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Abstract We consider a combination of heavily trimmed sums and sample quantiles
which arises when examining properties of clustering criteria and prove limit theo-
rems. The object of interest, which we call the Empirical Cross-over Function, is an
L-statistic whose weights do not comply with the requisite regularity conditions for
usage of existing limit results. The law of large numbers, CLT and a functional CLT
are proven.
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1 Introduction

Suppose W1, W2, . . . , Wn for n ≥ 1 are i.i.d random variables with distribution func-
tion F . If W(1) ≤ W(2) ≤ · · · ≤ W(n) are the order statistics, then, we define, for
0 < p < 1, the Empirical Cross-over Function (ECF)

Gn(p) = 1

k

k∑

j=1

W( j) − W(k) + 1

n − k

n∑

j=k+1

W( j) − W(k+1) for
k − 1

n
≤ p <

k

n
.

(1)
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370 K. Bharath et al.

The function Gn is a special case of linear functions of order statistics W(i), 1 ≤ i ≤ n,
popularly referred to as L-statistics. L-statistics are usually represented as

Ln =
n∑

i=1

ai,n W(i), 1 ≤ i ≤ n, (2)

where ai,n is a triangular array of constants, referred to as weights. A wide variety of
limiting results on L-statistics have been derived over the years. We direct the interested
reader to Arnold et al. (2008) for a good source of results and relevant references. The
asymptotic properties of these objects have been determined under suitable regularity
conditions, albeit usually not too stringent, nevertheless disconcerting on occasions in
practice. In this paper, we examine one such occasion, wherein we are faced with an
L-statistic—the ECF—whose weights are not sufficiently smooth. As a consequence,
asymptotic normality and a functional limit theorem do not follow readily.

Hartigan (1978), in his elegant paper derived asymptotic distributions of clustering
criteria. He employed, what he referred to as the split function, in deriving the limiting
results. The ECF, Gn , arises in a natural manner as the empirical counterpart of a certain
functional of his split function when we are concerned with random variables having
common invertible distribution function. The ECF is an interesting probabilistic object
in its own right and being linear, offers an advantage over Hartigan’s quadratic criterion
function in terms of being amenable to extension to more interesting settings—namely,
clustering in higher dimensions and clustering of dependent observations.

The properties of the k-means clustering procedure for the univariate and the mul-
tivariate cases have been investigated extensively. Pollard (1981, 1982) proved strong
consistency and asymptotic normality results in the univariate case. Serinko and Babu
(1992) proved some weak limit theorem under non regular conditions for the uni-
variate case. With the intention of having a more robust procedure for clustering,
García-Escudero et al. (1999), Cuesta-Albertos et al. (1997) propose the trimmed
k-means clustering and provide a central limit theorem for the multivariate case. In
this paper, we prove consistency, a central limit theorem and also an invariance prin-
ciple for our criterion function Gn , which is not in a form amenable for the usual
representation of an L-statistic; nor are its weights sufficiently smooth for the applica-
bility of existing results.

2 Empirical cross-over function

In this section, we introduce the necessary constructs from clustering techniques from
which we develop the ECF. Let W1, W2, . . . , Wn be i.i.d random variables with con-
tinuous cumulative distribution function F . We make the following assumptions.

A1. F is invertible for 0 < p < 1 and absolutely continuous with density f .
A2. E(W 2

1 ) < ∞.
A3. For 0 < p < 1, F is twice differentiable at F−1(p).

It is fairly common to encounter invertible distribution functions in applications. For
example, models in finance possess strictly increasing distribution functions usually
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Asymptotics of the Empirical Cross-over Function 371

guaranteed by the additive ‘sort of Gaussian’ noise from the Ito integral component
which smooths and removes both jumps and flat areas of the distribution function.

For 0 < p < 1, consider the split function of F , as defined in Hartigan (1978),

B(F, p) = pμ2
l (p) + (1 − p)μ2

u(p) −
(∫ 1

0
F−1(q) dq

)2

, (3)

where

μl(p) = 1

p

∫

q≤p
F−1(q) dq = 1

p

∫ F−1(p)

−∞
w dF,

μu(p) = 1

1 − p

∫

q>p
F−1(q) dq = 1

1 − p

∫ ∞

F−1(p)

w dF.

Note that because of assumption A1 all the quantities are finite.
One way to think of B(F, p) is, as the ‘between cluster sum of squares’, in the

case where we are concerned with two clusters in one dimension. Therefore, the value
of p ∈ (0, 1) maximizing this function, would determine the location at which data
is split into two clusters. Let us denote that value as p0 and p0 is referred to as the
split point in Hartigan (1978). As pointed out in Hartigan (1978), the conditions that
guarantee the existence and uniqueness of the split point, are unclear. Determination
of the requisite conditions, alone, is worthy of further investigation. However, for the
purposes of this paper, those conditions and the split point itself are not important.
When F is invertible, it is known that the split point p0 solves

(μu(p) − μl(p))[μu(p) + μl(p) − 2F−1(p)] = 0, (4)

where the left side is the derivative of B(F, p). Owing to the fact that (μu(p) −
μl(p)) > 0 for all 0 < p < 1, we are interested only in the zero of

G(p) = μl(p) + μu(p) − 2F−1(p), (5)

which we refer to as the cross-over function. The empirical version of the cross-
over function represents the primary object of this paper. At this juncture, for better
exposition, we recall the definition of the ECF; for 0 < p < 1, we have

Gn(p) = 1

k

k∑

j=1

W( j) − W(k) + 1

n − k

n∑

j=k+1

W( j) − W(k+1) (6)

for k−1
n ≤ p < k

n and

Gn(p) = 1

n

n∑

j=1

W( j) − W(n), (7)

for n−1
n ≤ p < 1, where 1 ≤ k ≤ n − 1.

123



372 K. Bharath et al.

Remark 1 Intuition about the ECF is useful here. The term ‘cross-over’ arises owing
to the observation that

Gn

(
0

n

)
= W(1) − W(1) + 1

n − 1

n∑

j=2

W( j) − W(2) ≥ 0,

Gn

(
n − 2

n

)
= 1

n − 1

n−1∑

j=1

W( j) − W(n−1) + W(n) − W(n) ≤ 0,

and the function crosses over 0 at some 1 ≤ k ≤ n − 1. If k∗ is the index at which
Gn crosses over, then W(k∗) represents the datum at which the data is split leading
to the formation of two clusters. The term, 1

k

∑k
j=1 W( j) − W(k), can be thought of

as a ‘distance’ between the mean of the first k observations, arranged in increasing
order, and their maximum value; the term, 1

n−k

∑n
j=k+1 W( j) −W(k+1), represents the

‘distance’ between the mean of the last k observations and their minimum.

Remark 2 Let us again reiterate one important point here. The split function (3), cross-
over function (5), and empirical empirical cross-over function (6) are designed for
finding an optimal partition of data into two groups. The extension of this technique
to the general case of three or more groups is discussed in Hartigan (1978). More
specifically, if one needs to find an optimal partition of data into K > 2 clusters,
instead of the split function (3) we need to introduce the following partition function:

B(F, p1, . . . , pK−1) =
K∑

i=1

(pi − pi−1)μ
2
i −

(∫ 1

0
F−1(q) dq

)2

,

where

μi = 1

pi − pi+1

∫ pi

pi−1

F−1(q) dq,

and 0 = p0 ≤ p1 ≤ · · · ≤ pK−1 ≤ pK = 1. Consequently, one needs to introduce
K − 1 cross-over functions

μi+1 + μi − 2F−1(pi ),

and solve a system of K −1 equations to find the optimal partition. We do not address
the general case of K > 2 in this paper.

It is easy to see that for symmetrically distributed random variables 1/2 is a split
point. Moreover, typically for light-tailed distributions (normal, uniform etc.) the split
point is unique. As suggested in Hartigan (1978), this fact can be used to construct tests
for the presence of clusters. However, finding conditions that guarantee uniqueness
of the split point [or uniqueness of the solution of (4)] is a non-trivial task and is an
open question. For instance, Hartigan (1978) gives an example of unimodal symmetric
heavy-tailed distribution for which every p from (0, 1) is a split point.
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Asymptotics of the Empirical Cross-over Function 373

Remark 3 The function Gn is a linear combination of order statistics W(i), 1 ≤ i ≤ n
and hence an L-statistic. In the representation of an L-statistic Ln shown in (2), if the

weights ai,n, 1 ≤ i ≤ n, are of the form 1
n J

(
i

n+1

)
, where J (u), 0 < u < 1, is the

weight function, then it is possible to obtain an equivalent representation as

Ln = 1

n

n∑

i=1

J

(
i

n + 1

)
W(i).

The form of the weights ai,n represent the smoothness condition which guarantees
asymptotic normality (See for e.g., Arnold et al. 2008, page 227 or Vaart 1998, page
318). Unfortunately, Gn cannot be represented in this form, since it has ‘bad’ weights,
in the following sense; For 0 < p < 1, we see that the order statistics W(�np�) and
W(�np�+1) have weights 1

�np� − 1 and 1
�n(1−p)� − 1, respectively. This clearly violates

the smoothness condition rendering the usage of existing results inappropriate.

Remark 4 Observe that for a fixed 0 < p < 1

1

k

k∑

j=1

W( j) − W(k) = 1

�np�
�np�∑

j=1

W( j) − W(�np�),

1

n − k

n∑

j=k+1

W( j) − W(k+1) = 1

�n(1 − p)�
n∑

j=�np�+1

W( j) − W(�np�+1),

where �x� represents the smallest integer not less than x . For a fixed p ∈ (0, 1), the
sums shown above are trimmed sums. More precisely, since �np�

n → p and �n(1−p)�
n →

1 − p, they represent the case of heavy trimming; asymptotics for which are well
known (see for e.g., Maller 1988; Stigler 1973). Unfortunately, the two order statistics,
W(�np�) and W(�n(1−p)�), represent a formidable obstacle in the use of existing results
for asymptotic normality of heavily trimmed sums. The function Gn is hence some
sort of a combination of heavily trimmed sums and intermediate order statistics, and
asymptotic results for such a combination, to our knowledge, are yet to developed.

3 Limit theorems for Gn

In this section, we prove the main results on the asymptotic behavior of the sample
cross-over function Gn .

Theorem 1 Under the assumptions A1 and A2 as n → ∞,

Gn(p)
P→ G(p).

Proof Because we only need to prove consistency for individual components of the
ECF, it is a relatively easy exercise. However, for a purpose of completeness and in
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374 K. Bharath et al.

order to introduce notation and ideas that will be used in the proof of the subsequent
theorem, we decided to provide a detailed proof of the law of large numbers for Gn .

For 0 < p < 1, it is well known that W(�np�)
P→ F−1(p) at points of continuity

of F−1. It is also the case that W(�np�+1)
P→ F−1(p), since the necessary condition

for kn-th order statistic W(kn) to be consistent for F−1(p) is that kn
n → p (see for

instance, Vaart 1998). Let us define

rn = 1

n

n∑

i=1

IWi <F−1(p),

where IA is the indicator function of the set A. By the strong law of large numbers,
rn → p w.p.1. Now,

1

k

k∑

i=1

W(i) = 1

�np�
�np�∑

i=1

W(i).

Therefore,

1

k

k∑

i=1

W(i) = 1

�np�

⎡

⎣
�nrn�∑

i=1

W(i) +
�np�∑

i=�nrn�+1

W(i)

⎤

⎦ .

It is clear here that if �nrn� + 1 > �np�, the upper and lower limits of the second sum
are interchanged with a negative sign.

The random sum

1

�np�

∣∣∣∣∣∣

�np�∑

i=�nrn�+1

W(i)

∣∣∣∣∣∣
≤ 1

�np�
�np�∑

i=�nrn�+1

|W(i)|

≤ 1

�np� |�np� − �nrn�| (|W(�np�)| + |W(�nrn�)|
)
.

Recall that rn = p+Op(n−1/2) and hence |W�np�| and |W�nrn�| converge in probability

to F−1(p) (see Vaart 1998, page 308) and |rn − p| P→ 0. Consequently, we have that

1

�np�
�np�∑

i=�nrn�+1

W(i)
P→ 0.

However,

1

�np�
�nrn�∑

i=1

W(i) = 1

�np�
n∑

i=1

Wi IWi <F−1(p)

P→ μl(p),
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Asymptotics of the Empirical Cross-over Function 375

by the law of large numbers of i.i.d. random variables. As a consequence,
1
k

∑k
i=1 W(i)

P→ μl(p). In similar fashion we note that 1
n−k

∑n
i=k+1 W(i)

P→ μu(p)

for all 0 < p < 1 and k−1
n ≤ p < k

n . Combining the above two convergences
with the convergence of W(�np�) and W(�np�+1) to their identical limits, we have that,

Gn(p)
P→ G(p) for each 0 < p < 1. 
�

Remark 5 It is worthwhile to note that the trimmed (at the random level) sum∑�nrn�
i=1 W(i) is exactly equal to the truncated sum

∑n
i=1 Wi IWi <F−1(p), which is the

sum of i.i.d. random random variables. This subtle relationship is greatly convenient
in our proofs.

For ease of notation, let us define for 0 < p < 1,

θp = 1

p
W1IW1<F−1(p) − 1

p
F−1(p)IW1<F−1(p)

+ 1

1 − p
W1IW1≥F−1(p) − 1

1 − p
F−1(p)IW1≥F−1(p)

+2IW1<F−1(p)

f (F−1(p))
,

and Un(p) = √
n(Gn(p) − G(p)) for 0 < a ≤ p ≤ b < 1.

Theorem 2 Under assumptions A1–A3 as n → ∞,

√
n(Gn(p) − G(p))

d→ N (0, σp),

where σp = Var(θp). Furthermore,

Un(p) ⇒ U (p),

in the Skorohod space D[a, b], 0 < a < b < 1 equipped with the J1 topology, where
U (p) is a Gaussian process with mean 0 and covariance given by

Cov(U (p), U (q)) = Cov(θp, θq).

Proof The trick used in proving the asymptotic normality of Gn is to consider mean-
zero asymptotics of its individual components and by the use of Bahadur’s represen-
tation for sample quantiles, rewrite Gn as a sum of i.i.d. random variables and an error
term, which goes to zero at an appropriate rate. This would then pave the way for the
usage of standard results.

More specifically, first note that for 0 < p < 1, and each i = 1, . . . , n,

E(Wi IWi <F−1(p)) = pμl(p)
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376 K. Bharath et al.

and

E(Wi IWi ≥F−1(p)) = (1 − p)μu(p).

Observe that, for k−1
n ≤ p < k

n ,

√
n

[
1

k

k∑

i=1

W(i) − npμl(p)

]
=

√
n

�np�

⎡

⎣
�np�∑

i=1

W(i) − npμl(p)

⎤

⎦

=
√

n

�np�

⎡

⎣
�nrn�∑

i=1

W(i) +
�np�∑

i=�nrn�+1

W(i) − npμl(p)

⎤

⎦

=
√

n

�np�

⎡

⎣
�nrn�∑

i=1

W(i) − npμl(p)

⎤

⎦ +
√

n

�np�

⎡

⎣
�np�∑

i=�nrn�+1

(
W(i) − F−1(p)

)
⎤

⎦

+
√

n

�np� F−1(p)(�np� − �nrn�).

Now note that

√
n

�np�

∣∣∣∣∣∣

�np�∑

i=�nrn�+1

W(i) − F−1(p)

∣∣∣∣∣∣

≤
√

n

�np� |�np� − �nrn�| max(|W(�np�) − F−1(p)|, |W(�nrn�) − F−1(p)|).

By the same argument used in the proof of Theorem 1, |W(�np�) − F−1(p)| P→ 0 and

|W(�nrn�) − F−1(p)| P→ 0. By the central limit theorem for i.i.d random variables,√
n|p−rn| is asymptotically normal and hence bounded in probability. Consequently,

√
n

�np�

∣∣∣∣∣∣

�np�∑

i=�nrn�+1

W(i) − F−1(p)

∣∣∣∣∣∣
P→ 0.

Next, recall that

�nrn�∑

i=1

W(i) =
n∑

i=1

Wi IWi <F−1(p),

nrn =
n∑

i=1

IWi <F−1(p).
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Therefore,

√
n

⎡

⎣ 1

�np�
�np�∑

i=1

W(i) − npμl(p)

⎤

⎦ = 1

p

[
1√
n

n∑

i=1

(Wi IWi <F−1(p) − pμl(p))

+ 1√
n

F−1(p)

n∑

i=1

(p − IWi <F−1(p))

]

+op(1)

= √
nξ̄ + op(1),

where

ξi = 1

p
[Wi IWi <F−1(p) − F−1(p)IWi <F−1(p) − (pμl(p) − pF−1(p))]

are i.i.d random variables for i = 1, . . . , n and ξ̄ = 1
n

∑n
i=1 ξi .

Using a similar argument, we can claim that

√
n

⎡

⎣ 1

�n(1 − p)�
n∑

i=�np�+1

W(i) − n(1 − p)μu(p)

⎤

⎦ = √
nτ̄ + op(1),

where

τi = 1

1− p
[Wi IWi ≥F−1(p)−F−1(p)IWi ≥F−1(p)−((1− p)μu(p) − (1 − p)F−1(p))]

are i.i.d random variables and τ̄ = 1
n

∑n
i=1 τi . That takes care of the two trimmed

sums.
Next, we turn our attention to the two quantiles W(k) and W(k+1) or equivalently

W(�np�) and W(�np�+1) for k−1
n ≤ p < k

n . Using the Bahadur representation for sample
quantiles (see bah), justified by assumptions A1 and A3, we have

√
n(W(�np�) − F−1(p)) = √

n(W(�np�+1) − F−1(p)) = √
nκ̄ + op(1),

where κ̄ = 1
n

∑n
i=1 κi , and

κi = p − IWi <F−1(p)

f (F−1(p))

are i.i.d random variables.
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We are now in a situation where for 0 < p < 1,
√

n(Gn(p) − G(p)) has been
expressed as sums of i.i.d random variables along with an error term which is op(1).
That is,

√
n(Gn(p) − G(p)) =

n∑

i=1

Zi√
n

+ op(1),

where Zi = ξi+τi −2κi are i.i.d random variables. The advantage of this representation
lies in the fact that we are now allowed to examine Gn without having to concern
ourselves with the correlations between its individual components. The representation
ensures that the effect of the correlations is of order as that of the error term or smaller
and can hence be safely disregarded. Consequently, by the central limit theorem for
i.i.d random variables

√
n(Gn(p) − G(p))

d→ N (0, σp).

We can now turn our attention to the functional limit of the process Un . Since we
are interested in the behavior of Gn for 0 < p < 1 and in particular the point at which
it crosses zero, we restrict ourselves to examining the behavior of Un in the closed
interval [a, b] where a and b are constants bounded away from 0 and 1 respectively.
Notice that Un is a natural random element of the Skorohod space D[a, b]. It is
straightforward to note that by virtue of our representation of

√
n(Gn(p) − G(p)),

for each p, as a sum of i.i.d. random variables plus an error term of order op(1), by
the central limit theorem for random vectors, we have that

√
n(Un(p1) − U (p1), . . . , Un(pk) − U (pk))

d→ N (0, �),

where k is a finite positive integer and for i, j = 1, . . . , k, � = (σi j ) with

σi j =
{

Var(θpi ) if i = j
Cov(θpi θp j ) if i �= j.

Now, if we can show that the sequence Un is tight, we then have the required conver-
gence to U (see Billingsley 1968, for the necessary arguments). We set about proving
tightness in an indirect way, as opposed to the usual method of showing that Un con-
centrates on a compact set in D[a, b] with high probability. Consider the components
of Un
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Asymptotics of the Empirical Cross-over Function 379

U n
1 = √

n

⎛

⎝ 1

�np�
�np�∑

i=1

W(i) − 1

p

∫ p

0
F−1(q) dq

⎞

⎠ ,

U n
2 = √

n(W(�np�) − F−1(p)),

U n
3 = √

n

⎛

⎝ 1

�n(1 − p)�
n∑

i=�np�+1

W(i) − 1

1 − p

∫ 1

p
F−1(q) dq

⎞

⎠ ,

U n
4 = √

n(W(�np�+1) − F−1(p)).

It is interesting that for every U n
i for i = 1, . . . , 4 the functional CLT is an established

result. However, the weak convergence of the individual components U n
i does not

automatically guarantee weak convergence for the sum of the components. But at this
point we need only the tightness. Since the sum of compact sets is a compact set again,
it is easy to show that if each component is tight then it is indeed true that the sum
is tight with respect to the Skorohod metric on D[a, b]. Now, note that U n

2 and U n
4

are quantile processes and converge weakly to a Gaussian process (see p. 308, Vaart
1998) in D[a, b]. Using the result from Kasahara and Maejima (1992), we can claim
that U n

1 and U n
3 also converge weakly to a limit process in D[a, b]. This proves that

each U n
i is relatively compact for each i . Now, since D[a, b] is complete and separable

with respect to the Skorohod metric (see p.115, Billingsley 1968), using the converse
of Prohorov’s theorem (see p.37, Billingsley 1968) we can claim that each U n

i for
i = 1, . . . , 4 is tight and, therefore, Un = U n

1 + U n
2 + U n

3 + U n
4 is tight in D[a, b]

equipped with the J1-topology. 
�
We now provide verification of our asymptotic results regarding consistency and

asymptotic normality by considering two examples. In both the examples we first
generate 1,000 random variables Tn = √

n(Gn(0.5)−G(0.5)) and obtain the simulated
mean and the variance. In order to verify asymptotic normality, we generate again 100
random variables Tn . This is done for different samples sizes n and results are tabulated.

Example 1 If W1, W2, . . . , Wn are i.i.d N (0, 1), then it can be ascertained quite easily
that G(0.5) = 0 and σ = 2π − 4 ≈ 2.2831. The numbers tabulated below offer
satisfactory evidence about the accuracy of our results.

Example 2 In this example, we consider W1, W2, . . . , Wn to be i.i.d. exponential ran-
dom variables with mean 1. This represents the archetypal case of a skewed distribution
and we again check for the accuracy of our results. In this case, G(0.5) = 2(1−ln 2) ≈
0.6137 and σ = 8(1−ln 2) ≈ 2.4548. The numbers in the tables below provide further
corroborative evidence for our limiting results (Tables 1, 2).

Example 3 In this example, for the density 0.25N (−2, 1) + 0.75N (2, 1), we will
now illustrate how, using Theorem 2, one can construct a Confidence Interval (CI)
for G(p0): the value of the cross-over function at the true split point p0; indeed, this
effectively implies a CI for 0 since G(p0) = 0. We first plot the density and the
cross-over function. The plot is in Fig. 1.

Upon solving G(p) = 0 numerically, we obtain p0 ≈ 0.265. Now, suppose we have
W1, . . . , Wn i.i.d. from 0.25N (−2, 1) + 0.75N (2, 1). A straightforward calculation
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Table 1 Simulated means and variances for different sample sizes

Random variables N (0, 1) Exp(1)

Sample sizes n = 100 n = 1,000 n = 10,000 n = 100 n = 1,000 n = 10,000

Simulated mean −0.017 0.018 0.002 −0.041 −0.014 0.0019

Simulated variance 2.407 2.324 2.296 2.491 2.463 2.452

Table 2 p-values for
Kolmogorov–Smirnov test for
normality

Random variables N (0, 1) Exp(1)

n = 100 0.751 0.8786

n = 1,000 0.12 0.2174

n = 10,000 0.391 0.9955
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Fig. 1 Density of 0.25N (−2, 1) + 0.75N (2, 1) and the corresponding cross-over function G(p)

shows that the variance,σp0 , of
√

n(Gn(p0)−G(p0)) = √
nGn(p0) explicitly depends

on the following quantities: p0, F−1(p0), f (F−1(p0)), μl(p0), μu(p0),

1

p0
E[W 2

1 IW1<F−1(p0)
] and

1

1 − p0
E[W 2

1 IW1≥F−1(p0)
].

These quantities computed numerically yield σp0 ≈ 120.1. Asymptotic normality of
the deviation of Gn(p0) from 0 provides us with an approximate 100(1 − α) % CI
for G(p0) = 0, for 0 < α < 1. We simulate 1,000

√
nGn(p0) random variables

for different samples sizes n, construct the 95 % CI and check the proportion amongst
them which contain G(p0) = 0. The results tabulated below offer satisfactory evidence
regarding the validity of our results (Table 3).
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Table 3 Coverage probability,
at different sample sizes, of a
95 % CI constructed for G(p0)

in the case of mixture density
0.25N (−2, 1) + 0.75N (2, 1)

Sample size n Proportion containing G(p0)

100 0.988

1,000 0.953

10,000 0.949

4 Concluding remarks

Despite being an L-statistic, the asymptotic properties of the ECF cannot be studied
using existing machinery owing to the fact that its weights are not smooth. Asymptotic
results from heavily trimmed sums are inapplicable to our problem due the presence of
the two order statistics, W(k) and W(k+1), with unfriendly weights. The centered ECF,
however, can be expressed as a sum of i.i.d. random variables and an error term, which
goes to zero at an appropriate rate, by the use of a subtle trick involving truncated
sums and the Bahadur representation for sample quantiles. Owing to this, the CLT
follows immediately and what remains is to show that the centered process satisfies
the tightness condition for the functional CLT.

Note that the ECF is invariant with respect to shift in the distribution of W ’s, but
is linear with respect to scaling. If we introduce statistic pn (the empirical split point)
that ‘solves’, in some appropriate sense, the equation

Gn(p) = 0,

then this statistic is invariant with respect to both shifting and scaling (as it should
be, because the clustering problem is invariant with respect to linear transformations),
and potentially can be used to design a clustering test.

The asymptotics of pn is the next natural question, which is the focus of the work
in Bharath et al. (2013). The Central Limit Theorem for Gn , proved in this paper,
constitutes a very important step towards the solution of determining the asymptotic
behavior of pn . According to a general plan outlined in Serfling (1980, p. 95), we can
conjecture that

pn ≈ p0 − Gn(p0)/G ′(p0),

where p0 is a theoretical split point. However, the rigorous proof of this statement
requires significant efforts.

On a slightly different note, from a theoretical perspective, investigation into the
second-order asymptotic properties of the ECF would perhaps offer an improvement
in the rates of convergence of the ECF to the cross-over function. In a recent paper
Gribkova and Helmers (2006) establish the validity of the Edgeworth expansion for a
studentized heavily trimmed-mean under no assumptions on the distribution function
F . Their results, for instance, could be used to refine our asymptotic results concerning
the ECF. Furthermore, one could conceivably consider an ECF defined using lightly
trimmed sums (intermediate trimming) and intermediate sample quantiles as opposed

123



382 K. Bharath et al.

to the central ones. This allows for more flexibility in developing a sample counterpart
to the crossover function since one need not necessarily employ only the sample
quantiles—for instance, W(�np�) could be replaced with W(npn) where pn/n → 1 or to
0. In this regard, results in Gribkova and Helmers (2012) would be particularly useful
in establishing refined second-order asymptotic results.
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