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Abstract The concept of data depth leads to a center-outward ordering of multivariate
data, and it has been effectively used for developing various data analytic tools. While
different notions of depth were originally developed for finite dimensional data, there
have been some recent attempts to develop depth functions for data in infinite dimen-
sional spaces. In this paper, we consider some notions of depth in infinite dimensional
spaces and study their properties under various stochastic models. Our analysis shows
that some of the depth functions available in the literature have degenerate behaviour
for some commonly used probability distributions in infinite dimensional spaces of
sequences and functions. As a consequence, they are not very useful for the analysis of
data satisfying such infinite dimensional probability models. However, some modified
versions of those depth functions as well as an infinite dimensional extension of the
spatial depth do not suffer from such degeneracy and can be conveniently used for
analyzing infinite dimensional data.
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1 Introduction

In finite dimensional spaces, depth functions provide a center-outward ordering of
the points in the sample space relative to a given probability distribution, and various
depth functions for probability distributions in R

d have been proposed in the literature
(see, e.g., Liu et al. 1999; Zuo and Serfling 2000 for some extensive review). Several
desirable properties of depth functions have been introduced in Liu (1990) and dis-
cussed subsequently in Zuo and Serfling (2000). These properties have been utilized in
developing various statistical procedures. Depth-weighted L-type location estimators
like trimmed means have been considered in Liu (1990), Donoho and Gasko (1992),
Liu et al. (1999), Fraiman and Muniz (2001), Mosler (2002) and Zuo (2006). Depth
functions have also been used to construct statistical classifiers (see, e.g., Jörnsten
2004; Ghosh and Chaudhuri 2005; Mosler and Hoberg 2006; Dutta and Ghosh 2012;
Li et al. 2012). Another useful application of depths is in constructing depth contours
(see, e.g., Donoho and Gasko 1992; He and Wang 1997; Mosler 2002), which deter-
mine central and outlying regions of a probability distribution. These contours and
regions are useful in outlier detection.

With the recent advancement of scientific techniques and measurement devices, we
increasingly come across data that have dimensions much larger than the sample sizes.
Such data cannot be handled using standard multivariate techniques due to their high
dimensionalities and low sample sizes. A common approach for handling such data is
to embed them into suitable infinite dimensional spaces (e.g., data lying in function
spaces). Half-space depth (HD) (see, e.g., Donoho and Gasko 1992), projection depth
(PD) (see, e.g., Zuo and Serfling 2000) and spatial depth (SD) (see, e.g., Vardi and
Zhang 2000; Serfling 2002), which were originally defined for data in finite dimen-
sional spaces, can have natural extensions into infinite dimensional spaces as we shall
see in subsequent sections.

Fraiman and Muniz (2001) defined a notion of depth, which is called integrated data
depth (ID), in function spaces. Fraiman and Muniz (2001) used this depth function to
construct trimmed means and showed that the empirical ID is a strongly and uniformly
consistent estimator of its population counterpart. These authors used ID to categorize
extremal and central curves in the data consisting of 100 curves used to build the
NASDAQ 100 index. Recently, López-Pintado and Romo (2009, 2011) introduced
two different notions of data depth for functional data and called them band depth
(BD) and half-region depth (HRD). These authors have used these depth functions
for detecting the central and peripheral sample curves of some real datasets including
daily temperature curves for Canadian weather stations and gene expression data for
lymphoblastic leukaemia. Trimmed means based on BD have been discussed in López-
Pintado and Romo (2006) and used to construct classifiers based on certain distance
measures. The distance of an observation from a class was defined either as the distance
from the trimmed mean of the class or as a trimmed weighted average of the distances
from observations in the class. The procedure was implemented to classify the well-
known Berkeley growth data (see Ramsay and Silverman 2005). Recently, Sun and
Genton (2011) used BD and a modified version of BD to construct box plots for
functional data. López-Pintado and Romo (2009) also proposed a rank-based test for
two-population problems using BD. They used the procedure to test the equality of
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curves obtained by plotting relative diameters along the y axis against relative heights
along the x axis for two groups of trees as well as the Berkeley growth data. These
authors proved that the empirical versions of both BD and HRD converge uniformly
almost surely to their population counterparts. However, it was observed by them that
both the depth functions tend to take small values if the sample consists of irregular
(non-smooth) curves that cross one another often. To overcome this problem, López-
Pintado and Romo (2009, 2011) proposed modified versions of these depth functions,
called modified band depth (MBD) and modified half-region depth (MHRD), using the
“proportion of time” a sample curve spends inside a band or a half-region, respectively.

It was observed in Liu (1990) that the maximum value of simplicial depth of a
point in R

d with respect to any angularly symmetric absolutely continuous probability
distribution is 2−d . Consequently, the simplicial depth of any point in R

d under such a
distribution converges to zero as d grows to infinity. This observation motivated us to
critically investigate the behaviour of the above-mentioned depth functions for some
standard probability models that are widely used for data in infinite dimensional spaces.
It will be shown that infinite dimensional extensions of HD and PD have degenerate
behaviour in infinite dimensional spaces. Moreover, both BD and HRD suffer from
degeneracy for some standard probability models in function spaces. However, their
modified versions as well as ID do not suffer from any such degenerate behaviour
for similar probability distributions in function spaces. We also extend the notion of
SD into infinite dimensional spaces, and it is shown that such an extension leads to
a well-behaved and statistically useful depth function for many infinite dimensional
probability distributions.

2 Depths using linear projections

In this section, we shall consider depth functions that are defined using linear projec-
tions of a random element X. We begin by recalling that in finite dimensional spaces,
the definitions of both HD and PD involve distributions of linear projections of X.
An extension of HD into Banach spaces has been considered in Dutta et al. (2011).
Consider a Banach space X , the associated Borel σ -field, a random element X ∈ X
and a fixed point x ∈ X . The HD of x with respect to the distribution of X is defined
as HD(x) = inf{P(u(X − x) ≥ 0) : u ∈ X ∗}, where X ∗ denotes the dual space of
X . The PD of x with respect to the distribution of X is defined as

PD(x) =
[

1 + sup
u∈X ∗

|u(x)− θ(u(X))|
σ(u(X))

]−1

,

where θ(.) and σ(.) are some measures of location and scatter of the distribution of
u(X).

If X is a separable Hilbert space, X is isometrically isomorphic to l2, the space
of all square summable sequences. In that case, X = X ∗ = l2, and u(X) and u(x) in
the definitions of HD and PD given above are same as 〈u,X〉 and 〈u, x〉, respectively.
Here 〈., .〉 denotes the usual inner product in l2. We shall first consider the space l2
equipped with its usual norm and the associated Borel σ -field. Consider a random
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sequence X = (X1, X2, . . .) ∈ l2 such that
∑∞

k=1 E(X2
k ) < ∞, which implies that

E(X) = (E(X1), E(X2), . . .) ∈ l2. Let us set Y1 = X1 − E(X1) and denote by Yk the
residual of linear regression of Xk on (X1, X2, . . . , Xk−1) for k ≥ 2. In other words,
for k ≥ 2, Yk = Xk − β0k − ∑k−1

j=1 β jk X j , where β0k + ∑k−1
j=1 β jk X j is the linear

regression of Xk on (X1, X2, . . . , Xk−1). Thus, Y = (Y1,Y2, . . .) is a sequence of
uncorrelated random variables with zero means. Further, since τ 2

k = E(Y 2
k ) ≤ E(X2

k )

for all k ≥ 1, we have
∑∞

k=1 τ
2
k < ∞ and, hence, Y ∈ l2 with probability one. We

now state a theorem that establishes a degeneracy result for both HD and PD under
appropriate conditions on the distribution of Y.

Theorem 1 Let μ denote the probability distribution of X in l2. Assume that the
residual sequence Y obtained from X is α-mixing with the mixing coefficients {αk}
satisfying

∑∞
k=1 α

1−1/2p
k < ∞ for some p ≥ 1. Further, assume that τk > 0 for all

k ≥ 1, and supk≥1 E{(Yk/τk)
2r } < ∞ for some r > p. Then, H D(x) = P D(x) = 0

for all x in a subset of l2 with μ-measure one. Here, H D(x) and P D(x) denote
the half-space and the projection depths of x with respect to μ, respectively, and in
the definition of P D(x), we choose θ(.) and σ(.) to be the mean and the standard
deviation, respectively.

It is obvious that for any Gaussian probability measure μ, the assumptions in the
preceding theorem hold. Recently, it has been shown in Dutta et al. (2011) that HD
has degenerate behaviour when the probability distribution of X = (X1, X2, . . .) is
such that X1, X2, . . . are independent random variables satisfying suitable moment
conditions. Note that if X = (X1, X2, . . .) is a sequence of independent random
variables with zero means, we have Y = X. In that case, if we choose p = 1 and r = 2,
the moment assumption in the above theorem implies that

∑∞
k=1 E{(Xk/σk)

4}/k2 <

∞, which is the condition assumed in Theorem 3 in Dutta et al. (2011). It is worth
mentioning here that the above result is actually true whenever

∑∞
k=1(Yk/τk)

2 = ∞
with probability one (see the proof in Sect. 6). This, for instance, holds whenever
Y is a sequence of independent non-degenerate random variables. The moment and
the mixing assumptions on Y stated in the theorem are only sufficient to ensure that∑∞

k=1(Yk/τk)
2 = ∞ with probability one, but by no means are necessary.

The degeneracy of HD and PD stated in the previous theorem is not restricted to
separable Hilbert spaces only. Let us consider the space C[0, 1] of continuous functions
defined on [0, 1] along with its supremum norm and the associated Borelσ -field. Recall
that the dual space of C[0, 1] is the space of finite signed Borel measures on [0, 1]
equipped with its total variation norm. The following result shows the degeneracy of
HD and PD for a class of probability measures in C[0, 1].
Theorem 2 Consider a random element X in C[0, 1] having a Gaussian distribution
with a positive definite covariance kernel, and letμ denote the distribution of X. Then,
H D(x) = P D(x) = 0 for all x in a subset of C[0, 1] with μ-measure one. Here, we
denote the half-space and the projection depths of x with respect to μ by H D(x)
and P D(x), respectively, and we choose θ(.) as the mean and σ(.) as the standard
deviation in the definition of P D(x).

The degeneracy of HD stated in Theorems 1 and 2 can be interpreted as follows.
Let X be either l2 or C[0, 1]. Then, for any x ∈ X , we can choose a hyperplane in
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X through x in such a way that the probability content of one of the half-spaces is
as small as we want. On the other hand, the degeneracy result about PD in the above
theorems implies that one can find an element u ∈ X ∗ so that the distance of u(x)
from the mean of u(X) relative to the standard deviation of u(X) will be as large as
desired. Such degenerate behaviour of HD and PD clearly implies that they are not
suitable for center-outward ordering of the points in X , and these depth functions
cannot be used to determine the central and the outlying regions for many probability
measures including Gaussian distributions in X . One reason for such degeneracy is
that the dual space X ∗ is too large, and its unit ball is not compact (see also Mosler
and Polyakova 2012). It will be appropriate to note here that unlike what we have
mentioned about simplicial depth in Sect. 1, it is easy to verify that the maximum
values of HD and PD for any symmetric probability distribution in X such that any
linear function has a continuous distribution are 1/2 (see, e.g., Dutta et al. 2011) and 1,
respectively, and these values are achieved at the centre of symmetry of the probability
distribution. In other words, although HD and PD have degenerate behaviour in X ,
the half-space median and the projection median remain well defined for symmetric
distributions in X .

Let us now consider a simple classification problem, which involves class distribu-
tions in X (X = l2 or C[0, 1] as in the preceding paragraph), where the two classes
differ only by a shift in the location. Let X and Z denote random elements from the two
class distributions, where Z has the same distribution as X + c for some fixed c ∈ X .
Let us denote by HDX and HDZ the half-space depth functions computed using the
distributions of X and Z, respectively. Similarly, let PDX and PDZ be the projection
depth functions based on the distributions of X and Z, respectively. Then, under the
assumptions of Theorem 1 or 2, it is easy to verify using the arguments in the proofs
of those theorems (see Sect. 6) that HDX(w) = HDZ(w) = PDX(w) = PDZ(w) = 0
for almost every realization w of X and Z. This implies that neither HD nor PD is
suitable for classification purpose in the space X for such class distributions.

A modified version of Tukey depth, called the random Tukey depth (RTD), was
proposed in Cuesta-Albertos and Nieto-Reyes (2008) for probability distributions in
l2. It is defined as RTD(x) = min1≤ j≤N min{P(〈U j ,X〉 ≤ 〈U j , x〉), P(〈U j ,X〉 ≥
〈U j , x〉)}, where U j ’s are N i.i.d. observations from some probability distribution in
l2 independent of X, and the probability in the definition of RTD is conditional on
them. It is easy to see that the support of the distribution of RTD(X̃) is the whole of
[0, 1/2] for Gaussian and many other distributions in l2, where X̃ denotes an indepen-
dent copy of X. However, Cuesta-Albertos and Nieto-Reyes (2008) mentioned some
theoretical and practical difficulties with RTD including the problem of choosing N
and the distribution of U j ’s. A depth function for probability distributions in Banach
spaces was introduced in Cuevas and Fraiman (2009), which is called integrated dual
depth (IDD). It is defined as IDD(x) = ∫

X ∗ Du(u(x))Q(du), where x ∈ X , Q is
a probability measure in X ∗, and Du is a depth function defined on R. Cuevas and
Fraiman (2009) recommended that one can choose a finite number of i.i.d. random
elements U1,U2, . . . ,UN from a probability distribution in X ∗, which will be inde-
pendent of X and compute IDD using N−1 ∑N

k=1 DUk (Uk(x)). It can be easily shown
that if Du is any standard depth function (e.g., HD, SD or simplicial depth) that maps
R onto a non-degenerate interval, then for Gaussian and many other distributions of
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X in X , IDD(X) will have a non-degenerate distribution with an appropriate interval
as its support. However, like RTD, there are no natural guidelines available in practice
for choosing the probability distribution Q in the dual space X ∗ and the number N
of the random directions U j ’s.

3 Depths based on coordinate random variables

In this section, we shall discuss depths that use the underlying coordinate system
of the sample space. We begin by considering BD and HRD that were discussed in
Sect. 1. BD and HRD of any x = {xt }t∈[0,1] ∈ C[0, 1] with respect to the probability
distribution of a random element X = {Xt }t∈[0,1] in C[0, 1] are defined as

BD(x) =
J∑

j=2

P

(
min

i=1,..., j
Xi,t ≤ xt ≤ max

i=1,..., j
Xi,t , ∀ t ∈ [0, 1]

)
and (1)

HRD(x) = min{P(Xt ≤ xt , ∀ t ∈ [0, 1]), P(Xt ≥ xt , ∀ t ∈ [0, 1])}, (2)

respectively. Here, Xi = {Xi,t }t∈[0,1], i = 1, 2, . . . , J , denote independent copies of
X. López-Pintado and Romo (2009, 2011) defined finite dimensional versions of these
two depth functions as follows. For J independent copies Xi = (Xi,1, Xi,2, . . . , Xi,d),
i = 1, 2, . . . , J , of X = (X1, X2, . . . , Xd) and a fixed x = (x1, x2, . . . , xd),

BD(x) =
J∑

j=2

P

(
min

1≤i≤ j
Xi,k ≤ xk ≤ max

1≤i≤ j
Xi,k, ∀ k = 1, 2 . . . , d

)
and

HRD(x) = min{P(Xk ≤ xk, ∀ k = 1, 2 . . . , d), P(Xk ≥ xk, ∀ k = 1, 2 . . . , d)},

respectively. The above definitions of BD and HRD in function spaces and finite
dimensional Euclidean spaces lead to a natural definition of these depth functions
in a sequence space. For J i.i.d. copies Xi = (Xi,1, Xi,2, . . .) of an infinite random
sequence X = (X1, X2, . . .) and a fixed sequence x = (x1, x2, . . .), we can define

BD(x) =
J∑

j=2

P

(
min

1≤i≤ j
Xi,k ≤ xk ≤ max

1≤i≤ j
Xi,k, ∀ k ≥ 1

)
and

HRD(x) = min{P(Xk ≤ xk, ∀ k ≥ 1), P(Xk ≥ xk, ∀ k ≥ 1)},

respectively. However, as the following theorem shows, such versions of BD and HRD
in sequence spaces will have degenerate behaviour for certain α-mixing sequences.

Theorem 3 Let X = (X1, X2, . . .) be an α-mixing sequence of random variables
and denote the distribution of X by μ. Also, assume that the mixing coefficients {αk}
satisfy

∑∞
k=1 α

1−1/2p
k < ∞ for some p ≥ 1, and the Xks are non-atomic for each

k ≥ 1. Then, B D(x) = H RD(x) = 0 for all x with μ-measure one, where B D(x)
and H RD(x) denote the band and the half-region depths of x with respect to μ,
respectively.
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The preceding theorem implies that for i.i.d. copies of a random sequence satisfying
appropriate α-mixing conditions, any given sample sequence will not lie in a band or
a half-region formed by the other sample sequences with probability one. A question
that now arises is whether a similar phenomenon holds for probability distributions
in function spaces like C[0, 1]. Unfortunately, as the next theorem shows, BD and
HRD continue to exhibit degenerate behaviour for a well-known class of probability
measures in C[0, 1].
Theorem 4 Let {Xt }t∈[0,1] be a Feller process having continuous sample paths.
Assume that for some x0 ∈ R, P(X0 = x0) = 1, and the distribution of Xt is non-
atomic and symmetric about x0 for each t ∈ (0, 1]. Then, B D(x) = H RD(x) = 0
for all x in a set of μ-measure one, where μ denotes the probability distribution of X,
and the depth functions BD and HRD are obtained using μ.

We refer to Revuz and Yor (1991) for an exposition on Feller processes that include
Brownian motions, geometric Brownian motions and Brownian bridges. The above
theorem implies that for many well-known stochastic processes, BD and HRD will be
degenerate at zero. Consequently, BD and HRD will not be suitable for depth-based
statistical procedures like trimming, identification of central and outlying data points,
etc. for such distributions in C[0, 1] like HD and PD. Consider next, distinct Feller
processes X and Y on C[0, 1], and let BDX,BDY,HRDX and HRDY denote the BD’s
and the HRD’s obtained using the distributions of X and Y, respectively. Then, if both X
and Y satisfy the conditions of Theorem 4, using the arguments in the Proofs of Lemma
1 and 2 (see Sect. 6), it follows that BDX(z) = BDY(z) = HRDX(z) = HRDY(z) = 0
for almost every realization z of X and Y. This implies that neither BD nor HRD will
be able to discriminate between the distributions of X and Y.

As mentioned in Sect. 1, it was observed by López-Pintado and Romo (2009,
2011) that the depth functions BD and HRD tend to take small values if the sample
curves intersect each other often. This observation motivated them to consider modified
versions of BD and HRD, namely MBD and MHRD, respectively. MBD and MHRD
for probability distributions in C[0, 1], as defined by López-Pintado and Romo (2009,
2011), are given below. For a fixed x = {xt }t∈[0,1] ∈ C[0, 1] and J i.i.d. copies
Xi = {Xi,t }t∈[0,1] of a random element X = {Xt }t∈[0,1] ∈ C[0, 1],

MBD(x) =
J∑

j=2

E

[
λ

({
t ∈ [0, 1] : min

i=1,..., j
Xit ≤ xt ≤ max

i=1,..., j
Xit

})]
and

MHRD(x) = min{E[λ({t ∈ [0, 1] : Xt ≤ xt })], E[λ({t ∈ [0, 1] : Xt ≥ xt })]},

whereλ(.) is the Lebesgue measure on [0, 1]. Fraiman and Muniz (2001) defined ID for
probability measures on C[0, 1] as follows. For x = {xt }t∈[a,b] ∈ C[0, 1] and a random
element X = {Xt }t∈[0,1] ∈ C[0, 1], I D(x) = ∫ 1

0 Dt (xt )dt , where for every t, Dt (.)

denotes a univariate depth function on the real line obtained using the distribution of Xt .
As observed in López-Pintado and Romo (2009), if we choose J = 2 in the definition
of MBD, then MBD(x) = ∫ 1

0 2Ft (xt )(1 − Ft (xt ))dt , which is I D(x) defined using
the simplicial depth for each coordinate variable. Here, Ft denotes the distribution of
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Xt for each t ∈ [0, 1]. Indeed, we have the following equivalent representations of
MBD and MHRD by Fubini’s theorem. For any x = {xt }t∈[0,1] ∈ C[0, 1],

MBD(x) =
J∑

j=2

E

[∫ 1

0
I

(
min

i=1,..., j
Xit ≤ xt ≤ max

i=1,..., j
Xit

)
dt

]

=
J∑

j=2

∫ 1

0

[
1 − F j

t (xt−)− (1 − Ft (xt ))
j
]

dt and (3)

MHRD(x) = min

{
E

[∫ 1

0
I (Xt ≤ xt )dt

]
, E

[∫ 1

0
I (Xt ≥ xt )dt

]}

= min

{∫ 1

0
P(Xt ≤ xt )dt,

∫ 1

0
P(Xt ≥ xt )dt

}
. (4)

It is easy to see from (3) that if X = {Xt }t∈[0,1] ∈ C[0, 1] is symmetrically distributed
about a = {at }t∈[0,1] ∈ C[0, 1], i.e., X − a and a − X have the same distribution,
then MBD has a unique maximum at a. The same is true for ID provided that for all
t ∈ [0, 1], the univariate depth Dt in the definition of ID has a unique maximum at at

(cf. the property “FD4center” in Mosler and Polyakova (Mosler and Polyakova 2012,
p. 10) , Theorems 3 and 4 in Liu (1990) and property “P2” in Zuo and Serfling 2000, p.
463). Consider next x = {xt }t∈[0,1] ∈ C[0, 1] and y = {yt }t∈[0,1] ∈ C[0, 1] satisfying
either at ≤ xt ≤ yt or yt ≤ xt ≤ at for all t ∈ [0, 1], i.e., y is farther away from a
than x. Then, MHRD(y) ≤ MHRD(x) and MBD(y) ≤ MBD(x). Further, if Dt (xt ) is
a decreasing function of |xt − at | for all t ∈ [0, 1], we have ID(y) ≤ ID(x) (cf. the
“FD4pw Monotone” property in Mosler and Polykavo 2012, p. 9). Consider next any
x = {xt }t∈[0,1] ∈ C[0, 1] satisfying xt 
= 0 for all t in a subset of [0, 1] with Lebesgue
measure one. It follows from representations (3) and (4) for MBD and MHRD that
both MBD(a + nx) and MHRD(a + nx) converge to zero as n → ∞. Further, if
Dt (s) → 0 as |s − at | → ∞ for all t ∈ [0, 1], then ID(a + nx) → 0 as n → ∞. So,
all these depth functions tend to zero as one moves away from the center of symmetry
along suitable lines. This can be viewed as a weaker version of the “FD3” property in
Mosler and Polyakova (2012) (see also Theorem 1 in Liu 1990 and property “P4” in
Zuo and Serfling 2000, p. 464).

The following theorem shows that MBD, MHRD and ID have non-degenerate dis-
tributions with adequate spread for a class of probability distributions in C[0, 1] that
includes many popular stochastic models. The properties of these depth functions
discussed above and the theorem stated below show that these depth functions are
suitable choices for a center-outward ordering of elements of C[0, 1] with respect to
the distributions of a large class of stochastic processes, and can be used for construct-
ing central and outlying regions, trimmed estimators, and also for outlier detection.
Moreover, due to the continuity of ID and MBD, and the fact that they attain their
unique maximum at the centre of symmetry of any probability distribution, both these
depth functions will be able to discriminate between two distributions with distinct
centres of symmetry.
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Note that in view of (3) and (4), both MBD and MHRD are invariant under coordi-
natewise strictly monotone transformations. This property holds for ID also if all the
univariate depths Dt s are invariant under such transformations as well. For the next
theorem, in the definition of ID, we shall assume Dt (.) = ψ(Ft (.)) for all t ∈ [0, 1],
where ψ is a bounded continuous positive function satisfying ψ(0+) = ψ(1−) = 0,
and Ft denotes the distribution of Yt .

Theorem 5 Consider the process X = {Xt }t∈[0,1] = {g(t,Yt )}t∈[0,1], where
{Yt }t∈[0,1] ∈ C[0, 1] is a fractional Brownian motion starting at some y0 ∈ R.
Assume that the function g : [0, 1] × R is continuous, and g(t, .) strictly increases
with g(t, s) → ∞ as s → ∞ for each t ∈ [0, 1]. Then the following hold.

(a) The depth functions MBD(x),MHRD(x) and I D(x) take all values in (0, AJ ],
(0, 1/2] and ψ((0, 1)), respectively, as x varies in C[0, 1], where MBD, MHRD
and ID are obtained using the distribution of X, and AJ = J − 2 + 2−J+1 for
any J ≥ 2 with J as in the definitions of BD and MBD.

(b) The supports of the distributions of M B D(X̃),M H RD(X̃) and I D(X̃) are
[0, AJ ], [0, 1/2] and the closure of ψ((0, 1)), respectively. Here X̃ denotes an
independent copy of X.

(c) The above conclusions hold if {Yt }t∈[0,1] is a fractional Brownian bridge starting
at y0 ∈ R.

Note that since ψ is a continuous non-constant function, the support of the distri-
bution of I D(X̃) is actually a closed non-degenerate interval. Here, by the support of
a probability distribution in any metric space, we mean the smallest closed set with
probability one. Let us also observe that in the above theorem, the depths are computed
based on the entire process X = {Xt }t∈[0,1] starting from time t = 0. But in practice, it
might very often be the case that we observe the process from some time point t0 > 0,
and then the depths are to be computed based on the observed path {Xt }t∈[t0,1]. Even
in that case, the conclusions of the above theorem hold (see Remark 1 in Sect. 6).

4 Spatial depth in infinite dimensional spaces

In this section, we shall consider an extension of the notion of spatial depth from R
d

into infinite dimensional spaces. Spatial depth of x ∈ R
d with respect to the probability

distribution of a random vector X ∈ R
d is defined as SD(x) = 1 −||E{(x − X)/||x −

X||}|| (see, e.g., Vardi and Zhang 2000; Serfling 2002). It has been widely used for
various statistical procedures including clustering and classification (see, e.g., Jörnsten
2004; Ghosh and Chaudhuri 2005), construction of depth-based central and outlying
regions and depth-based trimming (see Serfling 2006). This depth function extends
naturally to any Hilbert space X . For an x ∈ X and a random element X ∈ X , we can
define SD(x) using the same expression as above, where ‖·‖ is to be taken as the usual
norm in X and the expectation is in the Bochner sense (see, e.g., Araujo and Giné
1980, p. 100). Spatial depth function inherits many of its interesting properties from
finite dimensions. For instance, it is invariant under the class of linear transformations
T : X → X , where T (x) = cAx + b for some c > 0, b ∈ X , and an isometry A
on X (i.e., ||Ax|| = ||x|| for all x ∈ X ). Further, SD(x) is a continuous function in
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x if the distribution of X is non-atomic, which is a direct consequence of dominated
convergence theorem. It follows from Kemperman (1987) that if X is strictly convex,
and the distribution of X is non-atomic and is not supported on a line in X , then
the function SD has a unique maximum at the spatial median m (say) of X and its
maximum value is 1 (cf. the property “FD4center” in Mosler and Polyakova 2012,
p. 10. Theorems 3 and 4 in Liu 1990 and property “P2” in Zuo and serfling 2000,
p. 463). Further, if we consider the sequence {m + nx}n≥1 for any fixed non-zero
x ∈ X , it follows by a simple application of dominated convergence theorem that
SD(m + nx) → 0 as n → ∞ (cf. the “FD3” property in Mosler and Polyakova 2012,
Theorem 1 in Liu 1990 and property “P4” in Zuo and Serfling 2000, p. 464).

A natural question that arises now is whether SD suffers from degeneracy similar
to what was observed in the case of some of the depth functions discussed earlier or
its distribution is well spread out. As the next theorem shows, the distribution of SD is
actually supported on the entire unit interval for a large class of probability measures
in a separable Hilbert space X including Gaussian probabilities.

Theorem 6 Let X be a separable Hilbert space and consider a random element
X = ∑∞

k=1 Xkφk , where {φk}k≥1 is an orthonormal basis of X . Assume that X has a
non-atomic probability distribution μ with

∑∞
k=1 E(X2

k ) < ∞, and the support of the
conditional distribution of (X1, X2, . . . , Xd) given (Xd+1, Xd+2, . . .) is the whole of
R

d for each d ≥ 1. Then, the function SD(x) defined using the distribution μ takes
all the values in (0, 1] as x varies in X . Further, if X̃ denotes an independent copy of
X, the support of the distribution of SD(X̃) will be the whole of [0, 1].

Since C[0, 1] ⊆ L2[0, 1], for any probability distribution on C[0, 1], SD is defined
in the same way as in the case of the separable Hilbert space L2[0, 1]. Thus, for a
random element X ∈ C[0, 1], if the sequence (X1, X2, . . .) obtained from the orthog-
onal decomposition of X in L2[0, 1] satisfies the conditions of Theorem 6, then the
support of the distribution of SD(X̃) will be the whole of [0, 1]. In particular, for any
Gaussian process having a continuous mean function and a continuous positive definite
covariance kernel, we can have (X1, X2, . . .) to be the coefficients of the Karhunen–
Loève expansion of X, which will then be a sequence of independent Gaussian random
variables and, consequently, the conditions of Theorem 6 will hold. Those assump-
tions, however, need not hold when X is a function of some Gaussian process in
C[0, 1] similar to that we have considered in Theorem 5. Indeed, even if X admits
a Karhunen–Loève type expansion in such a case, the sequence of coefficients need
not satisfy the conditions of Theorem 6. However, as the next theorem shows, the
distribution of SD has full support on the unit interval in some of these situations as
well.

Theorem 7 Consider the process X = {Xt }t∈[0,1] = {g(t,Yt )}t∈[0,1] as in Theorem 5.
Then, the function SD(x) defined using the distribution of X takes all values in (0, 1)
as x varies in C[0, 1]. Moreover, the support of the distribution of SD(X̃) is the whole
of [0, 1], where X̃ is an independent copy of X.

It follows from arguments that are very similar to those in Remark 1 in Sect. 6 that
the above result holds even if SD is computed based on the process {Xt }t∈[t0,1], where
t0 > 0. The properties of SD stated at the beginning of this section along with the
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results in Theorems 6 and 7 imply that like ID, MBD and MHRD, SD can also be used
for various depth-based statistical procedures. The spatial depth function can also be
used to discriminate between two probability measures in a separable Hilbert space
or C[0, 1]. For instance, for any two non-atomic probability measures having distinct
and unique spatial medians, the associated spatial depth functions will be continuous,
each having a unique maximum at the corresponding spatial median. In that case,
spatial depth will be able to distinguish between the two distributions.

We conclude this section with the discussion of another notion of depth, which has a
somewhat similar nature as that of SD. For a random element X and a fixed element x in
L2[0, 1], the h-depth introduced in Cuevas et al. (2007) is defined as E{Kh(||x−X||)},
where Kh(t) = h−1 K (t/h) for some fixed kernel K and h > 0 is a tuning parameter.
Suppose that K is a bounded continuous probability density function supported on the
whole of [0,∞)with K (s) → 0 as s → ∞, and (X1, X2, . . .) satisfies the conditions
in Theorem 6, which ensures that the support of the distribution of X is the whole of
L2[0, 1]. Then, in view of the continuity of E{Kh(||x−X||)} as a function of x, which
is a consequence of the dominated convergence theorem, it is not difficult to see that
the support of the distribution of the h-depth evaluated at an independent copy X̃ of
X will be the whole of [0, A]. Here, A = supx∈L2[0,1] E{Kh(||x − X||)}. However, no
specific guidelines are available for choosing K and h in practice.

5 Demonstration using real and simulated data

In the three preceding sections, we have investigated the behaviour of several depth
functions in infinite dimensional spaces. The results derived in those sections are
all about the population versions of different depth functions. In this section, we
try to investigate to what extent those results are reflected in the empirical ver-
sions of the corresponding depth functions computed using some simulated and real
datasets. First, we shall consider some simulated and real sequence data. The simu-
lated dataset consists of 50 i.i.d. observations on a d-dimensional Gaussian random
vector X = (X1, X2, . . . , Xd) that satisfies Cov(Xk, Xl) = r−|k−l|/(kl)2, where
r = 0.1, k, l = 1, 2, . . . , d, and d = 4, 000. The real dataset that is considered next is
obtained from http://datam.i2r.a-star.edu.sg/datasets/krbd/ColonTumor/ColonTumor.
zip and contains expressions of d = 2,000 genes in tumor tissue biopsies corre-
sponding to 40 colon tumor patients and 22 normal samples of colon tissue. For both
these datasets, we can view each sample point as the first d coordinates of an infinite
sequence.

In all our samples, since the dimension is much larger than the sample size, the
empirical versions of both HD and PD turn out to be zero (see Fig. 1). This is a
consequence of the fact that when the dimension is larger than the sample size, and no
sample point lies in the subspace spanned by the remaining sample points, the HD and
the PD of any data point with respect to the empirical distribution of the remaining
data points is zero (see, e.g., remarks at the beginning of Section 4 in Dutta et al. 2011).
It is also observed from the dot plots in Fig. 1 that empirical BD and HRD are both
degenerate at zero for the two datasets. However, the distribution of empirical SD is
well spread out in the corresponding dot plots in Fig. 1.
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Fig. 1 Dot plots of SD, PD, HRD, HD and BD for simulated data and colon data

For the colon data, we have prepared another dot plot (see Fig. 2), which shows
the difference between the two empirical SD values for each data point, where one
depth value is obtained with respect to the empirical distribution of the tumor tissue
sample, and the other one is obtained using that of the normal sample. The value of this
difference for a data point corresponding to the tumor tissue is plotted in the panel with
heading “tumor tissue”, where all the values are positive. This implies that each data
point in the sample of tumor tissue has higher depth value with respect to the empirical
distribution of the tumor sample than its depth value with respect to the empirical
distribution of the normal tissue sample. On the other hand, a data point corresponding
to the normal tissue is plotted in the panel with heading “normal tissue”, where all the
values, except only two, are negative. In other words, except for those two cases, each
data point in the sample of normal tissue has higher depth value with respect to the
normal tissue sample. Thus, SD adequately discriminates between the two samples,
and maximum depth or other depth-based classifiers (see, e.g., Ghosh and Chaudhuri
2005; Li et al. 2012) constructed using SD will yield good results for this dataset.

We shall next consider some simulated and real functional data. Each of the three
simulated datasets consists of 50 observations from (1) a standard Brownian motion
on [0, 1], (2) a zero mean fractional Brownian motion on [0, 1] with covariance
function K (t, s) = (1/2)[t2H + s2H − |t − s|2H ], where t, s ∈ [0, 1], and we
choose the Hurst index H = 0.75, and (3) a geometric Brownian motion defined
as Xt = exp((r −σ 2/2)t +σ Bt ), where t ∈ [0, 1] and r = σ = 0.5. Here, {Bt }t∈[0,1]
denotes the standard Brownian motion on [0, 1]. For all three simulated datasets, the
sample functions were observed at d = 2,000 equispaced points in (0, 1). We have also
considered two real datasets, the first one being the lip movement data, which is avail-
able at http://www.stats.ox.ac.uk/~silverma/fdacasebook/LipPos.dat, and contains 32
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Depth differences

Normal tissue

Tumor tissue

0.40.20.0−0.2−0.4

Fig. 2 Dot plots of depth differences based on SD for colon data. The horizontal axis corresponds to the
difference between empirical SD values of each data point with respect to the tumor tissue sample and the
normal tissue sample

sample observations on the movement of the lower lip. The curves are the trajectories
traced by the lower lip while pronouncing the word “bob”. The measurements are taken
at d = 501 time points in a time interval of 700 milliseconds. The second real dataset
is the growth acceleration dataset derived from the well-known Berkeley growth data
(see Ramsay and Silverman 2005), which contains two subclasses, namely, boys and
girls. The heights of 39 boys and 54 girls were measured at 31 time points between ages
1 and 18 years. The growth acceleration curves are obtained through monotone spline
smoothing available in the R package “fda” and recorded at d = 101 equispaced ages
in the interval [1, 18]. For these functional datasets, we calculated MBD by taking
J = 2 as suggested in López-Pintado and Romo (2009), and Dt in the definition of
ID was taken to be SD for each t , which is equivalent to the depth function used in
Fraiman and Muniz (2001).

As shown in the dot plots in Figs. 3 and 4, for all of the above simulated and real data,
the distributions of empirical ID, MBD, MHRD and SD are well spread out. Empirical
BD and HRD are both degenerate at zero for the Brownian motion and the fractional
Brownian motion (see Fig. 3). For the geometric Brownian motion, the maximum
value of empirical BD was 0.024, with its median = 0 and the third quartile = 0.004,
whereas the maximum value of empirical HRD was 0.020 with its third quartile = 0
(see Fig. 3). For the lip movement data, the empirical HRD is degenerate at zero, while
the maximum value of empirical BD is 0.006 with its third quartile = 0 (see Fig. 4).
For the growth acceleration data, the HRD again turns out to be degenerate at zero,
while BD takes a maximum value of 0.004 for boys and 0.008 for girls, and the third
quartile for BD = 0 for boys as well as girls (see Fig. 4).

For the growth acceleration data, Fig. 5 shows the dot plots for the differences
between the two depth values with respect to the empirical distributions of the boys
and girls based on SD, MHRD, MBD and ID. The value of this difference for a
data point corresponding to a boy (respectively, a girl) is plotted in the panel with
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Fig. 3 Dot plots of SD, MHRD, MBD, ID, HRD and BD for simulated standard Brownian motion, geo-
metric Brownian motion and fractional Brownian motion
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Fig. 4 Dot plots of SD, MHRD, MBD, ID, HRD and BD for lip movement data and growth acceleration
data

heading “Boys” (respectively, “Girls”). For SD, MBD and ID, most of the data points
corresponding to the boys have higher depth values with respect to the empirical
distribution of the boys than with respect to the empirical distribution of the girls. On
the other hand, most of the data points corresponding to the girls have higher depth
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Fig. 5 Dot plots for depth differences based on SD, MHRD, MBD and ID for growth accceleration data.
The horizontal axis corresponds to the difference between empirical depth values of each data point with
respect to the boys and girls

values with respect to the empirical distribution of the girls. This implies that each of
ID, MBD and SD adequately discriminates between the two samples, and depth-based
classifiers (see, e.g., Ghosh and Chaudhuri 2005; Li et al. 2012) constructed using ID,
MBD or SD will perform well for this dataset. However, the plot corresponding to
MHRD shows that a large number of data points in the sample of the boys have higher
depth values with respect to the empirical distribution of the girls, and almost half of
the data points in the sample of the girls have higher depth values with respect to the
empirical distribution of the boys. This indicates that MHRD does not discriminate
well between the two samples.

6 Technical details

Proof of Theorem 1 Let X(d) = (X1, X2, . . . , Xd)
′ and Y(d) = (Y1,Y2, . . . ,Yd)

′ be
d-dimensional column vectors that consist of the first d coordinates of the sequences
X and Y. Observe that Y(d) = Td(X(d)), where Td : R

d → R
d is a bijective affine

map. By definition, the half-space depth of a point x ∈ l2 relative to the distribution
of X will satisfy

HD(x) = inf
u∈l2

P(〈u,X − x〉 ≥ 0) ≤ inf
d≥1

inf
v∈Rd

P(v′X(d) ≥ v′x(d))

= inf
d≥1

inf
v∈Rd

P(v′Y(d) ≥ v′y(d))

≤ inf
d≥1

inf
v∈Rd :v′y(d)>0

P(v′Y(d) ≥ v′y(d)), (5)
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where x(d) = (x1, x2, . . . , xd)
′ is the vector of first d coordinates of x, y(d) =

(y1, y2, . . . , yd)
′ = Td(x(d)) and v = (v1, v2, . . . , vd)

′. Throughout this section, any
finite dimensional vector will be a column vector, and ′ will denote its transpose. Since
Y1,Y2, . . . ,Yd are uncorrelated, it follows from (5) and Chebyshev inequality that

HD(x) ≤ inf
d≥1

inf
v:v′y(d)>0

V ar(v′Y(d))
(v′y(d))2

= inf
d≥1

inf
v:v′y(d)>0

∑d
k=1 v

2
k τ

2
k[∑d

k=1 vk yk

]2 . (6)

(6) implies, by an application of Cauchy–Schwarz inequality, that

HD(x) ≤ inf
d≥1

[
d∑

k=1

y2
k /τ

2
k

]−1

. (7)

In view of the moment and the mixing conditions assumed on the Yks in the theorem,
it follows from Corollary 4 in Hansen (1991) that

d−1
d∑

k=1

Y 2
k /τ

2
k → 1 a.s. ⇒ inf

d≥1

[
d∑

k=1

Y 2
k /τ

2
k

]−1

= 0 a.s. (8)

(7) and (8) imply that HD(x) = 0 for all x in a subset of l2 with μ-measure one.
Next, using the definition of PD and arguments similar to those used above, we get

that for any x ∈ l2,

1 − PD(x)
PD(x)

= sup
u∈l2

|〈u, x〉 − E(〈u,X〉)|√
Var(〈u,X〉) ≥ sup

d≥1
sup

v∈Rd

|v′x(d)− E(v′X(d))|√
Var(v′X(d))

≥ sup
d≥1

sup
v∈Rd

|v′y(d)|√
Var(v′Y(d))

≥ sup
d≥1

sup
v∈Rd

∣∣∣∑d
k=1 vk yk

∣∣∣√∑d
k=1 v

2
k τ

2
k

= sup
d≥1

d∑
k=1

y2
k

τ 2
k

. (9)

As in the case of HD, in view of the moment and the mixing conditions on the Yks
assumed in the theorem, (8) and (9) now imply that PD(x) = 0 for all x in a subset of
l2 with μ-measure one. ��
Proof of Theorem 2 Let us denote the dual space of C[0, 1] by M [0, 1]. Consider
the measure ud ∈ M [0, 1], which assigns point mass vk at k/d, k = 1, 2, . . . , d.
So, we have ud(x) = ∑d

k=1 vk xk/d for any x = {xt }t∈[0,1] ∈ C[0, 1]. Let v =
(v1, v2, . . . , vd)

′,Xd = (X1/d , X2/d , . . . , Xd/d)
′ and xd = (x1/d , x2/d , . . . , xd/d)

′.
For each d ≥ 1, define Yd,1 = X1/d − E(X1/d), and let Yd,k denote the residual of
linear regression of Xk/d on (X1/d , X2/d , . . . , X(k−1)/d) for k = 2, 3, . . . , d. Then,
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Yd = (Yd,1,Yd,2, . . . ,Yd,k)
′ has a multivariate Gaussian distribution with indepen-

dent components in view of the Gaussian distribution of X. The proof now follows
by straightforward modification of the arguments used in the Proof of Theorem 1 and
using Yd in place of Y(d). ��
Proof of Theorem 3 Let X̃ = (X̃1, X̃2, . . .) and Xi = (Xi,1, Xi,2, . . .), i =
1, 2, . . . , J , be independent copies of X. We first note that BD(x) = HRD(x) = 0 with
probability one iff E{BD(X̃)} = E{HRD(X̃)} = 0. Let us first consider the case of BD.
Note that E{BD(X̃)} = ∑J

j=2 P(min1≤i≤ j Xi,k ≤ X̃k ≤ max1≤i≤ j Xi,k, ∀ k ≥ 1).

So, E{BD(X̃)} = 0 iff P(min1≤i≤ j Xi,k ≤ X̃k ≤ max1≤i≤ j Xi,k, ∀ k ≥ 1) = 0
for all 2 ≤ j ≤ J . Consequently, it is enough to show that for any 2 ≤ j ≤ J , the
event {min1≤i≤ j Xi,k > X̃k} ∪ {max1≤i≤ j Xi,k < X̃k} occurs for some k ≥ 1 with
probability one. Now, the sequence (min1≤i≤ j Xi,1 − X̃1,min1≤i≤ j Xi,2 − X̃2, . . .)

is α-mixing for any 1 ≤ j ≤ J , and its mixing coefficients satisfy the conditions
assumed in the theorem. On the other hand, P(min1≤i≤ j Xi,k > X̃k) = 2− j for all
k ≥ 1, by the continuity of the distributions of the Xks. So, using Corollary 4 in
Hansen (1991), we have d−1 ∑d

k=1 I (min1≤i≤ j Xi,k > X̃k) → 2− j as d → ∞ with
probability one for all 1 ≤ j ≤ J . So, the event {min1≤i≤ j Xi,k > X̃k} actually occurs
for infinitely many k ≥ 1 with probability one. Thus, BD(x) = 0 for all x in a subset
of l2 with μ-measure one.

The proof for HRD follows by taking j = 1 and we skip further details. ��
Lemma 1 Let {Xt }t∈[0,1] be a Feller process in C[0, 1] satisfying the conditions of
Theorem 4. Let Xi = {Xi,t }t∈[0,1], i = 1, 2, . . . , J , denote independent copies of
X, and define Tj = inf{t > 0 : min1≤i≤ j Xi,t > x0} and S j = inf{t > 0 :
max1≤i≤ j Xi,t < x0} for 1 ≤ j ≤ J . Then, P(Tj = 0) = P(S j = 0) = 1 for
all 1 ≤ j ≤ J .

Proof Consider the multivariate Feller process {(X1,t , X2,t , . . . , X j,t )}t∈[0,1], where
1 ≤ j ≤ J . Since, P(Tj ≤ t) ≥ P(min1≤i≤ j Xi,t > x0) = 2− j and P(S j ≤ t) ≥
P(max1≤i≤ j Xi,t < x0) = 2− j for every t > 0, we have

P(Tj = 0) = lim
s↓0

P(Tj ≤ s) ≥ 2− j and P(S j = 0) = lim
s↓0

P(S j ≤ s) ≥ 2− j .

(10)

From the continuity of the sample paths of the processes, and using Propositions
2.16 and 2.17 in Revuz and Yor (1991), it follows that P(Tj = 0) = 0 or 1 and
P(S j = 0) = 0 or 1 for all 1 ≤ j ≤ J . The proof is now complete using (10).

��
Lemma 2 Let {Xt }t∈[0,1] be a Feller process on C[0, 1] satisfying the conditions of
Theorem 4. Also, let f = { ft }t∈[0,1] ∈ C[0, 1] be such that f0 = x0 and ft −x0 changes
sign infinitely often in any right neighbourhood of zero. Then, P(T = 0) = P(S =
0) = 1, where T = inf{t > 0 : Xt − ft > 0} and S = inf{t > 0 : Xt − ft < 0}.
Proof For any t > 0, let 0 < r < t be such that fr < x0. Then, P(T ≤ t) ≥ P(T ≤
r) ≥ P(Xr > fr ) ≥ P(Xr > x0) = 1/2. Now, arguing as in the proof of Lemma 1,
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we get that P(T = 0) = 1 since {Xt − ft }t∈[0,1] is a Feller proces starting at 0. Next,
let 0 < s < t be such that fs > x0. By similar arguments, we get that P(S = 0) = 1.��
Proof of Theorem 4 We first prove the result for BD using similar ideas as in the proof
of Theorem 3. From the definition of BD in (1), we have

E{BD(X̃)} =
J∑

j=2

P

(
min

1≤i≤ j
Xi,t ≤ X̃t ≤ max

1≤i≤ j
Xi,t , ∀ t ∈ [0, 1]

)

≤
J∑

j=2

P

(
min

1≤i≤ j
Xi,t ≤ X̃t , ∀ t ∈ [0, 1]

)

=
J∑

j=2

E

{
P

(
min

1≤i≤ j
Xi,t ≤ X̃t , ∀ t ∈ [0, 1]

∣∣∣∣ X1,X2, . . . ,XJ

)}
.

(11)

For any fixed j , let z = {zt }t∈[0,1] be a realization of the process {min1≤i≤ j Xi,t }t∈[0,1].
Then, from Lemma 1, it follows that z satisfies, with probability one, the assumptions
made on the function f in Lemma 2. So, using Lemma 2, we have P(zt ≤ X̃t , ∀ t ∈
[0, 1]) = 0 for all z in a set of probability one. Hence, the expectation in (11) is zero,
which implies that E{BD(X̃)} = 0. Thus, BD(x) = 0 on a set of μ-measure one.

The proof for HRD follows by taking z to be a realization of the process X and
using Lemma 1 and similar arguments as above. ��
Lemma 3 Let G be the map on C[0, 1] defined as G(f) = {g(t, ft )}t∈[0,1], where
f = { ft }t∈[0,1] ∈ C[0, 1] and g : [0, 1] × R → R is continuous. Then, G is a
continuous map from C[0, 1] into C[0, 1].
Proof Let tn → t in [0, 1] as n → ∞. By the continuity of g, and the fact that
f = { ft }t∈[0,1] ∈ C[0, 1], we have g(tn, ftn ) → g(t, ft ) as n → ∞. This shows
that G maps C[0, 1] into C[0, 1]. Let us now fix ε > 0, t ∈ [0, 1] and f ∈ C[0, 1].
Consider a sequence of functions fn = { fn,t }t∈[0,1] in C[0, 1] such that ||fn − f || → 0
as n → ∞. Note that the function g is uniformly continuous on [0, 1] × I , where I is
any compact interval of the real line. Thus, supt∈[0,1] |g(t, fn,t )− g(t, ft )| → 0, and
this proves the continuity of G. ��
Proof of Theorem 5 (a) Since the process Y = {Yt }t∈[0,1] has almost surely continu-

ous sample paths, Lemma 3 implies that the sample paths of the process X = G(Y)
also lie in C[0, 1] almost surely. Consider now xp = G(yp), where p ∈ (0, 1)
and yp = {F−1

t (p)}t∈[0,1]. Note that the distribution Ft of Yt is Gaussian for all
t ∈ (0, 1] with zero mean and variance σ 2

t (say), which is a continuous function in
t . So, F−1

t (p) = σt�
−1(ζp), where� and ζp denote the distribution function and

the pth quantile of the standard normal variable, respectively. Hence, yp ∈ C[0, 1],
and in view of Lemma 3, we have xp = G(yp) ∈ C[0, 1].

Note that by strict monotonicity of g(t, .) for all t ∈ [0, 1], we have
MBD(xp) = ∑J

j=2[1 − p j − (1 − p) j ],MHRD(xp) = min(p, 1 − p)
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and ID(xp) = ψ(p). These depth functions are bounded above by AJ =
J −2 +2−J+1, 1/2 and sups∈(0,1) ψ(s), respectively, where the upper bounds
are attained in MBD and MHRD iff p = 1/2. Let us now write Cy0 [0, 1] =
{f = { ft }t∈[0,1] ∈ C[0, 1] : f0 = y0}, and define H0 = G(Cy0 [0, 1]) =
{G(f) : f ∈ Cy0 [0, 1]}. Since xp ∈ H0, we have MBD(H0) = {MBD(x) : x ∈
H0} = (0, AJ ],MHRD(H0) = (0, 1/2] and I D(H0) = ψ((0, 1)) by varying
p ∈ (0, 1). This completes the proof of part (a).

(b) It follows from the proof of Proposition 5.1 in Guasoni (2006) that the support
of a fractional Brownian motion, say {Zt }t∈[0,1], starting at zero is the whole of
C0[0, 1]. Since the distribution of {Yt }t∈[0,1] is same as that of {Zt + y0}t∈[0,1], the
support of the distribution of {Yt }t∈[0,1] is the whole of Cy0 [0, 1]. By continuity of
G proved in Lemma 3, any point in H0 is a support point of the distribution of X̃.
On the other hand, for every fixed t ∈ [0, 1], since g(t, .) is a continuous strictly
monotone function, and the distribution of Yt is continuous, it follows that the
distribution of Xt is continuous. So, using the dominated convergence theorem,
we get that MBD, MHRD and ID are continuous functions on C[0, 1]. This and
the fact that any point in H0 is a support point of the distribution of X̃ completes
the proof of part (b).

(c) If {Yt }t∈[0,1] is a fractional Brownian bridge “tied” down to b0 at t = 1 (say), then
it has the same distribution as that of {Zt − Cov(Zt , Z1)(Z1 − b0)}t∈[0,1]. So, the
support of {Yt }t∈[0,1] is the set {f = { ft }t∈[0,1] ∈ Cy0 [0, 1] : f1 = b0}. The proof
now follows from arguments similar to those in parts (a) and (b). ��

Remark 1 It follows from the proof of Proposition 5.1 in Guasoni (2006) that a frac-
tional Brownian motion {Yt }t∈[0,1] starting at y0 has as its support as the whole of
Cy0 [0, 1], which implies that the support of {Yt }t∈[t0,1] is the whole of C[t0, 1] for any
t0 > 0. Consequently, if MBD, MHRD and ID are computed based on the distribution
of {Xt }t∈[t0,1], the supports of the distributions of MBD(X̃),MHRD(X̃) and I D(X̃)
will be [0, AJ ], [0, 1/2] and the closure of ψ((0, 1)), respectively.

Proof of Theorem 6 First, we shall prove that the support of X̃ is the whole of l2,
where X̃ = (X̃1, X̃2, . . .) is an independent copy of X = (X1, X2, . . .). For this, let
us fix x ∈ l2 and η > 0. Then, there exists d ≥ 1 satisfying ||x − x[d]|| < η, where
x[d] = (x1, x2, . . . , xd , 0, 0, . . .). Further, in view of the assumption on the second
moments of the Xks, we can choose M > d such that

∑
k>M E(X̃2

k ) < η2/4. Then,

P(||X̃ − x|| < 2η) > P(||X̃ − x[d]|| < η)

> P

⎛
⎝∑

k≤M

(X̃k − xk)
2 <

η2

2

∣∣∣∣∣
∑
k>M

X̃2
k <

η2

2

)
P

(∑
k>M

X̃2
k <

η2

2

)
. (12)

Using Markov inequality, we get

P

(∑
k>M

X̃2
k <

η2

2

)
> 1 −

∑
k>M E(X̃2

k )

η2/2
> 1/2. (13)
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(12) and (13) now imply that

P(||X̃ − x|| < 2η) >
1

2
P

⎛
⎝∑

k≤M

(X̃k − xk)
2 <

η2

2

∣∣∣∣∣
∑
k>M

X̃2
k <

η2

2

)
. (14)

From the conditional full support assumption on the Xks, it follows that the expression
on the right hand side of the inequality (14) is positive for each η > 0. This implies
that x lies in the support of X̃.

Since the distribution of X is non-atomic, SD is a continuous function on l2 as
mentioned in Sect. 4. Thus, the set {SD(x) : x ∈ l2} is an interval in [0, 1]. Hence,
from the properties of SD discussed in Sect. 4, we get that the function SD takes all
values in (0, 1]. This and the continuity of SD together imply that the support of the
distribution of SD(X̃) is the whole of [0, 1]. ��
Lemma 4 The set H0 = G(Cy0 [0, 1]) is convex. Here, G is as in Lemma 1 and
Cy0 [0, 1] is as in the Proof of Theorem 5.

Proof Let us take f = { ft }t∈[0,1] and h = {ht }t∈[0,1] ∈ Cy0 [0, 1]. Fix λ ∈ (0, 1)
and t ∈ [0, 1]. Let L = max(||f ||, ||h||). By continuity of g(t, .), the range of g(t, s)
for s ∈ [−L , L] is a closed and bounded interval, say [a, b]. Thus, λg(t, ft ) + (1 −
λ)g(t, ht ) ∈ [a, b]. Since g(t, .) is continuous and strictly increasing, there is a unique
qt ∈ [−L , L] such that g(t, qt ) = λg(t, ft )+(1−λ)g(t, ht ). Now let tn → t ∈ [0, 1]
as n → ∞. Since g(tn, qtn ) = λg(tn, ftn )+ (1 − λ)g(tn, htn ), by continuity of g, we
have

g(tn, qtn ) → λg(t, ft )+ (1 − λ)g(t, ht ) = g(t, qt ) (15)

as n → ∞. Suppose now, if possible, qtn � qt as n → ∞. Then, there exists
ε0 > 0 and a subsequence {tn j } j≥1 such that |qtn j

− qt | > ε0 for all j ≥ 1. A further
subsequence of {tn j } j≥1 will converge to some bt ∈ [−L , L] and, hence, |bt −qt | ≥ ε0.
Along that latter subsequence, we have g(tn j , qtn j

) converging to g(t, bt ). This and
(15) together imply that g(t, bt ) = g(t, qt ). So, by strict monotonicity of g(t, .), we
get that bt = qt , which yields a contradiction. Hence, qtn → qt as n → ∞, which
implies that q = {qt }t∈[0,1] ∈ Cy0 [0, 1]. This proves the convexity of H0. ��
Lemma 5 Every point in H0 is a support point of the distribution of X̃ in L2[0, 1].
Here, X̃ is as in Theorem 7.

Proof Fix f ∈ Cy0 [0, 1] and η > 0. Let ||.|| denote the supremum norm on C[0, 1]
as before, and ||.||2 denote the usual norm on L2[0, 1]. Since ||y||2 ≤ ||y|| for any
y ∈ C[0, 1], we have P(||G(Y)− G(f)||2 < η) > P(||G(Y)− G(f)|| < η). By the
continuity of G proved in Lemma 3, there exists δ > 0 depending on η and f such
that P(||G(Y)− G(f)|| < η) > P(||Y − f || < δ). Since any element in Cy0 [0, 1] is
a support point of the distribution of Y in C[0, 1], we have P(||Y − f || < δ) > 0.
It now follows that G(f) ∈ H0 is a support point of the distribution of X̃ = G(Ỹ) in
L2[0, 1], where Ỹ denotes an independent copy of Y. This completes the proof. ��
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Proof of Theorem 7 We will first show that SD(x) takes all values in (0, 1) as x varies
in C[0, 1]. As discussed in Sect. 4, the spatial depth function is continuous on L2[0, 1].
We have H0 ⊆ C[0, 1] ⊆ L2[0, 1], and H0 is convex by Lemma 4, which implies
that the set SD(H0) = {SD(f) : f ∈ H0} is an interval in [0, 1]. It follows from the
non-atomicity of X and Lemma 4.14 in Kemperman (1987) that SD(m) = 1, where m
is a spatial median of X in L2[0, 1]. Further, from Remark 4.20 in Kemperman (1987),
it follows that m lies in the closure of H0 in L2[0, 1]. Thus, there exists a sequence
{mn}n≥1 in H0 ⊆ C[0, 1] such that ||mn − m||2 → 0 as n → ∞, where ‖·‖2 is the
usual norm in L2[0, 1] as before. Hence, by continuity of the spatial depth function,
we have SD(mn) → 1 as n → ∞. We next consider the sequence of linear functions
{rn}n≥1, where rn = {g(0, y0) + dnt}t∈[0,1] and dn → ∞ as n → ∞. Since g(t., )
is a strictly increasing continuous function for each t ∈ [0, 1] with g(t, s) → ∞ as
s → ∞, there exists fn,t such that g(t, fn,t ) = g(0, y0)+dnt . Using the assumptions
about g, it can be shown that for each n ≥ 1, the function fn = { fn,t }t∈[0,1] ∈ Cy0 [0, 1],
which implies that rn = G(fn) ∈ H0. Now, using dominated convergence theorem, we
have SD(rn) → 0 as n → ∞ in view of the fact that dn → ∞, and rn/dn converges
to the identity function {t}t∈[0,1] ∈ C[0, 1] as n → ∞. Hence, SD(H0) ⊇ (0, 1). Note
that we will have SD(H0) = (0, 1] if the spatial median m actually lies in H0. Using
Lemma 5, and the continuity of SD along with the fact that SD(H0) ⊇ (0, 1), we get
that the support of the distribution of SD(X̃) is the whole of [0, 1]. ��
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