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Abstract A two-sample test statistic is presented for testing the equality of mean
vectors when the dimension, p, exceeds the sample sizes, ni , i = 1, 2, and the dis-
tributions are not necessarily normal. Under mild assumptions on the traces of the
covariance matrices, the statistic is shown to be asymptotically Chi-square distributed
when ni , p → ∞. However, the validity of the test statistic when p is fixed but large,
including p > ni , and when the distributions are multivariate normal, is shown as spe-
cial cases. This two-sample Chi-square approximation helps us establish the validity
of Box’s approximation for high-dimensional and non-normal data to a two-sample
setup, valid even under Behrens–Fisher setting. The limiting Chi-square distribution
of the statistic is obtained using the asymptotic theory of degenerate U -statistics, and
using a result from classical asymptotic theory, it is further extended to an approximate
normal distribution. Both independent and paired-sample cases are considered.
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34 M. R. Ahmad

1 Introduction

We consider a test statistic for testing the difference of mean vectors of two independent
multivariate distributions. Let

X1k = (X11k, . . . , X1pk)
′ and X2l = (X21l , . . . , X2pl)

′,

k = 1, . . . , n1, l = 1, . . . , n2, be independent, identically distributed random vectors,
with

X1k ∼ F1 and X2l ∼ F2, (1)

where F1 and F2 denote the distribution functions. Assume E(X1k) = μ1, E(X2l) =
μ2, Cov(X1k) = �1, and Cov(X2l) = �2, where �1,�2 > 0. We are interested to
test the hypothesis H0 : μ1 − μ2 = 0, versus H1 : Not H0, when p > ni , i = 1, 2.

Clearly, the classical multivariate test statistics, like Hotelling’s T 2, cannot be used
when p > n since the estimated covariance matrix is singular and hence cannot be
inverted. Dempster (1958) is perhaps the oldest reference dealing specifically with a
two-sample test statistic valid for high-dimensional setup when F1, F2 are p-variate
normal distributions, i.e., when X1k ∼ Np(μ1,�1) and X2l ∼ Np(μ2,�2); see
also Dempster (1969, Chapters 7, 10). Replacing normality assumption with certain
assumptions on the moments of the underlying multivariate model, and additionally a
few assumptions on the traces of the covariance matrices, a two-sample test is presented
in Bai and Saranadasa (1996). Following the same multivariate model as introduced
by Bai and Saranadasa, but under different assumptions on the traces of the covariance
matrices, a modification of their test statistic has recently been considered by Chen and
Qin (2010). Again under normality, a modified version of Hotelling’s T 2, using the
Moore–Penrose inverse of estimated covariance matrix in place of the regular inverse,
is proposed by Srivastava (2007); see also Srivastava (2009). For a short literature
review on similar one-sample tests, see Ahmad et al. (2012a).

Continuing with the normality assumption, Ahmad (2008, Chapter 3) gives a test
statistic for general linear hypothesis of the form of H0, but specifically designed to test
the profile (interaction and time effects) hypotheses. The statistic is constructed using
quadratic and bilinear forms composed of the differences (for interaction effect) and
sums (for time effect) of the vectors X1k and X2l . Assuming p fixed and n1, n2 → ∞,
including the case when p > ni , i = 1, 2, it is shown that the test statistic, asymptot-
ically, follows a scaled Chi-square distribution, where the distributional convergence
is based on the Box’s approximation (see Sect. 2 below). In simulation studies, with
a variety of parameter settings, the accuracy of the test statistic is demonstrated for
both size control and power, inclusive of the case when the dimension far exceeds the
sample size.

In this paper, we present a modified version of this test statistic, and evaluate it
to test H0 : μ1 − μ2 = 0. The modification is aimed at extending the original
test in a variety of directions: (1) the modified test does not require F1, F2 to be
necessarily normal. The assumption of normality is replaced with certain mild and
practically viable assumptions on the traces of the covariance matrices. (2) A serious
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High-dimensional two-sample test 35

limitation of the original test is that its derivation requires either n1 = n2 or �1 = �2.
The modified version, however, does not impose any such condition on the sample
sizes or covariance matrices. This indirectly helps us establish the validity of Box’s
approximation for the Berhens–Fisher problem. (3) The paired case is also considered.
While essentially reducing to a single-sample case, the paired case verifies the results
of a similar one-sample test statistic presented in Ahmad et al. (2012a). (4) Finally, the
asymptotics: while the original test is developed keeping p fixed and letting ni → ∞,
i = 1, 2, the modified statistic is so constructed that it is also valid under standard
high-dimensional asymptotics, i.e., when both ni and p → ∞. The results, however,
remain valid under the special cases of fixed p and normality (see Sect. 4). Further,
we use the asymptotic theory of degenerate U -statistics to derive the limiting null
distributions of the test statistics. With the use of U -statistics theory, our asymptotic
approach strongly differs from the papers cited above, and is rather closer to the one
followed by Gretton et al. (2008) for a similar two-sample problem, based on kernels,
although not for high-dimensional data.

We begin with a brief review of the normal theory-based statistic in the next section,
with the aim to introduce notations and set the stage for the modification. The modified
test statistic is introduced in Sect. 3, along with its asymptotic distribution for both
independent and paired cases. Section 4 gives a brief sketch of the validity of the results
for the special cases when the distributions are multivariate normal and/or p is assumed
fixed. Some special remarks are given in Sect. 5. Section 5.1 summarizes the results
of Box’s approximation and the validity of test statistics under different parameter
settings. As the use of the theory of U -statistics, particularly the degenerate case, to
tackle the problems of high-dimensional data, is relatively new, a brief motivating
orientation to this issue is presented in Sect. 5.2. This motivation is primarily meant to
make a point without delving deep into the rigorous mathematical aspects. A thorough
mathematical treatment of the subject is postponed for another manuscript.

2 A brief review of the test under normality

Let X1k and X2l be as defined above, under model (1). Then

X = (
X′

11, . . . , X′
1n1

, X′
21, . . . , X′

2n2

)′

denotes the vector of all observations, with E(X) = μ and Cov(X) = �, where

μ = (
1′

n1
⊗ μ′

1, 1′
n2

⊗ μ′
2

)′ (2)

� = (
In1 ⊗ �1

) ⊕ (
In2 ⊗ �2

)
(3)

with the corresponding sample estimators,

X =
(

1′
n1

⊗ X
′
1., 1′

n2
⊗ X

′
2.

)′
(4)

�̂ = (
In1 ⊗ �̂1

) ⊕ (
In2 ⊗ �̂2

)
. (5)
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36 M. R. Ahmad

Here, ⊗ denotes the Kronecker product, and ⊕ denotes the Kronecker sum. To test a
general linear hypothesis of the form T(μ1 −μ2) = 0, where T is a hypothesis matrix,
Ahmad (2008 Chapter 3) derives a test statistic, valid for any appropriately defined
T, including T = I which reduces their statistic to test the hypothesis of our interest,
i.e., μ1 − μ2 = 0. Therefore, we only consider the reduced form of their statistic for
T = I (see also Sect. 6). Then, the statistic can be written as

AN = Q

B0
, (6)

where

Q = 2n1n2
N

(
X1. − X2.

)′ (
X1. − X2.

)
, (7)

N = n1 + n2, and B0 is defined below. It is shown that

AN ≈ χ2
f / f, (8)

as n1, n2 → ∞, where

f = [tr (�1 + �2)]2

tr (�1 + �2)
2 , (9)

which is estimated as E2/E3. Here, B0, E2 and E3 are the unbiased and consistent esti-
mators of the traces tr (�1 + �2) , [tr (�1 + �2)]2 and tr (�1 + �2)

2, respectively,
and are defined as

B0 = 1

n1n2

n1∑

k=1

n2∑

l=1

Akl (10)

E2 = 1

n1n2(n1 − 1)(n2 − 1)

n1∑

k=1

n2∑

l=1

n1∑

r=1

n2∑

s=1︸ ︷︷ ︸
k 	= r, l 	= s

Akl Ars (11)

E3 = 1

n1n2(n1 − 1)(n2 − 1)

n1∑

k=1

n2∑

l=1

n1∑

r=1

n2∑

s=1︸ ︷︷ ︸
k 	= r, l 	= s

A2
klrs, (12)

where Akl = D′
klDkl , Ars = D′

rsDrs are quadratic forms, and Aklrs = D′
klDrs is a

symmetric bilinear form, with Dkl = X1k − X2l and Drs = X1r − X2s . Their proof
of the asymptotic Chi-square distribution of AN is based on the assumptions that F1
and F2 in (1) are multivariate normal, and p is fixed, where N → ∞.

It may be worth mentioning here that when p > n, a test statistic for testing a
hypothesis on the location parameters cannot be constructed by fully standardizing
the norm of difference of means ||X1. − X2.||2 with an inverse of covariance matrix as
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High-dimensional two-sample test 37

a scaling factor, like in case of Hotelling’s T 2 statistic, since the estimated covariance
matrix is not invertible. The construction of AN , like for the one-sample case, is
based on replacing the inverse of covariance matrix in the norm with the trace of
the covariance matrix in the denominator. In the above notations, B0 is a moment
estimator of such a trace, tr (�1 + �2). In this sense, the statistic has a similar form
as introduced in Dempster (1958), Bai and Saranadasa (1996).

Note that Cov(Dkl) = �1 + �2. Let �0 = Cov(X1. − X2.) = 1
n1

�1 + 1
n2

�2. If,
for computational convenience, we write the components of the test statistic in matrix
form as

Q = 2

Nn1n2
X′M′(Jn1 ⊗ Jn2 ⊗ Ip)MX

B0 = 1

n1n2
X′M′(In1 ⊗ In2 ⊗ Ip)MX = 1

n1n2
X′M′MX,

where M = (In1 ⊗ 1n2 | − 1n1 ⊗ In2) ⊗ Ip, with 1 as a vector of 1s, J = 11′, and I as
identity matrix, then, under normality, the following can be immediately proved (see
Ahmad 2008, Theorem 3.3).

E(Q) = 2n1n2

N
tr(�0) (13)

Var(Q) = 8n2
1n2

2

N 2 tr
(
�2

0

)
(14)

E(B0) = tr(�1 + �2) (15)

Var(B0) = 2

n1n2
tr
(

n2�
2
1 + 2�1�2 + n1�

2
2

)
(16)

Cov(Q, B0) = 4n1n2

N
tr
(
�2

0

)
= N

2n1n2
Var(Q). (17)

Using these moments and the delta method, the first two moments of AN in (6) are
computed which, asymptotically, coincide with those of χ2

f / f . This eventually leads
to the Chi-square approximation of AN , as given in (8), based on the following rep-
resentation theorem of a quadratic form, combined with the Box’s approximation
Box (1954).

Theorem 1 Let X ∼ Np(0,�) and let G be any symmetric, positive semi-definite
matrix with r non-zero eigenvalues, r ≤ p. Then

X′GX ∼
r∑

i=1

λi Ci

where λi are the eigenvalues of G� and the Ci ∼ χ2
1 are independent.

As the Box’s approximation calls for (1954, Theorem 3.1), we equate first two
moments of X′GX with those of a scaled, gχ2

f distribution, i.e.,
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g f =
r∑

i=1

λi

2g2 f = 2
r∑

i=1

λ2
i +

(
r∑

i=1

λi

)2

,

such that

f = [tr(G�)]2

tr(G�)2 and g = tr(G�)2

tr(G�)
, (18)

where
∑r

i=1 λi = tr(G�) and
∑r

i=1 λ2
i = tr(G�)2. This gives the approximation for

AN = Q/B0 with f in (9), estimated as E2/E3. For more details, see Ahmad (2008).
We are interested to know the behavior of AN when both p and ni are large, but

without assuming any relationship between them. Further, we want to evaluate AN

when F1 and F2 in (1) are not necessarily multivariate normal. We, however, continue
to assume that �i , i = 1, 2, are positive definite. Results for normal distribution and
fixed p case will be discussed as special cases, for reference.

In the next section, the modified version of AN is presented and its asymptotic
distribution is derived under certain assumptions.

3 The modified test statistic

3.1 The independent case

Consider the statistic AN in (6) again. To justify the modification of AN for high-
dimensional and non-normal setup, we need the following assumptions.

Assumption 2 E(X4
1ks) ≤ γ1 < ∞ and E(X4

2ls) ≤ γ2 < ∞, ∀ s = 1, . . . , p, for
some γ1, γ2.

Assumption 3 For p → ∞, let tr(�i )
p = O(1), i = 1, 2.

Assumption 4 For p → ∞, let
tr(�i � j )

p2 = O(δ), where 0 < δ ≤ 1, i, j = 1, 2.

Assumptions 2–4 are straightforward extensions of similar one-sample assump-
tions discussed in Ahmad et al. (2012a). For a justification of these assumptions, we,
therefore, simply refer to the said paper. Additionally, to avoid any degeneracy of the
asymptotic limit distribution of the test statistic due to the growing sample sizes, we
also assume that n1/n2 → c ∈ (0,∞) when n1, n2 → ∞. Clearly, this assump-
tion does not disturb the practical application of the test statistic, but is required as a
precaution to ensure a stable limit of the test statistic under H0.

Now, for the modification of AN , let us begin with the denominator, B0. For com-
putational simplicity, we assume, under H0 : μ1 = μ2, that μ1 = 0 = μ2, without
any loss of generality. Then, from Eq. (10), we have
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High-dimensional two-sample test 39

B0 = 1

n1n2

n1∑

k=1

n2∑

l=1

Akl = 1

n1n2

n1∑

k=1

n2∑

l=1

(X1k − X2l)
′ (X1k − X2l)

= 1

n1

n1∑

k=1

X′
1kX1k + 1

n2

n2∑

l=1

X′
2lX2l − 2

n1n2

n1∑

k=1

n2∑

l=1

X′
1kX2l

= E11 + E21 − R = E1 − R,

where R = 2
n1n2

∑n1
k=1

∑n2
l=1 X′

1kX2l with E(R) = 0, under the null hypothesis, and
E1 = E11 + E21. Further, E(E1) = tr(�1 + �2), which is the same as E(B0). This
implies that, the bilinear form, R, in B0 does not contribute anything to estimate what
B0 is constructed to estimate, i.e., tr(�1+�2). Further, we note that E(E1/p) = O(1),
under Assumption 3. It may be worthwhile here to note that, an alternative way to
attain such a bound is to use E1, and, in addition to Assumption 3, further assume
that p/ni → ci ∈ (0,∞), so that E(E1) = (c1 + c2)O(1); see for example Ledoit
and Wolf (2002), Fujikoshi et al. (2010). Since, we want to avoid such a restrictive
assumption, we shall use 1

p E1 when we assume p → ∞, whereas for fixed p, we may
use E1 (see Sect. 4). Moreover, as it will be clear from the main result (Theorem 5),
the kernels of the U -statistics used to prove the asymptotic distribution of the modified
test statistic are also normalized by p, which renders the use of 1

p E1 completely in
consistency with the rest of the computations.

We also note that, in the original normality-based approximation, i.e., (8), the fac-
tor 2n1n2/N is used to replace tr (�0) in the denominator of AN with tr (�1 + �2),
the reason being that no well-defined estimator could be given for tr (�0) keep-
ing n1 	= n2 and �1 	= �2, i.e., under Behrens–Fisher setting. The estimator B0,
as defined in Eq. (10), is therefore used to estimate tr (�1 + �2), and the results
are presented separately, once assuming n1 = n2, and once assuming �1 = �2
such that, for each separate case, E(Q) = E(E1). This helped obtain the first
two moments of the proposed test statistic, using the delta method, as 1 and 2/ f ,
same as that of χ2

f / f , to eventually show the approximation in (8), based on Box’s
approximation.

In our case, we have E1 as an unbiased estimator of tr (�1 + �2). Moreover, it
will be shown in the proof of Theorem 5 that 1

p E1 is uniformly bounded, indepen-

dently of p, under Assumptions 2 and 4. This proves 1
p E1 to be a well-defined,

i.e., unbiased and consistent, estimator, even under high-dimensional and non-normal
setup.

Now we consider the numerator of AN in (6), i.e., Q. First, we note that

E

(
1

p
Q

)
= 2n1n2

N p
tr(�0) = O(1),

under Assumption 3, where �0 = 1
n1

�1 + 1
n2

�2. To take a closer look at Q, we write
it in expanded form, using Eqs. (7) and (10), as
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Q = 2n1n2

N
· 1

n2
1n2

2

n1∑

k=1

n2∑

l=1

n1∑

r=1

n2∑

s=1

Aklrs

= 2n1n2

N
· 1

n2
1n2

2

⎛

⎜⎜⎜⎜
⎜
⎝

n1∑

k=1

n2∑

l=1︸ ︷︷ ︸
k=r,l=s

Akl +
n1∑

k=1

n2∑

l=1

n1∑

r=1︸ ︷︷ ︸
k 	=r,l=s

Aklr

+
n1∑

k=1

n2∑

l=1

n2∑

s=1︸ ︷︷ ︸
k=r,l 	=s

Akls +
n1∑

k=1

n2∑

l=1

n1∑

r=1

n2∑

s=1︸ ︷︷ ︸
k 	=r,l 	=s

Aklrs

⎞

⎟⎟⎟⎟⎟
⎠

,

wherein terms involving the double, triple, and quadruple sums clearly are overloaded
with same or similar quadratic or bilinear forms, all of which are not inevitably
needed for the asymptotic distribution of the statistic. Under H0, these terms can be
written as

Akl = X′
1kX1k − X′

1kX2l − X′
2lX1k + X′

2lX2l (19)

Aklr = X′
1kX1r − X′

1kX2l − X′
2lX1r + X′

2lX2l (20)

Akls = X′
1kX1k − X′

1kX2s − X′
2lX1k + X′

2lX2s (21)

Aklrs = X′
1kX1r − X′

1kX2s − X′
2lX1r + X′

2lX2s . (22)

Let A1k = X′
1kX1k and A2l = X′

2lX2l be the quadratic forms defined for
sample 1 and sample 2, respectively. Similarly, let A1kr = X′

1kX1r , k 	= r , and
A2ls = X′

2lX2s, l 	= s, be the symmetric bilinear forms computed from elements of
sample 1 and sample 2, respectively, and A12kl = X′

1kX2l be another symmetric bilin-
ear form computed from elements of both samples, k, r = 1, . . . , n1, l, s = 1, . . . , n2.
Then, the expansion of Q, as given above, can be further simplified as following.

Q = 2n1n2

N

⎛

⎜⎜
⎝

1

n2
1

n1∑

k=1

A1k + 1

n2
2

n2∑

l=1

A2l

+ 1

n2
1

n1∑

k=1

n1∑

r=1
k 	=r

A1kr + 1

n2
2

n2∑

l=1

n2∑

s=1
l 	=s

A2ls − 2

n1n2

n1∑

k=1

n2∑

l=1

A12kl

⎞

⎟⎟
⎠

= 2n1n2

N

(
1

n1
E11 + 1

n2
E21

)
+ Q0 = Q1 + Q0, (23)
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where E11 = 1
n1

∑n1
k=1 A1k , E21 = 1

n2

∑n2
l=2 A2l , and Q0 is the entire expression on

the second line in the expansion of Q above, along with the multiplier 2n1n2
N . Now,

since E(Ei1) = tr(�i ), i = 1, 2, therefore,

E(Q1) = 2n1n2
N tr

(
1

n1
�1 + 1

n2
�2

)
= 2n1n2

N tr(�0) = 2n1n2
N Cov(X1. − X2.),

which implies that E (Q1) approximates tr(�1 + �2) when n1, n2 → ∞, such that
1
p E1 can, asymptotically, replace 1

p Q1, under Assumptions 3 and 4. Now, consider

Q0. For convenience, assume n1 = n2 = n. Then, the terms like 2n1n2
N · 1

n1
converge

to 1, when n → ∞, which motivates us to slightly re-write Q0 as, say E0, where

E0 = 1

n1

n1∑

k=1

n1∑

r=1
k 	=r

1

p
A1kr + 1

n2

n2∑

l=1

n2∑

s=1
l 	=s

1

p
A2ls − 2√

n1n2

n1∑

k=1

n2∑

l=1

1

p
A12kl . (24)

We immediately note that E(E0) = 0 and

Var(E0) = 2

p2 tr(�1 + �2)
2 − 2

p2 tr

(
1

n1
�2

1 + 1

n2
�2

2

)
, (25)

where the second term vanishes when n1, n2 → ∞ for any fixed p, and also when
n1, n2, p → ∞ under Assumption 4. Further, 2tr(�1 + �2)

2 is exactly the same as
the variance of the quadratic form (X1k − X2l)

′(X1k − X2l) under normality when
k 	= l. Actually, it can be similarly shown that Var(Q0) converges, asymptotically,
to Var(Q) under normality; see Eq. (14). Moreover, it can be trivially shown that the
second term in Var(E0) is exactly Var(E1/p) under normality (see Sect. 4). In other
words, Var(E0 + E1) = 2

p2 tr(�1 + �2)
2 if we assume normality. This clues to the

fact that a test statistic of the form (E1 + E0)/E1 = 1 + E0/E1 can suffice our needs
to test H0.

Now, we are ready to define the modified test statistic. From the detailed inspection
of Q and B0 above, we conclude that the term Q1 gives the mean of Q but contributes
nothing to the variance, and the term Q0 gives the variance but contributes nothing
to the mean. In other words, Q and B0 are overloaded with extra terms which are not
really needed, and which rather hamper a nice convergence of the estimators to the
target limits. In fact, E0 can replace Q and E1 can replace B0 in AN , without any loss,
as far as unbiasedness, consistency, and efficiency of the estimators are concerned.
Relieving the statistic AN of all what it is overburdened with, we define a modified
form of it as

T = 1 + E0
1
p E1

, (26)

where E1 = E11 + E21 and E0 is as defined in Eq. (24). The statistic T , as shown in
Eq. (26), and its components E0 and E1, are direct two-sample extensions of a similar
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one-sample statistic and its components discussed in Ahmad et al. (2012a). It will
be shown in the following (Theorem 5) that the asymptotic limit distribution of T is
mainly determined by E0. For this, we write E0 as a linear combination of U -statistics
as

E0 = (n1 − 1)Un1 + (n2 − 1)Un2 − 2
√

n1n2Un1n2 (27)

where

Un1 = 1

n1(n1 − 1)

n1∑

k=1

n1∑

r=1
k 	=r

1

p
A1kr and Un2 = 1

n2(n2 − 1)

n2∑

l=1

n2∑

s=1
l 	=s

1

p
A2ls

are one-sample U -statistics and

Un1n2 = 1

n1n2

n1∑

k=1

n2∑

l=1

1

p
A12kl

is a two-sample U -statistic (Hoeffding 1948; Lehmann 1999, Chapter 6). Before we
move on to state and prove the main theorem on the asymptotic distribution of T , a few
comments on the structure of the three U -statistics are in order. Note that, the kernels
of the U -statistics are all normalized by p. This is completely in consonance with the
assumptions and, as will be clear from the proof of the main theorem below, is essential
to obtain a non-degenerate asymptotic limit of T . Consider Un1 , with the symmetric
kernel h(X1k, X1r ) = 1

p A1kr = 1
p X′

1kX1r , k 	= r . For convenience, we can write
B1kr = Y′

1kY1r with Y1 j = X1 j/
√

p, j = k, r , so that, E(Y j ) = 0, under H0, and
Var(Y j ) = 1

p �1. This implies that, E(Y′
j Y j ) = 1

p tr(�1) and E(Y′
kYl)

2 = 1
p2 tr(�2

1).
Exactly same arguments apply to the kernels of the other two U -statistics.

Now, if we let λ1 j , λ2 j , and λ3 j , j = 1, . . . , p, be the eigenvalues of �1, �2 and

�
1/2
1 �

1/2
2 , respectively, then Assumptions 3 and 4 refer to the moments of

λ1 j
p ,

λ2 j
p ,

λ3 j
p which are the eigenvalues of 1

p �1, 1
p �2, and 1

p �
1/2
1 �

1/2
2 , respectively. Since,

it is these p-scaled eigenvalues which, under Assumption 3, are uniformly bounded
away from 0 and ∞, and which, under Assumption 4, keep the p-scaled kernel of
the U -statistic square-integrable; therefore, we shall, in the sequel that follows, use
these eigenvalues. For convenience, let us denote the eigenvalues of 1

p �1, 1
p �2, and

1
p �

1/2
1 �

1/2
2 as ν1 j , ν2 j , and ν3 j , j = 1, . . . , p, respectively. Obviously, when p grows

very large, the eigenvalues of the unscaled kernels, i.e., λ1 j s, etc., can be very small
so that the eigenvalues of the scaled kernels, i.e., ν1 j s, etc., can asymptotically vanish.
This is exactly how the proof of our main theorem is properly justified, based on the
Hilbert–Schmidt theorem (Theorem 18). This is more elaborated in Sect. 5.

Now, we prove the main theorem on the asymptotic distribution of T .

Theorem 5 Given Assumptions 2, 3 and 4. Then, under H0, the test statistic T ,
defined in Eq. (26), follows the same scaled Chi-square approximation as in (8),
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when n1, n2, p → ∞. Further, under the same set up, and using Hájek–Šidák Lemma
(see Lemma 6 below), it can be shown that,

T − E(T )
√

̂Var(T )

D−→ N (0, 1),

where E(T ) = 1 and ̂Var(T ) denotes the sample estimator of Var(T ).

Proof Let ν1 j , ν2 j , and ν3 j , j = 1, . . . , p, be the eigenvalues of 1
p �1, 1

p �2 and
1
p �

1/2
1 �

1/2
2 , respectively, as defined above. First, we show the probability convergence

of the denominator of T , i.e., 1
p E1. Clearly, E(E1) = tr(�1 + �2). Now, by Cauchy–

Schwarz inequality, E(X′
1kX1k)

2 ≤ γ1 p2 and E(X′
2lX2l)

2 ≤ γ2 p2, under Assumption
2. Then, by the independence of the two samples, and by Assumption 4,

Var

(
1

p
E1

)
≤ 2

(
γ1

n1
+ γ2

n2

)
O(δ), (28)

so that 1
p E1

P−→ ∑∞
j=1(ν1 j + ν2 j ), which, under Assumption 3, is uniformly bounded

away from 0 and ∞, where
P−→ denotes the convergence in probability.

Now, we show the asymptotic limit of the numerator, E0. We begin with Un1 where

Un1 = 1

n1(n1 − 1)

n1∑

k=1

n1∑

r=1
k 	=r

1

p
A1kr

with the symmetric kernel h(Y1k, Y1r ) = 1
p A1kr , k 	= r . Then, following the proof

of Theorem 2.6 in Ahmad et al. (2012a), the variance of Un1 is given as

Var(Un1) = 2

n1(n1 − 1)

tr
(
�2

1

)

p2 , (29)

such that Var(n1Un1) is bounded, under Assumption 4, as n1, p → ∞ which implies
that n1Un1 has a non-degenerate limit distribution (van der Vaart 1998, p. 167) and
this asymptotic limit is given as

n1Un1

D−→
∞∑

j=1

ν1 j C1 j −
∞∑

j=1

ν1 j , (30)

as n1, p → ∞, where C1 j s are independent χ2
1 random variables, and, under Assump-

tion 3,
∑∞

j=1 ν1 j is uniformly bounded away from 0 and ∞ (see also Remark 1 in
Sect. 5 for more details). Continuing with the same strategy for Un2 , we obtain
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Var(Un2) = 2

n2(n2 − 1)

tr
(
�2

2

)

p2 , (31)

where the asymptotic distribution of n2Un2 is

n2Un2

D−→
∞∑

j=1

ν2 j C2 j −
∞∑

j=1

ν2 j , (32)

as n2, p → ∞, where C2 j s are independent χ2
1 random variables.

For Un1n2 , we note that it is a two-sample U -statistic, the general form of which is
defined as (Lehmann 1999, Chapter 6)

1
(n1

m1

)(n2
m2

)
∑

P(a)

∑

P(b)

h
(

Ya1 , . . . , Yam1
; Yb1 , . . . , Ybm2

)
,

where P(a) = 1 ≤ a1 < · · · < am1 ≤ n1 and P(b) = 1 ≤ b1 < · · · < bm2 ≤ n2
denote the permutations over all indices, and h(Ya1, . . . , Yam1

; Yb1 , . . . , Ybm2
) is the

corresponding symmetric kernel. Clearly, Un1n2 refers to the simplest two-sample
U -statistic, with m1 = 1 = m2, which can be exclusively written as

Un1n2 = 1

n1n2

n1∑

k=1

n2∑

l=1

h(Y1k, Y2l), (33)

with the symmetric kernel h(Y1k, Y2l) = 1
p A12kl = 1

p Y′
1kY2l . Denote

hc1c2(Y1k, Y2l) = E
(
h(Y1k, Y2l) | Y1k = Y1k, Y2l = Y2l

)
,

where, with c1 = 1 and c2 = 1, we note that h11 = 0, along with h01 = 0 = h10,
under H0, so that h(Y1k, Y2l) is a degenerate kernel. Clearly, E(Un1n2) = 0, and the
variance of Un1n2 can be computed as (see Lehmann 1999, p. 373)

Var(Un1n2) = 1

n1n2
Var(h11) = 1

n1n2

tr(�1�2)

p2 , (34)

where

E
(

h2(Y1k, Y2l)
)

=
p∑

j=1

ν2
3 j = 1

p2 tr(�1�2) < ∞,

by Assumption 4, and
∑p

j=1 ν3 j is uniformly bounded away from 0 and ∞, by
Assumption 3. This implies that Un1n2 is first order degenerate two-sample U -statistic,
and

√
n1n2Un1n2 can have a finite asymptotic limit (Koroljuk and Borovskich 1994,

123



High-dimensional two-sample test 45

Chapter 4). This limit, following Koroljuk and Borovskich (1994, Theorem 4.5.3, p.
156) is given as

√
n1n2Un1n2

D−→
∞∑

j=1

ν3 j z1 j z2 j ,

as min(n1, n2), p → ∞, where z1 j and z2 j are two independent sequences of inde-
pendent standard normal variables. Combining the results for E0 in (27), we have

E0
D−→

∞∑

j=1

ν1 j

(
z2

1 j − 1
)

+
∞∑

j=1

ν2 j

(
z2

2 j − 1
)

− 2
∞∑

j=1

ν3 j z1 j z2 j , (35)

as n1, n2, p → ∞, where z2
1 j = C1 j and z2

3 j = C2 j . Combining the approximation

in (35) with that of 1
p E1, and using Slutsky’s lemma (van der Vaart 1998, Lemma 2.8,

p. 11) the approximation of T in Eq. (26) can be written as

T
D−→ 1 + W

K
, (36)

as n1, n2, p → ∞, where

W =
∞∑

j=1

ν1 j

(
z2

1 j − 1
)

+
∞∑

j=1

ν2 j

(
z2

2 j − 1
)

− 2
∞∑

j=1

ν3 j z1 j z2 j ,

and K = ∑∞
j=1(ν1 j + ν2 j ), where K , under Assumption 3, is uniformly bounded

away from 0 and ∞. If we let w1 j = ν1 j/K , and similarly, w2 j and w3 j , and write

W =
∞∑

j=1

ν1 j z
2
1 j +

∞∑

j=1

ν2 j z
2
2 j − 2

∞∑

j=1

ν3 j z1 j z2 j −
⎛

⎝
∞∑

j=1

ν1 j +
∞∑

j=1

ν2 j

⎞

⎠ ,

then (36) can be re-expressed as

T − 1
D−→

∞∑

j=1

w1 j z
2
1 j +

∞∑

j=1

w2 j z
2
2 j − 2

∞∑

j=1

w3 j z1 j z2 j − 1, (37)

which represents T in the same form as the representation of a quadratic form in
Theorem 1. This gives us a two-sample analog of Theorem 1 when the data are high-
dimensional and non-normal, and this representation is independent of whether the
sample sizes and/or covariance matrices are assumed equal or not, i.e., representation
(37) is valid even under Behrens–Fisher setting.
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Now, since, E(W ) = 0 and Var(W ) = 2
∑∞

j=1(ν1 j + ν2 j )
2, it can be immediately

verified that,

E(T ) = 1 (38)

Var(T ) =
2
p2 tr(�1 + �2)

2

[
1
p tr(�1 + �2)

]2 (39)

which are the same moments as obtained under the assumption of normality with
p assumed fixed (and large), i.e., the moments coincide with those of χ2

f / f , based on
the Box’s approximation, see Theorem 1 and f in (9); see also Eq. (18). This proves
the main part of the theorem, that the Box’s approximation, and the approximation of
T to χ2

f / f , also hold for high-dimensional and non-normal case, even under Behrens–
Fisher setting.

Before we proceed for the proof of the second part of the theorem, a few comments
are in order. First, a comparison of Var(W ) = 2

p2 tr(�1 + �2)
2 with Var(E0) in

Eq. (25) indicates that the U -statistics approximation has removed the unwanted part
of the variance of E0, i.e., variance of W captures the entire variance of E0 + E1, and
hence completely justifies the modified form of the statistic as 1 + E0/E1.

Second, it is clear from the computations above that the same proof of approxima-
tion of T to χ2

f / f remains valid even if we assume p fixed (although large, including
p > ni ) while keeping normality assumption relaxed. All the derivations go through,
and even more comfortably for the fixed p case since the asymptotic limits of all
three U -statistics are directly applicable for n → ∞ without having to control the
convergence for large p. This also implies that, we need not norm the kernels of the
U -statistics by p as the condition of square-integrability of the kernels, i.e., E(h2(·)) <

∞ remains intact when p is fixed. This shows that the original approximation of T
as given in Ahmad et al. (2008) for fixed p under normality, i.e., (8), is valid without
normality assumption whether p is kept fixed or is allowed to grow with ni ; see also
Sect. 5.1.

Now, to prove the second part of the theorem, i.e., the convergence of T to nor-
mal distribution, we need the following special case of Lindeberg–Feller central
limit theorem, usually known as Hájek–Šidák Lemma (see Jiang 2010, Example 6.6,
p. 183; Hájek et al. 1999, p. 184). ��
Lemma 6 Let X1, X2, . . . be iid random variables with mean 0 and variance 1. Let
bni , 1 ≤ i ≤ n, be a sequence of constants such that maxi b2

ni → 0 as n → ∞. Then
n∑

i=1

bni Xi
D−→ N (0, 1),

as n → ∞.

Consider Un1 . We proved n1Un1

D−→ ∑∞
j=1 ν1 j (C1 j − 1), where C1 j are iid χ2

1 ,
with E(C1 j ) = 1 and Var(C1 j ) = 2, so that, in the notations of Lemma 6, X j =
(C1 j − 1)/

√
2. Let a1 j = w1 j/

√∑p
j=1 w2

1 j . Clearly,
∑

j a2
1 j = 1 and max j a2

1 j → 0

as p → ∞. Then, by Lemma 6, as p → ∞,

123



High-dimensional two-sample test 47

p∑

j=1

a1 j X j =
∑p

j=1 w1 j (C1 j − 1)
√

2
∑p

j=1 w2
1 j

D−→ N (0, 1).

By the same argument, we have, for Un2 ,

∑p
j=1 w2 j (C2 j − 1)
√

2
∑p

j=1 w2
2 j

D−→ N (0, 1),

and, for Un1n2 ,

∑p
j=1 w3 j z1 j z2 j
√∑p

j=1 w2
3 j

D−→ N (0, 1),

as p → ∞. As Un1 , Un2 , and Un1n2 , being composed of independent random vectors,
are all pairwise uncorrelated, we get, from Eq. (36),

T − 1
D−→

√√√√2
∞∑

j=1

ν2
1 j T1 +

√√√√2
∞∑

j=1

ν2
2 j T2 − 2

√√√√
∞∑

j=1

ν2
3 j T3, (40)

where each of T1, T2, T3 is N (0, 1). If we let Z1, Z2 and Z3 be the standardized forms
of the three U -statistics, i.e., Z1 = Un1/

√
Var(Un1) (E(Un1) = 0), etc., then, as

n1, n2, p → ∞,

⎛

⎝
Z1
Z2
Z3

⎞

⎠ D−→ N3

⎛

⎝

⎛

⎝
0
0
0

⎞

⎠ ,

⎛

⎝
2 0 0
0 2 0
0 0 4

⎞

⎠

⎞

⎠ .

Clearly, to make T in (40) practically workable, we need to estimate its variance, i.e.,
we need to estimate the quantities

∑∞
j=1 ν2

j , and these estimates must be unbiased, and
consistent under high-dimensionality. In fact, we already have such estimates. From
the variances of the three U -statistics in Eqs. (29), (31), and (34), we define

B1 = 1

n1(n1 − 1)

n1∑

k=1

n1∑

r=1
k 	=r

A2
1kr (41)

B2 = 1

n2(n2 − 1)

n1∑

l=1

n1∑

s=1
l 	=s

A2
2ls (42)

B12 = 1

n1n2

n1∑

k=1

n2∑

l=1

A2
12kl (43)
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as unbiased estimators of 1
p2 tr(�2

1),
1
p2 tr(�2

2), and 1
p2 tr(�1�2), respectively, where

A1kr = Y′
1kY1r , A2ls = Y′

2lY2s , and A12kl = Y′
1kY2l are all bilinear forms composed

of independent vectors, as explained immediately after Eqs. (19–22). To use them in
T as consistent estimators of the three traces, we need to show that the ratios of these
estimators to their respective traces are uniformly bounded in p. This implies that,
under unbiasedness, we only need to show that the (co)variances of the ratios like
B1/tr(�2

1) vanish for large p and ni , i = 1, 2.
We note that, the estimators B1, B2, B12, are of the same form as E3 defined for

a similar purpose in the one-sample case in Ahmad et al. (2012a). Then the proofs
for the variances of the ratios like B1/tr(�2

1) follow directly from the proof regarding
E3 in Ahmad et al. (2012a, p. 10). We still need to check the covariances. Because
of independence of the two samples, Cov(B1, B2) = 0. The results of the other two
covariances follow the same pattern, by symmetry. Consider Cov(B1, B12), where

Cov(B1, B12) = 1

n2
1(n1 − 1)n2 p4

n1∑

k=1

n1∑

r=1
k 	=r

n1∑

t=1

n2∑

l=1

Cov
(

A2
1kr , A2

12tl

)
. (44)

The covariance in Eq. (44) involves terms of order O
(
n3

1n2
)
, out of which the terms

with non-zero covariances (when k = t or r = t) are of order O
(
n2

1n2
)
, which leaves

the entire covariance expression of order O
( 1

n1

)
. For these non-zero covariances, we

get, using Cauchy–Schwarz inequality,

Cov
(

A2
1kr , A2

12tl

)
≤

√
Var

(
A2

1kr

)
Var

(
A2

12tl

) ≤
√

E
(

A4
1kr

)
E
(

A4
12tl

)

≤
√

E
(

A2
1k

)
E
(

A2
1r

)
E
(

A2
1t

)
E
(

A2
2l

)

≤ γ 2
1

√
γ1 p2 · γ2 p2 = γ 3/2γ2 p4,

so that Cov(B1, B12) ≤ γ 3/2γ2 p4 O
( 1

n1

)
, which proves the required result, and the

proof of Cov(B2, B12) follows exactly the same lines. This implies that the covariance
ratios, Cov(B1,B12)

tr(�2
1)tr(�1�2)

(ignoring p2s for simplicity) are also uniformly bounded in p,

and vanish for any large ni , i = 1, 2.
Substituting these estimators in Var(T ) and denoting the resulting estimated vari-

ance as ̂Var(T ), it implies that, under Assumptions 2–4,

T
√

̂Var(T )

D−→ N (1, 1),

as n1, n2, p → ∞. This completes the proof of the theorem.
Like for the one-sample case, we summarize the moments of the components of

the test statistic in the following proposition without assuming normality. The simpli-
fied results under normality will be presented and discussed in Sect. 4. Assume, for
computational convenience, H = E0 + E1, without the divisor p.
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Proposition 7 For E1 and E0, as defined above, we have

E(H) = tr(�1 + �2) = E(E1) (45)

Var(H) = Var(E1) + 2tr (�1 + �2)
2 (46)

Cov(H, E1) = Var(E1). (47)

3.2 The paired case

We now extend the statistic to the case when the observations in X1k and X2l are
paired. For example, the paired observations may denote the measurements before
and after administering certain treatment on patients in a clinical experiment. In this
context, the p elements of each vector can be the repeated measurements observed on
each of n individuals, before and after the treatment. Clearly, the two samples are no
longer independent, and a correlation component comes in. Further, the sample sizes
have to be the same, n1 = n2. Let Xik = (Xi1k, . . . , Xipk)

′, k = 1, . . . , n, i = 1, 2,
be the sample vectors. The hypothesis to be tested reduces to H0 : μ = 0, where
μ = E(X1k − X2k), so that the problem essentially reduces to the one-sample case.

Let Dk = X1k − X2k , k = 1, . . . , n, with Dk ∼ FD where FD denotes some
multivariate distribution of the differences. Then, E(Dk) = 0 and Cov(Dk) = �D,
with

�D = Cov(X1k − X2k) = �1 + �2 − 2�12,

where, under H0, �1 = E(X1kX′
1k), �2 = E(X2kX′

2k), and �12 = E(X1kX2k). If
we now let X = (X′

11, . . . , X′
1n, X′

21, . . . , X′
2n)′ denote the vector of all observations,

with E(X) = μ and Cov(X) = �, then μ = (μ′
1, μ′

2)
′ and

� =
(

�1 �12
�21 �2

)
(48)

with their respective sample estimators, X = (X
′
1., X

′
2.)

′ and

�̂ =
(

�̂1 �̂12

�̂21 �̂2

)
. (49)

We correspondingly define Dk = X1k − X2k = X1. − X2., so that E(Dk) = 0 and
Cov(Dk) = �D, where �D = 1

n (�1 + �2 − 2�12) = 1
n �D. The test statistic (6),

using the same notations, is re-defined as

TD = Q

E1
, (50)
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where, Q and E1, now being one-sample estimators, take simpler forms as

Q = n
(
X1. − X2.

)′ (
X1. − X2.

) = nD
′
kDk (51)

E1 = 1

n

n∑

k=1

(X1k − X2k)
′(X1k − X2k). (52)

In matrix forms, Q and E1 can be written as

Q = 1

n
X′M′(Jn ⊗ Ip)MX (53)

E1 = 1

n
X′M′(In ⊗ Ip)MX, (54)

where X = (X′
1, X′

2)
′ is the vector of all 2np observations from both samples with

Xi = (Xi1, . . . , Xin)′, i = 1, 2, J is the matrix of 1s, I is the identity matrix, and
M = (In ⊗ Ip | − In ⊗ Ip). With Cov(X) = �, as defined in Eq. (48), and denoting
U = M′M, W = M′(Jn ⊗ Ip)M, we get

U� = In ⊗
(

�1 − �12 �12 − �2
�12 − �1 �2 − �12

)

W� = Jn ⊗
(

�1 − �12 �12 − �2
�12 − �1 �2 − �12

)
.

This immediately gives tr(U�) = ntr(�D) = tr(W�), tr(U�)2 = ntr(�D)2, and
tr(W�)2 = n2tr(�D), which further leads to the moments of Q and E1 as E(Q) =
tr(�D) = E(E1), and under normality, Var(Q) = 2tr(�2

D), and Var(E1) = 2
n tr(�2

D).
Then, if we continue to assume normality and keep p fixed where n → ∞, then it can
be immediately shown that the approximation in (8) is also valid for TD , i.e.,

TD ∼ χ2
f / f, (55)

where f = [tr(�D)]2/tr(�2
D), estimated as E2(D)/E3(D), with E2(D) and E3(D)

defined as

E2(D) = 1

n(n − 1)

n∑

k=1

n∑

l=1
k 	= l

Ak(D) Al(D) (56)

E3(D) = 1

n(n − 1)

n∑

k=1

n∑

l=1
k 	= l

A2
kl(D). (57)

Here, the subscript D in parentheses indicates that the expressions are defined for the
paired differences. Hence, Ak(D) = D′

kDk , Al(D) = D′
lDl are the quadratic forms, and

Akl(D) = D′
kDl is a symmetric bilinear form. For further details, see Sect. 4.
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In the following, we relax normality assumption and show that the statistic TD

is still valid even under high-dimensional asymptotics, i.e., when both n → ∞ and
p → ∞. For this, we set the following assumptions which are a special case of
Assumptions 2–4 when the data are paired.

Assumption 8 E(D4
ks)≤γ <∞ ∀ s =1, . . . , p, for some γ , where Dks = X1ks−X2ks .

Assumption 9 For p → ∞, let tr(�D)
p = O(1).

Assumption 10 For p → ∞, let
tr(�2

D)

p2 = O(δ), where 0 < δ ≤ 1.

We prove the following theorem, as a special case of Theorem 5 when the two
samples represent paired data.

Theorem 11 Given Assumptions 8, 9, and 10. Then, under H0, the test statistic TD,
defined in Eq. (50), follows the same scaled Chi-square approximation as in (55),
when n, p → ∞. Further, under the same setup, and using Lemma 6, it can be shown
that,

T
√

̂Var(TD)

D−→ N (1, 1),

where ̂Var(TD) is the sample estimator of Var(TD).

Proof The proof follows the same lines as for the independent case, see also Ahmad
et al. (2012a). We, therefore, briefly sketch the main steps. We begin by re-writing Q
as

Q = n
(
X1. − X2.

)′ (
X1. − X2.

) = 1

n

n∑

k=1

n∑

l=1

(X1k − X2k)
′(X1l − X2l)

= 1

n

n∑

k=1

(X1k − X2k)
′(X1k − X2k) + 1

n

n∑

k=1

n∑

l=1
k 	=l

(X1k − X2k)
′(X1l − X2l)

= 1

n

n∑

k=1

Ak + 1

n

n∑

k=1

n∑

l=1
k 	=l

Akl = E1 + 1

n

n∑

k=1

n∑

l=1
k 	=l

Akl , (58)

where Ak = (X1k − X2k)
′(X1k − X2k) and Akl = (X1k − X2k)

′(X1l − X2l). Clearly,
1
p E1

P−→ 1
p tr(�D) = O(1), under Assumptions 8 and 9, following the same arguments

as for the independent case. The test statistic then reduces to

TD = Q

E1
= 1 + E0

1
p E1

. (59)
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We write

E0 = 1

np

n∑

k=1

n∑

r=1
k 	=l

Akl

= (n − 1)

⎛

⎜⎜
⎝

1

n(n − 1)

n∑

k=1

n∑

r=1
k 	=l

1

p
Akl

⎞

⎟⎟
⎠ = (n − 1)Un, (60)

where, Un is a U -statistic with Akl = (X1k −X2k)
′(X1l −X2l), k 	= l. Now, TD and its

components are the one-sample expressions similar to the ones dealt with in Ahmad
et al. (2012a). Then, following their proof, we immediately obtain (see Ahmad et al.
2012a, p. 8)

nUn
D−→

∞∑

j=1

ν j (C j − 1),

as n, p → ∞ where C j are independent χ2
1 random variables and ν j are the eigen-

values of 1
p �D . Further, by Lemma 6, we get (see Ahmad et al. 2012a, p. 10)

∑p
j=1 ν j (C j − 1)
√

2
∑p

j=1 ν2
j

D−→ N (0, 1),

or that

nUn
D−→ N

(

0,
2tr(�2

D)

p2

)

,

as n, p → ∞. Finally, defining

BD = 1

n(n − 1)

n∑

k=1

n∑

r=1
k 	=l

1

p2 A2
kl

as an unbiased and consistent estimator of
tr(�2

D)

p2 , it follows that

TD√
̂Var(TD)

D−→ N (1, 1),

as n, p → ∞, where ̂Var(TD) is an estimator of Var(TD) when BD is substituted for
tr(�2

D)

p2 . This completes the proof of the theorem. ��

123



High-dimensional two-sample test 53

By the same arguments, Proposition 5 in Ahmad et al. (2012a) is also valid for the
paired case, with the only difference that � in the one-sample case is now replaced
with �D = �1 + �2 − 2�12, so that, without normality assumption we have the
following for Q and E1 as defined in Eqs. (51) and (52) above.

Proposition 12 For Q and E1, as defined above, we have

E(Q) = tr(�D) = E(E1) (61)

Var(Q) = Var(E1) + 2(n − 1)

n
tr(�2

D) (62)

Cov(Q, E1) = Var(E1). (63)

4 The normal case

If we assume F1,F2 to be multivariate normal, with their respective means and vari-
ances, then the results simplify to a large extent. The approximating limit distribution
of T , however, remains exactly the same. Further, the moments of E0 are also the
same, with or without normality assumption. The only difference is that we can com-
pute exact variance of E1 under normality. For convenience, we summarize all the
results in the following for further reference.

Lemma 13 Let E0 and E1 be as defined in Sect. 3.1. Then

E(E1) = tr(�1 + �2) = E(H) (64)

Var(E1) = 2tr

(
1

n1
�2

1 + 1

n2
�2

2

)
(65)

Var(H) = 2tr (�1 + �2)
2 = Var(E1) + Var(E0) (66)

Cov(H, E1) = Var(E1). (67)

We note that, given the independence of the two samples, the moments in Lemma 13
are a direct extension of the corresponding one-sample moments; see, for example,
Theorems 2.4 and 2.5 in Ahmad (2008). Further, compare these moments with those
in Eqs. (15–17). Both results are derived under the assumption of normality. It can
be immediately deduced that although the expectations are the same, the variances
have drastically reduced with the new components of the test statistic. Additionally,
the original normality-based computations in Ahmad (2008, Chapter 3) are done only
under the two special cases of n1 = n2 and �1 = �2, whereas the results in Lemma
13 hold in general. That the variances with the new components in Lemma 13 are
significantly smaller for the two special cases can be witnessed when the results are
compared with those reported in Ahmad (2008, Sections 3.2.3, 3.2.4).

Based on the results of Lemma 13, the probability convergence of 1
p

E1 can be

trivially shown, under Assumptions 3 and 4. The asymptotic limit distribution of T
also remains the same as given in Theorem 5, including the normal approximation.
For normal approximation, however, we can now prove the consistency of B1, B2, B12
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more precisely since the exact moments of these estimators can be computed under
normality. These moments are summarized in the following lemma without proof
for reference. The proof of variances can be directly followed from the proof of
Theorem 2.4 in Ahmad (2008), and the proof of covariances trivially follows from the
independence of the samples.

Lemma 14 Let B1, B2 and B12 be as defined in Eqs. (41–43). Then

Var(B1) = 4

n1(n1 − 1)

[
(2n1 − 1)tr(�4

1) +
[
tr
(
�2

1

)]2
]

(68)

Var(B2) = 4

n2(n2 − 1)

[
(2n2 − 1)tr(�4

2) +
[
tr
(
�2

2

)]2
]

(69)

Var(B12) = 1

n1n2

[
6tr(�1�2�1�2) + 2 [tr(�1�2)]

2
]

(70)

Cov(B1, B2) = 0 (71)

Cov(B1, B12) = 4

n1
tr
(
�3

1�2

)
(72)

Cov(B2, B12) = 4

n2
tr
(
�1�

3
2

)
. (73)

Based on these moments, it immediately follows that Var
(
B1/tr(�2

1)
)

and
Var

(
B2/tr(�2

2)
)

are uniformly bounded by O(1/n1) and O(1/n2), and same
bounds are attained by the covariance ratios Cov(B1, B12)/

[
tr(�2

1)tr(�1�2)
]

and
Cov(B2, B12)/

[
tr(�2

2)tr(�1�2)
]
, respectively, where Var (B12/tr(�1�2)) is bounded

by O(1/n1n2). This proves Theorem 5, assuming normality.
When p is assumed fixed but large, we can follow the same strategy as in Ahmad

(2008, Chapter 3) to compute the moments of T using the delta method. We get the
following moments, where f = [tr(�1 + �2)]2 /tr(�1 + �2)

2.

E(T ) = 1 (74)

Var(T ) = 2tr(�1 + �2)
2

[tr(�1 + �2)]2 +
2tr

(
1

n1
�2

1 + 1
n2

�2
2

)

[tr(�1 + �2)]2

−
4tr

(
1

n1
�2

1 + 1
n2

�2
2

)

[tr(�1 + �2)]2

= 2tr(�1 + �2)
2

[tr(�1 + �2)]2

⎛

⎝1 −
tr
(

1
n1

�2
1 + 1

n2
�2

2

)

tr(�1 + �2)2

⎞

⎠

= 2

f

(

1 − 1

n1
· tr(�2

1)

tr(�1 + �2)2 − 1

n2
· tr(�2

2)

tr(�1 + �2)2

)

= 2

f

(

1 − 1

n
· tr(�2

1 + �2
2)

tr(�1 + �2)2

)

(n1 = n2)
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= 2

f

(
1 − N

4n1n2

)
(�1 = �2)

= 2

f

(
1 − 1

2n

)
(n1 = n2, �1 = �2). (75)

Clearly, the last two terms inside parentheses, in Eq. (75), vanish when n1, n2 → ∞
for any fixed p. This approximates the moments of T with those of χ2

f / f , as required,
where f is given in (9); see also (18). Here, we additionally need to estimate f ,
i.e., estimate [tr(�1 + �2)]2 and tr(�1 + �2)

2 to make T practically applicable.
The unbiased estimators of these two traces are given as E2 and E3, respectively, as
defined in Eqs. (11) and (12), so that f is estimated as E2/E3. The properties of these
estimators follow directly from Ahmad (2008, Chapter 3). Further, tr(�2

1) and tr(�2
2)

in Var(T ) in Eq. (75) can be replaced with their unbiased and consistent estimators
B1 and B2 from Eqs. (41) and (42), respectively.

Finally, the validity of the paired case of Sect. 3.2 follows exactly the same way
when FD is assumed normal. The moments of the components of the test statis-
tic in Eq. (50), as reported in Proposition 12, simplifies, under normality, to the
following.

Proposition 15 For Q and E1, as defined in Sect. 3.2, we have

E(Q) = tr(�D) = E(E1) (76)

Var(Q) = 2tr
(
�2

D

)
(77)

Var(E1) = 2

n
tr
(
�2

D

)
= Cov(Q, E1). (78)

The results can be compared with the similar moments for the one-sample case as
reported in Ahmad (2008, Theorem 2.5) or in Ahmad et al. (2008, Proposition 5)
where � is now replaced with �D = �1 + �2 − 2�12. Using these moments, the
probability convergence of 1

p E1 can be immediately shown, under Assumptions 8
and 9. The asymptotic limit of T in Eq. (50) remains the same as given in Theorem 11,
including the normal approximation. Additionally, under normality, we can prove the
consistency of BD more precisely, since the Var(BD) can be exactly computed which,
following Lemma 14, is

Var(BD) = 4

n(n − 1)

[
(2n − 1)tr

(
�4

D

)
+

[
tr
(
�2

D

)]2
]

. (79)

Then, it immediately follows that Var(BD/�2
D) is uniformly bounded by O(1/n),

independent of p, which establishes the validity of Theorem 11 under normality.
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Further, if p is assumed fixed but large, we can again use the delta method approach
as in Ahmad (2008, Chapter 2) to compute the following moments of T .

E(T ) = 1 (80)

Var(T ) = 2tr
(
�2

D

)

[tr(�D)]2 +
2
n tr

(
�2

D

)

[tr(�D)]2 −
4
n tr

(
�2

D

)

[tr(�D)]2

= 2

f

(
1 − 1

n

)
, (81)

where f = [tr(�D)]2 /tr(�2
D), estimated as E2(D)/E3(D) using Eqs. (56) and (57).

The consistency of E2(D) and E3(D) follow immediately from the results in Ahmad
(2008, Chapter 2); see also Ahmad et al. (2008). The detailed study of these normal
cases, with an extension to cover the testing of any general linear hypothesis, is left
for another manuscript which is in preparation.

5 Some remarks

5.1 Box’s approximation

Following the main objective of this paper, it is shown in Sects. 3.1 and 3.2 that the
test statistic T , as given in Eq. (26), follows the scaled Chi-square approximation, (8),
when n1, n2, p → ∞ and the underlying multivariate distributions are not necessarily
normal. Clearly, the validity of approximation for T under the normality assumption
comes as a special case, as shown in Sect. 4. Further, as mentioned in Sect. 3.1 (see the
second comment immediately after Eqs. 38 and 39), T can also be used if we continue
to relax normality but keep p fixed, including when p > ni . Together with the original
normality-based approximation for fixed p, i.e., (8), these results imply that the test
statistic T , and hence the Box’s approximation, are valid whether F1 and F2 in (1) are
multivariate normal or not, and whether the dimension of the multivariate vector, p, is
kept fixed or is allowed to grow arbitrarily with n. For further reference, we summarize
these results in the following two theorems, one for the Box’s approximation, and one
for the statistic T .

Theorem 16 (Theorem 1, revisited) Consider Model (1). Let �N = 2n1n2
N �0, N =

n1 + n2, and Yi = 1
ni

∑ni
j=1 Yi j , i = 1, 2, where �0 is defined in Sect. 2 and Yi j

are defined in Sect. 3.1. Further, let λ j and ν j be as defined in Sect. 3.1. Then, the
following hold under the respective conditions where, in each case, C j represents an
iid χ2

1 random variable.

1. Assume p fixed and n1, n2 → ∞. If (a) F1 and F2 are multivariate normal, or (b)
F1 and F2 are as in (1) for which Assumptions 2–3 are satisfied, then

2n1n2

N

(
X1 − X2

)′ (
X1 − X2

) ≈
p∑

j=1

λ j C j .
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2. Assume p → ∞ and n1, n2 → ∞. If F1 and F2 are as in (1) for which Assump-
tions 2–4 are satisfied. Then (see Eq. 37)

2n1n2

N

(
Y1 − Y2

)′ (
Y1 − Y2

) ≈
∞∑

j=1

ν j C j .

Theorem 17 (The modified test statistic) Consider Model (1). Let λ j and ν j be as
defined in Sect. 3.1. Then, the following hold under the respective conditions.

1. Assume p fixed and n1, n2 → ∞. If (a) F1 and F2 are multivariate normal, or (b)
F1 and F2 are as in (1) for which Assumptions 2–3 are satisfied, then, for the test
statistic AN , as defined in Eq. (6),

f AN
D−→ χ2

f ,

where f = [∑p
j=1 λ j ]2/

∑p
j=1 λ2

j .
2. Assume p → ∞ and n1, n2 → ∞. If F1 and F2 are as in (1) for which Assump-

tions 2–4 are satisfied, then, for the test statistic T , as defined in Eq. (26),

f T
D−→ χ2

f ,

where f = [∑∞
j=1 ν j ]2/

∑∞
j=1 ν2

j .

Replacing Fi , i = 1, 2, in Theorems 16 and 17 with FD , and using other corre-
sponding notations from Sect. 3.2, similar theorems can also be stated for the paired
case.

5.2 Degenerate U -statistics and high-dimensional inference

The class of U -statistics, as introduced by Hoeffding (1948), is rich and encompasses
a wide variety of statistics. Some comprehensive book-length references dealing with
core theory include Lee (1990), Koroljuk and Borovskich (1994), whereas Kowalski
and Tu (2008) is a nice exposition for applications of U -statistics theory in a variety
of settings, including, for example, linear mixed models, where a similar application
specifically for repeated measures design can be found in Davis (2002).

In particular, the asymptotic theory of U -statistics has attracted a lot of researchers
both in theoretical and applied areas. A nice monograph dealing with asymptotic theory
of both degenerate and non-degenerate U -statistics is Denker (1985), see also Denker
and Keller (1983). A recent work of Denker and Gordin (2011) focuses particularly
on von Mises statistics also valid for non-iid data. Of particular relevance for us in
Denker and Gordin (2011)’s report is Section 8 which specifically deals with kernels
of degree 2; see also an exhaustive list of references cited therein. A functional central
limit theorem specifically for two-sample non-degenerate U -processes is given in
Neumeyer (2004), whereas a functional version of almost sure central limit theorem
for both degenerate and non-degenerate U -statistics is given in Holzmann et al. (2004).
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An old, and one of the most frequently cited references for functional central limit
theorems for degenerate U -statistics, is Neuhaus (1977).

Recently, people have attempted to reinvigorate the asymptotic theory of
U -statistics, particularly in the degenerate case, with a focus on its application to
address more complicated practical problems, for example, to deal with real infer-
ential problems in statistics. A nice exposition, dealing with the degenerate U - and
V -statistics for stationary random variables is discussed in Leucht (2012) wherein
applications in hypothesis testing, including a small sample bootstrap connection,
is shown. The present paper addresses the question of the application of degenerate
U -statistics theory for high-dimensional problems. No mentionable bibliography can
be traced on this, but it seems interesting that this issue has recently started emerging.
A general discussion is given in Pinheiro et al. (2009), where a formal application
of non-degenerate U -statistics in high-dimensional testing is given in Ahmad et al.
(2012b).

In this sense, the present paper can be considered as a new and motivating effort to
show that the theory of degenerate U -statistics is applicable to tackle the problem of
high-dimensional asymptotics. A similar work for one-sample test of a multivariate
mean vector under high-dimensional setup is presented in Ahmad et al. (2012a). This
aspect puts the paper in a different spectrum as compared to other recent approaches
to deal with high-dimensional inference, in particular testing. Our motivation of using
the asymptotic theory of degenerate U -statistics for high-dimensional testing stems
from two important aspects which are highlighted below.

First, the main condition for a valid asymptotic U -statistics limit, i.e., the
weighted sum of iid χ2

1 random variables, is that the kernel is square-integrable, i.e.,
E(h2(·))<∞. This, in the test statistics presented above, is ensured by norming the ker-
nel by p, supplemented by Assumptions 4 and 10. Recall that, for the computations
presented in Sect. 3, all degenerate U -statistics are of degree 2, disregarding whether
they are composed of a single sample, of paired samples, or of two independent sam-
ples. Then, it is important to note that, the theory of degenerate U -statistics takes a
special place for second degree kernels, as nicely elaborated in van der Vaart (1998,
Section 12.3). This leads us to the second motivating aspect which we particularly
want to emphasize in the context of second degree kernels. For convenience, we con-
sider h(X, Y) as a general kernel of degree 2, which, for example, for Un1 may refer
to 1

p h(X1k, X1r ) = 1
p A1kr .

Suppose that the data vectors X, Y are generated by the probability space (X , A, P),
and suppose that T is a bounded, compact, linear operator such that T : (X ,A,P) →
(X ,A,P). Note that, since we are only dealing with quadratic and bilinear forms,
we can, without any loss of generality, assume X to be Hilbert space (which, under
the given conditions, can actually be assumed as separable), and A be the space of all
inner products generated from X . Since h(·) is degenerate, symmetric, and square-
integrable, T is a self-adjoint Hilbert–Schmidt operator such that

T f (x) =
∫

h(x, y) f (y)d P(y),
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and the kernel can be expanded as an infinite series as

h(x, y) =
∞∑

j=1

λ j f j (x) f j (y) (82)

where λ j s and f j s provide an orthonormal basis for the kernel. Note that, when we
let p → ∞, we let the kernel, as a bilinear form composed of independent random
vectors, to expand similarly. However, for an asymptotic convergence, we need to
control the behavior of such an infinite sum, and this is accomplished by norming the
kernel by p, as explained in Sect. 3.1. Moreover, the convergence of this p-scaled
kernel to the orthogonal expansion in (82) is in mean-square, i.e., L2-convergence
given as

E

⎛

⎝h(x, y) −
p∑

j=1

λ j f j (x) f j (y)

⎞

⎠

2

=
∞∑

j=p+1

λ2
j → 0. (83)

Note the final convergence, where the sum is composed of only at most countably many
eigenvalues (van der Vaart 1998, p. 168). Finally, the vanishing of the eigenvalues for
such a convergence to hold is guaranteed by the well-known Hilbert–Schmidt theorem
which we state in the following for reference (see, for example, Reed and Simon 1980,
Theorem VI.16, p. 203).

Theorem 18 (Hilbert–Schmidt Theorem) Let h be a self-adjoint compact operator
on Hilbert space X . Then, there is a complete orthonormal basis, { f p}, for X such
that h f p = λp f p, and λp → 0 as p → ∞.

This result, under the Assumptions 2–4 (for independent samples) or 8–10 (for
paired samples), gives a proper justification for the asymptotic limit distributions of
the test statistics in Sect. 3. A more mathematical treatment of this subject is part of
another manuscript.

A detailed discussion of operators like T , particularly in reference to their properties
for Hilbert spaces, is given in Kreyszig (1978), whereas an older, classic reference is
Dunford and Schwartz (1963); see also Masujima (2009). For a very relevant use
of this theory for degenerate U -statistics, see Serfling (1980, Chapter 5) Lee (1990,
Chapter 3) and Koroljuk and Borovskich (1994, Chapter 4).

6 Discussion and conclusions

A two-sample test statistic is presented to test the difference of multivariate mean
vectors when the dimension of the vector may exceed the sample size and the random
vectors may not necessarily come from a multivariate normal distribution. The statistic
is first evaluated under the standard high-dimensional aymptotics, assuming both ni →
∞, i = 1, 2, and p → ∞. The validity of the statistic for fixed p (where p > ni )
is briefly discussed as a special case. Both independent and paired cases are dealt
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with. Finally, the statistic and its approximation are also briefly summarized when
the assumption of normality holds. The details of the later two cases are, however,
postponed for a separate manuscript.

The paper extends a one-sample statistic presented in Ahmad et al. (2012a) which
is evaluated in similar contexts. A salient feature of the two papers is an extension of
the well-known Box’s approximation to high-dimensional and non-normal setup and,
for the present two-sample case, also under the Behrens–Fisher setting.

The statistic and its approximation can obviously be used for any general linear
hypothesis, say H0 : H(μ1−μ2)=0, by appropriately defining the hypothesis matrix
H, although in this paper, for simplicity, H=I is used. For example, with I as identity
matrix and J as matrix of ones, the matrix H=C2 ⊗ Cp leads to a test of interaction
effect (parallel profiles) hypothesis, where Cp = I− 1

p Jp (similarly C2 for p = 2).
Since a complete profile analysis involves other types of hypothesis, for example,
hypothesis for the time effect, these general linear hypothesis cases are not given a
detailed treatment here for the sake of brevity. For details of such high-dimensional
profile analysis under normality assumption, see Ahmad (2008, Chapter 4).
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