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Abstract We develop a bootstrap procedure for Lévy-driven continuous-time autore-
gressive (CAR) processes observed at discrete regularly-spaced times. It is well
known that a regularly sampled stationary Ornstein–Uhlenbeck process [i.e. a CAR(1)
process] has a discrete-time autoregressive representation with i.i.d. noise. Based on
this representation a simple bootstrap procedure can be found. Since regularly sam-
pled CAR processes of higher order satisfy ARMA equations with uncorrelated (but
in general dependent) noise, a more general bootstrap procedure is needed for such
processes. We consider statistics depending on observations of the CAR process at the
uniformly-spaced times, together with auxiliary observations on a finer grid, which
give approximations to the derivatives of the continuous time process. This enables us
to approximate the state-vector of the CAR process which is a vector-valued CAR(1)
process, and whose sampled version, on the uniformly-spaced grid, is a multivariate
AR(1) process with i.i.d. noise. This leads to a valid residual-based bootstrap which
allows replication of CAR(p) processes on the underlying discrete time grid. We show
that this approach is consistent for empirical autocovariances and autocorrelations.
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76 P. J. Brockwell et al.

1 Introduction

The modeling of continuous time processes has a long history and has been car-
ried out widely in financial econometrics. Early papers of Doob (1944) and Phillips
(1959) deal with representations and properties of Gaussian continuous-time ARMA
processes. State-space representations of these processes were exploited by Jones
(1980) for dealing with missing values in time series, and by Brockwell (2001) in
the study of Lévy-driven continuous time ARMA (CARMA) processes. These allow
the modeling of series with a wide variety of marginal distributions including heavy-
tailed and asymmetric distributions. Long-memory versions have been developed by
Brockwell and Marquardt (2005). One of the important applications of Lévy-driven
CARMA processes is in financial econometrics where they have been used as mod-
els for spot volatility in stochastic volatility models (Barndorff-Nielsen and Shephard
2001; Brockwell and Lindner 2012). Over the years, the topic of embedding a discrete-
time ARMA process in a continuous-time ARMA process has also been studied by
a number of authors including Chan and Tong (1987), He and Wang (1989), Huzii
(2001), Brockwell (1994), and Brockwell and Lindner (2009), whose results will
be important for our work later in this paper. High-frequency sampling of CARMA
processes has also been studied by Brockwell et al. (2012) in connection with the
extremely high-frequency measurements of turbulent wind speed which are now avail-
able. The bootstrap possibilities for this huge class of processes have not previously
been investigated.

This article is concerned with bootstrapping statistics of general Lévy-driven CAR
processes on general but fixed time grids with spacing � > 0. We define the CAR(p)
process in Sect. 2 and give an overview of its representations. Afterwards, we will
briefly review the results of Cohen and Lindner (2012) who handle equidistant sam-
ples of continuous-time moving average processes and give another representation
for the limiting variance in their central limit result. This representation will be help-
ful for proving an analogous bootstrap result later in the paper. Section 3 discusses
the Ornstein–Uhlenbeck case and its special characteristics. The bootstrapping of
Ornstein–Uhlenbeck processes reduces to a very simple and well-known situation.
Unfortunately, this is not the case for higher-order CAR processes. A bootstrap pro-
cedure for the general case is then proposed and investigated, concluding with a sim-
ulation study in Sect. 4.

2 The CAR model

We define a second-order Lévy-driven CAR(p) process {Y (t)} with p > 0 and para-
meters a1, . . . , ap to be a stationary solution of the formal differential equation

a(D)Y (t) = DL(t), t ≥ 0, (1)

where D denotes differentiation with respect to t, L is a second order Lévy process,
and the polynomial a(z) is defined by

a(z) = z p + a1z p−1 + · · · + ap. (2)
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Bootstrapping CAR Processes 77

Since the derivative of the Lévy process L(t) does not exist in the usual sense, we
follow the standard approach via the state-space representation of (1) [cf. Brockwell
and Lindner 2009 for an overview],

Y (t) = bT X(t) = X0(t), (3)

dX(t) − AX(t)dt = edL(t), (4)

where

X(t) =

⎡
⎢⎢⎢⎢⎢⎣

X0(t)
X1(t)

...

X p−2(t)
X p−1(t)

⎤
⎥⎥⎥⎥⎥⎦

, e =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎣

1
0
...

0
0

⎤
⎥⎥⎥⎥⎥⎦

(5)

and

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−ap −ap−1 −ap−2 . . . −a1

⎤
⎥⎥⎥⎥⎥⎦

. (6)

Note that (4) is a system of p stochastic differential equations. Except for the last
one, all equations are of the same type and give

X j = X ( j)
0 , j = 0, . . . , p − 1. (7)

Thus, the components of X are the derivatives of the CAR process Y = X0. Every
solution of (2.4) satisfies the equation,

X(t) = eA(t−s) X(s) +
∫ t

s
eA(t−u)e dL(u) ∀s < t. (8)

For the existence of a weakly stationary and causal solution (Y (t)) of the equations
(2.3) and (2.4) under the assumption E L(1)2 < ∞ it is necessary and sufficient that
the zeroes λ1, λ2, . . . , λp of (2) (which coincide with the eigenvalues of the matrix A)
all have strictly negative real parts (see Brockwell 2001 or Brockwell 2012, Proposition
1). Under these assumptions the solution is also strictly stationary (cf. Brockwell 2012,
Proposition 2). The stationary solution of (2.8) is given by

X(t) =
∫ t

−∞
eA(t−u)e dL(u), (9)
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78 P. J. Brockwell et al.

while the unique weakly and strictly stationary solution of (2.3) and (2.4) reads

Y (t) = bT X(t) =
∫ t

−∞
bTeA(t−u)edL(u) =

∫ ∞

−∞
f (t − u)dL(u). (10)

In (10), the function f (t) = bTeAt e1[0,∞)(t) is referred to as the kernel of the CAR
process Y (t), see e.g. Brockwell et al. (2010) or Cohen and Lindner (2012). This is
the reason for making the following assumption.

Assumption 1 (i) The zeroes λ1, λ2, . . . , λp of the autoregressive polynomial (2)
(which are also the eigenvalues of the matrix A) are all assumed to have strictly
negative real parts.

(ii) The driving Lévy process is assumed to have zero mean, varianceσ 2 := E L(1)2 <

∞ and η := σ−4 E L(1)4 < ∞.

Remark 1 Although Y = X0 is a univariate process, the state representation (3) and
(4) characterizes it as the first component of a multivariate state-vector X , i.e. for
bT = (1, 0, . . . , 0) we have Y (t) = bT X(t). This leads us to

�Y (q) = γY (q)

γY (0)
= bT�(q)b

bT�(0)b
, (11)

where �(q) denotes the autocovariance matrix of X at lag q.

For the estimation and bootstrap procedure, we assume that high-frequency obser-
vations are available for the estimation of certain derivatives while our interest lies
in the behaviour of the process on a fixed �-grid. More detailed comments on the
observation structure are given later. For technical reasons in the proof of the ensuing
bootstrap procedure, we present another representation of the CAR process Y (t) itself.
Using (8) with t� and (t + 1)� as bounds of the integral, we obtain

X((t + 1)�) = eA� X(t�) +
∫ (t+1)�

t�
eA((t+1)�−u)edL(u), (12)

that is a vector autoregressive representation (VAR) of order one. Abbreviating the
i.i.d. noise sequence by

Z((t + 1 − j)�) :=
∫ (t+1− j)�

(t− j)�
eA((t+1)�−u)edL(u)m t ∈ Z, (13)

and inverting the VAR(1)-representation (12) leads to the following moving average
representation of the process (X(t�) : t ∈ Z):

X((t + 1)�) =
∞∑
j=0

(eA�) j Z((t + 1 − j)�). (14)
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Bootstrapping CAR Processes 79

Correspondingly, the sampled CAR(p)-process (Y (t�)) itself can be written as

Y ((t + 1)�) =
∞∑
j=0

bTeA� j Z((t + 1 − j)�)

=
∞∑
j=0

cT
j Z((t + 1 − j)�)

=
∞∑
j=0

p−1∑
i=0

c j,i Zi ((t + 1 − j)�), (15)

where cT
j := bT(eA�) j , j ∈ N0, is a sequence of p-variate coefficients.

Remark 2 It is worth mentioning that the moving average representation (15) varies
with �, since coefficients c j,i depend on the fixed grid size �.

Under the assumption of finite fourth moments and an appropriate Lévy process
Cohen and Lindner (2012) investigated continuous-time moving average processes of
infinite order if observations are taken on a fixed �-grid. Their Theorem 3.3 gives
the asymptotic normal distribution for empirical autocovariances and autocorrela-
tions based on observations taken on a fixed �-grid. It is worth mentioning that the
asymptotic variance–covariance matrix substantially differs from the matrix obtained
in discrete time linear process, i.e. discrete time moving average processes of possibly
infinite order and, most important, with i.i.d. innovations (cf. Brockwell and Davis
1991, Proposition 7.3.4 and Theorem 7.2.1). If we specialize Theorem 3.3 of Cohen
and Lindner (2012) to CAR(p)-processes we obtain:

Proposition 1 Under Assumption 1 we obtain for the empirical autocovariances

γ̂ (h) = 1

n

n−h−1∑
t=0

(Yt+h − Y )(Yt − Y ), h = 0, . . . , n − 1, Y = 1

n

n−1∑
t=0

Yt , (16)

of observations (Yt := Y (t�) : t = 0, . . . , n − 1) stemming from a CAR(p) process
sampled on a fixed �-grid

√
n(γ̂Y (0) − γY (0), . . . , γ̂Y (q) − γY (q))T D→ N (0, V ), n → ∞, (17)

where the variance–covariance matrix V = (vq1,q2,�)q1,q2=0,...,q ∈ Rq+1,q+1 has
components
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vq1,q2,� =
p−1∑
i1=0

p−1∑
i2=0

p−1∑
i3=0

p−1∑
i4=0

∞∑
j=0

c j,i1 c j+q1,i2

∞∑
r=0

c j+r,i3 c j+r+q2,i4

·
(
κ4

i1,i2,i3,i4
−E[Zi1 Zi2 ]E[Zi3 Zi4 ]−E[Zi1 Zi3 ]E[Zi2 Zi4 ]−E[Zi1 Zi4 ]E[Zi2 Zi3 ]

)

+
∞∑

r=−∞
{γY (r�)γY ((q2 + r − q1)�) + γY ((r + q2)�)γY ((r − q1)�)} , (18)

and κ4
i1,i2,i3,i4

:= E[Zi1 Zi2 Zi3 Zi4 ]. We use the abbreviation (Z0, . . . , Z p−1)
T =

Z(�) and denote by c j,i the i th component of the vector bT
(
eA�

) j
.

Remark 3 Of course Proposition 1 together with the delta method immediately leads
to asymptotic normality of the empirical autocorrelations, �̂(h) = γ̂ (h)/γ̂ (0), h =
1, 2, . . .. Comparing the expression (18) with the asymptotic covariance matrix of the
empirical autocovariances of a discrete time linear process (cf. Brockwell and Davis
1991, Proposition 7.3.4), we see that both expressions consist of two summands.
Although the second summands coincide, the first summands differ substantially. In
Bartlett’s formula for discrete time linear processes, the asymptotic covariance matrix
depends only on the autocorrelation function of the process. This convenient property
fails to hold in the continuous time setting. Thus, in contrast with the expression in
Brockwell and Davis (1991), Theorem 7.2.1, we obtain for the limiting covariance
matrix

√
n(̂�Y (0) − �Y (0), . . . , �̂Y (q) − �Y (q))T D→ N (0, W ), n → ∞, (19)

where the limiting covariance matrix W = (wq1,q2)q1,q2=0,...,q ∈ Rq+1,q+1 reads

wq1,q2 = (η − 3)σ 4

γY (0)2

∫ 1

0

( ∞∑
k=−∞

f (u + k) f (u + k + q1) − �Y (q1) f (u + k)2

)

·
( ∞∑

l=−∞
f (u + l) f (u + l + q2) − �Y (q2) f (u + l)2

)
du

+
∞∑

k=1

[�Y (k + q1) + �Y (k − q1) − 2�Y (q1)�Y (k)]

· [�Y (k + q2) + �Y (k − q2) − 2�Y (q2)�Y (k)]. (20)

Here, as above, f (t) = bTeAt e1[0,∞)(t). For details, we refer to Cohen and Lind-
ner (2012) and, for a corresponding phenomenon for discrete-time linear processes
observed at lower frequencies, to Niebuhr and Kreiss (2012). �	
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Bootstrapping CAR Processes 81

3 Bootstrap procedure

First we consider the simplest case, the CAR(1) or stationary Ornstein–Uhlenbeck
process. In this case, both the observation and state equation (3) and (4) reduce to a
single one-dimensional equation for Y (t�) = X (t�). Namely

X ((t + 1)�) = e−a� X (t�) + Z((t + 1)�), t = 0, . . . , n − 1. (21)

Thus, every equidistantly discretely (fixed �-grid) sampled CAR(1) process is a first-
order autoregressive process with i.i.d. innovations. This of course is a very well-
studied process in time series analysis.

The autoregressive parameter e−a� can be
√

n-consistently estimated using the
Yule-Walker method, which immediately leads to a

√
n-consistent estimator of the

continuous time parameter a via

â = − log (γ̂ (�) / γ̂ (0))

�
. (22)

Residual-based or wild bootstrap proposals are well understood for such cases and
immediately lead to consistent bootstrap procedures for discretely observed Ornstein–
Uhlenbeck processes.

Recall that our interest is to setup a bootstrap procedure which is able to consistently
approximate distributions of statistics that depend on observations on a fixed �-grid
of the CAR process, only. Without loss of generality let us assume � = 1. Consider as
an important example empirical autocovariances γ̂ (h), cf. (16), or empirical autocor-
relations. As Proposition 1 shows, the asymptotic variance of such quantities depends
in a quite complicated way on properties of the underlying continuous time process,
which is quite difficult to estimate from discrete time observations. Thus, it appears
that there is some room for a bootstrap procedure.

Extending the simple approach described above for CAR(1) processes to deal with
CAR(p) processes with p > 1 presents serious difficulties. It is well known (see
e.g. Brockwell 1994; Huzii 2001) that, from a second-order point of view, every dis-
cretely sampled CARMA(p, q) process can be represented as a stationary solution of
ARMA(p, q ′) equations with q ′ < p. Brockwell and Lindner (2009) give the stronger
result that the discretely sampled observations of a CARMA(p, q) process satisfy
autoregressive equations of order p with driving noise which is (p − 1)-dependent.
Since every (p−1)-dependent sequence has a moving average representation of order
at most (p−1) driven by white noise which is uncorrelated but not necessarily (except
when p = 1) independent, our observations will satisfy an ARMA(p, p −1) equation
with innovations which are uncorrelated only. Thus, a residual bootstrap as described
in Kreiss and Franke (1992) using a standard ARMA(p, p −1)-model fit to the obser-
vations and a resampling via drawing with replacement from residuals from this fit will
lead to consistent results only if statistics are considered whose asymptotic distribution
depends only on second order properties, i.e. on the autocovariance structure of the
observations. This is because a given ARMA-model has autocovariances which are the
same whether the driving noise is independent or simply uncorrelated. A simple exam-

123



82 P. J. Brockwell et al.

ple is the sample mean, Y . Central limit results for Y can be established under quite
general assumptions, which typically are satisfied for discretely observed CAR(p)
processes. Since the asymptotic variance of Y depends only on the autocovariance
function of Y ,every bootstrap proposal which mimics the second-order properties of
the underlying observations will work asymptotically. But in all cases in which the
asymptotic distribution of a statistic of interest depends on properties that go beyond
second-order properties, such a simple ARMA-based residual bootstrap procedure for
discretely observed CAR(p)-processes would fail! In Proposition 1 and Remark 3, we
have seen that for empirical autocovariances and more interestingly, even for empiri-
cal autocorrelations, features of the process beyond second-order properties show up
in the asymptotic distribution and this fact therefore directly implies that a standard
residual-based ARMA bootstrap does not work at all in such situations.

The block bootstrap (cf. Künsch 1989 and Bühlmann and Künsch 1995), which has
been shown to work for rather general strictly stationary processes, is a possibility to
overcome this problem. However, we intend to follow in this paper a different approach,
which tries to take existing parametric structure as much as possible into account.
Moreover block bootstrap techniques have to deal with quite delicate problems around
a proper choice of the block length (e.g. Nordman et al. (2007)). Instead of dealing
with block bootstrap methods we focus on an i.i.d. based bootstrap proposal influenced
by the ideas of Kreiss and Franke (1992) and Paparoditis (1996).

To be able to apply such a residual-based bootstrap, we make use of the vector
autoregressive representation obtained from (12), namely

X((t + 1)�) = eA� X(t�) + Z((t + 1)�). (23)

In this vector autoregressive representation, the driving white noise Z(t +1) [cf. (13)]
indeed is an i.i.d. noise sequence.

Our strategy now is to estimate the first p − 1 derivatives X1(t�), . . . , X p−1(t�)

of the CAR process X0(·), which represent the back p − 1 components of the vector
X(t�), and to use them to estimate the autoregressive parameter matrix eA�. Having
done this, we immediately are able to define estimated autoregressive residuals on
which an asymptotically consistent residual based bootstrap can be set up.

To this end, let us assume that we are able to observe some additional auxiliary high-
frequency data, but must point out that no full-time high-frequency data is needed.
More precisely, we assume the following observation structure:

Y1�−(p−1)h, . . . , Y1�−h, Y1�,

Y2�−(p−1)h, . . . , Y2�−h, Y2�,
...

... . . .
...

Yn�−(p−1)h, . . . , Yn�−h, Yn�.

(24)

In (24), � > 0 still is the fixed grid size of our main observations Y1�, . . . , Yn�.
The auxiliary p −1 pre-observations are on a much finer high-frequency grid of mesh
size h, for which we will assume later that h → 0 as n → ∞. This results in a local
high-frequency aided low-frequency sampling scheme (cf. Fig. 1).
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... (t+0)Δ (t+1)Δ (t+2)Δ (t+3)Δ ...

Fig. 1 Local high-frequency aided low frequency sampling scheme

Remark 4 At first glance, the supposed data structure [cf. (24) or Fig. 1] needed for
the local high-frequency-aided bootstrap proposal suggested below seems somewhat
strange. The following two examples show to what kind of situations our bootstrap
proposal is applicable. As a first example from financial econometrics one might be
interested in fitting CAR(p) models on the basis of daily return data. Assume that
� = 1 stands for one-day length. For the application of our bootstrap proposal, it is
necessary to be able to additionally observe some more frequent intraday data, e.g.
hourly, 30- or 15-min return values. This would lead to values h = 1/24, 1/48 or
1/96, respectively. Such higher frequency returns are available in many cases (e.g. for
currency exchange rates and stock indices such as Dow Jones, S&P 500, FTSE 100,
Nikkei or DAX). Alternatively, we may have complete high-frequency intraday return
data available, e.g. at equidistant intervals of 15 min. Then our bootstrap proposal
allows us to mimic the distribution of autocovariances and autocorrelations for lags
q · �, q = 0, 1, . . . on a coarser time grid (e.g. � = 24, which corresponds to 6 h).

�	
For simplicity and easier understanding, we assume all local high-frequency addi-

tional observations to be on the same time grid of mesh size h.
Based on the observations (24), the derivatives of the process be estimated consis-

tently by Proposition 5.1 of Brockwell and Schlemm (2011) using iterated difference
quotients for the first p − 1 derivatives. More precisely, we define

X̂s(t) := 1

hs

s∑
i=0

X0(t − ih)(−1)i
(

s

i

)
s = 0, . . . , p − 1. (25)

If the driving Lévy process L is assumed to have finite second moments then Propo-
sition 5.6 of Brockwell and Schlemm (2011) gives

X̂s(t) = Xs(t) + OP (h) s = 0, . . . , p − 1. (26)

The vectors

X̂
T
(t�) = (

X0(t�), X̂1(t�), . . . , X̂ p−1(t�)
)T

(27)

are used to estimate the autoregressive parameter matrix, e.g. by the classical Yule-
Walker equations. Thus,

êA� = 	̂(�)	̂
−1

(0), (28)

where 	̂(�) = 1
n

∑n−�
t=1

(
X̂((t + 1)�) − X̂

) (
X̂(t�) − X̂

)T
.
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Even though for our purposes, it would be sufficient to have a consistent estimator
of the autoregressive parameter matrix, inspection of the results of Brockwell and
Schlemm (2011) leads to the following result

Lemma 1 Under Assumption 1 and if h = h(n) → 0 as n → ∞ we obtain

êA� = eA� + OP (h + n−1/2). (29)

Remark 5 We emphasize that the autoregessive parameter matrix eA� is estimated
directly and not via an estimator of the matrix A itself composed with the matrix
exponential function e·�. Even if estimation of A was possible, the direct estimation
of eA� via Yule-Walker equations is much simpler in practice. Moreover, it is well
known that under very mild conditions the Yule-Walker estimate has eigenvalues with
absolute value <1. This fact is a great advantage for the bootstrap procedure to be
defined below. Moreover, except in the simple case when p = 1, it is not immediately
evident that for every fixed � the matrix exponential e·� can be inverted to produce

from the estimator êA� a uniquely defined estimator Â of the matrix A such that Â
satisfies Assumption 1 (i).

The above considerations lead to the following bootstrap algorithm which is used to
generate pseudo-observations Y ∗(�), Y ∗(2 �), . . . , Y ∗(n �) of the continuous-time
CAR(p) process (Y (t) : t ≥ 0).

Step 1: Let êA� denote a consistent estimator of eA�. Obtain estimated residuals
from

Ẑ(t�) = X(t�) − êA� X((t − 1)�), t = 1, . . . n. (30)

Step 2: Generate (Z∗(t �)) via drawing with replacement from the cen-
tered estimated innovations Ẑ c(�), . . . , Ẑ c(n �), where Ẑ c(t �) = Ẑ(t �) −
1/n

∑n
j=1 Ẑ( j �).

Step 3: Obtain pseudo-observations X∗(t�), t = 1, . . . , n of the vector autore-
gressive process from

X∗(t�) = êA� X∗((t − 1)�) + Z∗(t �). (31)

Step 4: Finally obtain pseudo-observations Y ∗(�), Y ∗(2 �), . . . , Y ∗(n �) accord-
ing to

Y ∗(t �) = (1, 0, . . . , 0) X∗(t�), t = 1 . . . , n. (32)

Exactly as for the vector autoregressive process (12) we obtain for the bootstrapped
vector autoregression (X∗(t�)) a moving average representation of the form

X∗((t + 1)�) =
∞∑
j=0

êA� j Z∗((t + 1 − j)�). (33)
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Bootstrapping CAR Processes 85

This directly leads to a bootstrap analogon of (15)

Y ∗((t + 1)�) =
∞∑
j=0

p−1∑
i=0

ĉ j,i Z∗
i ((t + 1 − j)�), (34)

with ĉT
j := bTêA� j , j ∈ N0.

In Sect. 6, we prove the following result, which states that our bootstrap proposal
works asymptotically for statistics depending smoothly on autocovariances or auto-
correlations.

Theorem 1 Let Y be a CAR(p) process and let Assumption 1 be satisfied. Further
assume the local high-frequency-aided sampling scheme (24) with h satisfying h =
h(n) → 0 as n → ∞ and let Y (t �)∗ be a bootstrap process generated as described
above. Then we have in probability as n → ∞

(i) For each q1, q2 ∈ N0 and γ̂ ∗(q j�) = n−1 ∑n−h
t=1 Y ∗(t�)Y ∗((t + q j )�), j =

1, 2,

lim
n→∞ n Cov(γ̂ ∗(q1�), γ̂ ∗(q2�)) → vq1,q2,�, (35)

where vq1,q2,� is defined as in Proposition 1.
(ii) Further for each q ∈ N0

√
n

(
γ̂ ∗(0) − γY ∗(0), . . . , γ̂ ∗(q�) − γY ∗(q�)

) D→ N (0, V ), (36)

where γY ∗(·) denotes the autocovariance function of the bootstrap process
(Y ∗(t�)) [cf. (32)] and V = (vq1�,q2�)q1,q2=0,...,q .

(iii) Moreover,

√
n

(̂
�∗(0) − �Y ∗(0), . . . , �̂∗(q�) − �Y ∗(q�)

) D→ N (0, W ), (37)

where �Y ∗(·) denotes the autocovariance function of the bootstrap process
(Y ∗(t�)) and W is given in Remark 3. �	

Remark 6 Since the bootstrap procedure proposed in Sect. 3 mimics the true under-
lying vector autoregressive process (including the distribution of the errors), it can be
expected that the validity of our bootstrap proposal goes far beyond statistics which
are smooth functionals of empirical autocovariances and autocorrelations. Especially
for integrated periodograms (cf. Dahlhaus 1985), nonparametric spectral density esti-
mation and the general class of estimators

Tn = f

(
1

n − m + 1

n−m+1∑
t=1

g (Y (t�), . . . , Y ((t + m − 1)�))

)
, (38)
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discussed in Künsch (1989), cf. Example 2.2; for g : R
m → R

d and f : R
d → R, our

proposal will lead to a consistent approximation of the distribution of the corresponding
statistics. For the latter class of statistics, Bühlmann (1997) proved validity of the AR-
sieve bootstrap under the main assumption of an invertible linear process in discrete
time with i.i.d. innovations for the underlying process. One should keep in mind that
the proposed bootstrap procedure is aimed at approximate distributions of statistics
that can be written as functionals of discretely observed data (fixed �-grid) from a
CAR(p) process of known order p. The additional high-frequency pre-observations
preceding each time point t � are only auxiliary values to approximate derivatives of
the underlying process at the time points t �. �	

4 Simulation study

In this Section, we present the results of a simulation study for CAR(2) processes.
We simulated a CAR(2) process with parameters a1 = −1.0525 and a2 = −1.5.
A Wiener process with variance 1 was used as the underlying driving Lévy process.
Figure 2 shows a typical realization of such a process. Note that the smooth appearing
of the sample path is quite expected because CAR(2) processes are differentiable.

We set n = 150 and � = 1 and investigated the finite sample distribution of the
first-order autocorrelation

√
n (ρ̂(1) − ρ(1)) , (39)

based on observations as given in (24), and the ability of the proposed bootstrap
proposal to approximate this distribution. We simulated (39) 1,500 times to get an
appropriate approximation of the finite sample distribution. The histograms in red
color in Fig. 3 show this simulated finite sample distribution of (39). The histograms
in grey are bootstrap distributions showing average performance. Showing average
performance in this context means that we have simulated 1,000 bootstrap distrib-
utions and have calculated their distance to the true distribution (histogram in red
color). The grey histogram plots now represent bootstrap distributions belonging
to the lower quartile, the median and the upper quartile of distances, respectively.

0 2 4 6 8 10

−
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5

1

Fig. 2 Typical realization of a CAR(2) process

123



Bootstrapping CAR Processes 87

D
en

si
ty

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

D
en

si
ty

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

D
en

si
ty

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

Fig. 3 Average bootstrap performance (lower quartile, median and upper quartile distance). True distrib-
ution (red) and bootstrap approximations (light grey). Overlapping area of both histograms is in dark grey
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Fig. 4 Boxplots of 5, 95 and 99 % Bootstrap quantiles of L(
√

n(ρ̂(1) − ρ(1))) (left to right) with true
quantiles (in red)

Even if we have not incorporated the limiting normal distribution in the simulation,
because the limiting variance (cf. Proposition 1) is quite difficult to compute, it appears
that the true distribution shows a significant skewness and thus it can be expected that
the limiting normal distribution will possess certain approximation errors. Further,
Fig. 4 shows boxplots of generated bootstrap 5, 95 and 99 % quantiles. The added red
lines represent the corresponding true quantiles obtained by simulation.

5 Conclusion

We have proposed a bootstrap procedure which is applicable to discrete time (fixed
�-grid) observations from CAR processes. Starting from the Ornstein–Uhlenbeck
process as the simplest CAR process, for which a consistent bootstrap procedure eas-
ily can be defined, we have seen that the situation becomes much more complicated
for samples from CAR processes of higher order. Using some auxiliary high frequency
pre-observations preceding every discrete low frequency time point, we make use of
the fact that the process together with its first p − 1 derivatives can be written as
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a vector autoregressive process of order one and, most important for the bootstrap,
with i.i.d. innovations. On this basis, a bootstrap procedure has been proposed and
the asymptotic validity has been shown for empirical autocovariances and empirical
autocorrelations. It has been pointed out, that the normal approximation for the distri-
butions of empirical autocovariances and empirical autocorrelations differs from that
for linear time series in discrete time and that even the asymptotic variance of such lim-
iting normal distributions hardly can be estimated from low-frequency data. A small
simulation study has shown that the proposed bootstrap proposal works appropriately.

6 Proofs

Proof of Proposition 1 Since all the main arguments for a proof of Proposition 1 have
been given in Cohen and Lindner (2012), we restrict ourselves to verify the represen-
tation (18) which differs from the representation given in Cohen and Lindner (2012)
but is needed for the proof of our main result.

We make heavy use of (15) in the following. Obviously E[Y (t�)] = 0. Further,
we obtain

γY (h�) = E[Y (t�)Y ((t + h)�)] =
∞∑
j=0

p−1∑
i1=0

p−1∑
i2=0

c j,i1 c j+h,i2 E[Zi1 Zi2 ]. (40)

With the notation κ4
i1,i2,i3,i4

= E[Zi1 Zi2 Zi3 Zi4 ], we can compute directly

E[Y (t�)Y ((t + q1)�)Y ((t + h + q1)�)Y ((t + h + q1 + q2)�)]

=
∞∑
j=0

p−1∑
i1=0

p−1∑
i2=0

p−1∑
i3=0

p−1∑
i4=0

c j,i1 c j+q1,i2 c j+q1+h,i3 c j+q1+h+q2,i4

·
(
κ4

i1,i2,i3,i4
− E[Zi1 Zi2 ]E[Zi3 Zi4 ]

−E[Zi1 Zi3 ]E[Zi2 Zi4 ] − E[Zi1 Zi4 ]E[Zi2 Zi3 ]
)

+γY (q1�)γY (q2�) + γY ((q1 + h)�)γY ((h + q2)�)

+γY ((q1 + h + q2)�)γY (h�). (41)

This last representation corresponds to Eq. (3.5) in Cohen and Lindner (2012). The
next step is to compute the asymptotic behaviour of nCov(γ̂Y (p�), γ̂Y (q�)). Observe
that

n Cov(γ̂Y (q1�), γ̂Y (q2�)) =
n−1∑

r=−(n−1)

(
1 − |r |

n

)
Tr + o(1), (42)
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where

Tr =
∞∑
j=0

p−1∑
i1=0

p−1∑
i2=0

p−1∑
i3=0

p−1∑
i4=0

c j,i1 c j+q1,i2 c j+r,i3 c j+r+q2,i4

·
(
κ4

i1,i2,i3,i4
−E[Zi1 Zi2 ]E[Zi3 Zi4 ]−E[Zi1 Zi3 ]E[Zi2 Zi4 ]−E[Zi1 Zi4 ]E[Zi2 Zi3 ]

)

+γY (r�)γY ((q2 + r − q1)�) + γY ((r + q2)�)γY ((r − q1)�). (43)

This yields (18). �	
Now we come to the proof of our main result.

Proof of Theorem 1 The computation of the asymptotic covariance matrix is exactly
as in the proof of Proposition 1. We obtain

n Cov(γ̂Y ∗(q1�), γ̂Y ∗(q2�))

= 1

n

n∑
t=1

n∑
s=1

⎡
⎣

∞∑
j=0

p−1∑
i1=0

p−1∑
i2=0

p−1∑
i3=0

p−1∑
i4=0

ĉ j,i1 ĉ j+q1,i2 ĉ j+s−t,i3 ĉ j+s−t+q2,i4

·
(
κ∗4

i1,i2,i3,i4
− E∗[Z∗

i1
Z∗

i2
]E∗[Z∗

i3
Z∗

i4
]

−E∗[Z∗
i1

Z∗
i3
]E∗[Z∗

i2
Z∗

i4
] − E∗[Z∗

i1
Z∗

i4
]E∗[Z∗

i2
Z∗

i3
]
)⎤
⎦

+1

n

n∑
t=1

n∑
s=1

[
γY ∗((s − t)�)γY ∗((q2 + s − t − q1)�)

+γY ∗((s − t + q2)�)γY ∗((s − t − q1)�)
] + oP (1)

=
n−1∑

r=−(n−1)

(
1 − |r |

n

)
T ∗

r + oP (1). (44)

Here, κ4∗
i1,i2,i3,i4

= E∗[Z∗
i1

Z∗
i2

Z∗
i3

Z∗
i4
] and

T ∗
r =

∞∑
j=0

p−1∑
i1=0

p−1∑
i2=0

p−1∑
i3=0

p−1∑
i4=0

ĉ j,i1 ĉ j+q1,i2 ĉ j+r,i3 ĉ j+r+q2,i4

·
(
κ4

∗
i1,i2,i3,i4

− E∗[Z∗
i1

Z∗
i2
]E∗[Z∗

i3
Z∗

i4
] − E∗[Z∗

i1
Z∗

i3
]E∗[Z∗

i2
Z∗

i4
]

−E∗[Z∗
i1

Z∗
i4
]E∗[Z∗

i2
Z∗

i3
]
)

+γY ∗(r�)γY ∗((q2 + r − q1)�) + γY ∗((r + q2)�)γY ∗((r − q1)�). (45)

Because of Assumption 1 (i), the parameter matrix eA� only has eigenvalues within

the unit circle. The same holds for êA� reasoned by well-known properties of the Yule-

Walker method (cf. Remark 5). Thus, the matrix polynomials Ip −eA�z and Ip − êA�z
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only have roots outside the closed unit circle, and (Ip − eA�z)−1, (Ip − êA�z)−1

can be written as power series
∑∞

j=0(e
A�) j z j ,

∑∞
j=0(̂e

A�) j z j , respectively, for all
|z| ≤ 1+ δ and some δ > 0. Using a multidimensional version of Cauchy’s inequality
for holomorphic functions, we obtain

sup
j∈N0

(1 + δ) j ‖(̂eA�) j − (eA�) j‖ = OP (h + n−1/2), (46)

for some δ > 0 (cf. Jentsch and Kreiss 2010, equation (7.7) for the case p = 1), where
‖ · ‖ denotes the Euclidean matrix norm. Because c j , ĉ j is just the first row of the

matrix (eA�) j , (̂eA�) j , respectively, (46) immediately leads to

sup
j∈N0,i=0,...,p−1

r j |̂c j,i − c j,i | = OP (h + n−1/2). (47)

Equation (47) together with consistency of κ4∗
i1,i2,i3,i4

and E∗[Z∗
i Z∗

j ] for κ4
i1,i2,i3,i4

and E[Zi Z j ], respectively (both are immediate consequences of the weak law of large
numbers), as well as the summability of the coefficients c j,i and ĉ j,i now leads by a
direct but tedious computation to the result

n−1∑
r=−(n−1)

|T ∗
r − Tr | = oP (1), (48)

which means by (44) that

n Cov(γ̂ Y ∗(q1�), γ̂Y ∗(q2�)) → vq1�,q2�. (49)

This is part (i) of Theorem 1.
For a proof of part (ii) of Theorem 1, we make use of Brockwell and Davis (1991),

Proposition 6.3.9. Recall (34) and define Y ∗
M ((t + 1)�) = ∑M

j=0 ĉ j,i Z∗
i ((t + 1 −

j)�), M ∈ N. This sequence is M-dependent and a slight extension to triangular
arrays (cf. Lemma 2 below) of the CLT for M-dependent sequences stated in Brockwell
and Davis (1991), Theorem 6.4.2, leads us to the asymptotic normality

√
n

(
γ̂ ∗

M (0) − γY ∗,M (0), . . . , γ̂ ∗
M (q�) − γY ∗,M (q�)

) D→ N (0, VM ), (50)

where γ̂ ∗
M (h) and γY ∗,M (h) are defined as γ̂ ∗(h) and γY ∗(h) with Y ∗ replaced by Y ∗

M .
VM is defined as in (18) with ∞ replaced by M . Since VM → V as M → ∞ and for
every ε > 0 and every h ∈ N0

lim
M→∞ lim sup

n→∞
P

{∣∣√n(γ̂ ∗(h�) − γY ∗(h�))

−√
n(γ̂ ∗

M (h�) − γY ∗,M (h�))
∣∣ > ε

} = 0 (51)
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the above-mentioned result (i.e., Brockwell and Davis 1991, Proposition 6.3.9) yields
part (ii).

Finally, we obtain part (iii) by the usual delta method from (ii) since autocorrelations
are smooth functions of autocovariances.

This concludes the proof of Theorem 1. �	
In the proof of Theorem 1, we have made use of the following central limit theorem

for triangular arrays of M-dependent sequences. We note that the truncated bootstrap
process Y ∗

M (t�) is indeed a triangular array of M-dependent random variables since
with increasing n the parameters ĉ j,i as well as the distribution of Z∗

i ( j�) vary.

Lemma 2 Suppose that for each n ∈ N, real-valued, centered and M-dependent
(M ∈ N) random variables {Ut,n : t = 1, . . . , n} are given and make the following
assumptions.

(i) For h ∈ N0, we have E
(
Ut+h,nUt,n

) →n→∞ c(h), h ∈ N0, where the function
c fulfills c(0) + 2

∑m
k=1 c(h) = τ 2 > 0.

(ii) 1
n1+δ

∑n
t=1 E

∣∣Ut,n
∣∣2(1+δ) →n→∞ 0 for some δ > 0.

Then, we have

lim
n→∞ Var

(
1√
n

n∑
t=1

Ut,n

)
= τ 2 (52)

and

1√
n

n∑
t=1

Ut,n
D→ N (0, τ 2). (53)

For a proof of this not complicated result, we refer to Kreiss (1997).
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