurement and model-calculated concentration fields. Our
focus is on modelling the error covariance matrix Sε . Many atmospheric chemistry
inverse modelling applications have assumed Sε to be a diagonal matrix for the sake
of convenient closed-form posterior expressions for x . However, to fully exploit the
information content in these high-dimensional, spatially dense satellite measurements,
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one must incorporate potential spatial dependencies among measurements through
the error structure that are not predicted by the transport model. This impact can be
substantial, as shown in Chevallier (2007) and Mukherjee et al. (2011). However,
strength of residual spatial dependencies may vary over the lattice, and should be
taken into consideration. Our SVSAR model provides a framework for systematically
incorporating spatial non-stationarities in the high-resolution error fields.

To get a initial sense of the nature and scale of the data, and the relative scales
of predictive and residual components, we display some of the data (that at t = 3),
together with some of the results from our analysis which are detailed and discussed
further below. These provide insights into the spatial structures and quantitative scale;
see Fig. 5.

We model the error fields in (11) as independent realizations from a zero-mean
SVSAR model with proximity matrix based on centered 3 × 3 W -neighborhoods. CO
source fluxes are strictly non-negative. Prior distributions reflect this via independent,
truncated normal priors on the elements of x, namely N (xi |ma,i , va,i )I (xi > 0) for
each xi , where prior locations ma,i are based on traditional bottom-up flux estimates
and the va,i = ma,i/2, consistent with prior studies. The global variance factor τ 2 is
assumed to follow an inverse-Gamma prior with coefficient-of-variation 0.5 and the
variance of the prior-predicted error fields as its mean. The average spatial smoothness
parameter m of the error fields has a U (0, 1) prior. Finally, spatial smoothness in the
SVSAR φ field is reflected by a Beta(5, 1) prior for ρ and an inverse-Gamma(6, 0.005)

prior for σ 2. As an alternative model for the error fields, an SAR model parametrized
as S−1

ε = δ−2(In − ηW̃ )′(In − ηW̃ ) is also fitted to compare and validate the need
for the non-stationary SVSAR error structure. The spatial correlation parameter η is
specified to have a uniform prior distributions on (0, 1) and the error field variance
δ2 is assumed to follow the inverse-Gamma prior distribution specified for SVSAR
parameter τ 2.

The CO model extends the basic SVSAR form to include the predictive regression
component Kt x in (11), replacing the earlier constant mean of the spatial field. A
second extension is that we are now using the model with multiple observations on the
same underlying random φ field. These practical model extensions require changes to
the MCMC analysis in detail, but the basic ideas and overall computational strategy are
unchanged. First, consider the changes related to incorporating information from the
repeat data over T = 9 months. At each iterate of the MCMC given a “current” source
flux vector x, we simply extract the implied realized residual fields εt = yt − Kt x
for each month t = 1 : T . These represent conditionally independent draws from the
spatial model; we have T copies of the observation Eq. (9) obtained by just replacing
y and μ of those equations with εt and 0, respectively, at each t = 1 : T . Hence the
conditional posteriors for each of the φ field and τ parameter are as discussed earlier.
Further, we update φ with alternating row-sweep and column-sweep in alternative
MCMC iterations, besides occasional random single-cells updating.

The extension to include the predictive regression Kt x also, of course, adds condi-
tional posterior simulations for the flux sources themselves. That is, at each MCMC
iterate, we resample the source flux vector x as follows. As a function of individual
elements xi , the conditional likelihood function is the product of T terms that define a
normal form in xi . As a result, the conditional posterior density for each univariate xi
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Fig. 5 An example of the data (at t = 3) together with corresponding posterior means of model and residual
following SVSAR analysis. Upper frame Observed data field y3. The deep blue grid-cells mark missing
observations. Center frame K3 x̂ where x̂ is the posterior estimate of x from the SVSAR analysis. Lower
frame ε̂3 = y3 − K3 x̂ . All are on the atmospheric concentration scale of parts per billion (ppb)

has a form proportional to N (xi |m∗
a,i , v

∗
a,i )I (xi > 0) where the quantities m∗

a,i , v
∗
a,i

are the usual normal prior: normal likelihood updates of the prior parameters ma,i , va,i .

This truncated normal is easily simulated directly. Sequencing through each element
xi leads to resampling the full source vector x in a Gibbs sampling format. The MCMC
for the SAR model is similarly extended. As in the analysis of the synthetic data sets,
MCMC chains are run for 50000 iterations after burn-in of 10000 iterations. A range
of subjective and quantitative assessments were evaluated and confirmed satisfactory
mixing and MCMC convergence for practicable purposes.
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Table 2 Model comparison
criteria for the CO data analysis
in Sect. 6

Model SAR SVSAR

Deviance information criteria −81193.57 −83581.21

Effective number of parameters 152.04 667.12

Average sample log-likelihood 40672.81 42124.16

Fig. 6 Top panel Posterior mean of the SVSAR φ field based on the MCMC samples from the CO inverse
estimation study discussed in Sect. 6. Bottom panel A randomly selected MCMC sample of the SVSAR φ

field in the same analysis. No measurement scale is noted since the φ elements are dimensionless quantities

We first look at the goodness-of-fit measures in Table 2. The average sample log-
likelihood and the DIC scores provide strong evidence in favor of the SVSAR model; a
reduction of 2387.63 from the SAR model DIC score to the SVSAR model DIC score
is substantial on the log-likelihood scale. The effective number of parameters for the
SVSAR error model is much smaller than sum of total of the number of missing
observations, number of source categories and number of error model parameters,
which is 139 + 15 + 1876 = 2030. This indicates that the SVSAR error model
parsimoniously adapts to the spatial non-stationarities in the data fields. We observe
evident spatial non-stationarities from posterior samples of the φ field; see Fig. 6. We
observe smaller φi values over North America, China and moderately small φi values
over many continental grid-cells in contrast to values in the oceanic grid-boxes that are
closer to one. This finding is in agreement with the fact that anthropogenic activities
in the continental regions cause active CO transport in the atmosphere, resulting in
higher fluctuations in atmospheric CO concentrations. As a side note, the posterior
mean from the basic SAR model analysis is approximately 0.994, and we see that the
estimated φ-field in the SVSAR model naturally ranges from values that are lower to
higher than this.
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Fig. 7 Plots of 95% prior and posterior credible intervals for the CO sources in the MOPITT data inversion
analysis. The scale of the CO from source elements in x is teragrams per year, denoted by Tg/year−1.

Posterior means for both SVSAR and SAR models are marked with diamonds inside the corresponding
intervals, while diamonds on the prior credible intervals represent the corresponding prior means. Source
category numbers in the figure represent fossil-fuel (FFBF) or biomass burning (BIOM) CO source region,
as follows: 1 FFBF North America, 2 FFBF Europe, 3 FFBF Russia, 4 FFBF East Asia, 5 FFBF South
Asia, 6 FFBF Southeast Asia, 7 FFBF Rest of the World, 8 BIOM Other, 9 BIOM Northern Latin America,
10 BIOM Southern Latin America, 11 BIOM Northern Africa, 12 BIOM Southern Africa, 13 BIOM South
and Southeast Asia, 14 BIOM Boreal. Source category 15 represents the global source of CO from biogenic
hydrocarbon oxidation

Figure 7 plots summary posterior inference for all source flux categories x . This
shows prior and posterior means together with 95% prior and posterior credible inter-
vals for each xi from each of the SAR and the SVSAR models. In addition, useful
subjective insights into the nature of the inferred spatial field, and aspects of the
uncertainty associated with the posterior for the field, can be generated by viewing
sequences of images of posterior samples of φ as the MCMC progresses. Two such
videos are available in the web-based supplementary material. The first shows the
sampled φ-field over the first 30 iterations of the MCMC beginning at a constant
field, giving an indication of the rapid pick-up of relevant spatial patterns; the second
sequences through another 30 MCMC samples beginning at MCMC iterate 3000, well
after the chain has stabilized and appears to be sampling φ-fields approximately from
the posterior distribution.

We observe significant differences between the source flux estimates and corre-
sponding uncertainties for several of the CO source categories. In view of the major
dominance of the SVSAR model in terms of the tabulated measure of fit, and the
fact that SAR structure is embedded within the SVSAR model framework and so
would be identified if relevant, we simply cannot view the inferences based on the
SAR model as worth attention. The fact that they can differ so substantially from the
data-supported inferences under the SVSAR model indicates a critical need for this
flexible, non-stationary spatial modelling approach.

7 Concluding remarks

Having introduced, explored and developed analysis of the new class of SVSAR
models for spatial lattice data, our study in data assimilation and computer model
assessment in atmospheric chemistry demonstrates their utility and potential. Defined
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via hierarchical extensions of SAR models, the SVSAR approach has the ability to
flexibly represent globally non-stationary patterns in spatial dependence structure by
building spatial priors over dependence parameters of traditional SAR models. Based
on their inherent hierarchical Markov random field structure, SVSAR models are also
amenable to computationally efficient model fitting for high-resolution spatial lattice
data applications such as represented by the CO source flux inverse problem in our
applied study.

Neatly extending traditional SAR models, the SVSAR approach represents a class
of spatially varying coefficient models, using a second-stage class of SAR forms as
spatial prior for the local dependence parameters at the data level. A spatial Markov
random field model for the spatial distribution of parameters allows them to reflect
smooth variation in structure of the local dependencies among spatial outcomes. In
essence, this is a spatial analogue of the time-varying autoregressive (TVAR) extension
of traditional AR models in time series (e.g., Kitagawa and Gersch 1996; West and
Harrison 1997; Akaike and Kitagawa 1998; Prado and West 2010). TVAR models
have been, and are, very widely applied and hugely successful in many areas of time
series and signal processing, and we regard the new class of spatially varying SVSAR
models to be of similar potential in increasingly complex and high-dimensional spatial
problems. The study also demonstrates direct integration with time series structures
to define novel spatio-temporal extensions of SVSAR models relevant for various
applications including computer model inversion and data assimilation over time.

As something of an aside, but of potential interest to some readers, we note that
an alternative formulation of spatially varying SAR models might consider so-called
“source-dependent”, rather than “target-dependent” φ parameters, i.e., replacing φi

with φ j in the key defining model Eq. (7). We find this a much less natural conceptual
approach. Having also explored it in detail, we find it to be less effective for imposing
local smoothness as well as being dominated by our models in terms of model fit in
analyses we have explored. Nevertheless, it is of interest to note the idea and some
details are included in the Appendix.

Current and near-term interests in methodology and computation include a range
of model extensions as well as questions of increasing computational efficiency of the
MCMC analysis.

Modelling extensions of current interest include developments to embed SVSAR
processes as latent components of larger models, and also to explore their use as
alternative spatial factor loadings models in more structured dynamic spatial factor
models (e.g., Lopes et al. 2008). Applications in the context of studies of CO source
estimation using high-resolution satellite data are increasing the ability to generate
finer spatial and temporal resolution data; models more directly reflecting temporal
dynamics overlaying spatially varying spatial dependencies should aim to capitalize
on the increasingly rich information such data will provide. Additional extensions that
represent open research directions concern modelling time variation in the SVSAR
fields, and potential dependence of the spatial residual fields on source fluxes, the latter
being in part in connection with computer model calibration questions.

On computation, we have stressed the ability to define effective algorithms, and
show the utility of “ Metropolis–Hastings within Gibbs” blocking strategies for updat-
ing components of the spatially varying parameter fields in these rectangular lattice

123



Spatially varying SAR models and Bayesian inference 491

models. These approaches are effective and our example concerns a relatively high-
dimensional lattice. Nevertheless, faster and more efficient MCMC algorithms are of
interest to enable swifter processing and substantial increases in dimension that will
arise with increasingly fine-resolution lattice data. More refined blocking approaches,
combined with our strategy of interlaced sweeps through horizontal and vertical blocks
of the random parameter field, are of interest. Algorithmic extensions to enable partial
parallelization for multi-core and/or more massive distributed computing via graphics
processing unit (GPU) enabled systems (e.g., Suchard et al. 2010a,b) are a natural
current area of investigation.

Appendix A

MCMC details: Complete conditional distribution of φ

Let d = y − μ. Then, the complete conditional distribution of φ has density

p(φ | y, μ, τ 2, m, ρ, σ 2) ∝ p(y | μ, φ, τ 2)p(φ | m, ρ, σ 2)

∝ |Ωφ |1/2 exp

{
−1

2
d ′(In − ΔφW̃ )′Γ −1

φ (In − ΔφW̃ )d

}

× exp

{
−1

2
(φ − m1n)′Λ(φ − m1n)

}

∝ |Ωφ |1/2 exp

(
− 1

2

[
d ′(Γ −1

φ − 2W̃ ′ΔφΓ −1
φ + W̃ ′ΔφΓ −1

φ ΔφW̃ )d

+{φ′Λφ − 2φ′Λ(m1n)}
])

= |Ωφ |1/2 exp

(
− 1

2

[
(d ′Γ −1

φ d − 2d ′W̃ ′ΔφΓ −1
φ d + d ′W̃ ′ΔφΓ −1

φ ΔφW̃ d)

+{φ′Λφ − 2φ′Λ(m1n)}
])

.

Set Δθ = diag(θ) for any vector θ. Then, θ ′Δφ = φ′Δθ and Δφθ = Δθφ. Also,
let a = W̃ d. Therefore, we have d ′W̃ ′ΔφΓ −1

φ d = a′ΔφΓ −1
φ d = φ′ΔaΓ −1

φ d, and

d ′W̃ ′ΔφΓ −1
φ ΔφW̃ d = a′ΔφΓ −1

φ Δφa = φ′ΔaΓ −1
φ Δaφ. It follows that

p(φ | y, μ, τ 2, m, ρ, σ 2)

∝ |Ωφ |1/2 exp

(
− 1

2

[
(φ′ΔaΓ −1

φ Δaφ − 2φ′ΔaΓ −1
φ d + d ′Γ −1

φ d)

+{φ′Λφ − 2φ′Λ(μ1n)}
])
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= |Ωφ |1/2 exp

(
− 1

2

[
φ′(ΔaΓ −1

φ Δa + Λ)φ − 2φ′{ΔaΓ −1
φ d

+Λ(m1n)} + d ′Γ −1
φ d

])

= |Ωφ |1/2 exp

{
−1

2

(
φ′Qφφ − 2φ′bφ + cφ

)}
,

where Qφ = (ΔaΓ −1
φ Δa + Λ), bφ = {ΔaΓ −1

φ d + Λ(m1n)} and cφ = d ′Γ −1
φ d.

MCMC details: Complete conditional distribution of φS

Notation: (i) c[S]: complement of the index set S, (ii) uI (or uφ,I ): sub-vector of
vector u (or uφ) with elements in the index set I , (iii) Uφ,I,J : sub-matrix of matrix
Uφ with row indices in index set I and column indices in index set J . Conditional
distribution of φS is proportional to the complete conditional distribution of φ when
φc[S] is remains constant. Then, with cφ,S = d ′

SΓ −1
φ,S,SdS, we have

p(φS | φc[S], y, μ, τ 2, m, ρ, σ 2) ∝ |Ωφ |1/2 exp

{
−1

2

(
φ′Qφφ − 2φ′bφ + cφ

)}

∝ |Ωφ |1/2 exp

[
−1

2

{
φ′

S Qφ,S,S φS − 2φ′
S (bφ,S − Qφ,S,c[S] φS) + cφ,S

}]
.

A note on an alternative SVSAR formulation

As noted in the concluding remarks of Sect. 7, a possible alternative formulation of
spatially varying SAR models would involve replacing the φi with φ j in our model
of Eq. (7). This can be referred to as a “source-dependent” model compared to our
“target-dependent” model. The precision matrix in this case takes the form

Ωφ = (In − W̃Δφ)′�−1
φ (In − W̃Δφ)

= �−1
φ − ΔφW̃ ′�−1

φ − �−1
φ W̃Δφ + ΔφW̃ ′�−1

φ W̃Δφ,

which leads to

Qi j = −
(

τ−2
i φ j

wi j

wi+
+ τ−2

j φi
w j i

w j+

)
+

∑

k

τ−2
k φiφ j

wki wk j

w2
k+

,

Qii = τ−2
i +

∑

k

τ−2
k φiφ j

w2
ki

w2
k+

.

However, this leads to a specification we regard as less natural while also being less
conducive to imposing local smoothness; We can no longer, for example, easily link
variability (the τ 2

i ) with the local dependence parameters (the φi in our model). This
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fact is quantitatively supported by our experiments with synthetic data, where the DIC
for the source-dependent SVSAR model is significantly larger than for our target-
dependent SVSAR model. Hence, although both models fit the inhomogeneous spatial
fields better than a basic SAR model, we have not taken this exploration further.
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