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Abstract We generalize the bandit process with a covariate introduced by Woodroofe
in several significant directions: a linear regression model characterizing the unknown
arm, an unknown variance for regression residuals and general discounting sequence
for a non-stationary model. With the Bayesian regression approach, we assume a
normal-gamma conjugate prior distribution of the unknown parameters. It is shown that
the optimal strategy is determined by a sequence of index values which are monotonic
and determined by the observed value of the covariate and updated posterior distri-
butions. We further show that the myopic strategy is not optimal in general. Such
structural properties help to understand the tradeoff between information gathering
and immediate expected payoff and may provide certain insight for covariate adjusted
response adaptive design of clinical trials.
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1 Introduction

Multi-armed bandit processes are an important class of sequential decision problems
with applications in areas such as statistics, clinical trials, operations research, engi-
neering and economics. A decision-maker is faced with several statistical populations,
called arms, and some (or all) of these populations have unknown statistical distribu-
tions. At each point (in time or space), one and only one arm is selected for observation.
There are two consequences. On one hand, a reward is randomly generated according
to the statistical distribution characterizing the selected arm. On the other hand, the
observation of the reward offers potentially useful information for making statistical
inference of the unknown statistical distribution and hence making better informed
decisions in the future. The overall objective is to maximize the total of expected, pos-
sibly discounted, rewards from all selections over a given (finite or infinite) horizon.

The two consequences of selecting an arm are often antagonistic. For example,
selecting an arm with unknown distribution offers valuable information for statisti-
cal inference but does not necessarily provide the highest immediate expected reward.
Therefore bandit processes are typically characterized by the competing goals of infor-
mation gathering (so as to make better informed decisions in the future) and immediate
payoff of the highest expected reward. Berry and Fristedt (1985) and Gittins (1989) are
standard references on bandit problems with complete observations. Bandit processes
with censored (hence incomplete) observations are treated in Eick (1988), Wang (2000)
and Wang and Bickis (2003).

The majority of literature on bandit processes assumes homogeneous statistical
populations. However in many applications such as clinical trials, certain covariates
(such as demographic variables like age and gender) may offer useful information
for making sequential selections, and random rewards may depend on the covariates.
Woodroofe (1979) initiated research on bandit processes with covariates. Woodroofe’s
framework assumes two arms and the probability distribution of one arm is known.
Such a model is typically named a one-armed bandit.

Let (Xn, Y0,n, Y1,n), n = 1, 2, . . . , N , be a sequence of random variables, where
Xn is the covariate for the nth selection (or subject), Yi,n, i = 0, 1, is a random reward
if arm i is observed for the nth selection, and N is the horizon of the sequential
selection problem. The horizon N may be finite or infinite, or even random. It is
assumed that (Xn, Y0,n, Y1,n), n = 1, 2, . . . , N , are conditionally independent and
identically distributed as (X, Y0, Y1) given the unknown distribution, but the density
function f (x) of the covariate X is assumed to be known.

Sequentially, we observe Xn = xn at time n = 1, 2, . . . , N . Based on the current
knowledge, we select either arm 0 or arm 1, but not both, and receive a random
reward Y0,n or Y1,n respectively depending on the arm selected. Let πn be a (possibly
randomized) selection rule at time n so that arm 1 is selected with probability πn . Then
a strategy π = (π1, π2, . . .) is a sequence of selection probabilities. The objective is
to find an optimal strategy to maximize

WN (π) =
N∑

n=1

ρn Eπ [πnY1,n + (1 − πn)Y0,n]
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One-armed bandit process with a covariate 995

where 0 < ρn < 1 is a discounting factor such that
∑N

n=1 ρn < ∞, and Eπ is the
expectation taken with respect to the strategy π .

Woodroofe (1979) assumed (a) N = ∞, (b) ρn = ρn, 0 < ρ < 1, (c) a known
conditional distribution of Y0 given X , and (d) Y1 = X − θ + ε where ε is a random
variable with zero mean and (e) a known distribution, and (f) θ is an unknown parameter
following a certain prior distribution. Later, Sarkar (1991) extended this model to an
exponential family model for Y1. Both Woodroofe and Sarkar followed the Bayesian
approach and examined the asymptotic solution when the geometric discounting factor
ρ approaches 1.

Goldenshluger and Zeevi (2009) revisited Woodroofe’s model in a non-Bayesian,
minimax setting with a finite horizon. They established specific non-asymptotic lower
bounds on the minimax regret and proposed intuitive rate-optimal strategies that attain
these bounds. These rate-optimal strategies are not myopic. They demonstrated that
the regret grows at various rates with the time horizon, depending on certain local
properties of the covariate distribution.

Yang and Zhu (2002) investigated the multi-armed bandit problem with covariates
and used the nonparametric approach to estimate the functional relationship between
the response variable and the covariates. They introduced a randomized allocation
strategy that balances the tradeoff between using the currently most promising arm
and exploring the arm which is truly the best. The proposed strategy was shown to
be strongly consistent in that the total reward is asymptotically equivalent to the total
reward from the best arm almost surely.

In this paper, we extend Woodroofe’s model with three notable generalizations.
Firstly, we extend Woodroofe’s model Y1 = X − θ + ε to the standardized linear
regression Y1 = β1 X + ε. Further generalization to multiple linear regression is
possible but tedious. Secondly, Woodroofe and Sarkar considered the infinite hori-
zon model with a geometric discounting sequence (1, ρ, ρ2, . . .). Mathematically
such a model is stationary and hence more tractable than a non-stationary model. We
examine the more challenging non-stationary model where N is a fixed, finite inte-
ger, and the discounting sequence (ρ1, ρ2, . . . , ρN , 0, 0, . . .) may be general. Lastly,
Woodroofe assumed a known variance for ε but we assume an unknown variance
for ε.

This paper is organized as follows. We introduce the notations and formulate the
models in the next section. The one-armed bandit is investigated in Section 3 and
lengthy proofs are provided in the Appendix. Section 4 concludes the paper.

2 Notations and model formulation

In this paper, we assume two arms. If arm 1 is observed for the nth selection under a
strategy π , we assume that the random reward is given by the standardized regression
Y1,n = β Xn + εn , where εn, n = 1, 2, . . . , N , are independent and identically dis-
tributed following a normal distribution with mean 0 and unknown variance σ 2. We
assume an unknown β and call arm 1 the unknown arm. On the other hand, if arm 0 is
selected at any time n, we assume a known constant expected reward E(Y0,n|Xn) ≡ B
and call arm 0 the known arm.
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Assume that prior to time n ≥ 1, the unknown arm is selected k times at decision
times 1 ≤ n1 < n2 < · · · < nk < n and On = {(xn j , y1,n j ), j = 1, 2, . . . , k}
is the set of observations. Write γn = ∑k

j=1 x2
n j

, τn = ∑k
j=1 y2

1,n j
and ηn =

∑k
j=1 xn j y1,n j . Then the likelihood function of β and σ 2 given On is

�(β, σ 2| On) ∝ σ−k exp

[
− 1

2σ 2

(
(k − 1)σ̂ 2

n + (β − β̂(n))2γn

)]
,

where exp(z) = ez, β̂(n) and σ̂ 2
n are the ordinary least squares (OLS) estimates given by

β̂(n) = ηn
γn

and σ̂ 2
n =

∑k
j=1(y1,n j −β̂(n)xn j )

2

k−1 = 1
k−1

(
τn − η2

n
γn

)
(Bansal 2007, Chapter 9).

Define the measurement precision δ = 1
σ 2 and assume the natural conjugate prior

g(β, δ) = g(β|δ)g(δ) for (β, δ) where g(δ) is a gamma distribution G(μ0, ν0) and
g(β|δ) is a normal distribution with mean β(0) and precision Mδ, M > 0. According to
Bansal (2007, Chapter 9), after observing On at time n, the joint posterior distribution
of (β, δ) is given by g(β, δ|On) = g(β|δ,On)g(δ|On) where g(δ|On) = G(μn, νn)

is the gamma distribution with μn = μ0 + k
2 and νn = ν0 + (k−1)σ̂ 2

n
2 + Mγn(β(0)−β̂(n))2

2(M+γn)
,

and g(β|δ,On) is the normal distribution with mean β(n) = Mβ(0)+γn β̂(n)

M+γn
and precision

(M + γn)δ. Here the posterior mean of the normal distribution is a weighted average
of the prior mean and the ordinary least squares estimate. Furthermore, the marginal
distribution of β is a 3-parameter t-distribution with d f (n) = k +2μ0 degrees of free-
dom, location parameter β(n) and scale parameter s(n) = (k+2μ0)(M+γn)

2νn
. We denote

this distribution as t (d f (n), β(n), s(n)).
Write the sequence of discounting factors as AN

n = (ρn, ρn+1, . . . , ρN , 0, . . .), n =
1, 2, . . . , N , and the mean of X as λ = E(X). We assume non-increasing discounting
so that ρ1 ≥ ρ2 ≥ . . . ≥ ρN . Under the Bayesian approach, the one-armed bandit
process becomes a Markov decision process where at time n = 1, 2, . . . , N , the state
sn = (xn, d(n)) is jointly given by the observed covariate Xn = xn and the posterior
distributions

d(n) =
(

t (d f (n), β(n), s(n)), G(μn, νn)
)

,

the action space is {0, 1}, the one step random reward is given by Yi,n if arm i is
selected, and the state either changes to sn+1 = (xn+1, d(n+1)) where

d(n+1) =
(

t (d f (n+1), β(n+1), s(n+1)), G(μn+1, νn+1)
)

according to Bayes’ law if the unknown arm is selected or to sn+1 = (xn+1, d(n))

where d(n) remains unchanged if the known arm is selected. According to Berry and
Fristedt (1985, Page 14), the set of all distributions forms a Borel space. By standard
theory of Markov decision processes with a Borel state space and a finite action space,
there exists a Markov deterministic strategy which is optimal. Moreover the optimal
strategy is characterized by the optimality equation based on which we can iteratively
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One-armed bandit process with a covariate 997

derive the optimal strategy and investigate structural and other properties of the optimal
strategy.

3 Main results

For any n = 1, 2, . . . , N , let sn = (xn, d(n)) be the observed state and

V
(

sn, B, AN
n

)
= V

(
(xn, t (d f (n), β(n), s(n)), G(μn, νn)), B, AN

n

)

be the optimal value of the bandit from time n until N , starting with the state sn . Then
the principle of optimality states that

V
(
(xn, d(n)), B, AN

n

)

= max
{

V (0)
(
(xn, d(n)), B, AN

n

)
, V (1)

(
(xn, d(n)), B, AN

n

)}
(1)

where V (i)
(
(xn, d(n)), B, AN

n

) = V (i)
(
(xn, t (d f (n), β(n), s(n)), G(μn, νn)), B, AN

n

)

is the value of the strategy that selects arm i = 0, 1, at the initial state (xn, d(n)) and
then always follows an optimal strategy starting at time n + 1. By the principle of
dynamic programming, we have

V (1)
(
(xn, d(n)), B, AN

n

)

= V (1)
(
(xn, t (d f (n), β(n), s(n)), G(μn, νn)), B, AN

n

)
= ρnβ(n)xn

+E
[
V

(
(Xn+1, t (d f (n+1), β(n+1), s(n+1)), G(μn+1, νn+1)), B, AN

n+1

)
|sn

]
,

where d f (n+1) = d f (n) + 1, β(n+1) = β(n+1)(sn, Xn, Y1,n), s(n+1) = s(n+1)(sn, Xn,

Y1,n), μn+1 = μn + 1
2 and νn+1 = νn+1(sn, Xn, Y1,n). On the other hand,

V (0)
(
(xn, d(n)), B, AN

n

)
= V (0)

(
(xn, t (d f (n), β(n), s(n)), G(μn, νn)), B, AN

n

)

= ρn B + E
[
V

(
(Xn+1, t (d f (n), β(n), s(n)), G(μn, νn)), B, AN

n+1

)]

because the distributions d(n) do not change when the known arm is selected.
In the expression of V (1)

(
(xn, d(n)), B, AN

n

)
, the term

V
(
(Xn+1, t (d f (n+1), β(n+1), s(n+1)), G(μn+1, νn+1)), B, AN

n+1

)

depends on the random variables Xn+1 and Y1,n where the density function of Xn+1
is f (x) and conditional on sn = (xn, d(n)), the marginal density function of Y1,n is
given as h(y|sn). Hence
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V (1)
(
(xn, d(n)), B, AN

n

)
= ρnβ(n)xn

+
∫ ∞

−∞

∫ ∞

−∞
V

(
(x, d(n+1)(y)), B, AN

n+1

)
h(y|sn) f (x)dxdy, (2)

where d(n+1)(y) indicates that the posterior distributions depend on y and h(y|sn) is
the conditional distribution of Y1,n given the observed state sn .

Similarly in V (0)
(
(xn, d(n)), B, AN

n

)
, the term

V
(
(Xn+1, t (d f (n), β(n), s(n)), G(μn, νn)), B, AN

n+1

)

depends on the random variable Xn+1 and hence

V (0)
(
(xn, d(n)), B, AN

n

)
= ρn B +

∫ ∞

−∞
V

(
(x, d(n)), B, AN

n+1

)
f (x)dx . (3)

Given any state sn = (xn, d(n)) at time n = 1, 2, . . . , N , define

�
(
(xn, d(n)), B, AN

n

)
= V (1)

(
(xn, d(n)), B, AN

n

)
− V (0)

(
(xn, d(n)), B, AN

n

)

(4)

as the advantage of the unknown arm over the known arm, given the currently
observed covariate xn and updated posterior distributions d(n). Then the unknown
(known respectively) arm is optimal at state sn = (xn, d(n)) if and only if
�

(
(xn, d(n)), B, AN

n

) ≥ (≤)0. But there is no analytic solution to the inequality
�

(
(xn, d(n)), B, AN

n

) ≥ 0. Our main results show that, for each given observed covari-
ate xn and posterior distributions d(n) (i.e., for each given state sn = (xn, d(n))), the
root B∗(xn, d(n), AN

n ) of B for the equation �
(
(xn, d(n)), B, AN

n

) = 0 characterizes
the optimal selection of arm at state sn , the sequence B∗(x, d, AN

1 ), N = 1, 2, . . . ,

displays a monotonic structure in N for the same state s = (x, d), and the myopic
strategy is not optimal in general. A strategy is said to be myopic at the state
sn = (xn, d(n)), n = 1, 2, . . . , N , when the known (unknown respectively) arm is
selected if and only if B ≥ (≤)β(n)xn = E(β|d(n))xn . That is, the myopic strat-
egy selects the arm with the highest immediate expected payoff and so is optimal if
there is only one selection to make. However, the myopic strategy ignores information
gathering.

The next theorem states our first main result characterizing the index value which
defines the optimal initial selection of arm. Such an existence result greatly simplifies
the form of the optimal strategy.

Theorem 1 At any given time n, n = 1, . . . , N ,and for any given state sn = (xn, d(n))

and discounting sequence AN
n , there exists an index value B∗(xn, d(n), AN

n ) such that

�
(
(xn, d(n)), B∗(xn, d(n), AN

n ), AN
n

)
= 0.
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The index value is unique if the discounting sequence is strictly decreasing, other-
wise the set of index values may form an interval. Moreover, for the bandit process(
(xn, d(n)), B, AN

n

)
, the unknown arm is optimal if and only if B ≤ B∗(xn, d(n), AN

n )

while the known arm is optimal if and only if B ≥ B∗(xn, d(n), AN
n ).

In the case of truncated geometric discounting, the next main result shows a
monotonicity property of the index values for the same state but changing time hori-
zon. The intuitive interpretation is that the more selections we have to make under the
same conditions, the more sacrifice in the immediate expected reward we can take to
select the unknown arm, so the gain from understanding the unknown distribution can
be benefited more at later selections and hence a potentially higher overall value may
be reached.

Necessarily to maintain the same conditions for the first selection, we assume a
truncated geometric discounting sequence.

Theorem 2 Let AN
1 = (1, ρ, ρ2, . . . , ρN−1, 0, . . .) be a truncated geometric dis-

counting sequence. Given the same initial state s = (x, d) (where x is the observed
covariate for the first selection and d is the given prior distribution) for all but different
horizons N = 1, 2, . . ., let B∗(x, d, AN

1 ) be the index value such that

�
(
(x, d), B∗(x, d, AN

1 ), AN
1

)
= 0, N = 1, 2, . . . .

Then

β(0)x = B∗(x, d, A1
1) ≤ B∗(x, d, A2

1) ≤ · · · ≤ B∗(x, d, AN
1 ) ≤ · · · .

The limit B∗(x, d) = limN→∞ B∗(x, d, AN
1 ) exists such that β(0)x < B∗(x, d) < ∞

and satisfies the equation �((x, d), B∗(x, d), A) = 0 for the infinite horizon model,
where A = (1, ρ, ρ2, . . .) is the geometric discounting sequence.

There is an interesting corollary saying that the myopic strategy is not optimal in
general. In the case of β(n)xn < B, the immediate expected payoff is smaller from the
unknown arm. But when the difference is not significant large, it may still be optimal to
select the unknown arm because doing so may provide useful information and higher
expected payoffs in the future. This information gathering may compensate for the
loss of immediate expected payoff and give higher value of the whole bandit process.
The difference between the index value and the immediate expected payoff is termed
the learning component of the index by Gittins and Wang (1992).

Corollary 1 The myopic strategy is not optimal in general.

Proof Consider the case of N = 2. Let B be such that β(0)x < B < B∗(x, d, A2
1)

for any given initial state s = (x, d). For the bandit model V
(
(x, d), B, A2

1

)
, the

unknown arm is uniquely optimal for the first selection, however the myopic strategy
selects the known arm. 	
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4 Conclusion

Bandit models with covariate variables are motivated by practical applications in
clinical trials and other fields. Essentially information from covariates can be useful
for making better informed selections among statistical populations. Results in this
paper represent significant extensions of current one-armed bandit models with a
covariate. For example, the results from both Woodroofe (1979) and Sarkar (1991)
show that the asymptotically optimal strategy depends on the value of the covariate.
We have obtained similar results in both cases of finite and infinite horizon models.
The index value obtained in this paper which characterizes the optimal initial selection
of arms depends on the observed covariate and may be regarded as an extension of the
celebrated Gittins index to the case of non-stationary, finite horizon models.

Bandit problems are related to response adaptive design of clinical trials (Hu and
Rosenberger 2006, Page 7), although there are significant difference in philosophy and
methodology. Nevertheless, results for bandit processes with covariates may provide
useful insight for investigating covariate adjusted response adaptive design of clinical
trials (Hu and Rosenberger 2006, Page 6). Response adaptive designs are becoming
important and popular because they use information so far accumulated from the trial
to modify the randomization procedure and deliberately bias treatment allocation in
order to assign more patients to the potentially better treatment without undermining
the validity and integrity of the clinical research (Yi and Wang 2009, Li and Wang
2012). It is possible to extend the results obtained in this paper to the framework in Li
and Wang (2012), with the possibility of mis-measured covariate X .

The results in this paper may also be extended to finance and economics. For
example, we may assume that the profit from sales or investments is described by a
regression model. Then results obtained in this paper may be extended to the dynamic
pricing model introduced in Wang (2007) and the optimal investment and consumption
model in Wang and Wang (2010).

The models constructed, methods used and results obtained can be generalized in
various directions. If the horizon N is random, the technique used in Wang and Yi
(2009, Theorem 2), may be applied to reformulate the random horizon bandit model
as an infinite horizon bandit model. The case of random horizon N is also dealt with in
Wang and Gittins (1992) in the framework of classic bandit models. The performance
of dynamic allocation indices and their calculations were considered. The unknown
arm can also be directly extended to the form of Y1,n = β Xn − θ + ε after assuming
independence. This further generalizes Woodroofe’s model by taking β ≡ 1. The
model can also be extended to multiple linear regression with several independent
covariates, for which results similar to the Gittins index strategy may be derived. In
this extension, we can assume zero intercepts because we can always apply correlation
adjusted transformations of the variables and focus on an equivalent but standardized
regression model without intercepts.

In practice, the method of dynamic programming is implemented in the usual man-
ner. For any given initial state consisting of the observed covariate and the prior
distribution, we derive the optimal value characterized by Eq. (1) by means of back-
ward induction. The optimal value starting at stage 2 and onward is determined by
the newly observed covariate and the updated posterior distribution (after observing

123



One-armed bandit process with a covariate 1001

the response from the first selection) by the Eqs. (2) and (3). Recursively the optimal
value starting at any stage is characterized by the optimal value starting at the later
stage, via Eq. (1). Continuing recursively, when there is only selection to make, the
optimal value is given by the maximum of the two immediate expected payoffs from
the two arms, which are easily calculated for any updated posterior distribution and
observed covariate. We then substitute this last stage optimal value into the second
last stage Eq. (1), and continue until we reach the initial state. Although the dynamic
programming is a powerful method for multi-stage optimization problems, it faces the
curse of dimensionality because we will have to keep tract of all paths whose dimen-
sion increases dramatically. The curse of dimensionality is also a difficulty with the
Bayesian method because of the many paths from the prior distribution to its posterior
distribution. It was the curse of dimensionality that motivated the development of the
Gittins index for bandit problems, which was based on the idea of looking forward
optimally (with a random number of steps) instead of looking backward. The index
value B∗(sn, AN

n ) in this paper is regarded as a finite horizon extension of the infinite
horizon Gittins index. In principle, the calculation of B∗(sn, AN

n ) is based on setting
Eq. (4) to 0 and solving for B. However in practice, this calculation is tedious if not
impossible.

Partial results for two-armed bandit models with a covariate have been derived
and will be presented in a separate paper. We are also working on bandit models with
dependent arms which are characterized by multiple linear regressions. Applications of
the techniques and results in this papers to finance and economics problems mentioned
above are also under consideration.

Appendix: Proofs of results

For the existence of the index value B∗(xn, d(n), AN
n ) which characterizes the optimal

initial selection of the arm at the given state sn = (xn, d(n)), we show that the advantage
function �

(
(xn, d(n)), B, AN

n

)
is a continuous and monotonic function of B and takes

both positive and negative values.

Lemma 1 For any given state sn = (xn, d(n)), n = 1, . . . , N, the functions
V

(
(xn, d(n)), B, AN

n

)
and V (i)

(
(xn, d(n)), B, AN

n

)
, i = 0, 1, are continuous in B.

Therefore the advantage function �
(
(xn, d(n)), B, AN

n

)
is also continuous in B.

Proof The result is easily proved by backward induction on n = N , N −1, . . . , 1, and
the Dominated Convergence Theorem, by applying the Eq. (2) for V (1)

(
sn, B, AN

n

)
,

Eq. (3) for V (0)
(
sn, B, AN

n

)
, Eq. (1) for V

(
sn, B, AN

n

)
, and Eq. (4) for �

(
sn, B, AN

n

)
.

	

Lemma 2 For any given state sn = (xn, d(n)), n = 1, . . . , N, the function
�

(
(xn, d(n)), B, AN

n

)
is nonincreasing in B.

Proof We prove by backward induction on n = N , N −1, . . . , 1. The lemma is clearly
true when n = N (i.e., for AN

N ) because there is only one selection. For the function
�, define �+ = max{�, 0} and �− = max{−�, 0}. Then the function V can be
written as V = V (0) + �+ or V = V (1) + �−.
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Suppose that the lemma is true for AN
n . For AN

n−1, we have

�
(
(xn−1, d(n−1)), B, AN

n−1

)

= ρn−1β
(n−1)xn−1 +

∫ ∞

−∞

∫ ∞

−∞
V

(
(x, d(n)(y)), B, AN

n

)
h(y|sn−1) f (x)dxdy

−ρn−1 B −
∫ ∞

−∞
V

(
(x, d(n−1)), B, AN

n

)
f (x)dx

= ρn−1β
(n−1)xn−1

+
∫ ∞

−∞

∫ ∞

−∞
V (0)

(
(x, d(n)(y)), B, AN

n

)
h(y|sn−1) f (x)dxdy

+
∫ ∞

−∞

∫ ∞

−∞
�+ (

(x, d(n)(y)), B, AN
n

)
h(y|sn−1) f (x)dxdy

−ρn−1 B −
∫ ∞

−∞
V (1)

(
(x, d(n−1)), B, AN

n

)
f (x)dx

−
∫ ∞

−∞
�− (

(x, d(n−1)), B, AN
n

)
f (x)dx

= ρn−1β
(n−1)xn−1

+ρn B +
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
V

(
(z, d(n+1)(x, d(n)(y))), B, AN

n+1

)

×h(y|sn−1) f (x)dxdy f (z)dz

+
∫ ∞

−∞

∫ ∞

−∞
�+ (

(x, d(n)(y)), B, AN
n

)
h(y|sn−1) f (x)dxdy

−ρn−1 B − ρnβ(n−1)E(Xn)

−
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
V

(
(z, d(n+1)(x, d(n)(y))), B, AN

n+1

)

×h(y|sn−1) f (x)dxdy f (z)dz

−
∫ ∞

−∞
�− (

(x, d(n−1)), B, AN
n

)
f (x)dx

= (ρn − ρn−1)B + ρn−1β
(n−1)xn−1 − ρnβ(n−1)E(Xn)

+
∫ ∞

−∞

∫ ∞

−∞
�+ (

(x, d(n)(y)), B, AN
n

)
h(y|sn−1) f (x)dxdy

−
∫ ∞

−∞
�− (

(x, d(n−1)), B, AN
n

)
f (x)dx .

The first term is non-increasing in B because the discounting sequence is non-
increasing, and is decreasing in B if the discounting sequence is strictly decreasing.
Furthermore the backward induction assumption implies that�+ (

(x, d(n)(y)), B, AN
n

)

is non-increasing in B and �− (
(x, d(n−1)), B, AN

n

)
is non-decreasing in B. So the

function �
(
(xn−1, d(n−1)), B, AN

n−1

)
is non-increasing in B. 	
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Proof (of theorem 1) The existence of the index value B∗(xn, d(n), AN
n ) satisfying the

equation �
(
(xn, d(n)), B∗(xn, d(n), AN

n ), AN
n

) = 0 is obvious from the continuity and
monotonicity of �

(
(xn, d(n)), B, AN

n

)
in B, and the facts that

lim
B→−∞ �

(
(xn, d(n)), B, AN

n

)
> 0, lim

B→∞ �
(
(xn, d(n)), B, AN

n

)
< 0.

Since �
(
(xn, d(n)), B, AN

n

)
is non-increasing in B and hence takes value 0 possibly

over an interval, the set of all index values may form an interval. Finally, the optimal
selection is made based on B∗(xn, d(n), AN

n ) according to the advantage function �,
so that the unknown arm is optimal initially if and only if �

(
(xn, d(n)), B, AN

n

) ≥ 0
which is true if and only if B ≤ B∗(xn, d(n), AN

n ). 	

To prove the monotonicity of the index values B∗(x, d, AN

1 ), N = 1, 2, . . . , for a
fixed initial state s = (x, d), we need a lemma on the recursive relationship of the �

functions, assuming a truncated geometric discounting sequence.

Lemma 3 Assume that AN
1 = (1, ρ, ρ2, . . . , ρN−1, 0, . . .), 0 < ρ < 1, is the

truncated, geometric discounting sequence. For any given observed covariate x
and prior distribution d (and hence for any given initial state s = (x, d)), if

�
(
(x, d), B, AN

1

) = 0, then �
(
(x, d), B, AN+1

1

)
≥ 0.

Proof After the initial selection, the discounting sequence becomes (ρ, ρ2, . . . , ρN−1,

0, . . .) = ρ AN−1
1 . The equation �

(
(x, d), B, AN

1

) = 0 implies both

β(0)x − B = ρ

∫ ∞

−∞
V

(
(z, d), B, AN−1

1

)
f (z)dz

−ρ

∫ ∞

−∞

∫ ∞

−∞
V

(
(z, d(1)(y)), B, AN−1

1

)
h(y|s) f (z)dzdy

and

V
(
(x, d), B, AN

1

)
= B + ρ

∫ ∞

−∞
V

(
(z, d), B, AN−1

1

)
f (z)dz.

Hence

�
(
(x, d), B, AN+1

1

)

= β(0)x + ρ

∫ ∞

−∞

∫ ∞

−∞
V

(
(z, d(1)(y)), B, AN

1

)
h(y|s) f (z)dzdy

−B − ρ

∫ ∞

−∞
V

(
(z, d), B, AN

1

)
f (z)dz

= ρ

∫ ∞

−∞

∫ ∞

−∞

{
V

(
(z, d(1)(y)), B, AN

1

)
− V

(
(z, d(1)(y)), B, AN−1

1

)}
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× h(y|s) f (z)dzdy

−ρ

∫ ∞

−∞

{
V

(
(z, d), B, AN

1

)
− V

(
(z, d), B, AN−1

1

)}
f (z)dz.

Let π∗ be an optimal strategy for V
(
(z, d), B, AN

1

)
. For V ((z, d),

B, AN−1
1

)
, we follow π∗ for the N − 1 selections. Then V

(
(z, d), B, AN

1

) −
V

(
(z, d), B, AN−1

1

)
≤ ρN−2 Eπ∗(Z N ) where Z N is the random reward from the

N th selection.
Let π∗∗ be an optimal strategy for V

(
(z, d(1)(y)), B, AN−1

1

)
. For V

(
(z, d(1)(y)),

B, AN
1

)
, we follow π∗∗ for the first N − 1 selections and then follow π∗ for the N th

selection. Hence

V
(
(z, d(1)(y)), B, AN

1

)
− V

(
(z, d(1)(y)), B, AN−1

1

)
≥ ρN−2 Eπ∗∗,π∗(Z N )

where Z N is the random reward from the N th selection.
If π∗ selects the known arm at the N th selection, then Eπ∗(Z N ) = Eπ∗∗,π∗(Z N ) =

B and hence

∫ ∞

−∞

∫ ∞

−∞

{
V

(
(z, d(1)(y)), B, AN

1

)
− V

(
(z, d(1)(y)), B, AN−1

1

)}

× h(y|s) f (z)dzdy

≥ ρN−2 B ≥
∫ ∞

−∞

{
V

(
(z, d), B, AN

1

)
− V

(
(z, d), B, AN−1

1

)}
f (z)dz.

Suppose that π∗ selects the unknown arm at the N th selection. Since the sequence of
posterior distributions of β forms a martingale, we have E(β|d) = E(E(β|d(N ))|d).
Therefore if the unknown arm is selected, we have

∫ ∞

−∞

∫ ∞

−∞

{
V

(
(z, d(1)(y)), B, AN

1

)
− V

(
(z, d(1)(y)), B, AN−1

1

)}
h(y|s) f (z)dzdy

≥ ρN−1 E(β|d)Eπ∗(Z N ) ≥
∫ ∞

−∞

{
V

(
(z, d), B, AN

1

)
− V

(
(z, d), B, AN−1

1

)}
f (z)dz.

Suppose finally that π∗ selects the unknown arm at the N th selection for the set G of
z values. Let GC be the compliment of G and IG be the indicator function of G. Then
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∫ ∞

−∞

∫ ∞

−∞

{
V

(
(z, d(1)(y)), B, AN

1

)
− V

(
(z, d(1)(y)), B, AN−1

1

)}
h(y|s) f (z)dzdy

≥ ρN−1
∫ ∞

−∞
[
IG E(β|d)Eπ∗(Z N ) + IGC B

]
f (z)dz

≥
∫ ∞

−∞

{
V

(
(z, d), B, AN

1

)
− V

(
(z, d), B, AN−1

1

)}
f (z)dz.

Here we have considered only deterministic strategies because there is a deterministic

strategy which is optimal. In any case, we have shown that �
(
(x, d), B, AN+1

1

)
≥ 0.

	

Proof (of theorem 2) The inequality B∗(x, d, AN

1 ) ≤ B∗(x, d, AN+1
1 ) follows from

the above Lemma 3 and monotonicity of �
(
(x, d), B, AN

1

)
in B. The limit B∗(x, d) =

limN→∞ B∗(x, d, AN
1 ) of a non-decreasing sequence B∗(x, d, AN

1 ), N = 1, 2, . . . ,

exists and satisfies the equation

�
(
x, d, B∗(x, d), A

) = lim
N→∞ �

(
x, d, B∗(x, d, AN

1 ), AN
1

)
= 0

for A = (1, ρ, ρ2, . . .), due to uniformly bounded values of the expected payoffs.
If B∗(x, d) = ∞, then we select the known arm initially. Hence V

(
x, d, B∗(x, d),

A
) = ∞, contradicting the finiteness of the optimal value function. We prove β(0)x <

B∗(x, d, A2
1) and hence β(0)x < B∗(x, d). Suppose that β(0)x = B∗(x, d, A2

1). Then
the immediate expected payoff from the two arms are identical and cancel out. The
expected payoff from the second, also the last, selection is the maximum of the expected
payoffs from the two arms given updated posterior distributions. Therefore, assuming
β(0) > 0, we have

0 = �
(
(x, d), B∗(x, d, A2

1), A2
1

)

= ρ

∫ ∞

−∞

[∫ ∞

−∞
V ((z, d(1)(y)), B, A1

1)h(y|s)dy − V ((z, d), B, A1
1)

]
f (z)dz

= ρ

∫ ∞

−∞

[∫ ∞

−∞
max

{
Mβ(0) + xy

M + x2 z, β(0)x

}
h(y|s)dy − max

{
β(0)z, β(0)x

}]
f (z)dz

= ρ

∫ x

−∞

[∫ ∞

−∞
max

{
Mβ(0) + xy

M + x2 z, β(0)x

}
h(y|s)dy − β(0)x

]
f (z)dz

+ρ

∫ ∞

x

[∫ ∞

−∞
max

{
Mβ(0) + xy

M + x2 z, β(0)x

}
h(y|s)dy − β(0)z

]
f (z)dz.

Both integrands are clearly non-negative and strictly positive for certain values of z,
so the right-hand side is strictly positive. Similar result is true if β(0) < 0. This is a
contradiction. 	
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