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Abstract We consider the problem of robust Bayesian inference on the mean regres-
sion function allowing the residual density to change flexibly with predictors. The
proposed class of models is based on a Gaussian process (GP) prior for the mean
regression function and mixtures of Gaussians for the collection of residual densities
indexed by predictors. Initially considering the homoscedastic case, we propose priors
for the residual density based on probit stick-breaking mixtures. We provide sufficient
conditions to ensure strong posterior consistency in estimating the regression func-
tion, generalizing existing theory focused on parametric residual distributions. The
homoscedastic priors are generalized to allow residual densities to change nonpara-
metrically with predictors through incorporating GP in the stick-breaking components.
This leads to a robust Bayesian regression procedure that automatically down-weights
outliers and influential observations in a locally adaptive manner. The methods are
illustrated using simulated and real data applications.
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1 Introduction

Nonparametric regression offers a more flexible way of modeling the effect of covari-
ates on the response compared to parametric models having restrictive assump-
tions on the mean function and the residual distribution. Here we consider a fully
Bayesian approach. The response y ∈ Y corresponding to a set of covariates
x = (x1, x2, . . . , x p)

′ ∈ X can be expressed as

y = η(x)+ ε (1)

where η(x) = E(y | x) is the mean regression function under the assumption that the
residual density has mean zero, i.e., E(ε | x) = 0 for all x ∈ X . Our focus is on
obtaining a robust estimate of η while allowing heavy tails to down-weight influential
observations. We propose a class of models that allows the residual density to change
nonparametrically with predictors x, with homoscedasticity arising as a special case.

There is a substantial literature proposing priors for flexible estimation of the mean
function, typically using basis function representations such as splines or wavelets
(Denison et al. 2002). Most of this literature assumes a constant residual density, pos-
sibly up to a scale factor allowing heteroscedasticity. Yau and Kohn (2003) allow the
mean and variance to change with predictors using thin plate splines. In certain appli-
cations, this structure may be overly restrictive due to the specific splines used and the
normality assumption. Chan et al. (2006) also used splines for heteroscedastic regres-
sion, but with locally adaptive estimation of the residual variance and allowance for
uncertainty in variable selection. Nott (2006) considered the problem of simultaneous
estimation of the mean and variance function using penalized splines for possibly non-
Gaussian data. Due to the lack of conjugacy, these methods rely on involved sampling
techniques using Metropolis Hastings, requiring proposal distributions to be chosen
that may not be efficient in all cases. The residual density is assumed to have a known
parametric form and heavy-tailed distributions have not been considered. In addi-
tion, since basis function selection for multiple predictors is highly computationally
demanding, additive assumptions are typically made that rule out interactions.

Gaussian process (GP) regression (Adler 1990; Ghosal and Roy 2006; Vaart and
Zanten 2008, 2009; Neal 1998) is an increasingly popular choice, which avoids the
need to explicitly choose the basis functions, while having many appealing computa-
tional and theoretical properties. For articles describing some of these properties, refer
to Adler (1990), Cramér and Leadbetter (1967), Vaart and Zanten (2008) and Vaart
and Wellner (1996). A wide variety of functions can arise as the sample paths of the
GP. GP priors can be chosen that have support on the space of all smooth functions
while facilitating Bayesian computation through conjugacy properties. In particular,
the GP realizations at the data points are simply multivariate Gaussian. As shown
by Choi and Schervish (2007), GP priors also lead to consistent estimation of the
regression function under normality assumptions on the residuals. Vaart and Zanten
(2009) demonstrated that a GP prior with an inverse-gamma bandwidth leads to an
optimal rate of posterior convergence in a mean regression problem with Gaussian
errors. Recently, Choi (2009) extended the results of Choi and Schervish (2007) to
allow for non-Gaussian symmetric residual distributions (for example, the Laplace
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Bayesian nonparametric regression 3

distribution) which satisfy certain regularity conditions and the induced conditional
density belongs to a location-scale family. Although they require mild assumptions on
the parametric scale family, the results depend heavily on parametric assumptions. In
particular, their theory of posterior consistency is not applicable to an infinite mixture
prior on the residual density. We extend their result allowing a rich class of residual
distributions through PSB mixtures of Gaussians in Sect. 3.

There is a rich literature on Bayesian methods for density estimation using mixture
models of the form

yi ∼ f (θi ), θi ∼ P, P ∼ Π, (2)

where f (·) is a parametric density and P is an unknown mixing distribution assigned
a prior Π . The most common choice of Π is the Dirichlet process (DP) (Ferguson
1973; Ferguson 1974). Lo (1984) showed that DP mixtures of normals have dense
support on the space of densities with respect to Lesbesgue measure, while Escobar
and West (1995) developed methods for posterior computation and inference. James
et al. (2005) considered a broader class of normalized random measures for Π .

To combine methods for Bayesian nonparametric regression with methods for
Bayesian density estimation, one can potentially use mixture model (2) for the resid-
ual density in (1). A number of authors have considered nonparametric priors for the
residual distribution in regression. For example, Kottas and Gelfand (2001) proposed
mixture models for the error distributions in median regression models. To ensure
identifiability of the regression coefficients, the residual distribution is constrained to
have median zero. Their approach is very flexible but has the unappealing property of
producing a residual density that is discontinuous at zero. In addition, the approach of
mixing uniforms leads to blocky looking estimates of the residual density particularly
for sparse data. Lavine and Mockus (2005) allowed both a regression function for a
single predictor and the residual distribution to be unknown subject to a monotonicity
constraint. A number of recent papers have focused on generalizing model (2) to the
density regression setting in which the entire conditional distribution of y given x
changes flexibly with predictors. Refer, for example, to Müller et al. (1996), Griffin
and Steel (2006, 2010), Dunson et al. (2007) and Dunson and Park (2008) among
others. Bush and MacEachern (1996) considered estimating the random block effects
nonparametrically in an ANOVA-type mean linear-regression model with a t-residual
density rather than density regression.

Although these approaches are clearly highly flexible, there are several issues that
provide motivation for this article. First, to simplify inferences and prior elicitation,
it is appealing to separate the mean function η(x) from the residual distribution in
the specification, which is accomplished by only a few density regression methods.
The general framework of separately modeling the mean function and residual dis-
tribution nonparametrically was introduced by Griffin and Steel (2010). They allow
the residual distribution to change flexibly with predictors using the order-based DP
(Griffin and Steel 2006). On the other hand, we need to have a computationally simpler
specification with straightforward prior elicitation. Chib and Greenberg (2010) devel-
ops a nonparametric model jointly for continuous and categorical responses where
they model the mean of the link function and residual density separately. The mean
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is modeled using flexible additive splines and the residual density is modeled using a
DP scale mixture of normals. However, they did not allow the residual distribution to
change flexibly with the predictors. Often we have strong prior information regard-
ing the form of the regression function. Most density regression models do not allow
incorporation of prior information on the mean function separately from the residual
densities. Second, in many applications, the main interest is in inference on η or in
prediction, and the residual distribution can be considered as a nuisance. Third, the use
of residual distribution with zero mean has rarely been attempted in the nonparametric
Bayesian literature. This is one of the important contributions of the paper. Finally, we
would like to provide a specification with theoretical support. In particular, it would
be appealing to show strong posterior consistency in estimating η without requiring
restrictive assumptions on η or the residual distribution. Current density regression
models lack such theoretical support. In addition, computation for density regression
can be quite involved, particularly in cases involving more than a few predictors, and
one encounters the curse of dimensionality. Our goal was to obtain a computationally
convenient specification that allows consistent estimation of the regression function,
while being flexible in the residual distribution specification to obtain robust estimates.

We propose to place a GP prior on η and to allow the residual density to be unknown
through a probit stick-breaking (PSB) process mixture. The basic PSB process specifi-
cation was proposed by Chung and Dunson (2009) in developing a density regression
approach that allows variable selection. On the other hand, we are concerned with
robust estimation of the mean regression function, allowing the residual distribution
to change flexibly with predictors. While we want to model the mean regression
function nonparametrically, we also want to incorporate our prior knowledge for the
regression function quite easily. Here, we propose four novel variants of PSB mixtures
for the residual distribution. The first uses a scale mixture of Gaussians to obtain a
prior with large support on unimodal symmetric distributions. The next is based on a
symmetrized location-scale PSB mixture, which is more flexible in avoiding the uni-
modality constraint, while constraining the residual density to be symmetric and have
mean zero. In addition, we show that this prior leads to strong posterior consistency
in estimating η under weak conditions.

To allow the residual density to change flexibly with predictors, we generalize
the above priors through incorporating probit transformations of GP in the weights.
The last two prior specifications allow changing residual variances and tail heav-
iness with predictors, leading to a highly robust specification which is shown to
have better performance in simulation studies and out of sample prediction. It
will be shown in some small sample simulated examples that the heteroscedastic-
symmetrized location-scale PSB mixture leads to even more robust inference than the
heteroscedastic scale PSB mixture without compromising out of sample predictive
performance.

Section 2 proposes the class of models under consideration. Section 3 shows con-
sistency properties. Section 4 develops efficient posterior computation through an
exact block Gibbs sampler. Section 5 describes measures of influence to study robust-
ness properties of our proposed methods. Section 6 contains simulation study results,
Sect. 7 applies the methods to the Boston housing data and body fat data, and Sect. 8
discusses the results. Proofs are included in the Appendix.
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Bayesian nonparametric regression 5

2 Nonparametric regression modeling

2.1 Data structure and model

Consider n observations with the i th observation recorded in response to the covariate
xi = (xi1, xi2, . . . , xip)

′. Let X = (x1, . . . , xn)
′ be the predictor matrix for all n

subjects. The regression model can be expressed as

yi = η(xi )+ εi , εi ∼ fxi , i = 1, . . . , n.

We assume that the response y ∈ Y is continuous and x ∈ X , where X ⊂ R
p

is compact. Also, the residuals εi are sampled independently, with fx denoting the
residual density specific to predictor value xi = x. We focus initially on the case in
which the covariate space X is continuous, with the covariates arising from a fixed,
non-random design or consisting of i.i.d realizations of a random variable. We choose
a prior on the regression function η(x) that has support on a large subset of C∞(X ), the
space of smooth real-valued X → R functions. The priors proposed for { fx, x ∈ X }
will be chosen to have large support so that heavy-tailed distributions and outliers
will automatically be accommodated, with influential observations down-weighted in
estimating η.

2.2 Prior on the mean regression function

We assume that η ∈ F = {g : X → R is a continuous function}, with η assigned a GP
prior, η ∼ G P(μ, c), where μ is the mean function and c is the covariance kernel. A
GP is a stochastic process {η(x) : x ∈ X } such that any finite dimensional distribution
is multivariate normal, i.e., for any n and x1, . . . , xn, η(X) := (η(x1), . . . , η(xn))

′ ∼
N(μ(X),Ση), where μ(X) = (μ(x1), . . . , μ(xn))

′ and Ση
i j = c(xi , x j ). Naturally

the covariance kernel c(·, ·) must satisfy, for each n and x1, . . . , xn , that the matrix
Ση is positive definite. The smoothness of the covariance kernel essentially controls
the smoothness of the sample paths of {η(x) : x ∈ X }. For an appropriate choice
of c, a GP has large support in the space of all smooth functions. More precisely,
the support of a GP is the closure of the reproducing kernel Hilbert space generated
by the covariance kernel with a shift by the mean function (Ghosal and Roy 2006).
For example, when X ⊂ R, the eigenfunctions of the univariate covariance kernel,
c(x, x ′) = 1

τ
e−κ(x−x ′)2 , span C∞(X ) if κ is allowed to vary freely over R

+. Thus,
we can see that the GP prior has a rich class of functions as its support and hence is
appealing as a prior on the mean regression function. Refer to Rasmussen and Williams
(2006) as an introductory textbook on Gaussian processes.

We follow common practice in choosing the mean function in the GP prior to cor-
respond to a linear regression, μ(X) = Xβ, with β denoting unknown regression
coefficients. As a commonly used covariance kernel, we took the Gaussian kernel
c(x, x′) = 1

τ
e−κ||x−x′||2 , where τ and κ are unknown hyperparameters, with κ con-

trolling the local smoothness of the sample paths of η(x). Smoother sample paths
imply more borrowing of information from neighboring x values.
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2.3 Priors for residual distribution

Motivated by the problem of robust estimation of the regression functionη, we consider
five different types of priors for the residual distributions { fx, x ∈ X } as enumerated
below. The first prior corresponds to the t distribution, which is widely used for robust
modeling of residual distributions (West 1984; Lange et al. 1989; Fonseca et al. 2008),
while the remaining priors are flexible nonparametric specifications.

P1. Heavy-tailed parametric error distribution: Following many previous
authors, we first consider the case in which the residual distributions follow a
homoscedastic Student’s t distribution with unknown degrees of freedom. As the
Student’s t with low degrees of freedom is heavy tailed, outliers are allowed. By
placing a hyperprior on the degrees of freedom, νσ ∼ Ga(aν, bν), with Ga(a, b)
denoting the Gamma distribution with mean a/b, one can obtain a data adaptive
approach to down-weighting outliers in estimating the mean regression function.
However, note that this specification assumes that the same degrees of freedom
and tail heaviness hold for all x ∈ X . Following West (1987), we express the
Student’s t distribution as a scale mixture of normals for ease in computation. In
addition, we allow an unknown scale parameter, letting εi ∼ N(0, σ 2/φi ), with
φi ∼ Ga(νσ /2, νσ /2), σ−2 ∼ Ga(a, b).
P2. Nonparametric error distribution: Let Y = � be the response space and X
be the covariate space which is a compact subset of �p. Let F denote the space
of densities on X × Y w.r.t. the Lebesgue measure and Fd denotes the space of
all conditional densities subject to mean zero,

Fd =
{

g : X × Y →(0,∞),

∫
Y

g(x, y)dy =1,
∫
Y

yg(x, y)dy =0 ∀ x ∈ X
}
.

We propose to induce a prior on the space of mean zero conditional densities through
a prior for collection of mixing measures {Px, x ∈ X } using the following predictor-
dependent mixture of kernels.

Px =
∞∑

h=1

πh(x)δ{μh(x),σh}, μh ∼ P0, σh ∼ P0,σ (3)

where πh(x) ≥ 0 are random functions of x such that
∑∞

h=1 πh(x) = 1 a.s. for each
fixed x ∈ X . {μh(x), x ∈ X}∞h=1 are i.i.d realizations of a real-valued stochastic
process, i.e., P0 is a probability distribution over a function space FX . Here P0,σ is
a probability distribution on �+. Hence, for each x ∈ X , Px is a random probability
measure over the measurable Polish space (� × �+,B(� × �+)). Before proposing
the prior, we first review the probit stick-breaking process specification and its rela-
tionship to the DP. Rodriguez and Dunson (2011) introduced the probit stick-breaking
process in broad settings and discussed some smoothness and clustering properties.
A probability measure P ∈ P on (Y,B(Y)) follows a probit stick-breaking process

123



Bayesian nonparametric regression 7

with base measure P0 if it has a representation of the form

P(·) =
∞∑

h=1

πhδθh (·), θh ∼ P0, (4)

where the atoms {θh}∞h=1 are independent and identically distributed from P0 and the
random weights are defined as πh = Φ(αh)

∏
l<h{1−Φ(αl)}, αh ∼ N(μα, σ 2

α ), h =
1, . . . ,∞. Here Φ(·) denotes the cumulative distribution function for the standard
normal distribution. Note that expression (4) is identical to the stick-breaking rep-
resentation (Sethuraman 1994) of the DP, but the DP is obtained by replacing the
stick-breaking weight Φ(αh) with a beta(1, α)-distributed random variable. Hence,
the PSB process differs from the DP in using probit transformations of Gaussian ran-
dom variables instead of betas for the stick lengths, with the two specifications being
identical in the special case in whichμα = 0, σα = 1 and the DP precision parameter is
α = 1. Rodriguez and Dunson (2011) also mentioned the possibility of constructing
a variety of predictor-dependent models, e.g., latent Markov random fields, spatio-
temporal processes, etc. using probit transformation latent GP. Such latent GP can
be updated using data augmentation Gibbs sampling as in continuation-ratio probit
models for survival analysis (Albert and Chib 2001). While we follow similar com-
putational strategies as in Rodriguez and Dunson (2011), they did not consider robust
regression using predictor-dependent residual density.

Under the symmetric about zero assumption, we propose two nonparametric priors
for the residual density fx for all x ∈ X . The first prior is a predictor-dependent PSB
scale mixture of Gaussians which enforces symmetry about zero and unimodality, and
the next is a symmetrized location-scale PSB mixture of Gaussians, which we develop
to satisfy the symmetric about zero assumption while allowing multimodality.

P2a. Heteroscedastic scale PSB mixtures: To allow the residual density to change
flexibly with predictors, while maintaining the constraint that each of the predictor-
dependent residual distributions is unimodal and symmetric about zero, we propose
the following specification

f (·) =
∫

N(·; 0, τ−1)Px(dτ), Px =
∞∑

h=1

πh(x)δτh , τh ∼ Ga(ατ , βτ ), (5)

where πh(x) = Φ{αh(x)} ∏
l<h[1 −Φ{αl(x)}] is the predictor-dependent proba-

bility weight on the hth mixture component, and the αhs are drawn independently
from zero mean GP having covariance kernel cα(x, x′) = 1

τα
e−κα ||x−x′||2 . This

implies fx(·) = ∑∞
h=1 πh(x)N(·; 0, τ−1

h ) and is a highly flexible specification that
enforces smoothly changing mixture weights across the predictor space, so that
the residual densities at x and x′ will tend to be similar if x is located close to x′,
as measured by κα||x − x′||2.

Clearly, the specification allows the residual variance to change flexibly with
predictors, as we have var(ε | x) = ∑∞

h=1 πh(x)τ
−1
h . However, unlike the previ-

ously proposed methods for heteroscedastic non-linear regression, we do not just

123



8 D. Pati, D. B. Dunson

allow the variances to vary, but allow any aspect of the density to vary, including
the heaviness of the tails. This allows locally adaptive down-weighting of out-
liers in estimating the mean function. Previous methods, which instead assume
a single heavy-tailed residual distribution, such as a t-distribution, can lead to a
lack of robustness due to global estimation of a single degree of freedom para-
meter. In addition, due to the form of our specification, posterior computation
becomes very straightforward using a data augmentation Gibbs sampler, which
involves simple steps for sampling from conjugate full conditional distributions.
Even under the assumption of Gaussian residual distributions, posterior computa-
tion for heteroscedastic models tends to be complex, with Gibbs sampling typically
not possible due to the lack of conditional conjugacy.
P2b. Heteroscedastic-symmetric PSB (sPSB) location-scale mixtures: The PSB
scale mixture in (5) restricts the residual density to be unimodal. As this is a
very restrictive assumption, it is appealing to define a prior with larger support
that allows multimodal residual densities, while enforcing the symmetric about
zero assumption so that the residual density is constrained to have mean zero.
To accomplish this, we propose a novel symmetrized PSB process specification,
which is related to the symmetrized DP proposed by Tokdar (2006). We define

f (·) = ∫
N(·;μ, τ−1)dPs

x (μ, τ), dPs
x (μ, τ) = 1

2 dPx(−μ, τ)+ 1
2 dPx(μ, τ),

(6)

where the atoms (μh, τh) are drawn independently from P0 a priori, with P0
chosen as a product of a N(μ0, σ

2
0 ) and Ga(ατ , βτ ) measure. The difference

between the sPSB process prior and the PSB process prior is that instead of just
placing probability weight πh on atom (μh, τh), we place probability πh/2 on
(−μh, τh) and (μh, τh). The resulting residual density under (6) has the form
f (·) = ∑∞

h=1
πh(x)

2 {N(·., ;−μh, τ
−1
h )+ N(·;μh, τ

−1
h )}. Clearly, each of the real-

izations corresponds to a mixture of Gaussians that is constrained to be symmetric
about zero. The same comments made for the heteroscedastic scale PSB mixture
apply here, but (6) is more flexible in allowing multimodal residual distributions,
with modality changing flexibly with predictors. Posterior computation is again
straightforward, as will be shown later.
P2c. Homoscedastic scale PSB process mixture of Gaussians: A simpler
homoscedastic version of (5) is to consider

f (·) =
∫

N(·; 0, τ−1)P(dτ), P =
∞∑

h=1

πhδτh , τh ∼ Ga(ατ , βτ ), (7)

where the weights {πh} are specified as in

πh = νh

∏
l<h

(1 − νh), νh = Φ(αh), αh ∼ N(μα, σ
2
α ). (8)
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This implies that f (·) = ∑∞
h=1 πhN(·; 0, τ−1

h ), so that the unknown density of
the residuals is expressed as a countable mixture of Gaussians centered at zero but
with varying variances. Observations will be automatically allocated to clusters,
with outlying clusters corresponding to components having large variance (low
τh). By choosing a hyperprior on μα while letting σα = 1, we allow the data to
inform more strongly about the posterior distribution on the number, sizes and
allocation to clusters.
P2d. Location-scale symmetrized PSB (sPSB) mixture of Gaussians: A
homoscedastic version of (6) is the following.

f (·) =
∫

N(·;μ, τ−1)dPs(μ, τ), dPs(μ, τ) = 1

2
dP(−μ, τ)+ 1

2
dP(μ, τ),

P =
∞∑

h=1

πhδ(μh ,τh), (μh, τh) ∼ P0, (9)

where the prior on the weights πh are given by (8) and the prior for (μh, τh) are
exactly as in 2b.

3 Consistency properties

Let f ∼ Πu and f ∼ Πs denote the priors for the unknown residual density defined
in expressions (7) and (9), respectively. It is appealing forΠu andΠs to have support
on a large subset of Su and Ss , respectively, where Ss denotes the set of densities on
R with respect to Lebesgue measure that is symmetric about zero and Su ⊂ Ss is the
subset of Ss corresponding to unimodal densities. We characterize the weak support
of Πu , denoted by wk(Πu) ⊂ Su , in the following lemma.

Lemma 1 wk(Πu) = Cm, where Cm = { f : f ∈ Su, h(x) = f (
√

x), x >

0 is a completely monotone function}.
A function h(x) on (0,∞) is completely monotone in x if it is infinitely differentiable
and (−1)m dm

dxm h(x) ≥ 0 for all x and for all m ∈ {1, 2, . . . ,∞}. Chu (1973) proved
that if f is a density on R which is symmetric about zero and unimodal, it can be
written as a scale mixture of normals,

f (x) =
∫
σ−1φ(σ−1x)g(σ )dσ

for some density g on R, if and only if h(x) = f (
√

x), x > 0, is a completely
monotone function, where φ is the standard normal pdf. This restriction places a
smoothness constraint on f (x), but still allows a broad variety of densities.

Definition 1 Letting f ∼ Π, f0 is in the Kullback–Leibler(KL) support of Π if

Π

(
f :

∫
f0(y) log

f0(y)

f (y)
dy < ε

)
> 0, ∀ ε > 0
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The set of densities f in the KL support of Π is denoted by K L(Π).

Let S̃s denote the subset of Ss corresponding to densities satisfying the following
regularity conditions.

1. f is nowhere zero and bounded by M < ∞
2.

∣∣ ∫� f (y) log f (y)dy
∣∣ < ∞

3.
∣∣ ∫� f (y) log f (y)

ψ1(y)
dy

∣∣ < ∞, where ψ1(y) = inf t∈[y−1,y+1] f (t)

4. there exists ψ > 0 such that
∫
� |y|2(1+ψ) f (y)dy < ∞

Lemma 2 K L(Πs) ⊇ S̃s .

Remark 1 The above assumptions on f are standard regularity conditions introduced
by Tokdar (2006) and Wu and Ghoshal (2008) to prove that f ∈ K L(Π), where
Π is a general stick-breaking prior which has all compactly supported probability
distributions as its support. (1) Is usually satisfied by common densities arising in
practice. (4) Imposes a minor tail restriction, e.g., t-density with (2 + δ) degrees of
freedom for some δ > 0 satisfies (4). (1)–(4) are satisfied by a finite mixture of t-
densities or even by an infinite mixture of t-densities with (2 + δ) degrees of freedom
for some δ > 0 and bounded component-specific means and variances.

From Lemma 2, it follows that the sPSB location-scale mixture has KL support on
a large subset of the set of densities symmetric about zero. These conditions are
important in verifying that the priors are flexible enough to approximate any density
subject to the noted restrictions.

We provide fairly general sufficient conditions to ensure strong and weak poste-
rior consistency in estimating the mean regression function and the residual density,
respectively. We focus on the case in which a GP prior is chosen for η and an sPSB
location-scale mixture of Gaussians is chosen for the residual density as in (9). Sim-
ilar results can be obtained for the homoscedastic scale PSB process mixture under
stronger restrictions on the true residual density. Although showing consistent results
using predictor-dependent mixtures of normals as the prior for the residual density
in (5) and (6) is a challenging task, one can anticipate such results given the the-
ory in Pati et al. (2013) and Norets and Pelenis (2010). Indeed, Norets and Pelenis
(2011) showed posterior consistency of the regression coefficients in a mean linear-
regression model with covariate-dependent nonparametric residuals using the kernel
stick-breaking process Dunson and Park (2008). However, showing posterior consis-
tency of the mean regression when we have a GP prior on the regression function and
predictor-dependent residuals is quite challenging and is a topic of future research.

For this section, we assume xi as non-random and arising from a fixed design,
though the proofs are easily modified for random xi . When the covariate values are
fixed in advance, we consider the neighborhood based on the empirical measure of
the design points. Let Qn be the empirical probability measure of the design points,
Qn(x) = 1

n

∑n
i=1 Ixi (x). Based on Qn , we define a strong L1 neighborhood of radius

Δ > 0 as in Choi (2005) around the true regression function η0. Letting ||η−η0||1,n =∫
x∈X |η(x)− η0(x)|dQn(x) set,

Sn(η0;Δ) = {
η : ||η − η0||1,n < Δ

}
. (10)
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We introduce the following notation. Let f0 denote an arbitrary fixed density in
S̃s, η0 denote an arbitrary fixed regression function in F , and

f0i = f0(y − η0(xi )) fηi = f (y − η(xi )).

For any two densities f and g, let

K ( f, g)=
∫

R

f (y) log{ f (y)/g(y)}dy, V ( f, g)=
∫

R

f (y)
[

log+{ f (y)/g(y)}]2dy,

where log+ x = max(log x, 0). Set Ki ( f, η) = K ( f0i , fηi ) and Vi ( f, η) =
V ( f0i , fηi ) for i = 1, . . . , n.

For technical simplicity, assume X = [0, 1]p, τ = 1 and μ ≡ 0. Denote a mean
zero GP {Wx : x ∈ [0, 1]p} with covariance kernel c(x, x′) = e−||x−x′||2 by W .
Rescaling the sample paths of an infinitely smooth GP is a powerful technique to
improve the approximation ofα-Hölder functions from the RKHS of the scaled process
{W κ

x = W√
κx : x ∈ [0, 1]d} with κ > 0. Intuitively, for large values of κ , the

scaled process traverses the sample path of an unscaled process on the larger interval
[0,√κ]p, thereby incorporating more “roughness”. Vaart and Zanten (2009) studied
that rescaled GP, W κ = {W√

κx : x ∈ [0, 1]p}, for a positive random variable κ
was stochastically independent of W and also showed that with a Gamma prior on
κ p/2, one can obtain the minimax optimal rate of convergence for arbitrary smooth
functions.

Assumption 1 η ∼ W κ with the density g of
√
κ on the positive real line satisfying

C1xc exp(−D1x logd x) ≤ g(x) ≤ C2xc exp(−D2x logd x),

for positive constants C1,C2, D1, D2, non-negative constants c, d, and every suffi-
ciently large x > 0. Next we state the lemma on prior positivity due to Vaart and
Zanten (2009).

Lemma 3 If η satisfies Assumption 1 then P(||η − η0||∞ < ε) > 0 ∀ ε > 0, if η0 is
continuous.

To prove posterior consistency for our proposed model, we rely on a theorem of
Amewou-Atisso et al. (2003), which is a modification of the celebrated Schwartz
(1965) theorem to accommodate independent but not identically distributed data.

Theorem 1 Suppose η as in Assumption 1 with q ≥ p + 2 and f ∼ Πs , with Πs

defined in (9). In addition, assume the data are drawn from the true density f0(yi −
η0(xi )), with {xi } fixed and non-random, f0 ∈ S̃s, η0 ∈ F and f0 following the
additional regularity conditions,

1.
∫

y4 f0(y)dy < ∞ and
∫

f0(y)| log f0(y)|2dy < ∞.

2.
∫
R

f0(y)
∣∣ log f0(y)

ψ1(y)

∣∣2dy < ∞, where ψ1(y) = inf t∈[y−1,y+1] f0(t).
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12 D. Pati, D. B. Dunson

Let U be a weak neighborhood of f0 and Wn = U × Sn(η0;Δ), with Wn ⊂ S̃s × F .
Then the posterior probability

(Πs × W κ)(Wn|y1, . . . , yn, x1, . . . , xn) =
∫
Wn

∏n
i=1 fηi (yi )dΠs( f )dW κ (η)∫

S̃s×F
∏n

i=1 fηi (yi )dΠs( f )dW κ (η)

→ 1 a.s.

Theorem 1 ensures weak posterior consistency of the residual density and strong
posterior consistency of the regression function η.

4 Posterior computation

We first describe the choice of hyperpriors and hyperparameters for the regression
function. We choose the typical conjugate prior for the regression coefficients in the
mean of the GP, β ∼ N(β0,Σ0), where β0 = 0 and Σ0 = cI is a common choice
corresponding to a ridge regression shrinkage prior. The prior on τ is given by τ ∼
Ga( ντ2 ,

ντ
2 ). We let κ ∼ Ga(ακ, βκ) with small βκ and large ακ . Normalizing the

predictors prior to analysis, we find that the data are quite informative about κ under
these priors, so as long as the priors are not overly informative, inferences are robust.
The parameter τ controls the heaviness of the tails of the prior for the regression
function. In fact, choosing a Ga(ντ /2, ντ /2) prior induces a heavy-tailed t-process
with ντ degrees of freedom as a prior for the regression function. We chose ντ to be
3. κ controls the correlation of the GP at two points in the covariate space similar to a
spatial decay parameter in a spatial random effects model. Although a discrete uniform
prior for κ is computationally efficient in leading to a griddy Gibbs update step, there
can be sensitivity to the choice of grid. A gamma prior for κ eliminates such sensitivity
at some associated computational price in terms of requiring a Metropolis-Hastings
update that tends to mix slowly. We choose the parameters ακ and βκ so that the mean
correlation is 0.1 for two points separated by a distance

√
p in the covariate space.

Next we describe the hyperprior and associated hyperparameter choices for P1 and
P2a–d.

1. P1: Since the responses are normalized and the covariates are scaled to lie in the
interval [0, 1], using a single decay parameter appears to be reasonable. νσ controls
the tail heaviness of the prior for the scaling φ. To accommodate outliers with the
mean being fixed at 1, we assume φi ∼ Ga(νσ /2, νσ /2) with νσ ∼ Ga(αν, βν).
We took Σ0 = 5I, αν = 1, βν = 1. a and b are fixed at 3/2 to resemble a t
distribution with 3 degrees of freedom without the scaling φi .

2. P2a and P2b: We assume κα ∼ Ga(γκ, δκ) and τα ∼ Ga( να2 ,
να
2 ). Assuming

yi is normalized, we can expect the overall variance to be close to one, so the
variance of the residuals, V ar(ε | x) = ∑∞

h=1 πh(x)τ
−1
h , should be less than one.

We set ατ = 1 and choose a hyperprior on βτ , βτ ∼ Ga(1, k0) with k0 > 1
so that the prior mean of τh is significantly less than one. Different values of k0
are tried out to assess robustness of the posteriors. In Sects. 5 and 6, we choose
γκ = 1, δκ = 5, να = 1, k0 = 10, μ0 = 0, σ0 = 1.
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Bayesian nonparametric regression 13

3. P2c and P2d: Same choices as above except for k0 = 5, μα = 0, σα = 1.

For brevity, we provide details for posterior computation only for P1, P2a–b.

4.1 Gaussian process regression with t residuals (P1)

Let Y = (y1, . . . , yn)
′, η = (η(x1), η(x2), . . . , η(xn))

′ and define a matrix T such
that Ti j = e−κ||xi −x j ||2 . Hence, Ση = 1

τ
T. Assume � = diag(1/φi : i = 1, . . . , n)

and φ = (φ1, . . . , φn)
′. Then we have

Y|η ∼ N(η, σ 2�), η|β, τ, κ ∼ N(Xβ, τ−1T),β ∼ N(β0,Σ0)

φi ∼ Ga
(νσ

2
,
νσ

2

)
, νσ ∼ Ga(αν, βν), σ−2 ∼ Ga(a, b)

κ ∼ Ga(ακ, βκ), τ ∼ Ga
(ντ

2
,
ντ

2

)
.

Next we provide the full conditional distributions needed for Gibbs sampling. Due to
conjugacy, η,β, σ−2,φ and τ have closed-form full conditional distributions, while
νσ and κ are updated using Metropolis-Hastings steps within the Gibbs sampler. Let
Vη = (τT−1 + σ−2�−1)−1 and Vβ = (τX′T−1X +Σ−1

0 )−1.

η|Y,β, σ−2, τ, κ, νσ ,φ ∼ N
(

Vη(τT−1Xβ + σ−2�−1Y), Vη

)

β|Y, η, σ−2, τ, κ, νσ ,φ ∼ N
(

Vβ(τX′T−1η +Σ−1
0 β0), Vβ

)

σ−2|Y, η,β, τ, κ, νσ ,φ ∼ Ga

(
n

2
+ a,

1

2

n∑
i=1

φi (yi − ηi )
2 + b

)

τ |Y, η,β, σ−2, κ, νσ ,φ ∼ Ga

(
n + ντ

2
,

1

2

{
(η − Xβ)′T−1(η − Xβ)+ ντ

})

φi |Y, η,β, σ−2, κ, νσ ∼ Ga

(
νσ + 1

2
,

1

2
{σ−2(yi − ηi )

2 + νσ }
)
.

4.2 Heteroscedastic PSB mixture of normals (P2a)

We propose a Markov chain Monte Carlo algorithm, which is a hybrid of data aug-
mentation, the exact block Gibbs sampler of Papaspiliopoulos (2008) and Metropolis-
Hastings sampling. Papaspiliopoulos (2008) proposed the exact block Gibbs sampler
as an efficient approach to posterior computation in DP mixture models, modifying
the block Gibbs sampler of Ishwaran and James (2001) to avoid truncation approxi-
mations. The exact block Gibbs sampler combines characteristics of the retrospec-
tive sampler (Papaspiliopoulos and Roberts 2008) and the slice sampler (Walker
2007; Kalli et al. 2010). We included the label switching moves introduced by
Papaspiliopoulos and Roberts (2008) for better mixing. Introduce γ1, . . . , γn such
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14 D. Pati, D. B. Dunson

that πh(xi ) = P(γi = h), h = 1, 2, . . . ,∞. Then

γi ∼
∞∑

h=1

πh(xi )δh =
∞∑

h=1

1(ui < πh(xi ))δh

where ui ∼ U (0, 1). The MCMC steps are given below.

Step 1. Update ui s and stick-breaking random variables: Generate

ui |− ∼ U (0, πγi (xi ))

where πh(xi ) = Φ{αh(xi )} ∏
l<h[1 − Φ{αl(xi )}]. For i = 1, . . . , n, introduce

latent variables Zh(xi ), h = 1, 2, . . . such that Zh(xi ) ∼ N(αh(xi ), 1). Thus,
πh(xi ) = P(Zh(xi ) > 0, Zl(xi ) < 0 for l < h). Then

Zh(xi )|− ∼
{

N(αh(xi ), 1)IR+ , h = γi

N(αh(xi ), 1)IR− , h < γi .

Let Zh = (Zh(x1), . . . , Zh(xn))
′ and αh = (αh(x1), . . . , αh(xn))

′. Letting(
�α

)
i j = e−κα ||xi −x j ||, Zh ∼ N(αh, I) and αh ∼ N(0, 1

τα
�α),

αh |− ∼ N
(
(τα�

−1
α + In)

−1Zh, (τα�
−1
α + In)

−1)

Continue up to h = 1, . . . , h∗ = max{h∗
1, . . . , h∗

n}, where h∗
i is the minimum

integer satisfying
∑h∗

i
l=1 πl(xi ) > 1 − min{u1, . . . , un}, i = 1, . . . , n. Now

τα|− ∼ Ga

(
1

2

(
nh∗ + να

)
,

1

2

( h∗∑
l=1

α′
k�

−1
α αk + να

))
,

while κα is updated using a Metropolis-Hastings step.

Step 2. Update allocation to atoms: Update (γ1, . . . , γn)|− as multinomial ran-
dom variables with probabilities

P(γi = h) ∝ N(yi ; η(xi ), τ
−1
h )I (ui < πh(xi )), h = 1, . . . , h∗.

Step 3. Update component-specific locations and precisions: Letting nl = #{i :
γi = l}, l = 1, 2, . . . , h∗,

τl |− ∼ Ga

(
nl

2
+ ατ , βτ +

∑
i :γi =l

(yi − η(xi ))
2
)
, l = 1, 2, . . . , h∗

βτ |− ∼ Ga

(
1,

k∗∑
l=1

τl + k0

)
.
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Bayesian nonparametric regression 15

Step 4. Update the mean regression function: Letting Λ = diag(τ−1
γ1
, . . . , τ−1

γn
),

η|− ∼ N((τT−1 + Λ−1)−1(τT−1Xβ + Λ−1Y), (τT−1 + Λ−1)−1)

β|− ∼ N
(
(τX′T−1X + τΣ−1

0 )−1(τX′T−1η +Σ−1
0 β0), (τX′T−1X +Σ−1

0 )−1)

τ |− ∼ Ga

(
n + ντ

2
,

1

2

{
(η − Xβ)′T−1(η − Xβ)′ + ντ

})
.

Step 5. Update κ in a Metropolis-Hastings step.

4.3 Heteroscedastic sPSB location-scale mixture (P2b)

We will need the following changes in the updating steps from the previous case.

Step 2. Update allocation to atoms: Update (γ1, . . . , γn)|− as multinomial ran-
dom variables with probabilities

P(γi = h) ∝ 1

2

{
N(yi ; η(xi )+ μh, τ

−1
h )+ N(yi ; η(xi )− μh, τ

−1
h )

}
I (ui < πh(xi )),

h = 1, . . . , h∗.

Step 3. Component-specific locations and precisions: Let nl = #{i : γi = l}, l =
1, 2, . . . , h∗ and ml = ∑

i :γi =l(yi − ηi ). The atoms of the base measure location
is updated from a mixture of normals as

μl |− ∼ plN

(
μ0σ

−2
0 + τl nl

σ−2
0 + nlτl

,
1

σ−2
0 + nlτl

)
+ (1 − pl)N

(
μ0σ

−2
0 − τl nl

σ−2
0 + nlτl

,
1

σ−2
0 + nlτl

)
,

where pl ∝ exp

{
1
2

(
μ0σ

−2
0 +τl nl

σ−2
0 +nlτl

)}
.

τl |− ∼ plGa

(
nl

2
+ ατ , βτ +

∑
i :γi =l

{yi − η(xi )− μl}2
)

+(1 − pl)Ga

(
nl

2
+ ατ , βτ +

∑
i :γi =l

{yi − η(xi )+ μl}2
)
,

where pl ∝
{

1(
βτ+ 1

2

∑
i :γi =l {yi −η(xi )−μl }2

)
} nl

2 +α
.
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16 D. Pati, D. B. Dunson

Step 4. Update the mean regression function: Let 
=diag(τ−1
γ1
, . . . , τ−1

γn
), μ∗ =

(μγ1 , μγ2 , . . . , μγn ) and W = (
τT−1 + Λ−1)−1. Hence,

η| − pN

(
η; W{τT−1Xβ + Λ−1(Y − μ∗)},W

)

+(1 − p)N

(
η; W{τT−1Xβ + Λ−1(Y + μ∗)},W

)

where p ∝ exp
[ 1

2

{
(τT−1Xβ + Λ−1(Y − μ∗))′WXβ + Λ−1(Y − μ∗) − (Y −

μ∗)′Λ−1(Y − μ∗)
}]

.

5 Measures of influence

There has been limited work on sensitivity of the posterior distribution to perturbations
of the data and outliers. Arellano-Vallea et al. (2000) use deletion diagnostics to assess
sensitivity, but their methods are computationally expensive in requiring posterior
computation with and without data deleted. Weiss (1996) proposed an alternative that
perturbs the posterior instead of the likelihood, and only requires samples from the
full posterior. Following Weiss (1996), let f (yi |Θ̃, xi ) denote the likelihood of the
data yi , define

δ∗i (Θ̃) = f (yi + δ|Θ̃, xi )

f (yi |Θ̃, xi )
,

for some small δ > 0 and let pi (Θ̃|Y) denote a new perturbed posterior,

pi (Θ̃|Y) = p(Θ̃|Y)δ∗i (Θ̃)
E(δ∗i (Θ̃)|Y)

.

Since the responses are normalized prior to analysis, it is reasonable to assume that
the perturbation is less than 0.1. We vary δ in [0.01, 0.1] over a grid of width 0.01
and obtain the average of results. Denote by Li the influence measure, which is a
divergence measure between the unperturbed posterior p(Θ̃|Y) and the perturbed
posterior pi (Θ̃|Y),

Li = 1

2

∫
|p(Θ̃|Y)− pi (Θ̃|Y)|dΘ̃.

Li is bounded and takes values in [0, 1]. When p(Θ̃|Y) = pi (Θ̃|Y), Li = 0 indicates
that the perturbation δ∗i has no influence. On the other hand, if Li = 1, the supports
of p(Θ̃|Y) and pi (Θ̃|Y) are disjoint indicating maximum influence. We can define
an influence measure as L = 1

n

∑n
i=1 Li . Clearly L also takes values in [0, 1] with

L = 0 ⇒ Li = 0 ∀ i = 1, 2, . . . , n. Also L = 1 ⇒ Li = 1 ∀ i = 1, 2, . . . , n. Weiss
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Bayesian nonparametric regression 17

(1996) provided a sample version of Li , i = 1, . . . , n. Letting Θ̃1, . . . , Θ̃M be the
posterior samples with B the burn-in,

L̂i = 1

M − B

M∑
k=B+1

1

2

∣∣∣∣ δ∗i (Θ̃k)

Ê(δ∗i (Θ̃))
− 1

∣∣∣∣,

where Ê{δ∗i (Θ̃)} = 1
M−B

∑M
k=B+1 δ

∗
i (Θ̃k). Our estimated influence measure is L̂ =

1
n

∑n
i=1 L̂i . We will calculate the influence measure for our proposed methods and

compare their sensitivity.

6 Simulation studies

To assess the performance of our proposed approaches, we consider a number of sim-
ulation examples, (i) linear model, homoscedastic error with no outliers, (ii) linear
model, homoscedastic error with outliers (iii) linear model, heteroscedastic errors and
outliers, (iv) non-linear model with heteroscedastic errors and outliers and (v) non-
linear model with heteroscedastic errors and outliers, but with fewer true predictors.
We let the heaviness of the tails and error variance change with x in cases (iii)–(v).
We considered the following methods of assessing the performance, namely, mean
squared prediction error (MSPE), coverage of 95 % prediction intervals, mean inte-
grated squared error (MISE) in estimating the regression function at the points for
which we have data, point wise coverage of 95 % credible intervals for the regression
function and the influence measure (L̂) as described in Sect. 5. We also consider a
variety of sample sizes in the simulation, n=30, 60, 80 and simulate 10 covariates
independently from U (0, 1). Let z be 10-dim vector of i.i.d U (0, 1) random variables
independent of the covariates.
Generation of errors in heteroscedastic case and outliers: Let fxi (εi ) = pxi N(εi ; 0, 1)
+ qxi N(εi ; 0, 5) where pxi = Φ(x′

i z). The outliers are simulated from the model
with error distribution f o

xi
(·), which is a mixture of truncated normal distributions

as follows. In the heteroscedastic case, f o
xi
(εi ) = pxi TN(−∞,3)∪(3,∞)(εi ; 0, 1) +

qxi TN
(−∞,−3

√
5)∪(3√

5,∞)
(εi ; 0, 5), where TNR(·;μ, σ 2) denotes a truncated normal

distribution with mean μ and standard deviation σ over the region R. We consider the
following five cases:

Case (i): yi = 2.3 + 5.7x1i + εi , εi ∼ N(0, 1) with no outliers.
Case (ii): yi = 2.3 + 5.7x1i + εi , εi ∼ 0.95N(0, 1)+ 0.05N(0, 10).
Case (iii): yi = 1.2 + 5.7x1i + 4.7x2i + 0.12x3i − 8.9x4i + 2.4x5i + 3.1x6i +
0.01x7i + εi , εi ∼ fxi , with 5 % outliers generated from f o

xi
(εi ).

Case (iv): yi = 1.2 + 5.7x1i + 3.4x2
1i + 4.7xi2 + 0.89x2

i2 + 0.12xi3 − 8.9xi4xi8 +
2.4xi5xi9 +3.1xi6 + x2

i6 +0.01xi7 + εi , εi ∼ fxi with 5 % outliers generated from
f o
xi
(εi ).

Case (v): yi = 1.2 + 5.7 sin x1i + 3.4 exp(x2i )+ 4.7 log |xi3| + εi , εi ∼ fxi with
5 % outliers generated from f o

xi
(εi ).
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18 D. Pati, D. B. Dunson

For each of the cases and for each sample size n, we took the first n
2 samples as the

training set and the next n
2 samples as the test set. We also compare the MSPE of the

proposed methods with robust regression using M-estimation (Huber 1964), Bayesian
additive regression trees (Chipman et al. 2010), and Treed GP (Gramacy and Lee
2008). The MCMC algorithms described in Sect. 5 are used to obtain samples from
the posterior distribution. The results for model P1 given here are based on 20,000
samples obtained after a burn-in period of 3,000. The results for models P2a–d are
based on 20,000 samples obtained after a period of 7,000. Rapid convergence was
observed based on diagnostic tests of Geweke (1992) and Raftery and Lewis (1992).
In addition, the mixing was very good for model P1. For models P2a–d, we use the
label switching moves by Papaspiliopoulos and Roberts (2008), which lead to adequate
mixing. Tables 1, 2 and 3 summarize the performance of all the methods based on 50
replicated datasets.

Tables 1, 2 and 3 clearly show that in small samples both of the heteroscedas-
tic methods (P2a and P2b) have substantially reduced MSPE and MISE relative to
the heavy-tailed parametric error model in most of the cases, interestingly even in
the homoscedastic cases. This may be because discrete mixture of Gaussians better
approximate a single normal than a t-distribution in small samples. Methods P2a and
P2b also did a better job than method P1 in allowing uncertainty in estimating the mean
regression and predicting the test sample observations. The homoscedastic versions 4
and 5 perform better than the parametric models but worse than the heteroscedastic
models. In some cases, the heavy-tailed t-residual distribution results in overly con-
servative predictive and credible intervals. As seen from the value of the influence
statistic, the heteroscedastic PSB process mixtures result in more robust inference
compared to the parametric error model, the sPSB process mixture of normals being
more robust than the symmetric and unimodal version. As the sample size increases,
the difference in the predictive performances between the parametric and the nonpara-
metric models is reduced and in some cases the parametric error model performs as
well as the nonparametric approaches, which is as expected given the Central Limit
Theorem.

Table 1 shows that in the simple linear model with normal homoscedastic errors,
all the models perform similarly in terms of mean squared prediction error, though
the methods P2a and P2b are somewhat better than the rest. Also, in estimating the
mean regression function in case (i), methods P2a and P2b performed better than all
the other methods. In case (ii) (Table 1), methods P2a and P2b are most robust in
terms of estimation and prediction in the presence of outliers. However, there is no
significant difference between methods P2a and P2b and methods P2c and P2d in cases
(i) and (ii). In cases (iii) and (iv), when the residual distribution is heteroscedastic,
methods P2a and P2b perform significantly better than the parametric model P1 and
the homoscedastic models P2c and P2d in both estimation and prediction, since the
heteroscedastic PSB mixture is very flexible in modeling the residual distribution. This
is quite evident from the MSPE values under cases (iii) and (iv) in Table 2. Huber’s
M-estimation method performs similar to methods P2a–d in cases (i) and (ii) but did
not do as well in estimation and prediction in cases (iii) and (iv) when the under-
lying mean function is actually non-linear with heteroscedastic residual distribution.
Also BART failed to perform well in estimating the mean function in small samples
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Table 1 Simulation results under homoscedastic residuals (cases i and ii)

Case i Case ii

MSPE cov(y)a MISE cov(η)b L MSPE cov(y) MISE cov(η) L

n=40

P1 0.2997 1 0.0248 1 0.0017 0.6043 1 0.0232 1 0.0027

P2a 0.2821 0.9980 0.0141 1 0.0015 0.5983 0.9740 0.0173 1 0.0019

P2b 0.2798 1 0.0144 1 0.0015 0.5987 0.9745 0.0169 1 0.0017

P2c 0.2980 1 0.0156 1 0.0016 0.5980 0.9750 0.0189 1 0.0020

P2d 0.2869 1 0.0155 1 0.0016 0.5983 0.9750 0.0190 1 0.0020

M-estimation 0.2820 0.0140 0.6013 0.0177

BART 0.3510 0.6866 0.0714 0.7051 0.7845 0.0950

Treed GP 0.3042 0.9134 0.0256 0.6968 0.9365 0.0803

n=60

P1 0.2990 1 0.0246 1 0.0019 0.5776 1 0.0242 1 0.0023

P2a 0.2769 0.9947 0.0103 1 0.0017 0.5471 0.95 0.0143 0.97 0.0016

P2b 0.2752 0.9963 0.0104 1 0.0016 0.5541 0.95 0.0141 0.98 0.0016

P2c 0.2852 0.9945 0.0176 1 0.0019 0.5664 0.95 0.0142 0.99 0.0021

P2d 0.2826 0.9960 0.0173 1 0.0018 0.5561 0.95 0.0141 0.98 0.0021

M-estimation 0.2759 0.0103 0.5623 0.0139

BART 0.3314 0.6753 0.0539 0.6725 0.7777 0.1098

Treed GP 0.3000 0.9193 0.0218 0.6880 0.9301 0.1198

n=80

P1 0.2913 1 0.0252 1 0.0021 0.5583 1 0.0172 1 0.0022

P2a 0.2592 0.9940 0.0086 1 0.0021 0.4989 0.97 0.0050 1 0.0014

P2b 0.2574 0.9956 0.0069 1 0.0020 0.4898 0.98 0.0067 1 0.0010

P2c 0.2724 0.9976 0.0187 1 0.0020 0.5104 0.98 0.0103 1 0.0017

P2d 0.2716 0.9976 0.0189 1 0.0020 0.5002 0.98 0.0097 1 0.0018

M-estimation 0.2720 0.0079 0.5431 0.0068

BART 0.3128 0.6525 0.0437 0.6509 0.7815 0.1098

Treed GP 0.2886 0.9301 0.0175 0.6532 0.9224 0.1031
a cov(y) denotes the coverage of the 95 % predictive intervals of the test cases
b cov(η) denotes the coverage of the 95 % credible intervals of the mean regression function

in these cases. On the other hand, GP-based approaches perform quite well in these
cases in estimating the regression function with methods P2a and P2b performing bet-
ter than the rest. Treed GP performed close to method P1 in estimation and prediction
as both the methods are based on GP priors on the mean function and have a para-
metric error distribution. In not allowing heteroscedastic error variance, BART and
Treed GP underestimate uncertainty in prediction, leading to overly narrow predictive
intervals.

In case (v) (Table 3), where the true model is generated using comparatively less
number of true signals, BART performed slightly better in terms of prediction than
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Table 2 Simulation results under heteroscedastic residuals (Cases iii and iv)

Case iii Case iv

MSPE cov(y) MISE cov(η) L MSPE cov(y) MISE cov(η) L

n = 40

P1 0.4833 1 0.3612 1 0.0027 0.4416 1 0.3274 1 0.0029

P2a 0.2570 0.9990 0.1394 1 0.0025 0.2783 0.9923 0.1583 0.98 0.0023

P2b 0.2586 0.9990 0.1298 1 0.0025 0.2712 0.9867 0.1501 0.97 0.0017

P2c 0.3057 1 0.2412 1 0.0026 0.3334 0.9967 0.2213 0.99 0.0024

P2d 0.3024 1 0.2304 1 0.0026 0.3216 0.9967 0.2192 0.99 0.0022

M-estimation 0.2613 0.1376 0.2889 0.1663

BART 0.4639 0.8444 0.3413 0.4103 0.8833 0.2675

Treed GP 0.3320 0.7834 0.1979 0.3548 0.8268 0.2108

n = 60

P1 0.2254 1 0.1154 1 0.0023 0.2367 1 0.1067 1 0.0021

P2a 0.1744 0.9973 0.0572 1 0.0020 0.2178 1 0.0562 0.97 0.0019

P2b 0.1712 0.9878 0.0567 1 0.0016 0.2099 1 0.0656 0.98 0.0017

P2c 0.1952 0.9998 0.0854 1 0.0021 0.2216 1 0.0879 0.99 0.0020

P2d 0.1934 0.9998 0.0799 1 0.0020 0.2208 1 0.0812 0.99 0.0020

M-estimation 0.1746 0.0564 0.2125 0.0678

BART 0.3429 0.8546 0.2217 0.3385 0.9122 0.1799

Treed GP 0.2047 0.8349 0.0779 0.2611 0.8867 0.0899

n = 80

P1 0.1636 1 0.0454 1 0.0018 0.1855 1 0.0346 1 0.0019

P2a 0.1509 0.9976 0.0373 0.95 0.0015 0.1653 1 0.0321 0.9952 0.0014

P2b 0.1578 0.9931 0.0324 1 0.0013 0.1614 1 0.0312 0.9932 0.0010

P2c 0.1589 0.9960 0.0404 1 0.0017 0.1774 1 0.0329 0.9980 0.0016

P2d 0.1567 0.9969 0.0401 1 0.0017 0.1770 1 0.0320 0.9969 0.0016

M-estimation 0.1582 0.0364 0.1832 0.0325

BART 0.2284 0.9265 0.1098 0.2491 0.9490 0.1083

Treed GP 0.1655 0.8876 0.0427 0.2022 0.8923 0.0548

other methods in small samples. However, as the sample size increased, BART per-
formed poorly while the GP prior on the mean can accommodate the non-linearity
resulting in substantially better predictive performances.

7 Applications

7.1 Boston housing data application

To compare our proposed approaches to alternatives, we applied the methods to a
commonly used data set from the literature, the Boston housing data. The response
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Table 3 Simulation results under heteroscedastic residuals (Case v)

MSPE cov(y) MISE cov(η) L

n = 40

P1 0.6666 0.9800 0.5856 1 0.0033

P2a 0.5233 0.9770 0.3980 0.9812 0.0025

P2b 0.5231 0.9854 0.3745 0.9765 0.0019

P2c 0.5875 0.9850 0.4452 1 0.0029

P2d 0.5788 0.9859 0.4223 1 0.0028

M-estimation 0.5531 0.3671

BART 0.4956 0.8980 0.4013

Treed GP 0.7224 0.8123 0.6132

n = 60

P1 0.3828 1 0.2911 0.9985 0.0031

P2a 0.3745 0.9832 0.2617 0.9840 0.0022

P2b 0.3767 0.9812 0.2601 0.9867 0.0020

P2c 0.3810 0.9900 0.2800 0.9998 0.0027

P2d 0.3800 0.9906 0.2798 0.9998 0.0026

M-estimation 0.3939 0.2824

BART 0.3930 0.9313 0.2668

Treed GP 0.4225 0.9023 0.3217

n = 80

P1 0.3599 0.9901 0.2759 0.9998 0.0029

P2a 0.3503 0.9762 0.2582 0.9765 0.0022

P2b 0.3519 0.9712 0.2545 0.9715 0.0019

P2c 0.3560 0.9856 0.2656 0.9885 0.0025

P2d 0.3557 0.9800 0.2677 0.9881 0.0024

M-estimation 0.3905 0.2887

BART 0.3594 0.9442 0.2867

Treed GP 0.4489 0.9125 0.3509

is the median value of the owner-occupied homes (measured in $1,000) in 506
census tracts in the Boston area, and there are 13 predictors (12 continuous, 1
binary) that might help explain the variation in the median value across tracts. We
predict the median value of the owner-occupied homes of which the first 253 is
taken as the training set and the remaining 253 as the test set. Sample predic-
tive performance of our three methods is compared to competitors in Table 4. The
parametric model P1, and the mixture models P2a–d and the M-estimation meth-
ods perform very closely to each other in terms of prediction and did better than
BART and Treed GP. Methods P1 and P2a even perform slightly better than meth-
ods P2b, P2c and P2d. As in the simulation examples, BART and Treed GP under-
estimate the uncertainty in prediction. On the other hand, the predictive intervals
of the methods P1, P2a–d are more conservative and accommodate uncertainty in
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Table 4 Boston housing data and body fat data results

Boston housing data Body fat data

Methods MSPE cov(y) L corr(Y test, Ypred)a MSPE cov(y) L corr(Y test, Ypred)

P1 0.0012 0.99 0.0034 0.9894 0.0055 1 0.0020 0.9972

P2a 0.0013 0.99 0.0027 0.9901 0.0031 1 0.0017 0.9984

P2b 0.0016 0.99 0.0020 0.9863 0.0029 1 0.0017 0.9989

P2c 0.0014 0.99 0.0030 0.9879 0.0034 1 0.0019 0.9969

P2d 0.0013 0.99 0.0029 0.9881 0.0032 1 0.0018 0.9975

M-estimation 0.0016 0.9858 0.0375 0.9710

BART 0.0024 0.92 0.9836 0.0355 0.95 0.9655

Treed GP 0.0053 0.91 0.9524 0.1526 0.98 0.9250
a corr(Y test, Ypred) denotes the sample correlation between the test and predicted y

predicting regions with outliers quite flexibly. Also the model P2b appears to be
more robust compared to models P1, P2a, P2c & P2d in terms of the influence mea-
sure.

7.2 Body fat data application

With the increasing trend in obesity and concerns about associated adverse health
effects, such as heart disease and diabetes, it has become even more important to
obtain accurate estimates of body fat percentage. It is well known that body mass
index, which is calculated based only on weight and height, can produce a misleading
measure of adiposity as it does not take into account muscle mass or variability in
frame size. As a gold standard for measuring percentage of body fat, one can rely on
under water weighing techniques, and age and body circumference measurements have
also been widely used as additional predictors. We consider a commonly used data set
from Statlib (http://lib.stat.cmu.edu/datasets/bodyfat), which contains the following
15 variables: percentage of body fat (%), body density from underwater weighing
(gm/cm3), age (year), weight (lbs.), height (inches), and ten body circumferences
(neck, chest, abdomen, hip, thigh, knee, ankle, biceps, forearm, wrist, all in cm).
Percentage of body fat is given from Siri’s (1956) equation:

Percentage of body fat = 495

Density
− 450

We predict the percentage of body fat (%) taking the first 126 as the training set and the
remaining 126 as the test set. We summarize the predictive performances in Table 4.

Table 4 suggests that the nonparametric regression procedures with heteroscedastic
residual distribution P2a and P2b perform better than the parametric models P1 and
models P2c and P2d, BART, M-estimation and Treed GP in predicting the percentage
of body fat.
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8 Discussion

We have developed a novel regression model that can accommodate a large range
of non-linearity in the mean function and at the same time can flexibly deal with
outliers and heteroscedasticity. Based on preliminary simulation results, it appears
that our methods P2a and P2b can outperform contemporary nonparametric regression
methods, such as Huber’s M-estimation method, BART and treed GP. We also provide
theoretical support for the proposed methodology when both the mean and the residuals
are modeled nonparametrically.

One possible future direction is to relax the symmetry assumption on the resid-
ual distribution and introduce a model for median regression based on condi-
tional PSB mixtures for allowing possibly asymmetric residual densities constrained
to have zero median. Conditional DP mixtures are well known in the literature
(Doss 1985; Burr and Doss 2005) and it is certainly interesting to extend our
approach via a conditional PSB. In that way, we can hope to obtain a more
robust estimate of the regression function. It is challenging to extend our theo-
retical results to conditional PSB and develop a fast algorithm for computation.
Another possible theoretical direction is to prove posterior consistency using het-
eroscedastic mixtures. Currently, we only have results for the homoscedastic PSBP
mixture.

Appendix: proofs of main results

Proof of Lemma 1 It follows from Chu (1973) that

f ∈ Cm ⇔ f (x) =
∫
σ−1φ(σ−1x)g(σ )dσ

for some density g on R
+. Recall from Ongaro and Cattaneo (2004) that a collection

of random weights {πh}∞h=1 with
∑∞

h=1 πh = 1 a.s. is said to have a full support if
for any m ≥ 1, (π1, . . . , πm) admits a positive joint density with respect to Lebesgue
measure on the simplex {(p1, . . . , pm) : ∑m

i=1 pi ≤ 1}. Ongaro and Cattaneo (2004)
showed that if πhs have a full support, the weak support of

P =
∞∑

h=1

πhδθh , θh ∼ G0

is the set of all probability measures whose support is contained in the support of G0.
Since

(π1, . . . , πm)
d=

(
Φ(α1),Φ(α2){1 −Φ(α1)}, . . . , Φ(αm)

m−1∏
i=1

{1 −Φ(αi )}
)
,

αi ∼ N(μα, σ
2
α ),
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πhs have a full support and hence the weak support of P = ∑∞
h=1 πhδτh defined in

(7) is all probability measures on R
+. It follows that the weak support of the induced

prior Πu on Su , denoted by wk(Πu), is precisely Cm . ��
Proof of Lemma 2 It follows from Tokdar (2006) that if we can show that the weak
support of Πs contains all probability measures symmetric about zero and having
compact support, then f ∈ S̃s ⇒ f ∈ K L(Πs). The argument given in Lemma 1
shows that the weak support of the PSB prior in (4) is the set of all probability measures
on R × R

+. Now we will show that an arbitrary P̃s is in a weak neighborhood of Ps

if P̃ is in a weak neighborhood of P . We state a lemma to prove our claim. ��
Lemma 4 Let P̃n be a sequence of probability measures and P̃ be a fixed probability
measure. Then (P̃n ⇒ P̃) ⇒ (P̃s

n ⇒ P̃s), with P̃s
n and P̃s the symmetrized versions

of P̃n and P̃, respectively, where the symmetrizing operation is as defined in (9).

Proof Assume P̃n ⇒ P̃ . We have to show that for any bounded function φ on R×R
+,

∫
φ(t, τ )d P̃s

n (t, τ ) →
∫
φ(t, τ )d P̃s(t, τ ) as n → ∞.

Now,

∫
φ(t, τ )d P̃s

n (t, τ ) = 1

2

∫
φ(t, τ )d P̃n(t, τ )+ 1

2

∫
φ(t, τ )d P̃n(−t, τ )

=
∫

1

2

{
φ(t, τ )+ φ(−t, τ )

}
d P̃n(t, τ ).

Since ψ(t, τ ) = 1
2

{
φ(t, τ ) + φ(−t, τ )

}
is also a bounded continuous function and

P̃n ⇒ P̃ ,

∫
1

2

{
φ(t, τ )+ φ(−t, τ )

}
d P̃n(t, τ ) →

∫
1

2

{
φ(t, τ )+ φ(−t, τ )

}
d P̃(t, τ )

=
∫
φ(t, τ )d P̃s(t, τ )

as n → ∞. This completes the proof of Lemma 4. ��
Lemma 4, in fact, shows that the weak support ofΠs contains all probability measures
symmetric about zero. With an appeal to Tokdar (2006), f ∈ S̃s ⇒ f ∈ K L(Πs). ��
Proof of Theorem 1 To prove the theorem, we need the following variant of Theorem
2.1 of Amewou-Atisso et al. (2003) and Theorem 1 of Choi and Schervish (2007)
which we state as Lemma 5. Existence of exponentially consistent tests is a typical
tool in showing strong consistency. ��
Definition 2 Let W ⊂ S̃s × F . A sequence of test functions Φn

({yi , xi }n
i=1

)
is said

to be exponentially consistent for testing

H0 : ( f, η) = ( f0, η0) against H1 : ( f, η) ∈ Wn
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if there exist constants C1,C2,C > 0 such that

1. E∏n
i=1 f0i

(Φn) ≤ C1e−nC ,

2. inf( f,η)∈Wn E∏n
i=1 fηi

(Φn) ≥ 1 − C2e−nC .

Lemma 5 Let Π̃ = (Πs ×π) be the prior on S̃s ×F . Let Un be a sequence of subsets
of S̃s × F . Suppose that there exist test functions {Φn}∞n=1, sets Θn ⊂ S̃s × F , n ≥ 1
and constants C1,C2, c1, c2 > 0 such that

1.
∑∞

n=1 E∏n
i=1 f0i

Φn < ∞.

2. sup( f,η)∈U c
n ∩Θn

E∏n
i=1 fηi

(1 −Φn) ≤ C1e−c1n.

3. Π̃(Θc
n) ≤ C2e−c2n.

4. For all δ > 0 and for almost every data sequence {yi , xi }∞i=1,

Π̃

{
( f, η) : Ki ( f, η) < δ ∀i,

∞∑
i=1

Vi ( f, η)

i2 < ∞
}
> 0.

Then Π̃{( f, η) ∈ U c
n | (Y1, x1), . . . , (Yn, xn)} → 0 a.s.[Pf0,η0 ].

In this case Un = Wn = U × Sn( f0,Δ)∀ n ≥ 1. As in Vaart and Zanten
(2009), we construct Θn = F × Θ1n where Θ1n = ∪a<rn MnH

a
1 + εB1 where

H1 and B1 are unit ball of the RKHS of W a and unit ball of the Banach space
of C[0, 1]p, respectively, rn,Mn are increasing sequences to be chosen later. The
nth test is constructed by combining a collection of tests, one for each of the
finitely many elements of Θn . It follows from the proof of Theorem 3.1 in Vaart
and Zanten (2009) that under Assumption 1, there exist constants d1, d2, K > 0
such that

1. Π̃(Θc
n) ≤ exp{−d1r p

n logq(rn)} + exp{−M2
n/8}.

2. log N (ε,Θ1n, || · ||∞) ≤ Kr p
n

(
log Mn

ε

)p+1

.

Choosing Mn = O(n1/2), r p
n = O(n/(log n)p+2), we observe that

1. Π̃(Θc
n) ≤ exp{−d2n}.

2. log N (ε,Θ1n, || · ||∞) = o(n).

for some constant d2 > 0.
To verify 1 and 2 of Lemma 5, we will write Wn as a disjoint union of two easily

tractable regions. The particular form of Wn that is of interest to us is W1n ∪ W2n ,
where for any Δ > 0,

W1n = Uc × {
η : ||η − η||1,n ≤ Δ

} W2n = {
( f, η) : ||η − η||1,n > Δ

}
.

We will establish the existence of a consistent sequence of tests for each of these regions
by considering the following variants of Propositions 3.1 and 3.3 of Amewou-Atisso
et al. (2003).

123



26 D. Pati, D. B. Dunson

Proposition 1 There exists an exponentially consistent sequence of tests for

H0 : ( f, η) = ( f0, η0) against H1 : ( f, η) ∈ W2n ∩Θn .

Proof Let 0 < t < Δ/2 and assume Nt = N (t,Θ1n, || · ||∞). Let η1, . . . , ηNt ∈
Θ1n be such that for each η ∈ Θ1n there exists j such that ||η − η j ||∞ < t . If
||η − η0||1,n > Δ, ||η j − η0||1,n > Δ/2. It follows from Lemma 3.2 of Amewou-
Atisso et al. (2003) that there exist a set A j

i and a constant C > 0 depending on f0

such that α j
i := Pf0i (A

j
i ) ≤ 1

2 − C |η j (xi ) − η0(xi )| and γ j
i := Pf

η j i
(Ai ) ≥ 1

2 . If

i ≤ n and i /∈ Kn , set Ai = R, so that α j
i = γ

j
i = 1. Thus,

lim inf
n→∞

1

n

n∑
i=1

(γ
j

i − α
j
i ) ≥ CΔ/2.

From Lemma 3.1 and Lemma 3.2 of Amewou-Atisso et al. (2003), it follows that
there exist test functions Φ j

n based on {I
A j

i
, i = 1, . . . , n} such that E∏n

i=1 f0i
Φ

j
n <

e−nC1 and E∏n
i=1 f

η j i
(1 − Φ

j
n ) < e−nC2 for constants C1,C2 > 0. Now define Φn =

max1≤ j≤Nt Φ
j

n . Then

E∏n
i=1 f0i

Φn ≤
Nt∑

j=1

E∏n
i=1 f0i

Φ
j

n ≤
Nt∑

j=1

e−nC1 ≤ Nt e
−nC1 ≤ e−nC3 .

for some constant C3 > 0. Clearly
∑∞

n=1 E∏n
i=1 f0i

Φn < ∞. ��
Next we consider the type II error probability. The type II error probability of Φn

is no larger than the type II error probability of any of the {Φ j
n , j = 1, . . . , Nt } and

hence exponentially small. ��

Proposition 2 There exists an exponentially consistent sequence of tests for

H0 : ( f, η) = ( f0, η0) against H1 : ( f, η) ∈ W1n .

Proof Without loss of generality take

U =
{

f :
∫
Φ(y) f (y)dy −

∫
Φ(y) f0(y)dy < ε

}

where 0 ≤ Φ ≤ 1 andΦ is Lipschitz continuous. Hence there exists M > 0 such that
|Φ(y1) − Φ(y2)| < M |y1 − y2|. Set Φ̃i (y) = Φ{y − η0(xi )}. Notice that E f0i Φ̃i =
E f0Φ. Now
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E fηi Φ̃i =
∫
Φ̃i (y) fηi (y)dy =

∫
Φ(y) f [y − {η(xi )− η0(xi )}]

≥
∫
Φ[y − {η(xi )− η0(xi )}] f [y − {η(xi )− η0(xi )}]dy

−
∫ ∣∣∣∣Φ(y)−Φ[y − {η(xi )− η0(xi )}]

∣∣∣∣ f [y − {η(xi )− η0(xi )}]dy

≥
∫
Φ(y) f (y)dy − M |η(xi )− η0(xi )|

≥ E f0Φ + ε − M |η(xi )− η0(xi )|.

Hence 1/n
∑n

i=1 E fηi Φ̃i ≥ E f0Φ+ε−MΔ for any f ∈ U c. Now choosingΔ < ε/M
and applying Lemma 3.1 of Amewou-Atisso et al. (2003) we complete the proof. ��
It remains to verify the second sufficient condition of Theorem 1. Under the assump-
tions, it follows from Lemma 2 that f0 ∈ K L(Πs). We will present an important
lemma which is similar to Lemma 5.1 of Tokdar (2006). It guarantees that K ( f0, fθ )
and V ( f0, fθ ) are continuous at θ = 0. First we state and prove some properties of
the prior Πs described in (9) which will be used to prove the lemma.

Lemma 6 If Πs is the prior described in (9) and P0(t, τ ) = N(t;μ0, σ
2
0 ) ×

Ga(τ ;ατ , βτ ), with ατ > 0 and βτ > 0. Then,

∫
τdPs(t, τ ) < ∞ a.s.,

∫
t2dPs(t, τ ) < ∞ a.s.,

∫
τ t2dPs(t, τ ) < ∞ a.s.,−∞ <

∫
(log τ)dPs(t, τ ) < ∞ a.s. (11)

Proof

∫ ∫
τ>0,t∈R

τdPs(t, τ )dP =
∫
τ>0,t∈R

τ

∫
dPs(t, τ )dP

= 1

2

∫
τ>0,t∈R

τN(t;μ0, σ
2
0 )Ga(τ ;ατ , βτ )dtdτ + 1

2

∫
τ>0,t∈R

τN(t;−μ0, σ
2
0 )Ga(τ ;ατ , βτ )dtdτ

=
∫
τ>0

τGa(τ ;ατ , βτ )dτ < ∞.

The proofs of
∫

t2dPs(t, τ ) < ∞ a.s. and
∫
τ t2dPs(t, τ ) < ∞ a.s. are similar. Since

ατ > 0, choose an integer m large enough such that ατ > 1
m .

∫ ∫
τ>0,t∈R

(log τ)dPs(t, τ )dP =
∫
τ>0

(log τ)Ga(τ ;ατ , βτ )dτ

= C
∫
τ>0

(log τ)τατ−1e−βτ τdτ = C
∫
τ>0

(τ 1/m log τ)τατ−
1
m −1e−βτ τdτ > −∞
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since τ 1/m log τ is bounded in [0, 1]. Also
∫
τ>0(log τ)τατ−1e−βτ τdτ ≤ ∫

τ>0
ττατ−1e−βτ τdτ < ∞. ��
Lemma 7 Under the conditions of the Theorem 1, if f (·) = ∫

N(· ; t, τ−1)dPs(t, τ )
and fθ (y) = f (y − θ), then

1. limθ→0
∫

f0(y) log f0(y)
fθ (y)

dy = ∫
f0(y) log f0(y)

f (y) dy.

2. limθ→0
∫

f0(y)
(

log+
f0(y)
fθ (y)

)2dy = ∫
f0(y)

(
log+

f0(y)
f (y)

)2dy.

Proof Clearly τφ
{
τ(y − θ − t)} → τφ

{
τ(y − t)

}
as θ → 0. Since

∫
τφ

{
τ(y −

θ − t)
}
dPs(t, τ ) ≤ 1√

2π

∫
τdPs(t, τ ) < ∞, so by DCT fθ (y) → f (y) as θ → 0.

Hence,

log
f0(y)

ft (y)
→ log

f0(y)

f (y)
as t → 0

(
log+

f0(y)

ft (y)

)2

→
(

log+
f0(y)

f (y)

)2

as t → 0.

To apply DCT again, we have to bound the function | log fθ (y)|by an integrable func-
tion.

| log fθ (y)| ≤ log
√

2π +
∣∣∣∣ log

∫
τe− τ

2 (y−t−θ)2 dPs(t, τ )

∣∣∣∣.

Let c = ∫
τdPs(t, τ ) < ∞. Then

∣∣∣∣ log
∫
τe− τ

2 (y−t−θ)2 dPs(t, τ )

∣∣∣∣ ≤ | log c| +
∣∣∣∣ log

∫
τ

c
e− τ

2 (y−t−θ)2 dPs(t, τ )

∣∣∣∣.

Now since
∫
τe− τ

2 (y−t−θ)2 dPs(t, τ ) ≤ c,
∣∣ log

∫
τ
c e− τ

2 (y−t−θ)2 dPs(t, τ )
∣∣ = − log∫

τ
c e− τ

2 (y−t−θ)2 dPs(t, τ ). Hence, by Jensen’s inequality applied to − log x , we get,

− log
∫
τ

c
e− τ

2 (y−t−θ)2 dPs(t, τ ) ≤ log c −
∫
(log τ)dPs(t, τ )

+1

2

∫
τ(y − t − θ)2dPs(t, τ ).

Now since θ → 0, w.l.o.g assume |θ | ≤ 1. Hence

∫
τ(y − t − θ)2dPs(t, τ ) ≤ 4

(
y2

∫
τdPs(t, τ )+

∫
τ t2dPs(t, τ )+ 1

)

⇒ | log fθ (y)| ≤ log
√

2π + | log c| + log c −
∫
(log τ)dPs(t, τ )

+2

(
y2

∫
τdPs(t, τ )+

∫
τ t2dPs(t, τ )+ 1

)
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which is clearly f0-integrable according to the assumptions of the lemma and from
the properties ofΠs proved in Lemma 6. Similarly | log fθ (y)|2 can be bounded by an
f0-integrable function. The conclusion of the lemma follows from a simple application
of DCT. ��
Lemma 2 together with the assumption (2) of the Theorem 1 guarantees Π

{
f :

K ( f0, f ) < δ, V ( f0, f ) < ∞}
> 0 for all δ > 0. Since (11) holds, we may assume

Π(U) > 0, where U =
{

f : K ( f0, f ) < δ, V ( f0, f ) < ∞, (11) holds

}
. (12)

Now for every f (·) = ∫
N(·; t, τ−1)dPs(t, τ ) ∈ U , using Lemma 7, choose δ f such

that for |θ | < δ f ,

K ( f0, fθ ) < 2K ( f0, f ), V ( f, fθ ) < 2V ( f0, f ).

Now if ||η − η0|| < δ f , |η(xi ) − η0(xi )| < δ f , for i = 1, . . . , n. So if f ∈ U and
||η − η0|| < δ f , we have

Ki ( f, η) =
∫

f0i log
f0i

fηi
=

∫
f0 log

f0

f(η−η0)i
< 2K ( f0, f ),

Vi ( f, η) =
∫

f0i
(

log+
f0i

fηi

)2 =
∫

f0
(

log+
f0

f(η−η0)i

)2
< 2V ( f0, f ).

From (12) and Lemma 3 we have,

Π

{
( f, η) : f ∈ U , ||η − η0||1,n < δ f

}
> 0.

Hence

Π

{
( f, η) : Ki ( f, η) < 2δ ∀ i,

∞∑
i=1

Vi ( f, η)

i2 < ∞
}
> 0.

This ensures weak consistency of the posterior of the residual density and strong
consistency of the posterior of the regression function η. ��
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