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Proof of theorem 1. Following Resnick (2007), we divide the proof in four
steps. The first two steps are stated without proof, because they correspond
to Resnick (2007), pp. 81-84. Steps three and four are stated in more detail.

Step 1. Xn−k,n is a consistent estimator of U(n/k) as n → ∞, k → ∞ and
k/n → 0. Therefore we can replace U(n/k) in the tail empirical mea-
sure by Xn−k,n.

Step 2. Replacing U(n/k) by Xn−k,n we define an estimator of νn,k,

ν̂n,k(·) :=
1

k

n∑
i=1

1{Xi/Xn−k,n ∈ · }.

Then, defining a scaling operator of Radon measures in M+(0,∞] by

T : M+(0,∞]× (0,∞)→M+(0,∞]
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where (µ, x)(A) 7→ T (µ, x)(A) := µ(xA) for any A ∈ E , and showing
its continuity in (νγ, 1), we can show consistency of ν̂n,k, i.e.

ν̂n,k
P→ νγ,

(as n→∞, k →∞ and k/n→ 0) by the continuous mapping theorem
using

T (νγ, 1)(·) = νγ(·).

Step 3. We are now ready to prove consistency of the Harmonic Moment Tail
Index estimator. Therefore, we will use the functional

T (β)(µ) =

∫ ∞
1

µ(x,∞]
dx

xβ
,

defined on M+(0,∞], where β > 1 − 1
γ
. For β = 1 and T (1)(ν̂n,k) this

step can also be found in Resnick (2007). We modify this step in order
to obtain the desired consistency result. Unfortunately the continuous
mapping theorem is not directly applicable to T (β)(ν̂n,k). Therefore we
define

XMn :=

∫ M

1

ν̂n,k(x,∞]x−βdx and XM :=

∫ M

1

νγ(x,∞]x−βdx

Since the integration is over a finite region, the continuous mapping
theorem yields∫ M

1

ν̂n,k(x,∞]x−βdx⇒
∫ M

1

νγ(x,∞]x−βdx =

∫ M

1

x−
1
γ
−βdx

= γ(γ(β − 1) + 1)−1(1−M1− 1
γ
−β),

due to ν̂n,k
P→ νγ. Moreover,

XM ⇒
∫ ∞
1

νγ(x,∞]x−βdx = γ/(γ(β − 1) + 1) =: X,

as M → ∞ provided that β > 1 − 1
γ
. Now, with Yn = Y

(β)
n :=∫∞

1
ν̂n,k(x,∞]x−βdx, we obtain

d(XMn , Yn) : =

∫ M

1

ν̂n,k(x,∞]x−βdx−
∫ ∞
1

ν̂n,k(x,∞]x−βdx

=

∫ ∞
M

ν̂n,k(x,∞]x−βdx.
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Hence, according to Theorem 4.2 in Billingsley (1968) we have to show
that for all ε > 0,

lim
M→∞

lim sup
n→∞

P (d(XMn , Yn) > ε)

= lim
M→∞

lim sup
n→∞

P

(∫ ∞
M

ν̂n,k(x,∞]x−βdx > ε

)
→ 0,

in order to obtain Yn
P→ γ/(γ(β − 1) + 1). To achieve this, we use an

analogous decomposition as in Resnick (2007):

P

(∫ ∞
M

ν̂n,k(x,∞]x−βdx > δ

)
≤

P

(∫ ∞
M

ν̂n,k(x,∞]x−βdx > δ,
Xn−k,n

U(n/k)
∈ (1− η, 1 + η)

)
+ P

(∫ ∞
M

ν̂n,k(x,∞]x−βdx > δ,
Xn−k,n

U(n/k)
6∈ (1− η, 1 + η)

)
:= P1 + P2

The second probability is negligible, since

P2 ≤ P

(∣∣∣∣ Xn−k,n

U(n/k)
− 1

∣∣∣∣ ≥ η

)
→ 0,

as n→∞, k →∞ and n/k →∞. This is a consequence of the result
in the first step of the proof. Moreover, P1 is bounded from above by

P

(∫ ∞
M

νn,k((1− η)x,∞]x−βdx > δ

)
:= P3,

since, under the condition Xn−k,n ≥ (1− η)U(n/k) we have

ν̂n,k(x,∞] =
1

k

n∑
i=1

1{Xi/Xn−k,k ∈ (x,∞]}

≤ 1

k

n∑
i=1

1{Xi/ ((1− η)U(k/n)) ∈ (x,∞]} = νn,k((1− η)x,∞]
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Using Markov’s inequality we have

P3 = P

(
(1− η)β−1

∫ ∞
(1−η)M

νn,k(x,∞]x−βdx > δ

)
≤ (1− η)β−1

δ
E

(∫ ∞
(1−η)M

νn,k(x,∞]x−βdx

)
=

(1− η)β−1

δ

∫ ∞
M(1−η)

n

k
P (X1 > U(n/k)x)x−βdx.

Note, that regularly varying tails imply
n

k
P (X1 > U(n/k)x) =

n

k
P (X1/U(n/k) ∈ (x,∞])→ νγ((x,∞]) = x−

1
γ ,

provided n→∞, k →∞ but k/n→ 0. Thus, by Karamata’s theorem,
we obtain

P

(∫ ∞
(1−η)M

νn,k(x,∞]x−βdx > δ

)
n→∞→ (1− η)β−1

δ

∫ ∞
(1−η)M

x−
1
γ
−βdx

= O(M1− 1
γ
−β),

so that P1 + P2 → 0 as M →∞.

Step 4. So far, we have shown

Y (β)
n

P→
∫ ∞
1

νγ(x,∞]x−βdx = γ/(1 + γ(β − 1)), (1)

Rewriting Y
(β)
n we obtain

Y (β)
n = (Xn−k,n)β−1

∫ ∞
Xn−k,n

n

k
(1− Fn(s)) s−βds.

Since β 6= 1, partial integration yields∫ ∞
t

(1− F (s))
ds

sβ
= − 1

1− β
(1− F (t))t1−β +

1

1− β

∫ ∞
t

s1−βdF (s),

so that

Y (β)
n =

1

1− β

(
(Xn−k,n)β−1

∫ ∞
Xn−k,n

n

k
s1−βdFn(s)− 1

)

=
1

1− β

(
1

k

k∑
i=1

(
Xn−k,n

Xn−i+1,n

)β−1
− 1

)
. (2)

4



Combining (1) and (2) we obtain

1

k

k∑
i=1

(
Xn−k,n

Xn−i+1,n

)β−1
P→ 1

γ(β − 1) + 1
.

Hence,

H
(β)
k,n =

1

β − 1

 1

1
k

∑k
i=1

(
Xn−k,n
Xn−i+1,n

)β−1 − 1

 P→ γ.
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