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Abstract During the past few decades, substantial research has been carried out on
start-up demonstration tests. In this paper, we study the class of binary start-up demon-
stration tests under a general framework. Assuming that the outcomes of the start-up
tests are described by a sequence of exchangeable random variables, we develop a
general form for the exact waiting time distribution associated with the length of the
test (i.e., number of start-ups required to decide on the acceptance or rejection of
the equipment/unit under inspection). Approximations for the tail probabilities of this
distribution are also proposed. Moreover, assuming that the probability of a success-
ful start-up follows a beta distribution, we discuss several estimation methods for the
parameters of the beta distribution, when several types of observed data have been
collected from a series of start-up tests. Finally, the performance of these estimation
methods and the accuracy of the suggested approximations for the tail probabilities
are illustrated through numerical experimentation.
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1 Introduction

A start-up demonstration test is a mechanism by which the quality or reliability of an
equipment/unit (such as batteries, lawn mowers, fire alarm systems, or power gener-
ators) is evaluated by means of successful start-ups.

Hahn and Gage (1983) studied a start-up demonstration test in which an unit under
test is accepted if a number of consecutive successful start-ups is observed (CS model);
the number of failures in this testing procedure is ignored. Assuming that the outcomes
of the start-ups are independent and identically distributed (i.i.d.) binary random vari-
ables, a recurrence formula is derived for the probability of the waiting time until
the required number of consecutive successes are observed. Viveros and Balakrishnan
(1993) also studied the CS model by assuming that the outcomes of the individual
start-ups are Markov-dependent binary random variables (instead of i.i.d. binary tri-
als); the moments of the waiting time until termination and some inferential methods
(based on the method of moments) for the success probability have been developed.
Balakrishnan et al. (1995) derived the joint probability generating functions for various
statistics associated with start-up demonstration tests, considering Markov-dependent
binary outcomes. In the same article, the principle of corrective actions has been intro-
duced in the case of independent outcomes. Subsequently, Balakrishnan et al. (1997)
investigated the use of corrective actions under the setting of Markov dependence. It is
worth mentioning that the corresponding waiting time problems have also been stud-
ied under the term geometric distribution of order k (see, e.g. Feller 1968; Philippou
and Muwafi 1982; Aki et al. 1984, or the monographs by Balakrishnan and Koutras
2002 and Johnson et al. 1992). Gera (2004) also ignored the number of failures in
his testing procedure and suggested accepting the unit if a number of consecutive
successful start-ups or a total number of successes is met (CSTS model); his work is
restricted to i.i.d. binary outcomes and a form of one-step dependence.

Balakrishnan and Chan (2000) introduced a new start-up demonstration test in
which an unit is accepted if a number of consecutive successful start-ups is observed
before a certain number of failures; otherwise, the unit is rejected (CSTF model).
Assuming i.i.d. binary trials, they then derived the distribution of the total number of
trials until termination (i.e., test length) and its conditional distributions. The under-
lying model in the CSTF procedure had been studied earlier in the context of multiple
run sampling plans, by Vance and McDonald (1979) and Govindaraju and Lai (1999).
Moreover, Smith and Griffith (2005) and Martin (2004, 2008) studied the CSTF model,
by assuming Markov dependent start-ups. Chan et al. (2008) addressed the problem of
estimation of the success probability (in the i.i.d. case) by using maximum likelihood
estimation via the expectation-maximization (EM) algorithm and also via Bayesian
estimation with a beta prior; they focused on the case when the observed data contain
only the number of trials until termination. Scollnik (2010) re-examined (corrected)
the Bayesian analysis presented by Chan et al. (2008) and used the Markov Chain
Monte Carlo (MCMC) method for carrying out the Bayesian analysis of CSTF model.
Next, Scollnik (2011) assumed the observed data to be of different type than the
one considered by Chan et al. (2008) and Scollnik (2010) and carried out Bayesian
estimation through the MCMC method. Recently, Eryilmaz and Chakraborti (2008)
studied the CSTF model by assuming that the probability of a successful start-up is
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Binary start-up demonstration tests 761

a random variable. They observed that in this case, the individual start-ups form a
sequence of exchangeable binary random variables and studied the distribution of the
test length, the probability of acceptance and some other stochastic characteristics of
the model.

Smith and Griffith (2008) introduced three alternative start-up demonstration tests:
the first one is based on total successes and total failures (TSTF model), the second
on consecutive successes and consecutive failures (CSCF model), and the third takes
into account the total successes and consecutive failures (TSCF model). By the use of
the CSCF model, for example, the unit will be accepted if a number of consecutive
successful start-ups is observed before a number of consecutive failed start-ups; other-
wise, the unit will be rejected. These tests are studied in the independent and identically
distributed case, by exploiting the Markov chain embedding technique (non-i.i.d. cases
could be investigated by this technique, as well). Martin (2008) also studied the above
three models and the CSTF model, among others, assuming Markov-dependent start-
ups of a general order. Eryilmaz (2010) investigated the CSTF and TSTF models, by
assuming Markov-dependent start-ups; Yalcin and Eryilmaz (2012) also studied the
TSTF model, assuming that the outcome of a binary trial depends on the total number
of successful start-ups that have been observed until then.

Koutras and Balakrishnan (1999) suggested using scan statistics in start-up demon-
stration tests by regarding the high concentration of failures as an important aspect
of the test procedure. Specifically, an unit may be rejected in the first n trials in two
ways: i) by observing either one failure in the first r − 1 start-ups and one failure in
the subsequent trials, or ii) by observing two failures among k start-ups and no failure
in the first r − 1 start-ups. If neither i) nor ii) occurs in the first M trials, then the unit
is accepted (where n, r, k, M are properly defined positive integers). Martin (2008)
further studied this model.

Antzoulakos et al. (2009) also used scan statistics criteria to propose considered a
procedure which accepts the unit under test if k consecutive successes occur before
observing two failures, in a moving window of length d − 2; if two failures with at
most d − 2 distance are observed before k consecutive successes, then the unit should
be rejected.

Recently, Gera (2010, 2011) studied two additional models, namely the TSCSTF
model and the TSCSTFCF model. Specifically, the TSCSTF model requires either
a total number of successful tests, or a specified number of consecutive successes
of tests to be observed, before a total number of failures, for the acceptance of an
unit under test; otherwise, the unit will be rejected. Similarly, the TSCSTFCF model
requires either a total number of successful tests, or a specified number of consecutive
successes of tests to be observed, before a total number of failures and a specified
number of consecutive failures. Some probabilistic aspects of these models (such as
the distribution of the test length, the probability of acceptance, and the estimation of
the success probability) have been examined by assuming i.i.d. binary outcomes.

Apart from the binary start-up demonstration tests mentioned above, there also exist
a family of multistate start-up demonstration tests (see Smith and Griffith 2011). It
should also be mentioned that the study of start-up demonstration tests could be seen
as a special case of the more general framework of competing patterns, studied by
Aston and Martin (2005).
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The rest of this paper is organized as follows: in Sect. 2, we present some basic
definitions and notation to be used throughout. In Sect. 3, a general form of the exact
waiting time distributions of any binary start-up demonstration test is developed, under
the assumption that the outcomes form an infinitely exchangeable sequence. In Sect.
4, some approximations are developed for the waiting time distribution. In Sect. 5,
several probabilistic (computation of mean and variance) and statistical (parameter
estimation) results are presented for the case when the probability of success follows a
beta distribution. Finally in Sect. 6, some numerical results are presented, and several
comments are made about the methods of inference developed in Sects. 4 and 5.

2 Definitions and notation

Suppose the outcome of the i th start-up is described by a binary random variable Xi ,
i = 1, 2, . . ., where

Xi =
{

1, if the outcome of the i th start-up is a success
0, if the outcome of the i th start-up is a failure.

After the first n trials, the test procedure will be terminated if the unit is either
accepted or rejected; otherwise, the trials will be continued. Our study is primarily
focused on the number of trials until termination (length of test), denoted by X . Hence,
the number of trials until termination would be greater than n (i.e., X > n) if and only
if we could neither reject nor accept the unit after the first n trials.

We assume here that the binary random variables Xi , i = 1, 2, . . ., form a sequence
of exchangeable random variables. One of the most important theorems in Bayesian
statistics concerning exchangeable random variables, the celebrated de Finetti’s Rep-
resentation Theorem (see Jackman 2009), is going to play a crucial role in the proof of
our results. But, before stating this theorem, let us introduce the notion of exchangeable
random variables. We restrict ourselves to the theory of binary exchangeable random
variables although similar properties hold true for more general cases (the continuous
case, etc.).

Definition 1 The n binary random variables X1, X2, . . . , Xn are finitely exchangeable
if their joint probability mass function p(x1, x2, . . . , xn) is such that

p(x1, x2, . . . , xn)= P(X1 = x1, X2 = x2, . . . , Xn = xn)= p(xπ(1), xπ(2), . . . , xπ(n))

for all permutations π of indices {1, 2, . . . , n} and for every (x1, x2, . . . , xn) ∈ {0, 1}n .
Moreover, an infinite sequence of random variables X1, X2, . . . is infinitely exchange-
able if every finite subsequence is finitely exchangeable.

As can be readily seen from the above definition, exchangeable random variables
possess some useful properties. For example, exchangeable random variables are iden-
tically distributed; on the other hand, independent and identically distributed random
variables are exchangeable.
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Binary start-up demonstration tests 763

The classical binary version of de Finetti’s Representation Theorem (de Finetti
1931) is then as follows:

Theorem 1 If X1, X2, . . . is an infinitely exchangeable sequence of binary random
variables with P(Xi = 1) = p for every i = 1, 2, . . ., then

p(x1, x2, . . . , xn) =
∫ 1

0

n∏
i=1

pxi (1 − p)1−xi dF(p) (1)

for any xi ∈ {0, 1}, i = 1, 2, . . . and n ∈ {1, 2, . . .}, where F(p) is the limiting
distribution of p, i.e.,

F(p) = lim
n→∞ P

(
X1 + X2 + · · · + Xn

n
≤ p

)
. (2)

One of the most important conclusions drawn from de Finetti’s Representation The-
orem is that infinitely exchangeable random variables are conditionally independent
and identically distributed random variables (specifically, conditionally i.i.d. given the
value of p). Hence, the concept of exchangeability is equivalent to that of conditional
independence with common distribution function. In addition, Theorem 1 implies that
the probability p(x1, x2, . . . , xn) is constant for all vectors x = (x1, x2, . . . , xn) with∑n

i=1 xi = k. From a statistical viewpoint, we only have to assign a distribution to the
random variable p for calculating the joint probability mass function p(x1, x2, . . . , xn)

for any finite subset of size n of an infinitely exchangeable sequence.
Let us now denote by P = {Pj : j = 1, 2, . . . , Mn} a family of sets with the

following properties:

• Pj ⊆ {1, 2, . . . , n} for all j ∈ {1, 2, . . . , Mn};
• if Xi = 1 for every i ∈ Pj , for at least one j ∈ {1, 2, . . . , Mn}, then the unit will

be accepted at the nth trial or before;
• there is no subset of Pj with the previous property (for all j ∈ {1, 2, . . . , Mn}).

Let us also introduce the family C = {C j : j = 1, 2, . . . , Nn} which possesses the
following properties similar to those of family’s P properties:

• C j ⊆ {1, 2, . . . , n} for all j ∈ {1, 2, . . . , Nn};
• if Xi = 0 for every i ∈ C j , for at least one j ∈ {1, 2, . . . , Nn}, then the unit will

be rejected at the nth trial or before;
• there is no subset of C j with the previous property (for all j ∈ {1, 2, . . . , Nn}).

The nature of the above families is analogous to the nature and role of the minimal
path and cut sets in the statistical reliability theory (see Barlow and Proschan 1981).
Before explaining the advantages of these families in a start-up demonstration test, it
is useful to illustrate how can one construct them by means of an example. Note also
that, although the cardinalities of the families P and C (i.e., Mn and Nn , respectively)
depend on the value of n, we shall suppress the subscript n from Mn and Nn , throughout
for simplicity.
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Example 1 Let us consider first the CS start-up demonstration test. In this case, an
unit will be accepted if and only if a number of consecutive successes, say m, will
be met in the sequence X1, X2, . . . , Xn . The members of the family P = {Pj : j =
1, 2, . . . , M} are as follows:

Pj = { j, j + 1, . . . , j + m − 1}, j = 1, 2, . . . , M,

where M = n −m +1 while the family C is empty. In the more general CSTF start-up
demonstration test, an unit will be accepted if a number of consecutive successful start-
ups, say m1, is observed before a certain total number of failures, say f1; otherwise,
the unit is rejected. In this case, we have

Pj = { j, j + 1, . . . , j + m1 − 1}, j = 1, 2, . . . , M

where M = n − m1 + 1 and

C j = { j1, j2, . . . , j f1} ⊆ {1, 2, . . . , n},

i.e., |C j | = f1 (note that we denote by |A| the cardinality of set A) and N = ( n
f1

)
. In

the TSCS start-up demonstration test, an unit will be accepted if and only if a number
of consecutive successes, say m1, or a total number (not necessarily consecutive) of
successes, say m2, will be met in the sequence X1, X2, . . . , Xn . If m1 ≥ m2, the
family P consist of the sets

Pj = { j1, j2, . . . , jm2}, for all { j1, j2, . . . , jm2} ⊆ {1, 2, . . . , n} with |Pj | = m2,

i.e., M = ( n
m2

)
. If m1 < m2, the family P contains the sets

Pj = { j, j + 1, . . . , j + m1 − 1}, j = 1, 2, . . . , n − m1 + 1,

and Pj = { j1, j2, . . . , jm2} ⊆ {1, 2, . . . , n}, with |Pj | = m2 and at most m1 − 1
consecutive successful trials. Hence,

M = n − m1 + 1 + N (n, m2, m1 − 1),

where (see, e.g. Balakrishnan and Koutras 2002)

N (n, m2, m1 − 1)=
[m2/m1]∑

j=0

(−1) j
(

n − m2 + 1

j

)(
n − j (m1)

n − m2

)
, m1 − 1 ≤ m2 ≤ n

denotes the number of ways in which m2 1′s can be distributed in n distinct places
with at most m1 − 1 consecutive 1′s (obviously, C j = ∅ for every j).

One may easily realize that the family P = {Pj : j = 1, 2, . . . , Mn} corresponds
to the set of minimal path sets of a reliability system with n components whose
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operation is equivalent to the acceptance of the tested unit at or before the nth start-
up. Therefore, one may use standard approaches in reliability analysis (such as fault
tree analysis and Boolean tables) to construct the family P . Likewise, the family
C = {C j : j = 1, 2, . . . , Nn} corresponds to the set of minimal cut sets of a reliability
system with n components whose operation is equivalent to the rejection of the tested
unit at or before the nth start-up. Reliability analysis techniques can also be used to
identify the members of the family C .

According to the definition of the families P and C , it is evident that an unit will be
accepted if the outcomes of the trials i , i ∈ Pj (for at least one j ∈ {1, 2, . . . , M}), are
successful start-ups (i.e., Xi = 1 for i ∈ Pj ) while no other set of trials i , i ∈ C j (for
all j ∈ {1, 2, . . . , N }), has resulted in failed start-ups. In the next section, we illustrate
how one can introduce binary variables Xi to describe the outcome of a start-up, and
then exploit the families of sets P and C , to construct appropriate monotone binary
functions, whose expected values will assist in the computation of the waiting time
distributions of interest.

3 Waiting time distributions of a start-up demonstration test

Based on the families P and C introduced in the preceding section, we now introduce
the binary (0-1) functions φ0(xn), φ1(xn) and φ(xn) as follows:

φ0(xn) =
N∏

j=1

⎛
⎝1 −

∏
i∈C j

(1 − xi )

⎞
⎠ , φ1(xn) =

M∏
j=1

⎛
⎝1 −

∏
i∈Pj

xi

⎞
⎠ ,

and

φ(xn) = φ0(xn)φ1(xn),

where xn = (x1, x2, . . . , xn) ∈ {0, 1}n . Obviously, φ(Xn) = 1 if and only if X > n
and so

P(X > n) = E(φ(Xn)).

The next theorem offers the general form of the tail probabilities of the test length for
any binary start-up demonstration test defined on an infinitely exchangeable sequence.

Theorem 2 Let the outcomes Xi , i = 1, 2, . . ., of a start-up demonstration test form
a sequence of exchangeable binary random variables. Then, the tail probabilities of
X are given by

P(X > n) =
n∑

k=0

cnk

∫ 1

0
pk(1 − p)n−kdF(p), (3)
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766 N. Balakrishnan et al.

where

cnk =
∑

xn∈{0,1}n :xn x′
n=k

φ(xn), k = 0, 1, . . . , n,

with xn = (x1, x2, . . . , xn) and F(p) being given by (2).

Proof It suffices to observe that

P(X > n) = E(φ(Xn)) =
∑

xn∈{0,1}n

φ(xn)P(X1 = x1, X2 = x2, . . . , Xn = xn),

and then use Theorem 1 to express the multiple sum in the form

E(φ(Xn)) =
n∑

k=0

∑
xn∈{0,1}n :xn x′

n=k

φ(xn)P(X1 = x1, X2 = x2, . . . , Xn = xn)

=
n∑

k=0

∫ 1

0
pk(1 − p)n−kdF(p)

⎛
⎝ ∑

xn∈{0,1}n :xn x′
n=k

φ(xn)

⎞
⎠

=
n∑

k=0

cnk

∫ 1

0
pk(1 − p)n−kdF(p)

with cnk = ∑
xn∈{0,1}n :xn x′

n=k φ(xn), k = 0, 1, . . . , n. 
�
It is of interest to note that cnk is in fact enumerating the ways in which k successes

could be allocated into n positions such that φ(Xn) = 1 (hence, cnk ∈ {
0, 1, . . . ,

(n
k

)}
).

To help understand the result more clearly (i.e., the nature of the number cnk), we
consider the following example:

Example 2 Let us consider a TS (total successes) model where an unit will be accepted
in the first n trials if and only if a number of successful start-ups, say m, have been
observed. Therefore, for m > n, the probability P(X > n) = 1, while for m ≤ n we
have

cnk =
⎧⎨
⎩

(
n
k

)
, if k < m

0, if k ≥ m

for k = 0, 1, . . . , n. Consider next the CS start-up demonstration test, described in
Example 1. Then, for m > n, we have P(X > n) = 1, while for m ≤ n we have

cnk =
⎧⎨
⎩

(
n
k

)
, if k < m

N (n, k, m − 1), if k ≥ m.
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For the TSCS start-up demonstration test (see Example 1), it can be easily verified
that if n ≥ m1 ≥ m2, then

cnk =
⎧⎨
⎩

(
n
k

)
, if k < m2

0, if k ≥ m2

while for m1 < m2 ≤ n,

cnk =
{

N (n, k, k1 − 1), if k < m2
0, if k ≥ m2.

Also, if m1 > n or m2 > n, then the TSCS model degenerates into a TS or CS model,
respectively (obviously, P(X > n) = 1 when m1, m2 > n).

In the CSTF start-up demonstration test, an unit is accepted if a number of consec-
utive successful start-ups, say m1, is observed before a total number of failures, say
f1; otherwise, the unit is rejected. Letting n ≥ max{m1, f1} (we get much simpler
cases if n < max{m1, f1}), we have

cnk =
{

0, if k ≤ n − f1
N (n, k, m1 − 1), if k > n − f1.

Obviously,

P(X = n) = P(X > n − 1) − P(X > n),

and making use of Theorem 2 we may readily arrive at the expression

P(X = n) =
n∑

k=0

vnk

∫ 1

0
pk(1 − p)n−kdF(p),

where

vnk =
∑

xn∈{0,1}n :xn x′
n=k

(1 − φ(xn))φ(xn−1).

The following theorem offers a formula for the probability mass function of the
acceptance waiting time, i.e., the number of trials until an item is accepted (denoted
by Xaccept), and the respective rejection waiting time (denoted by Xreject). The form
of these formulae are similar to (3) and result immediately from it upon exploiting the
expressions

P(Xaccept = n) = E (φ0(xn)(1 − φ1(xn))φ1(xn−1))

and

P(Xreject = n) = E (φ1(xn)(1 − φ0(xn))φ0(xn−1)) .
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Theorem 3 Let the outcomes Xi , i = 1, 2, . . ., of a start-up demonstration test form
a sequence of exchangeable binary random variables. Then, the probability mass
function of the acceptance waiting time and the rejection waiting time are given by

P(Xaccept = n) =
n∑

k=0

bnk

∫ 1

0
pk(1 − p)n−kdF(p)

and

P(Xreject = n) =
n∑

k=0

dnk

∫ 1

0
pk(1 − p)n−kdF(p),

where

bnk =
∑

xn∈{0,1}n :xn x′
n=k

φ0(xn)(1 − φ1(xn))φ1(xn−1), k = 0, 1, . . . , n,

dnk =
∑

xn∈{0,1}n :xn x′
n=k

φ1(xn)(1 − φ0(xn))φ0(xn−1), k = 0, 1, . . . , n,

and xn−1 stands for a vector of size n −1 containing the first n −1 components of xn.

Thus, once we assign a distribution function to the random variable p, Theorems
2 and 3 will reduce the problem of the computation of the distribution function of
interest, to a combinatorial problem. Indeed, the evaluation of the quantities cnk , bnk

and dnk can be carried out through proper combinatorial arguments. It is worth noting
that the quantity bnk denotes the number of vectors of the space {0, 1}n with k 1′s in
which no rejection criterion is met (meaning that Xi = 1 for at least one i ∈ C j for
all j ∈ {1, 2, . . . , Nn}) while an acceptance criterion is met only with the realization
of the nth trial. A similar interpretation also holds for the quantities dnk .

The above results are consistent with the relevant published work, concerning spe-
cific start-up demonstration test defined on an exchangeable sequence of outcomes
(see, e.g. Eryilmaz and Chakraborti 2008).

Hence, the waiting time distributions studied in this section are all of the form

P(W = n) =
n∑

k=0

wnk

∫ 1

0
pk(1 − p)n−kdF(p),

where

wnk =
⎧⎨
⎩

vnk, if W = X
dnk, if W = Xreject
bnk, if W = Xaccept.

Moreover, denoting by Sn the total number of successes in the first n trials, i.e.,
Sn = ∑n

i=1 Xi , n = 0, 1, . . ., we arrive at the following theorem which gives the
conditional probabilities P(Sn = s|W = n).
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Theorem 4 Let the outcomes Xi , i = 1, 2, . . ., of a start-up demonstration test form
a sequence of exchangeable binary random variables and W be any of the random
variables X, Xreject or Xaccept. Then,

P(Sn = s|W = n) = wns
∫ 1

0 ps(1 − p)n−sdF(p)∑n
k=0 wnk

∫ 1
0 pk(1 − p)n−kdF(p)

for s = 0, 1, . . . , n.

Since the proof is almost an immediate consequence of the nature of the parameters
wnk (i.e., of the parameters vnk or dnk or bnk), it is omitted.

4 Approximations of the waiting time distributions

A key aspect in the computation of the tail probabilities P(X > n) is the evaluation
of the quantities cnk . Recall that cnk denotes the number of ways in which k successes
could be distributed into n positions such that φ(Xn) = 1; hence, cnk ∈ {

0, 1, . . . ,
(n

k

)}
for every n, k.

In this section, we present some computationally tractable bounds for the proba-
bilities P(X > n). First, let us introduce the quantities c1

nk and c0
nk as follows:

ci
nk =

∑
xn∈{0,1}n :xn x′

n=k

φi (xn), i = 0, 1,

for k = 0, 1, . . . , n. The quantity c1
nk (c0

nk) denotes the number of ways in which k
successes could be distributed into n positions such that the unit is not accepted (not
rejected) after the first n trials.

Example 3 For the CSTF model, with parameters m1 and f1 (see Example 2), and
n ≥ m1, we have

c1
nk =

⎧⎨
⎩

(
n
k

)
, if k < m1

N (n, k, m1 − 1), if k ≥ m1,

while if m1 > n then c1
nk =

(
n
k

)
for every k = 0, 1, . . . , n. On the other hand, if

n ≥ f1, we have

c0
nk =

⎧⎨
⎩

(
n
k

)
, if k > n − f1

0, if k ≤ n − f1,

and if f1 > n then c0
nk = (n

k

)
for every k = 0, 1, . . . , n. Consider now the TSCSTFCF

model that requires m1 consecutive successes or a total of m2 successful tests to be
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observed before f1 consecutive failures and a total of f2 failures, in order to accept
the unit. In this case, the values of c1

nk coincide with the cnk of the model TSCS (see
Example 2), and similarly the values of c0

nk are equal to

c0
nk =

{(n
k

)
, if n − k < f2

0, if n − k ≥ f2

for n ≥ f1 ≥ f2; if f1 < f2 ≤ n, then

c0
nk =

{
N (n, n − k, f1 − 1), if n − k < f2
0, if n − k ≥ f2

(the cases f1 > n or f2 > n lead to much simpler and similar expressions).

Note that in the definition of the quantity c1
nk (c0

nk), the rejection (acceptance) criteria
do not play any role, a fact that makes the computation of the above quantities an easier
task than the computation of the quantities cnk .

In the next Theorem, we derive an upper bound for the tail probabilities P(X > n).
Its proof makes use of the properties of associated random variables. We recall that
the random variables Xi , i = 1, 2, . . ., are said to be associated if for every pair of
coordinatewise nondecreasing functions f, g : �n → � and every n, the following
inequality holds true:

cov( f (X1, X2, . . . , Xn), g(X1, X2, . . . , Xn)) ≥ 0.

Two well-known properties of associated random variables are (see e.g. Barlow
and Proschan 1981):

• independent random variables are associated;
• coordinatewise nondecreasing functions of associated random variables are asso-

ciated.

Theorem 5 Let the outcomes Xi , i = 1, 2, . . ., of a start-up demonstration test form
a sequence of exchangeable binary random variables. Then, an upper bound for the
tail probability of the length of the test is given by

P(X > n) ≤
n∑

k=0

n∑
l=0

c0
nkc1

nl

∫ 1

0
pk+l(1 − p)2n−k−ldF(p) = UB.

Proof It is clear that, given p, the binary functions φ0(Xn) and 1−φ1(Xn) are increas-
ing functions of i.i.d. random variables. In view of the aforementioned properties, given
p, φ0(Xn) and 1 − φ1(Xn) are associated random variables and therefore, we may
state that

cov(φ0(Xn), 1 − φ1(Xn)|p) ≥ 0

⇒ E(φ0(Xn)φ1(Xn)|p) ≤ E(φ0(Xn)|p)E(φ1(Xn)|p). (4)
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Moreover,

E(φ0(Xn)|p) =
∑

xn∈{0,1}n

φ0(xn)P(X1 = x1, X2 = x2, . . . , Xn = xn|p)

=
n∑

k=0

c0
nk pk(1 − p)n−k,

E(φ1(Xn)|p) =
∑

xn∈{0,1}n

φ1(xn)P(X1 = x1, X2 = x2, . . . , Xn = xn|p)

=
n∑

k=0

c1
nk pk(1 − p)n−k,

and

E(φ0(Xn)|p)E(φ1(Xn)|p) =
n∑

k=0

n∑
l=0

c0
nkc1

nl pk+l(1 − p)2n−k−l .

Thus,

E [E(φ0(Xn)|p)E(φ1(Xn)|p)] =
n∑

k=0

n∑
l=0

c0
nkc1

nl

∫ 1

0
pk+l(1 − p)2n−k−ldF(p),

and the proof gets completed by using the fact that

P(X > n) = E [E(φ0(Xn)φ1(Xn)|p)] .


�
In a similar manner, we may derive the following lower bound:

P(X > n) ≥
n∑

k=0

c1
nk

∫ 1

0
pk(1 − p)n−kdF(p)

+
n∑

k=0

c0
nk

∫ 1

0
pk(1 − p)n−kdF(p) − 1 = LB

which is an immediate consequence of the inequality

1 − φ1(Xn) ≥ φ0(Xn)(1 − φ1(Xn)). (5)

As mentioned earlier, the definition of the families P and C are analogous to those
of the minimal path and minimal cut sets (as used in reliability theory), respectively.
Exploiting these families, we may define two distinct binary reliability systems, whose
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working state are described via the binary functions φ0(Xn) and 1 − φ1(Xn), respec-
tively. Let us denote by R0 and R1 the system’s reliability functions, given the success
probability p, that is (see Barlow and Proschan 1981)

R0 = E [φ0(Xn)|p] and R1 = E [1 − φ1(Xn)|p] .

Then, in view of the inequalities (4) and (5), the following lower and upper bounds
are readily established:

R0 − R1 ≤ E [φ0(Xn)φ1(Xn)|p] ≤ R0(1 − R1).

It is worth noting that, should the computation of the quantities c1
nk and c0

nk be
computationally intractable, the above bounds may be used in conjunction with any of
the well-known reliability lower and upper bounds, for a system with i.i.d. components
(such as Esary–Proschan and Min–Max; see Barlow and Proschan 1981), to construct
a set of alternative (but less accurate) bounds. For example, the following pairs of
bounds may be used in specific applications:

L(p) = pn, U (p) = 1 − (1 − p)n,

L(p) = pmin j |Pj |, U (p) = 1 − (1 − p)min j |C j |,

L(p) =
N∏

j=1

(1 − (1 − p)|C j |), U (p) = 1 −
M∏

j=1

(1 − p|Pj |).

5 Statistical inference from start-up demonstration tests when the success
probability follows a beta distribution

Suppose m independent start-up procedures are carried out on m different units with
the success probability p among the m procedures following a beta distribution. The
probability mass function of the beta distribution with parameters α > 0, β > 0, is

g(p;α, β) = 1

B(α, β)
pα−1(1 − p)β−1, p ∈ [0, 1],

where B(α, β) denotes the beta function

B(α, β) =
∫ 1

0
pα−1(1 − p)β−1dp.

Under the assumption of the beta distribution, the probability in (1) becomes

p(x1, x2, . . . , xn) = f (xn;α, β) = B(α + s, β + n − s)

B(α, β)
, (6)
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where s = ∑n
j=1 x j and xn = (x1, x2, . . . , xn) ∈ {0, 1}n . Consequently, the waiting

time distributions studied here all have a probability mass function of the form

P(W = n;α, β) =
n∑

k=0

wnk
B(α + k, β + n − k)

B(α, β)
, n = 1, 2, . . . , (7)

where W = X or Xreject or Xaccept and wnk = vnk or dnk or bnk , respectively.
Clearly, there is a strong connection between the distribution of W and the Beta

Binomial Distribution (BBD; see, for example, Johnson et al. (1992)). To be more
specific, suppose the conditional distribution of a random variable Y is a binomial
distribution with

P(Y = y|p) =
(

n

y

)
py(1 − p)n−y, y = 0, 1, . . . , n.

Suppose further that the success probability p is a random variable with beta dis-
tribution. Then, Y follows a BBD with

P(Y = y;α, β) =
∫ 1

0
P(Y = y; p)g(p;α, β)dp

=
(

n

y

)
B(α + y, β + n − y)

B(α, β)
, y = 0, 1, . . . , n.

It is straightforward to see that if p is a beta distributed random variable, then the
finite sum of infinite exchangeable random variables follows a BBD; note also that
the beta distribution is conjugate for p with respect to the binomial distribution (e.g.
Jackman (2009)). The mean and variance of Y are then given by (see Johnson et al.
1992)

E(Y ) = n
α

α + β
and var(Y ) = n(n + α + β)αβ

(α + β)2(1 + α + β)
, (8)

or (see Kleinman 1973)

E(Y ) = nμ and Var(Y ) = nμ(1 − μ)ρ(n − 1) + nμ(1 − μ),

with the re-parametrization μ = α
α+β

and ρ = 1
1+α+β

(note that μ, ρ ∈ (0, 1)).
In this section, we discuss the estimation of the parameters α and β of the beta

distribution. Since this is also explicitly connected with the estimation for the beta
binomial model, there is a rich literature for the corresponding estimation procedures;
see, for example, Skellam (1948), Shenton (1950), Johnson et al. (1992), Chatfield
and Goodhardt (1970), Griffiths (1973), Kleinman (1973), Williams (1975), Wilcox
(1979), Lee and Sabavala (1987), Lee and Lio (1999) and Everson and Bradlow (2002).

One of the popular methods for the estimation of the parameters α and β is based
on maximum likelihood (see Skellam 1948; Griffiths 1973; Kleinman 1973), or by
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using the simpler moment estimates (see Skellam 1948; Shenton 1950; Chatfield and
Goodhardt 1970; Kleinman 1973), or the “mean and zero” method (see Chatfield and
Goodhardt 1970), and to treat these estimates as the true values of α and β. It is worth
noting that there are no closed-forms for the MLEs and also the regularity conditions
have not yet been proved. Estimation related problems have also been discussed by
Tamura and Young (1986), Tamura and Young (1987), Yamamoto and Yanagimoto
(1992), and Tripathi et al. (1994), among others.

There is also the full Bayesian approach in which a prior distribution is attributed to
the vector (α, β) and then the posterior distribution is taken into account (see Lee and
Sabavala 1987; Lee and Lio 1999; Everson and Bradlow 2002) to develop Bayesian
estimators such as the mean, the median, or the mode of the marginal posterior distri-
butions.

In this section, we study the cases when the observed data, from m independent
start-up testing procedures, may be:

Case A: The whole sequence of outcomes;
Case B: The length of test and the number of successes;
Case C: The length of test only.

Though there are some discussions on the estimation problem in a start-up demon-
stration test framework (see Viveros and Balakrishnan 1993; Chan et al. 2008; Smith
and Griffith 2008; Eryilmaz 2010; Scollnik 2010, 2011), when the problem is con-
cerning the estimation of α and β under the beta assumption, not much work exists.
For example, Chan et al. (2008) and Scollnik (2010, 2011) developed inference on p
but not on the parameters α and β.

For this reason, in this section, we focus on the ML estimation and the EM approach,
when the observed data belong to one of the above three forms. For the first two cases
(A and B), the available results from the theory of BBD are sufficient for our purposes
(as can be seen in Sect. 5.1). Hence, the new results of our study are mainly given in
Sect. 5.2, for Case C.

5.1 Inference for Cases A and B

Let us assume that m independent testing procedures are carried out and the vectors
xi , i = 1, 2, . . . , m, describe the corresponding sequences of outcomes, i.e.,

xi = (x1i , x2i , . . . , xni i ) ∈ {0, 1}ni , i = 1, 2, . . . , m.

Taking into account the expressions offered in (8) and assuming that ni = n for
every i = 1, 2, . . . , m, it can be easily seen that the estimation by the method of
moments leads to the estimates (see Kleinman 1973)

α̂ = p̄(1 − γ )/γ, β̂ = q̄(1 − γ )/γ,
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where

p̄ = 1
m

m∑
i=1

p̂i = 1 − q̄, p̂i = 1

n

n∑
j=1

xi j ,

γ = n
n−1

S
p̄q̄m − 1

n−1 , S =
m∑

i=1

( p̂i − p̄)2.

It is worth mentioning that the method cannot be applied if the computed value
of γ does not belong to the interval (0, 1). If the values of ni , i = 1, 2, . . . , m, are
not equal, then a weighted procedure must be followed. In this case, we may use the
formulae (Kleinman (1973))

p̄ = 1

w

m∑
i=1

wi p̂i (9)

and

γ = S− p̄q̄
∑m

i=1(wi /ni )(1−wi /ni )

p̄q̄[
∑m

i=1 wi (1−wi /w)−∑m
i=1(wi /ni )(1−wi /ni )] , (10)

S =
m∑

i=1

wi ( p̂i − p̄)2,

with w = ∑m
i=1 wi . For the weights wi appearing in (9) and (10), Kleinman (1973)

suggested three different choices:

(a) wi = 1, for every i = 1, 2, . . . , m;
(b) wi = ni , for every i = 1, 2, . . . , m;
(c) Consider the weights given either by (a) or (b), as initial weights. Use them in

formula (10) to gain an initial estimate of γ , say γ̄ , and then recalculate wi as

wi = ni

1 + γ̄ (ni − 1)
, i = 1, 2, . . . , m.

Finally, use the update wi ’s to reevaluate γ by (10).

On the other hand, in view of (6), the likelihood function is of the form

L(α, β) =
m∏

i=1

f (xi ;α, β) =
m∏

i=1

[
B(α + si , β + ni − si )

B(α, β)

]
,

and the likelihood equations may be solved iteratively using, for example, the Newton–
Raphson method (with the moment estimators as the initial starting values; see Wilcox
1979); other direct optimization methods such as the simulated annealing method and
Nelder-Mead method could also be used for this purpose.
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The method of moment estimators described earlier also works well for Case B.
Besides, it can be easily seen that

f (ni , si ;α, β) = P(X = ni , Sni = si ;α, β)

= vni si

B(α + si , β + ni − si )

B(α, β)
, si = 0, 1, . . . , ni ,

and so, for Case B, the likelihood function becomes

L(α, β) =
m∏

i=1

f (ni , si ;α, β) =
(

m∏
i=1

vni si

)
m∏

i=1

(
B(α + si , β + ni − si )

B(α, β)

)
.

The corresponding maximization problem can be handled in a manner similar to
that of Case A described above.

5.2 Inference for Case C

5.2.1 MLE approach

Consider now the case when only the lengths of the tests from m independent start-up
procedures are available. The likelihood function is in this case of the form

L(α, β) =
m∏

i=1

ni∑
k=0

vni k
B(α + k, β + ni − k)

B(α, β)
, (11)

and the log-likelihood function is

l(α, β) = ln L(α, β) = −m ln B(α, β) +
m∑

i=1

ln
ni∑

k=0

vni k B(α + k, β + ni − k).

After some computations (see Appendix A), we obtain the likelihood equations as

∂l(α, β)

∂α
= −

m∑
i=1

ni −1∑
r=0

1

α + β + r
+

m∑
i=1

ni∑
k=0

k−1∑
r=0

πik(α, β)

α + r
= 0 (12)

and

∂l(α, β)

∂β
= −

m∑
i=1

ni −1∑
r=0

1

α + β + r
+

m∑
i=1

ni∑
k=0

ni −k−1∑
r=0

πik(α, β)

β + r
= 0, (13)

where (see also Theorem 4)

πik(α, β) = P(Sni = k; X = ni ) = vni k B(α + k, β + ni − k)∑ni
t=0 vni t B(α + t, β + ni − t)

, 0 ≤ k ≤ ni .
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Moreover (see Appendix B), we have

∂πik(α, β)

∂α
= πik(α, β)

⎡
⎣k−1∑

j=0

1

α + j
−

ni∑
t=0

t−1∑
j=0

πi t (α, β)

α + j

⎤
⎦

and

∂πik(α, β)

∂b
= πik(α, β)

⎡
⎣ni −k−1∑

j=0

1

β + j
−

ni∑
t=0

ni −t−1∑
j=0

πi t (α, β)

β + j

⎤
⎦ .

Then the second-order partial derivatives, i.e.,

∂2l(α, β)

∂α2 ,
∂2l(α, β)

∂β2 and
∂2l(α, β)

∂α∂β
,

can all be derived using the above relations. Here again, the likelihood equations
have to be solved iteratively either by using the Newton–Raphson method or by direct
optimization methods. The method of moments is not as tractable in this case, however,
as in Cases A and B discussed earlier.

5.2.2 EM approach

Assume again that the only available information from the m independent start-up
demonstration tests are the lengths of tests, i.e., ni for i = 1, 2, . . . , m. If the number
of successes were also known, then the likelihood function would be

L(α, β) =
m∏

i=1

f (ni , si ;α, β) =
(

m∏
i=1

vni si

)
m∏

i=1

(
B(α + si , β + ni − si )

B(α, β)

)

=
(

m∏
i=1

vni si

)
m∏

i=1

⎛
⎜⎝

∏si −1

r=0
(α + r)

∏ni −si −1

r=0
(β + r)

∏ni −1

r=0
(α + β + r)

⎞
⎟⎠ ,

with the corresponding log-likelihood function given by

l(α, β) =
m∑

i=1

ln vni si +
m∑

i=1

si −1∑
r=0

ln(α + r) +
m∑

i=1

ni −si −1∑
r=0

ln(β + r)

−
m∑

i=1

ni −1∑
r=0

ln(α + β + r).
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Denoting by αt and βt the t th step estimates of α and β, we may write the mean of
the log-likelihood function as follows:

Q(α, β;αt , βt ) = E[S;X,αt ,βt ]l(α, β) =
m∑

i=1

E[S;X,αt ,βt ]
[
ln vni si

]

+
m∑

i=1

E[S;X,αt ,βt ]

[si −1∑
r=0

ln(α + r)

]

+
m∑

i=1

E[S;X,αt ,βt ]

[ni −si −1∑
r=0

ln(β + r)

]
−

m∑
i=1

ni −1∑
r=0

ln(α + β + r).

The above three required expectations can be shown to be

E[S;X,αt ,βt ]
[
ln vni si

] =
ni∑

j=0

πi j (αt , βt ) ln vni j ,

E[S;X,αt ,βt ]

[
s−1∑
r=0

ln(α + r)

]
=

ni∑
s=0

s−1∑
r=0

πis(αt , βt ) ln(α + r),

E[S;X,αt ,βt ]

[ni −s−1∑
r=0

ln(β + r)

]
=

ni∑
s=0

ni −s−1∑
r=0

πis(αt , βt ) ln(β + r),

and consequently, we have

Q(α, β;αt , βt ) = E[S;X,αt ,βt ]l(α, β) =
m∑

i=1

E[S;X,αt ,βt ]
[
ln vni si

]

+
m∑

i=1

ni∑
j=0

j−1∑
r=0

πi j (αt , βt ) ln(α + r)

+
m∑

i=1

ni∑
j=0

ni − j−1∑
r=0

πi j (αt , βt ) ln(β + r) −
m∑

i=1

ni −1∑
r=0

ln(α + β + r).

Thus, the (t + 1)th iterate estimates of α and β will be

(αt+1, βt+1) = argmax(α,β)Q(α, β;αt , βt )

= argmax(α,β)

⎡
⎣ m∑

i=1

ni∑
j=0

j−1∑
r=0

πi j (αt , βt ) ln(α + r)

+
m∑

i=1

ni∑
j=0

ni − j−1∑
r=0

πi j (αt , βt ) ln(β + r) −
m∑

i=1

ni −1∑
r=0

ln(α + β + r)

⎤
⎦ .
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It is clear that the above maximization problem is equivalent to that when the full
data were available, and its solution is secured by the use of numerical methods.

6 Some numerical results

In this section, we present some numerical results under the assumption that p follows
a beta distribution. Before going into the methods of estimation of the beta parameters
α and β, we first explore the accuracy of the bounds introduced in Sect. 3. Thus, in
Table 1, we give some numerical results for the CSTF model (note that the applicability
of the procedures practiced here is not restricted to the CSTF model alone) and various
choices of the parameters α, β, m1 and f1; it can be easily seen that the bounds are in
most cases very close to the exact value of the tail probability. Even though one cannot
precisely state at what n the approximations would be warranted, Table 1 also shows
that the developed approximations are accurate even when n = 25. This suggests that
the approximations may be used for n of this size and larger.

Next, we examine the performance of estimation methods discussed in the preceding
section. In Fig. 1, we focus on Case A (or equivalently, Case B) and the CSTF model,
for specific values for the parameters α, β, m1 and f1. The method of moments, under
the three different weighting methods, wi = 1 (Fig. 1b) or wi = ni (Fig. 1c) or
wi = ni

1+γ̄ (ni −1)
(Fig. 1d), and the MLE (Fig. 1a) are used for the estimation of the

parameters α and β. The number of replications of samples was set as r = 100, and
the computed measures are the mean absolute deviation from (α, β) defined by

MAD =
(

1

r

r∑
i=1

|α̂i − α|, 1

r

r∑
i=1

|β̂i − β|
)

,

the Root Mean Square from (α, β) defined by

RMS =
⎛
⎝

√√√√1

r

r∑
i=1

(α̂i − α)2,

√√√√1

r

r∑
i=1

(β̂i − β)2

⎞
⎠ ,

and the Mean Euclidean Distance from (α, β) defined by

Table 1 Bounds for the CSTF model

α β m1 f1 n LB P(X > n) UB UB−LB

9.5 1.5 10 3 10 0.461749 0.461749 0.481872 0.020124
15 0.197201 0.210283 0.274012 0.076811
20 0 0.049337 0.126171 0.126171
25 0 0.007673 0.060454 0.060454

5.5 5.5 20 5 20 0.064161 0.064161 0.064403 0.000242
25 0.028292 0.028295 0.029044 0.000752
30 0.012699 0.012894 0.014121 0.001422
35 0.005093 0.005914 0.007273 0.002180
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(a)

(b)

(c)

(d)

Fig. 1 Estimation when the observed data are of the form of Cases A and B; the CSTF model with
parameters α = 0.7, β = 0.2, m1 = 10, f1 = 2, after r = 100 iterations and sample size m = 150
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(a)

(b)

Fig. 2 MLE when the observed data are of the form of Case C

MED = 1

r

r∑
i=1

√
(α̂i − α)2 + (β̂i − β)2.

The quantities α̂i and β̂i appearing in the formulae above are the estimates from
the i th simulation.

The convergence of the Newton–Raphson method required 5–10 steps in general,
and some times the algorithm failed to converge or resulted in negative values of
the parameters (α, β) (the initial values were set by the method of moments). It is
clear that the MLEs offer the most accurate results; the corresponding mean of 100
estimations is (0.73, 0.20) (the true values were (0.70, 0.20)) while almost all the
computed measures take the lowest values in the MLE method. For a discussion about
the efficiency of these two methods (MLE and method of moments), the interested
reader is also referred to Kleinman (1973).

In Fig. 2, we deal with the case when the observed data contain only the lengths of
tests (Case C). For the evaluation of the initial values for the numerical method, we
decided to follow the following procedure: we simulate m discrete, independent and
uniformly distributed random numbers u1, u2, . . . , um , with

ui ∈ {0, 1, . . . , min{ f1, ni }}, i = 1, 2, . . . , m,
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(b)

(a)

Fig. 3 EM algorithm estimation when the observed data are of the form of Case C

where ni , i = 1, 2, . . . , m, are the observed lengths of tests. These random numbers
u1, u2, . . . , um play the role of the unobserved number of failures, and the method
of moments (see Sect. 5.1) is then used to set the initial values. It is evident that
in both of these models (for {α = 0.6, β = 1.9, m1 = 5, f1 = 2} in Fig. 2a and
{α = 1.0, β = 1.0, m1 = 8, f1 = 1} in Fig. 2b), the MLE method offers accurate and
promising results (especially for the second model).

In Fig. 3, we present the results obtained by the use of EM algorithm for the cases
studied in Fig. 2. Although the observed outcomes are now less accurate (compare the
three distances measures displayed in the corresponding graphs), we see that the fit is
still quite good.

From these simulation results, it is observed that the maximum likelihood estimates
are more accurate than the method of moments. Even though the estimates obtained
by the method of moments were not accurate and sometimes even outside the range of
the parameter, it provided convenient starting values for the numerical optimization
procedure required in determination of MLEs. Moreover, this resulted in reducing
the number of iterations in the optimization step, thus reducing the computational
time. The scatter plots in Figs. 1, 2 and 3 also revealed that the true parameter value
is located close to the center of the values of the MLEs, but not so for the method
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of moments estimates. Moreover, the contours being close to elliptical suggest that
approximate normalized confidence intervals using the MLEs would result in good
interval estimation of the model parameters. A more detailed study on this interval
estimation method and the parametric bootstrap method as well as hypothesis testing
methods will naturally be of great interest.

Appendix A

Before proceeding to the partial derivatives of the log-likelihood function from (11),
it is necessary to mention that

∂ B(x, y)

∂x
= B(x, y)(	(x)−	(x + y)) and

∂ B(x, y)

∂y
= B(x, y)(	(y) − 	(x + y)),

where 	(x) = 
′(x)/
(x) is the digamma function. The following recurrence rela-
tion is also very useful in the sequel:

	(x + 1) = 	(x) + 1

x
, for every x .

Thus, the partial derivatives of the log-likelihood function for Case C (see (11)) are
as follows:

∂l(α, β)

∂α
= −m(	(α) − 	(α + β))

+
m∑

i=1

∑ni
k=0 vni k B(α + k, β + ni − k)(	(α + k) − 	(α + β + ni ))∑ni

t=0 vni t B(α + t, β + ni − t)

= −m(	(α) − 	(α + β)) −
m∑

i=1

	(α + β + ni )

+
m∑

i=1

∑ni
k=0 vni k B(α + k, β + ni − k)	(α + k)∑ni

t=0 vni t B(α + t, β + ni − t)

= −m(	(α) − 	(α + β)) −
m∑

i=1

(
	(α + β) +

ni∑
r=1

1

α + β + ni − r

)

+
m∑

i=1

∑ni
k=0 vni k B(α + k, β + ni − k)(	(α) + ∑k−1

r=0
1

α+r )∑ni
t=0 vni t B(α + t, β + ni − t)

= −m(	(α) − 	(α + β)) − m	(α + β) −
m∑

i=1

ni∑
r=1

1

α + β + ni − r

+
m∑

i=1

∑ni
k=0 vni k B(α+k, β+ni − k)	(α)+∑ni

k=0 vni k B(α+k, β+ni − k)
∑k−1

r=0
1

α+r∑ni
t=0 vni t B(α+t, β+ni − t)
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= −
m∑

i=1

ni∑
r=1

1

α + β + ni − r
+

m∑
i=1

∑ni
k=0 vni k B(α + k, β + ni − k)

∑k−1
r=0

1
α+r∑ni

t=0 vni t B(α + t, β + ni − t)

= −
m∑

i=1

ni −1∑
r=0

1

α + β + r
+

m∑
i=1

ni∑
k=0

k−1∑
r=0

πik(α, β)

α + r

and

∂l(α, β)

∂β
= −m(	(β) − 	(α + β))

+
m∑

i=1

∑ni
k=0 vni k B(α + k, β+ni − k)(	(β+ni − k)−	(α+β+ni ))∑ni

t=0 vni t B(α+t, β+ni − t)

= −m(	(β) − 	(α + β)) −
m∑

i=1

	(α + β + ni )

+
m∑

i=1

∑ni
k=0 vni k B(α + k, β + ni − k)	(β + ni − k)∑ni

t=0 vni t B(α + t, β + ni − t)

=−
m∑

i=1

ni −1∑
r=0

1

α+β+r
+

m∑
i=1

∑ni
k=0 vni k B(α+k, β+ni − k)

∑ni −k−1
r=0

1
β+r∑ni

t=0 vni t B(α+t, β+ni − t)

= −
m∑

i=1

ni −1∑
r=0

1

α + β + r
+

m∑
i=1

ni∑
k=0

ni −k−1∑
r=0

πik(α, β)

β + r
.

Appendix B

The partial derivatives of πik(α, β) are as follows:

∂πik(α, β)

∂α
= vni k B(α + k, β + ni − k)∑ni

t=0 vni t B(α + t, β + ni − t)

= vni k B ′(α + k, β + ni − k)
∑ni

t=0 vni t B(α + t, β + ni − t)(∑ni
t=0 vni t B(α + t, β + ni − t)

)2

−vni k B(α + k, β + ni − k)
∑ni

t=0 vni t B ′(α + t, β + ni − t)(∑ni
t=0 vni t B(α + t, β + ni − t)

)2

= vni k B(α+k, β+ni − k) (	(α+k)−	(α+β+ni ))
∑ni

t=0 vni t B(α+t, β+ni − t)(∑ni
t=0 vni t B(α+t, β+ni − t)

)2

−vni k B(α+k, β+ni −k)
∑ni

t=0 vni t B(α+t, β+ni − t) (	(α+t) − 	(α+β+ni ))(∑ni
t=0 vni t B(α+t, β+ni − t)

)2

= vni k B(α + k, β + ni − k)	(α + k)
∑ni

t=0 vni t B(α + t, β + ni − t)(∑ni
t=0 vni t B(α + t, β + ni − t)

)2
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−vni k B(α + k, β + ni − k)
∑ni

t=0 vni t B(α + t, β + ni − t)	(α + t)(∑ni
t=0 vni t B(α + t, β + ni − t)

)2

= 	(α + k)πik(α, β) − πik(α, β)

ni∑
t=0

πi t (α, β)	(α + t)

= 	(α + k)πik(α, β) − πik(α, β)

ni∑
t=0

πi t (α, β)

⎛
⎝	(α) +

t−1∑
j=0

1

α + j

⎞
⎠

= 	(α + k)πik(α, β) − πik(α, β)

⎛
⎝	(α) +

ni∑
t=0

t−1∑
j=0

πi t (α, β)

α + j

⎞
⎠

= 	(α + k)πik(α, β) − πik(α, β)	(α) − πik(α, β)

ni∑
t=0

t−1∑
j=0

πi t (α, β)

α + j

= πik(α, β)

⎡
⎣k−1∑

j=0

1

α + j
−

ni∑
t=0

t−1∑
j=0

πi t (α, β)

α + j

⎤
⎦

and

∂πik(α, β)

∂β
= vni k B(α + k, β + ni − k)∑ni

t=0 vni t B(α + t, β + ni − t)

= vni k B ′(α + k, β + ni − k)
∑ni

t=0 vni t B(α + t, β + ni − t)(∑ni
t=0 vni t B(α + t, β + ni − t)

)2

−vni k B(α + k, β + ni − k)
∑ni

t=0 vni t B ′(α + t, β + ni − t)(∑ni
t=0 vni t B(α + t, β + ni − t)

)2

= vni k B(α+k, β+ni − k) (	(β+ni − k)−	(α+β+ni ))
∑ni

t=0 vni t B(α+t, β+ni − t)(∑ni
t=0 vni t B(α + t, β + ni − t)

)2

−vni k B(α+k, β+ni − k)
∑ni

t=0 vni t B(α+t, β+ni − t) (	(β+ni − t)−	(α+β+ni ))(∑ni
t=0 vni t B(α + t, β + ni − t)

)2

= vni k B(α + k, β + ni − k)	(β + ni − k)
∑ni

t=0 vni t B(α + t, β + ni − t)(∑ni
t=0 vni t B(α + t, β + ni − t)

)2

−vni k B(α + k, β + ni − k)
∑ni

t=0 vni t B(α + t, β + ni − t)	(β + ni − t)(∑ni
t=0 vni t B(α + t, β + ni − t)

)2

= 	(β + ni − k)πik(α, β) − πik(α, β)

ni∑
t=0

πi t (α, β)	(β + ni − t)

= 	(β + ni − k)πik(α, β) − πik(α, β)

ni∑
t=0

πi t (α, β)

⎛
⎝	(β) +

ni −t−1∑
j=0

1

β + j

⎞
⎠

= 	(β + ni − k)πik(α, β) − πik(α, β)

⎛
⎝	(β) +

ni∑
t=0

ni −t−1∑
j=0

πi t (α, β)

β + j

⎞
⎠
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= 	(β + ni − k)πik(α, β) − πik(α, β)	(β) − πik(α, β)

ni∑
t=0

ni −t−1∑
j=0

πi t (α, β)

β + j

= πik(α, β)

⎡
⎣ni −k−1∑

j=0

1

β + j
−

ni∑
t=0

ni −t−1∑
j=0

πi t (α, β)

β + j

⎤
⎦ .
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