
Ann Inst Stat Math (2014) 66:703–723
DOI 10.1007/s10463-013-0422-0

On the construction of minimum information bivariate
copula families

Tim Bedford · Kevin J. Wilson

Received: 2 October 2012 / Revised: 21 June 2013 / Published online: 20 August 2013
© The Institute of Statistical Mathematics, Tokyo 2013

Abstract Copulas have become very popular as modelling tools in probability appli-
cations. Given a finite number of expectation constraints for functions defined on
the unit square, the minimum information copula is that copula which has minimum
information (Kullback–Leibler divergence) from the uniform copula. This can be
considered the most “independent” copula satisfying the constraints. We demonstrate
the existence and uniqueness of such copulas, rigorously establish the relation with
discrete approximations, and prove an unexpected relationship between constraint
expectation values and the copula density formula.

Keywords Bivariate copulas · Information · Uncertainty modelling ·
Expert judgement

1 Introduction

Uncertainty distributions are widely used in areas such as operations research and
finance to represent the uncertainty inherent in any model of the real world. In such
distributions, it is important to include any dependencies between uncertain quantities.
Common methods used to specify uncertainty distributions in the presence of depen-
dency include Bayesian Belief Nets (BBNs) (Jensen 1999) and copulas (Joe 1997;
Kurowicka and Joe 2011).
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704 T. Bedford, K. J. Wilson

More generally, a vine is a nested set of trees in which each tree is made up of a
series of bivariate copulas.

Uncertainty distributions can be specified either by fitting to data or by eliciting
expert judgement. The data or the experts provide a number of specifications for
functions of the problem variables which the uncertainty distribution must satisfy.
These are known as constraints. In the case of bivariate copulas for use in vines,
specification of the constraints will in general lead to either under- or overspecified
distributions. In this paper, we investigate the issue of underspecification of a copula.
Bedford et al. (2013) show how such methods can be applied in practice. Bedford
(2002) and Bedford et al. (2012) consider ways to avoid specifications which have no
solution.

The approach taken to deal with the issue of underspecification is to use a quantity
known as relative information. We seek the copula satisfying the constraints which has
minimum information relative to the uniform copula. This is referred to as the min-
imum information copula. We show rigorously that this copula exists and is unique,
for problems which are not overspecified. Such a copula takes a form similar to that
of an exponential family distribution. Minimum information methods have been used
previously to specify uncertainty distributions, popularized by Jaynes (2003) and con-
sidered by Borwein and Lewis (2006).

To operationalize the use of such minimum information copulas, we consider the
discretized version of the problem. We show that we can approximate the continu-
ous minimum information copula arbitrarily closely using the discrete copula with
maximum entropy relative to the uniform copula. We give a result showing how it is
possible to compute the expectations of the constraint functions using the derivative
of the natural logarithm of the copula normalizing constant.

There has been recent work considering maximum entropy copulas. Pougaza and
Djafari (2011) considered the construction of maximum entropy copulas when only
marginal distributions are specified, under different definitions of entropy. In the
case of the Shannon entropy, due to the lack of constraints on the relationships
between the variables, the resulting copula is simply the independent copula. Pianta-
dosi et al. (2012) looked at a simplified class of copulas that the authors called
checkerboard. Within this class one has a finite number of regions on which prob-
ability is to be uniformly distributed—the problem of dealing with a continuous
copula density is changed to one of dealing with a copula having a step function
density. This means that one can apply many of the methods for a finite probability
space.

The remainder of the paper is organized as follows. In Sect. 2, we review copu-
las, information and entropy. In Sect. 3, we outline the solution to the continuous
optimization problem, initially considering the associated measurable optimiza-
tion problem, and in Sect. 4 we solve the discretized problem and show that this
converges to the continuous solution. We consider the expectations of the con-
straint functions in relation to the copula normalizing constant in Sect. 5 and give
an example of specifying a minimum information copula in two dimensions. We
plot the feasible region of combinations of the constraints and indicate how we
can parameterize this. In Sect. 6, we give some conclusions and areas for further
work.
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Minimum information bivariate copulas 705

2 Copulas, information and entropy

2.1 Copulas

A copula (Nelsen 1999, 2006) is the restriction to the unit hypercube of a joint distri-
bution function C with uniform marginals. In two dimensions, therefore, the copula is
C(x, y), where X, Y ∼ U (0, 1). The corresponding joint probability density function,
if it exists, is

c(x, y) = ∂

∂x

∂

∂y
C(x, y).

Copulas also obey certain properties. From above we see that C(0, 0) = 0 and
C(1, 1) = 1. It is also the case that C(x, y) = 0 if either x or y = 0. The fact
that each marginal is uniform means that C(x, 1) = x and C(1, y) = y. A copula
must also be n increasing, where n is the dimension of the copula.

Copulas can be used to define a joint distribution between variables with any mar-
ginal distributions we wish. If X ∼ f1 and Y ∼ f2 for densities f1, f2, then the copula
of X, Y is the distribution of (F1(X), F2(Y )). If X and Y are independent their unique
copula is �(x, y) = xy whose density is uniform π(x, y) = 1 on [0, 1]2.

Bivariate copulas can also be used to construct more complex multivariate dis-
tributions by combining them in structures known as vines, see Bedford and Cooke
(2002) and Kurowicka and Cooke (2006). Vines provide a methodology to model any
distribution with any general dependencies between the variables we wish.

2.2 Relative information

For a vector quantity x , the relative information of a distribution g1(x) to another
g2(x) measures the similarity of the two distributions. It is given by

I (g1; g2) =
∫

g1(x) log

(
g1(x)

g2(x)

)
dx .

Clearly if g1(x) = g2(x) then log(g1(x)/g2(x)) = log(1) and so the relative informa-
tion of g1(x) to g2(x) is zero. A useful property of information is that it is invariant
under monotone transformations. Thus, if c1(x) and c2(x) are the copula densities
associated with g1(x) and g2(x), respectively, then

I (c1; c2) = I (g1; g2).

Therefore, minimizing the relative information of g1 with respect to g2 is equiva-
lent to minimizing the relative information of c1 with respect to c2. This means that
minimizing the relative information of a copula with respect to the uniform copula is
equivalent to minimizing the relative information of the original density with respect
to the independent distribution.
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2.3 Relative entropy

Suppose we have a discrete probability distribution over two dimensions defined by
P(xi , x j ) = pi j . We can define the relative entropy of one distribution to another as
we did above for information. The relative entropy of the discrete distribution p to a
second distribution q is

H(p; q) = −
∑

i

∑
j

pi j log
pi j

qi j
.

Note that H(p; q) �= H(q; p) in general as the above definition is not symmetric in
p and q. The relative entropy H(p; q) ≥ 0.

The notions of entropy and information are closely linked. First, recall that for two
partitions ρ1 and ρ2 on (xi , y j ) for different values of n, ρ1 is a refinement of ρ2 if
every element of ρ1 is a subset of an element of ρ2. Relative entropy is non-increasing
under refinements (Uffink 1995), so that, if p(ρk) is a probability distribution p under
refinement of ρk ,

−
∑

i

∑
j

p(ρ1) log
p(ρ1)

q(ρ1)
≥ −

∑
i

∑
j

p(ρ2) log
p(ρ2)

q(ρ2)
.

Thus, if f, g are continuous two-dimensional densities being approximated by pi j , qi j ,
respectively, the continuous relative entropy can be defined (Jaynes 2003) as the limit
under increasing refinement of the discrete relative entropy,

lim
n→∞ −

∑
i

∑
j

pi j log
pi j

qi j
= −

∫
I

dx
∫

I
f (x, y) log

f (x, y)

g(x, y)
dy

=
∫

I

∫
I

f (x, y)

g(x, y)
log

f (x, y)

g(x, y)
dg(x, y).

Hence, we see that the minimum information distribution can be approximated by an
equivalent discrete distribution with maximum entropy.

3 The continuous optimization problem

Suppose we have uniform variables x, y and the copula density we wish to find is
f (x, y). Further suppose that we wish to find a copula which, for some functions of
the uniform variables h1(x, y), . . . , hm(x, y) which are assumed to be continuous on
[0, 1]2, satisfies E[hi (x, y)] = αi , for some values αi . We call these the constraints of
the problem. If we make the assumption that a copula satisfying the constraints exists
then this problem is, in general, underdetermined. To select a unique distribution we
wish to find the copula with minimum information with respect to the uniform copula
satisfying these expectations.
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The relative information of f (x, y) with respect to the uniform copula is

∫
[0,1]

dx
∫

[0,1]
f (x, y) log f (x, y)dy.

The requirement that f (x, y) is to be a copula density introduces the further constraints
that the marginal distributions for x and y are uniform. That is,

∀y ∈ [0, 1],
∫

[0,1]
f (x, y)dx = 1,

∀x ∈ [0, 1],
∫

[0,1]
f (x, y)dy = 1.

We wish to solve the continuous optimization problem. However, to do so, we shall
first consider the associated measurable optimization problem. We can then use this
to give a solution in the continuous case. Thus, the measurable optimization problem
we wish to solve is

Minimize
∫

[0,1]
dx

∫
[0,1]

f (x, y) log( f (x, y))dy,

Subject to
∫

[0,1]
f (x, y)dx = 1, a.e.y ∈ [0, 1],

∫
[0,1]

f (x, y)dy = 1, a.e.x ∈ [0, 1],
∫

[0,1]
dx

∫
[0,1]

hi (x, y) f (x, y)dy = αi , i = 1, . . . , m,

f (x, y) ≥ 0,

f (x, y) ∈ L1([0, 1]2),

where a.e. means “for almost every”, with respect to the uniform measure. We shall
determine the unique solution to this measurable optimization problem. We do so
by generalizing the work of Bedford and Meeuwissen (1997), who considered just a
single constraint on the rank correlation. Their derivation was based on the work in
Nussbaum (1989) and Borwein et al. (1994).

The continuous problem we shall use to solve this is the measurable optimization
problem above but with each “for almost every” replaced with a “for all” and f (x, y)

constrained to being a continuous function rather than in L1.
We shall impose a further condition on both the measurable and continuous opti-

mization problems. This will allow us to use theoretical results developed in Nussbaum
(1989), Borwein et al. (1994) and Lanford (1973) and, in practice, does not unduly
restrict the use of the developed approach.

The minimum information solution shall require the constraints on the expectations,
α1, . . . , αm , to lie in the interior of the convex hull of h1, . . . , hm . In order for this to
be true we impose the condition that the constraint functions, h1, . . . , hm , are linearly
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708 T. Bedford, K. J. Wilson

independent modulo the constants. That is,

∑
i

λi hi �= c,

for any constant c. This implies that CH(h1, . . . , hm) has an interior, where CH(·)
denotes convex hull. To see this consider CH(range(h1, . . . , hm)). Suppose that
CH(range(h1, . . . , hm)) does not have an interior in R

m . Then range(h1, . . . , hm)

is restricted to a linear subspace of R
m , which means there exist λ1, . . . , λm and c

such that

∑
i

λi hi = c,

which would mean that h1, . . . , hm were linearly dependent modulo the constraints.
This contradicts our condition and so CH(h1, . . . , hm) has an interior.

To solve the measurable optimization problem it shall be necessary to define a few
quantities starting with the variation distance between two distributions.

Definition 1 Let G1, G2 and G3 be probability distributions, with corresponding den-
sities g1, g2 and g3 on a measurable space S = (M, B) for the set M over the σ -algebra
B. Let G1 << G3 and G2 << G3. Then the variation distance between G1 and G2
is

| G1 − G2 |=
∫

M
| g1 − g2 | dG3.

Define 	 to be a convex set of probability distributions with respect to G3. The set
	 is then said to be variation closed if 	 is closed in the topology of the variation
distance.

We are now almost in a position to prove that there is a solution to the measurable
optimization problem. First, we shall quote a theorem from Nussbaum (1989) in the
form given in Bedford and Meeuwissen (1997).

Theorem 1 If 	 is variation closed, and if there exists some G1 ∈ 	 with
I (G1; G3) < ∞, then infG2∈	 I (G2; G3) is found in 	.

We can use these results to show that the measurable optimization problem has a
solution.

Proposition 1 There is a solution to the measurable optimization problem.

Proof In our case 	 is the set of copula densities satisfying the constraints which is
clearly convex. If 	 is variation closed then, by Theorem 1, the measurable optimiza-
tion problem has a solution.

Consider g(n)(x, y), a sequence of densities converging in variation to g(x, y). We
show that if g(n)(x, y) satisfy the constraints then so does g(x, y).
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As g(n)(x, y) converge in variation to g(x, y) this means that

lim
n→∞

∫
dx

∫
φ(x, y)g(n)(x, y)dy →

∫
dx

∫
φ(x, y)g(x, y)dy,

for any functions φ(x, y) ∈ L∞, the dual of L1. Clearly, g(x, y) satisfies the expec-
tation constraints by setting φ(x, y) = hi (x, y) for i = 1, . . . , m.

Now consider the constraints associated with the uniform marginals for X, Y . By
Fubini’s Theorem

∫
dx

∫
φ(x, y)g(n)(x, y)dy =

∫
dy

∫
φ(x, y)g(n)(x, y)dx .

We shall consider the marginal constraint for Y . The argument for X is similar. Take
φ of the form φ(x, y) = φ(x). Thus, if g(n)(x, y) satisfies the marginal constraint for
Y ,

∫
g(n)(x, y)dy = 1, then the following holds,

∫
dx

∫
φ(x)g(n)(x, y)dy =

∫
φ(x)

[∫
g(n)(x, y)dy

]
dx =

∫
φ(x)dx .

This implies that

∫
φ(x)

[∫
g(x, y)dy

]
dx =

∫
φ(x)dx,

and so

∫ [
1 −

∫
g(x, y)dy

]
φ(x)dx = 0.

From this we can deduce that
∫

g(x, y)dy = 1

almost surely. Thus, g(x, y) satisfies all of the constraints and the measurable opti-
mization problem has a solution by Theorem 1. 	


Now we know that a solution to the measurable optimization problem exists we
wish to find a more explicit form. To do so, we shall consider a property of the dual
space of the linear map associated with the constraints given in the below theorem
from Borwein et al. (1994).

First, however, let P be the support of a probability space, Z be an arbitrary local
convex topological vector space whose topological dual is denoted Z∗ and A be a
linear map such that A : L1(P) → Z . The dual of A is denoted A∗. Suppose that the
information expression we wish to minimize is I (u) : L1(P) → (−∞,∞) subject to
the constraints satisfying the linear map Au = b.
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710 T. Bedford, K. J. Wilson

Using this notation, the optimization problem given at the beginning of Sect. 3 takes
the form

minimize I (u)subject to A(u) = b,

where

I (u) =
∫

[0,1]
dx

∫
[0,1]

u(x, y) log u(x, y)dy

P : [0, 1]2

A : L1([0, 1]2) → L1(0, 1) × L1(0, 1) × R
m

b = (1, 1, α1, . . . , αm)

u ∈ L1([0, 1]2).

We can now express the Theorem from Borwein et al. (1994) as follows.

Theorem 2 Suppose that a feasible solution to the above problem, û, exists. Then
there exists a unique optimal solution, u0. Furthermore, u0 > 0 almost everywhere
and there exists a sequence μ0, μ1, . . . ∈ Z∗ with

|| u0(A∗μn − log u0) ||1→ 0.

To use this to make explicit statements about the form of the desired densities, we
shall also require Corollary 2.13 from Borwein et al. (1994). This is

Corollary 1 If u0 is a feasible solution as in the previous Theorem and R(A∗), the
range of A∗, is closed as a subspace of L1(P) then u0 is optimal if and only if there
exists μ ∈ Z∗ with

A∗μ = log u0.

The linear map associated with our optimization problem is given by A :
L1([0, 1]2) → L1([0, 1]) × L1([0, 1]) × R × · · · × R. For a two-dimensional density
u(x, y) ∈ L1([0, 1]2) the linear constraints in this space form a vector of length m +2,
the first two elements of which are

∫
[0,1]

u(x, y)dy,

∫
[0,1]

u(x, y)dx .

The remaining elements are the constraints on the expectations, namely

∫
[0,1]

dx
∫

[0,1]
u(x, y)hi (x, y)dy,

i = 1, . . . , m. We can now prove the following theorem giving the form of the solution
to the measurable optimization problem.
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Theorem 3 The solution, f (x, y), to the measurable optimization problem can be
written in the form

f (x, y) = d(1)(x)d(2)(y)K (x, y),

where the kernel is given by

K (x, y) = exp{λ1h1(x, y) + · · · + λmhm(x, y)},

for Lagrange multipliers λ1 . . . , λm and measurable functions d(1)(x), d(2)(y) :
[0, 1] → R.

Proof We can appeal to Theorem 2 to state that there is a sequence of vectors
μ1, μ2, . . . in the dual of A, for which

|| f (x, y)(A∗μn − log f (x, y)) ||1→ 0. (1)

Thus, to find the form of f (x, y), we shall calculate the dual A∗. We determine this
by calculating

〈u, A∗(a, b, c1, . . . , cm)〉 = 〈Au, (a, b, c1, . . . , cm)〉
=

∫
a(x)

∫
u(x, y)dydx

+
∫

b(y)

∫
u(x, y)dxdy

+
∑

i

ci

∫ ∫
hi (x, y)u(x, y)dxdy

=
∫

dx
∫

u(x, y)

[
a(x) + b(y) +

∑
i

ci hi (x, y)

]
dy,

which, by Fubini’s Theorem, gives

(A∗(a, b, c1, . . . , cm))(x, y) = a(x) + b(y) +
m∑

i=1

ci hi (x, y),

for all (u, a, b, c1, . . . , cm), and a.e. (x, y). Combining this with Eq. (1) gives us an
equation which indicates how sequences of this form converge to the desired density,

an(x) + bn(y) +
m∑

i=1

ci,nhi (x, y) → log f (x, y),

almost everywhere. We now wish to use Corollary 1 to make the link between these
asymptotic multipliers and multipliers a, b, c1, . . . , cm . To do so, we need to show
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712 T. Bedford, K. J. Wilson

that R(A∗) is closed. Consider the space associated with A,

L1([0, 1]) × L1([0, 1]) × R × · · · × R.

This is finite dimensional and hence R(A∗) is closed. Thus, by Corollary 1,

a(x) + b(y) +
m∑

i=1

ci hi (x, y) = log f (x, y),

almost everywhere. If we take d(1)(x) = ea(x), d(2)(y) = eb(y) and λi = ci then
rearranging gives

f (x, y) = d(1)(x)d(2)(y)K (x, y).

This concludes the proof. 	

Now that we have an explicit form for the solution to the measurable optimization
problem we can use this to give the solution to the continuous optimization problem.

Theorem 4 There is a unique solution to the continuous optimization problem of the
form

f (x, y) = d(1)(x)d(2)(y)K (x, y),

where d(1)(x), d(2)(y) : [0, 1] → R are continuous.

Proof The proof follows one of Nussbaum in Nussbaum (1989). First, we show that
d(1)(x) and d(2)(y) are in L1([0, 1]) and then use this fact to determine that they are
continuous.

We know that f (x, y) is measurable and in L1([0, 1]2) and that K (x, y) is bounded.
This implies that the product d(1)d(2) belongs to L1([0, 1]2), and so individual func-
tions d(1), d(2) belong to L1([0, 1]). Now consider the marginal constraint on Y . This
is

∫
[0,1]

d(1)(x)d(2)(y)K (x, y)dy = 1,

and so

1

d(1)(x)
=

∫
[0,1]

d(2)(y)K (x, y)dy.

Now, as d(2)(y) belongs to L1([0, 1]) and K (x, y) is continuous this implies that
1/d(1)(x) is continuous. Combining this with the fact that 1/d(1)(x) > 0, we can
conclude that d(1)(x) exists and is continuous.

The same argument can be applied to the marginal constraint for X to show that
d(2)(y) is continuous. 	
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Minimum information bivariate copulas 713

4 Approximation using discrete densities

Suppose that the input space has been discretized into the points (xi , y j ) for i, j =
1, . . . , n, so that the different combinations of i, j make up points on the unit square.
This forms a partition of [0, 1]2.

The solution to the continuous minimum information problem can then be approx-
imated by the distribution, P(xi , y j ) = pi j , which maximizes the Shannon entropy

−
∑

i

∑
j

pi j log pi j ,

and which satisfies the constraints on the marginal distributions and expectations. The
requirement of uniform marginals in the discrete case brings about the constraints

n∑
i=1

pi j = 1

n
,

n∑
j=1

pi j = 1

n
,

so that all of the rows and columns sum to one. Thus, the discrete optimization problem
we wish to solve is

maximize −
n∑

i=1

n∑
j=1

pi j log(pi j ),

subject to
n∑

j=1

pi j = 1

n
, i = 1, . . . , n,

n∑
i=1

pi j = 1

n
, j = 1, . . . , n,

n∑
i=1

n∑
j=1

hl(xi , y j )pi j = αl , l = 1, . . . , m,

and pi j ≥ 0.

Having moved from the continuous to the discrete case it is no longer the case that
α1, . . . , αm are necessarily in the convex hull for the discrete problem. It is also
no longer necessarily the case that h1, . . . , hm are linearly independent modulo the
constants for the discrete problem. Thus, to make the link between the continuous and
discrete problems we provide the following two propositions.

Write R = (h1, . . . , hm)(	) and Rn = (h1, . . . , hm)(	n) for the ranges of
(h1, . . . , hm) in the continuous and discrete cases, respectively. We also write CH to be
the convex hull of R, and CHn the convex hull of Rn . Also define α = (α1, . . . , αm).

Proposition 2 If α ∈ int(CH) then for all large enough n, α ∈ int(CHn).

Proof The first step is to show that in a small neighbourhood of α, all the points can
be obtained as a convex combination of a fixed finite collection of points in R. To see
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714 T. Bedford, K. J. Wilson

this, note that if α ∈ int(CH) then we can find m + 1 points α1, . . . ,αm+1 ∈ int(CH)

close to α so that α is in the convex hull of α1, . . . ,αm+1. But each of these points is
in CH so can be written as a convex combination of m + 1 points in R. Hence, any
point in a small neighbourhood of α can be written as a convex combination of the set
B of (m + 1)2 points from R.

The next step is to show that each point of B can be arbitrarily well approximated by
points from Rn . Given β ∈ B there is a point (x, y) ∈ 	 so that (h1, . . . , hm)(x, y) =
β. By taking a sequence (xn, yn) ∈ 	 converging to (x, y), and using continuity of
the (h1, . . . , hm) we see that (h1, . . . , hm)(xn, yn) is a sequence in Rn converging to
β. Define Bn to be the set of points constructed in this way at the nth step.

It now follows that the convex hull of Bn converges to that of B and, in particular,
that it contains any given small neighbourhood U of α when n is large enough. Hence,
U is also contained in CHn , which implies that α ∈ int(CHn) for large enough n. 	

Proposition 3 If h1, . . . , hm are linearly independent, modulo the constants as func-
tions on 	, then they also have that property as functions on 	n for large enough
n.

Proof If not then there is a set of constants c1,n, . . . , cm,n and c0,n (not all zero) so
that

∑
i

ci,nhi (x, y) + c0,n = 0,

for all (x, y) ∈ 	n .
Without loss of generality we can assume that the constants are normalized so

that
∑m

i=0 c2
i,n = 1. This means that there is a subsequence along which the ci,n

simultaneously converge (i = 0, . . . , m), with ci,n → ci say.
This implies that

∑
i

ci hi (x, y) + c0 = 0,

for all (x, y) ∈ 	n , and therefore by continuity that it also holds for all (x, y) ∈ 	. 	

Lanford (1973) considered the problem of finding the maximum entropy distribu-

tion satisfying the constraints E[gl(xi , y j )] = ul , for bounded vector g. If we define

Z(θ) =
∑

i

∑
j

exp

{
−

∑
k

θk gk(xi , y j )

}
,

where θ = (θ1, . . . , θm) is the vector of Lagrange multipliers, then the probability
distribution with maximum entropy is of the form

pi j = exp{∑k θk gk(xi , y j )}
Z(θ)

. (2)
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We see that Z(θ) is the normalizing constant constraining the pi j to sum to one. This
Z function has useful properties. If we take logs and differentiate with respect to the
Lagrange multipliers, we obtain (Lanford 1973)

∂

∂θl
log Z(θ) = −

∑
i
∑

j gl(xi , y j ) exp{∑k θk gk(xi , y j )}∑
i
∑

j exp{−∑
k θk gk(xi , y j )}

= −E[gl ].

Thus, we can find the expectations associated with the constraints easily using the
Z function. Lemma A4.6 of Lanford (1973) gives conditions for when there is a
unique vector of parameters θ = (θ1, . . . , θm) satisfying the constraints which give a
maximum entropy distribution of the form of Eq. (2). It states

Lemma 1 If u = (u1, . . . , um) is in the interior of the convex hull of the essential
range of g then there is a unique θ = θ(u) ∈ R such that

u = −gradθ (log Z(θ)).

Lanford gives a further Theorem, A4.7, which gives further results concerning the
maximum entropy distribution and which will be useful to us.

Theorem 5 Let g be a bounded measurable function on 	 with values in R
t ; assume

that the components of g are linearly independent modulo the constants. For u in the
interior of the convex hull of the range of g, let θ(u) be the unique solution of

u = −gradθ log Z(θ).

Then

s(g, u) = log Z(θ(u)) + u · θ(u),

where s(g, u) is a real-analytic and strictly concave function of u.

The quantity s(g, u) is the maximum possible entropy for a probability vector g giving
expectation u.

We wish to apply the above results to solve our discrete optimization problem. To
do so, we need to show that

(i) we can represent all of the constraints in our problem, and in particular the
constraints on the marginal distributions, as expectations,

(ii) all of the constraints are linearly independent modulo the constraints, and
(iii) the expectation vector u for our problem is in the interior of the convex hull of

the essential range of the relevant g.

We now consider each of these conditions in turn.
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716 T. Bedford, K. J. Wilson

(i) The constraints on the functions of the discretized variables, E[hl ] = αl , l =
1, . . . , m are already expressed as expectations and so we need only to consider the
constraints on the marginals,

n∑
j=1

pi j = 1

n
,

n∑
i=1

pi j = 1

n
.

Define the Kronecker deltas

δ(r)
q (i, j) =

{
1, if i = q,

0, if i �= q,

δ(c)
q (i, j) =

{
1, if j = q,

0, if j �= q,

which indicate whether we are in the q’th row and q’th column, respectively. The
marginal constraints are then the expectations of these indicator functions. That is

E[δ(r)
q ] =

∑
i

∑
j

δ(r)
q (i, j)pi, j = 1

n
, E[δ(c)

q ] =
∑

i

∑
j

δ(c)
q (i, j)pi, j = 1

n
,

for q = 1, . . . , n. Thus, the set of constraints for the discrete problem can be repre-
sented by a vector which has length 2n+m, with the first 2n elements of the expectation
vector being 1/n and the final m being α1, . . . , αm . We shall denote this vector u.

(ii) The second condition is that all of the constraints must be independent modulo
the constants. This is not the case when we consider the full complement of 2n + m
constraints. We can see this as within a column or row the Kronecker deltas will all
be zero apart from where i = q or j = q, respectively. That is,

q∑
i=1

δ(r)
q (i, j) = 1,

q∑
j=1

δ(c)
q (i, j) = 1. (3)

However, let us instead consider the 2n + m − 2 functions given by δ
(r)
q (i, j) and

δ
(c)
q (i, j) for q = 1, . . . , n − 1 and hl(xi , y j ) for l = 1, . . . , m. We no longer have

the restriction given in Eq. (3) and all of the constraints are now linearly independent
modulo the constants. Thus, we redefine u to be the reduced vector of expectations
associated with these constraints.

(iii) The final condition is to show that the vector u is in the interior of the convex
hull of g, where

g = (δ
(r)
1 , . . . , δ

(r)
n−1, δ

(c)
1 , . . . , δ

(c)
n−1, α1, . . . , αm).
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That is, we must show that u is in the space of all possible expectation specifications.
In fact, the proof of this follows immediately from Proposition 2 of Bedford and
Meeuwissen (1997) for a single function.

We are now in a position to bring all of the results of this section together and,
using Lanford’s results, give the form of the discrete copula density which solves
the discrete optimization problem. We can also then link this to the solution of the
continuous optimization problem.

Theorem 6 There are functions hl(xi , y j ) and further functions d(1)(xi ), d(2)(y j )

such that the probability distribution on {(xi , y j ) : 1 ≤ i, j ≤ n} with maximum
entropy under the constraints

∑
i

pi j =
∑

j

pi j = 1

n
,

∑
i, j

hl(xi , y j )pi j = αl ,

for l = 1, . . . , m has the form

pi j = 1

n2 d(1)(xi )d
(2)(y j ) exp

{∑
k

λkhk(xi , y j )

}
.

These discrete probability distributions converge pointwise to the solution of the con-
tinuous optimization problem.

Proof We have shown that conditions (i), (ii) and (iii) are satisfied and so we can apply
the results of Lanford to our problem. Inserting our constraints into the form of the
maximum entropy distribution given in Eq. (2),

pi j ∝ exp

{
−

∑
q

(
θ(r)

q δ(r)
q (i, j) + θ(c)

q δ(c)
q (i, j)

)
−

∑
k

θkhk(xi , y j )

}
.

Now, each of the Kronecker deltas will be equal to one exactly once, when i = q and
j = q, respectively, and so the discrete distribution becomes

pi j = e−θ
(r)
i e−θ

(c)
j

Z(θ)
exp

{
−

∑
k

θkhk(xi , y j )

}
.

We see that each θl is an analytic function of the corresponding αl . Define λl = −θl .
Then, by Theorem 5, we have the relation

λl = −θl = −∂s(g, u)

∂αl
.

If we take the derivative of λl with respect to αl ,

∂λl

∂αl
= −∂2s(g, u)

∂α2
l

> 0,
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everywhere as s(g, u) is a strictly concave function. Thus, λl is an analytic function
of αl and θl is an analytic function of λl . This means we can now write the maximum
entropy distribution as

pi j = e−θ
(r)
i e−θ

(c)
j

Z(θ)
exp

{∑
k

λkhk(xi , y j )

}
.

The form of the discrete density follows by setting

d(1)(xi ) = ne−θ
(r)
i√

Z(θ)
, d(2)(y j ) = ne−θ

(c)
j

√
Z(θ)

.

To show that these discrete distributions converge to the continuous distribution
consider the sequences of functions d(1)

(t) (x), d(2)
(t) (x) : [0, 1] → R, t = 1, 2, . . . for

fixed λ1, . . . , λm given by

xi �→ d(1)
i(t) for xi ∈ Ii

y j �→ d(2)
j (t) for y j ∈ I j .

The proof of Nosowad (1966) states that these sequences converge pointwise to the
continuous functions d(1)(x) and d(2)(y) in the solution of the continuous optimization
problem. The result follows from this. 	


5 Calculating the expectations of the constraint functions

We saw in Sect. 4 that the normalizing constant in the maximum entropy distribution,
Z(·), has useful properties associated with calculating the means of the constraint
functions. This is also true in the continuous case. That is, for the bivariate minimum
information distribution g(x, y) with normalizing constant

Z(θ) =
∫

[0,1]
dx

∫
[0,1]

exp

{
−

∑
k

θkhk(x, y)

}
dy,

the expectation of hl(x, y) is found to be (Kullback 1959; Lanford 1973),

− ∂

∂θl
log Z(θ).

In the case of the minimum information copulas which are our interest in this paper,
the role of the normalizing constant has been fulfilled by d(1)(·) and d(2)(·). We can
show how these two quantities can be used in an equivalent manner to calculate the
expectations of the constraint functions in the copula case. We give the following
theorem.
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Theorem 7 For a bivariate minimum information copula f : [0, 1]2 → R of the form

f (x, y) = d(1)(x)d(2)(y)K (x, y),

where K (x, y) = exp
{
λk

∑
k hk(x, y)

}
, the mean of the constraint functions can be

calculated as

E[hl(x, y)] = −
∫

[0,1]
dx

∫
[0,1]

∂

∂λl
log{d(1)(x)d(2)(y)}dy.

Proof All integrals in the proof are over [0, 1]. We begin by considering the marginal
constraints. We can use them to deduce that

d(1)(x)d(2)(y) = 1∫
d(1)(x)K (x, y)dx

∫
d(2)(y)K (x, y)dy

.

If we take logarithms then

log{d(1)(x)d(2)(y)} = − log
∫

d(1)(x)K (x, y)dx − log
∫

d(2)(y)K (x, y)dy.

We differentiate this with respect to the Lagrange multipliers. This gives

∂

∂λl
log d(1)(x)d(2)(y)

= −
∂

∂λl

∫
d(1)(x)K (x, y)dx∫

d(1)(x)K (x, y)dx
−

∂
∂λl

∫
d(2)(y)K (x, y)dy∫

d(2)(y)K (x, y)dy
. (4)

As d(1)(x), d(2)(y) and K (x, y) are all functions of the Lagrange multipliers,
λ1, . . . , λm , it is necessary to evaluate the derivatives above using the product rule.
That is, in the case of the first derivative,

∂

∂λl

[∫
d(1)(x)K (x, y)dx

]

=
∫

hl(x, y)d(1)(x)K (x, y)dx +
∫

K (x, y)
∂

∂λl
d(1)(x)dx . (5)

To proceed further, we re-express the differential of d(1)(x) in terms of y. This gives

∂

∂λl
d(1)(x) = ∂

∂λl

[
1∫

d(2)(y)K (x, y)dy

]

= −d(1)(x)

[∫
hl(x, y)d(1)(x)d(2)(y)K (x, y)dy

+
∫

K (x, y)d(1)(x)
∂

∂λl
d(2)(y)dy

]
,
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after some simple manipulation. We first substitute this back into Eq. (5) and then
substitute this back into Eq. (4). We also tidy the denominators of Eq. (4). The resulting
equation, again after some basic calculations, is

∂

∂λl
log[d(1)(x)d(2)(y)] = −

∫
hl(x, y)d(1)(x)d(2)(y)K (x, y)dx

+
∫

d(1)(x)d(2)(y)K (x, y)

[∫
hl(x, y)d(1)(x)d(2)(y)K (x, y)dy

+
∫

d(1)(x)K (x, y)
∂

∂λl
d(2)(y)dy

]
dx

−
∫

hl(x, y)d(1)(x)d(2)(y)K (x, y)dy −
∫

d(1)(x)K (x, y)
∂

∂λl
d(2)(y)dy.

The final stage is to integrate over x and y. After some straightforward computations,
we find that

∫
dx

∫
∂

∂λl
log[d(1)(x)d(2)(y)]dy = −E[hl(x, y)]

+
∫

d(1)(x)

∫
d(2)(y)K (x, y)dy

[∫
hl(x, y)d(1)(x)d(2)(y)K (x, y)dy

+
∫

d(1)(x)K (x, y)
∂

∂λl
d(2)(y)dy

]
dx

−E[hl(x, y)] −
∫

dx
∫

d(1)(x)K (x, y)
∂

∂λl
d(2)(y)dy,

and, since we can again use the first marginal constraint to cancel the d(1)(x) outside
of the square brackets, the result in the continuous case follows immediately from this.

	


If the problem is discretized by taking x1, . . . , xn and y1, . . . , yn then we obtain an
n on the denominator when substituting back for d(1)(xi ) and d(2)(y j ) in the discrete
equivalent of Eq. (4). A similar derivation shows that

E[hl ] = −1

n

∑
i

∑
j

∂

∂λl
log d(1)(xi )d

(2)(y j ),

where E[hl ] is a discrete expectation. We can use this discrete form in the following
example.
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5.1 Example

Suppose that the two unknowns in our analysis are X, Y ∼ U (0, 1) and that we wish
to specify the minimum information copula between them subject to the constraints

E[h1(x, y)] = α1, E[h2(x, y)] = α2, (6)

for constraint functions h1(x, y) = xy, and h2(x, y) = xy2. If we wished to specify a
copula with minimum information for non-uniform variables V, W then the relevant
constraint functions would be h1(v,w) = vw and h2(v,w) = vw2 and the copula
would be specified using

h
′
1(x, y) = F−1

V (x)F−1
W (y), h

′
2(x, y) = F−1

V (x)[F−1
W (y)]2,

where F(·) denotes the relevant distribution function.
We can investigate the range of possible values the two constraints in Eq. (6) can

take. To do so, we use Theorem 7 to calculate all of the expectations. We use the
discretized version of the density and discretize over 50 × 50 points.

Clearly when α1 changes this will have an effect on the values which α2 can take.
Thus, we can map out the two-dimensional feasible region for the constraints (α1, α2).
This is given in Fig. 1.

We see from the figure that the feasible region is clearly convex. Let us suppose
that the expectations we wish to satisfy are

E[XY ] = 0.2, E[XY 2] = 0.12.

We can find the resulting minimum information copula. The Lagrange multipliers are
found to be λ1 = −25.489, λ2 = 14.306. A plot of the copula with these parameter
values is given in Fig. 2.

The copula which results is a smooth function of X and Y .
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Fig. 1 The feasible region for α1 and α2
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Fig. 2 The minimum information copula satisfying the constraints

6 Conclusions

We have considered the specification of a copula under a number of constraints on the
expectations of functions of the variables. In particular, we have considered the issue
of underspecification of such a copula in which there are multiple possible copulas
which satisfy all of the constraints imposed. We have operationalized such modelling
by proposing to use the copula with minimum information satisfying the constraints.

We have shown that such a problem has a unique solution and found an explicit
function form for this. We achieved this by initially deriving the unique solution for the
measurable version of the problem. We then considered discretization of the continuous
problem so that such a process can be carried out in practice. We showed that we can
approximate the continuous minimum information copula arbitrarily closely using a
series of discrete densities.

Finally, we proved a theorem linking the expectations of the constraint functions to
the normalizing functions in the copula case. This generalizes a similar result in the
non-copula case.
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