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Abstract This paper considers the general application to symmetric circular
densities of two forms of change of argument: one produces extended families of
distributions which contain symmetric densities which are more flat-topped, as well
as others which are more sharply peaked, than the originals, and the second produces
families which are skew. General results for the modality and shape characteristics of
the densities which ensue are presented, and maximum likelihood estimation of the
parameters of two extensions of the Jones–Pewsey family is discussed. The applica-
tion of these two particular extended families is illustrated within analyses of data on
monthly cases of sudden infant death syndrome in the UK.
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834 T. Abe et al.

1 Introduction

The cardioid and von Mises distributions are two of the most widely known unimodal
symmetric circular distributions (see Mardia and Jupp 1999, Sect. 3.5 or Jammala-
madaka and SenGupta 2001, Sect. 2.2, for example). The density of the cardioid
distribution with modal direction μ, −π ≤ μ < π , is

fC(θ) = (2π)−1(1 + 2ρ cos(θ − μ)), −π ≤ θ < π, (1)

where 0 ≤ ρ ≤ 1/2 is a concentration parameter, whilst the analogous von Mises
density is

fvM(θ) = {2π I0(κ)}−1 exp(κ cos(θ − μ)), −π ≤ θ < π, (2)

where κ ≥ 0 is a concentration parameter and I0(κ) is the modified Bessel function of
the first kind and order zero (Abramowitz and Stegun 1972, p. 376, Eq. 9.6.19). Note
that in both densities the argument θ − μ is transformed using the cosine function,
which is even.

To extend the shape characteristics of the cardioid and von Mises distributions,
respectively, Papakonstantinou (1979) and Batschelet (1981, Sects. 15.6 and 15.7)
effectively made use of two extensions of the cos(θ − μ) transformation. The first
involves replacing cos(θ − μ) by

cos(θ − μ+ ν sin(θ − μ)), −∞ < ν < ∞, (3)

whilst the second replaces it by

cos(θ − μ+ ν cos(θ − μ)), −∞ < ν < ∞. (4)

Clearly, (3) and (4) are cosine functions of two different transformations of the argu-
ment θ − μ. Substituting φ + π/2 for θ in (4) gives

sin(φ − μ+ ν sin(φ − μ)), −∞ < ν < ∞, (5)

so the second transformation can be expressed in terms of either two sines or two
cosines. If cos(θ −μ) is replaced by either (3) or (4), the normalising constants in (1)
and (2) generally no longer apply and must be recalculated. Obviously, the original
density is unchanged if ν = 0. The resulting densities are unimodal if −1 < ν < 1,
and are multimodal otherwise.

Substituting (3) for cos(θ − μ) in (1) or (2) results in densities which are also
symmetric but more flat-topped (sharply peaked) than the original cardioid or von
Mises densities if −1 < ν < 0 (0 < ν < 1). Thus, for this transformation of
argument, −1 < ν < 1 acts as a kurtosis regulating parameter. The density obtained
by substituting (3) for cos(θ − μ) within the cardioid density (1), which in order to
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reflect its origins (Papakonstantinou 1979) we shall refer to as Papakonstantinou’s
symmetric extended cardioid (SEC) density, is

fSEC(θ)= 1

2π{1 − k J1(ν)} {1+k cos(θ−μ+ν sin(θ − μ))} , −π ≤ θ < π, (6)

where 0 ≤ k ≤ 1 is a concentration parameter and, more generally, Jp(z) denotes the
Bessel function of the first kind and order p (Gradshteyn and Ryzhik 2007, p. 912,
Eq. 8.411.1), whose integral representation is given by

Jp(z) = 1

π

∫ π

0
cos(pθ − z sin θ)dθ, p = 0,±1,±2, . . . . (7)

Abe et al. (2009) study this distribution in depth and explain its origins. Substituting
(3) for cos(θ − μ) within the von Mises density (2) results in what we shall refer to
as Batschelet’s symmetric extended von Mises (SEvM) density,

fSEvM(θ) = c−1
κ,ν exp{κ cos(θ − μ+ ν sin(θ − μ))}, −π ≤ θ < π.

The normalising constant, c−1
κ,ν , generally has no closed form and must be calculated

using numerical integration. Pewsey et al. (2011) provide an in-depth treatment of this
distribution introduced by Batschelet (1981, p. 288).

For 0 < |ν| < 1, substituting (4), or equivalently (5), for cos(θ − μ) within
densities (1) or (2) leads to unimodal densities which are asymmetric. They are skewed
clockwise (anticlockwise) if −1 < ν < 0 (0 < ν < 1), −1 < ν < 1 thus playing the
role of a skewness parameter. Substituting (5) within the cardioid density (1) results
in what we shall refer to as Papakonstantinou’s asymmetric extended cardioid (AEC)
density (Papakonstantinou 1979),

fAEC(θ) = 1

2π
{1 + k sin(θ − μ+ ν sin(θ − μ))} , (8)

where 0 ≤ k ≤ 1 is a concentration parameter. Note the closed form of the normalising
constant. Substituting (5) for cos(θ − μ) within the von Mises density (2) leads to
what, in order to reflect its origins, we shall call Batschelet’s asymmetric extended
von Mises (AEvM) density (Batschelet 1981, p. 286),

fAEvM(θ) = d−1
κ,ν exp{κ sin(θ − μ+ ν sin(θ − μ))}, −π ≤ θ < π. (9)

As was the case for its symmetric counterpart, the normalising constant, here d−1
κ,ν ,

generally has no closed form and must be calculated using quadrature.
Recently, Jones and Pewsey (2005) proposed a family of unimodal symmetric

circular distributions with density

fJP(θ) ∝ {1 + tanh(κψ) cos(θ − μ)}1/ψ , −π ≤ θ < π, (10)
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where −π ≤ μ < π , κ ≥ 0 and −∞ < ψ < ∞. As before, μ is the modal direction
and κ is a concentration parameter, whilst ψ is referred to as a shape index. Despite
this terminology, the overall shape of the distribution is actually controlled by both
κ and ψ . A major appeal of the Jones–Pewsey family is that it contains the uniform
(κ = 0 or finite κ and ψ → ±∞), cardioid (ψ = 1), von Mises (ψ = 0), wrapped
Cauchy (ψ = −1), Cartwright’s power-of-cosine (ψ > 0 and κ → ∞) and circular
t (Shimizu and Iida 2002) (−1 < ψ < 0) distributions. Consequently, it provides an
important over-arching family of distributions which, together with likelihood-ratio
testing, can be used to explore the fits of many of the classical models of circular
statistics. Note that in (10) also, the argument θ − μ is transformed using the cosine
function.

In Sect. 2.1 we consider the general application of the change of argument in (3) to
symmetric circular densities and provide results for the modality and shape properties
of the symmetric densities which ensue. In Sect. 2.2 we propose an extension to the
Jones–Pewsey family based on the application of (3) and consider special cases of, and
maximum likelihood estimation for, the resulting symmetric family of distributions.
Sect. 3.1 focuses on the general application of (5) to symmetric circular densities and
presents results for the modality of the ensuing densities which are generally skewed.
In Sect. 3.2 we propose a skew extension of the Jones–Pewsey family based on the
application of (5). Results are provided for the shape properties of the densities within
the new family and consideration is given to maximum likelihood estimation of its
parameters. We also study the properties of, and method of moments estimation for, its
Papakonstantinou AEC subclass. In Sect. 4 we illustrate the application of the two new
extended Jones–Pewsey families within analyses of data on monthly cases of sudden
infant death syndrome in the UK. Concluding remarks are made in Sect. 5. Four R
scripts used in the illustrative analyses of Sect. 4 are presented in an Appendix.

2 Extending the shape characteristics of symmetric distributions

2.1 General construction

Here we generalise the approach of Papakonstantinou (1979) and Batschelet (1981,
Sect. 15.7) based on the transformation of argument in (3) to one which can be used to
extend the shape characteristics of a wide family of base symmetric circular densities.
Detailed results are presented for the modality and shape properties of the densities
which ensue.

2.1.1 Definition

Without loss of generality, we will assume in what follows that the location parameter,
μ, equals 0. Let g(cos θ) (−π ≤ θ < π) denote a symmetric circular density which
is a function of cos θ . Now consider the circular density

fν(θ) = c−1
ν g(cos(θ + ν sin θ)), −π ≤ θ < π, (11)
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Extending circular distributions 837

where −∞ < ν < ∞ and c−1
ν is a normalising constant. Clearly, when ν = 0,

fν(θ) reduces to the original density, i.e., f0(θ) = g(cos θ), and so we can write
fν(θ) = c−1

ν f0(θ + ν sin θ), where cν = ∫ π
−π f0(θ + ν sin θ)dθ . Because the cosine

function is even, and the sine function is odd, the density (11) is also symmetric about
zero.

2.1.2 Modality

Assume now that the symmetric circular density f0(θ) = g(cos θ) is unimodal with
continuous first derivative f ′

0(θ) and that f ′
0(0) = 0. f0(θ) will have a mode at θ = 0

and an antimode at θ = −π .

Proposition 1 Density (11) is unimodal with a mode at θ = 0 and an antimode at
θ = −π if and only if |ν| ≤ 1. For |ν| > 1, (11) has (2|m| + 1) modes if mπ <

h(ν) ≤ (m + 1)π for m = 1, 2, . . . or mπ ≤ h(ν) < (m + 1)π for m = −1,−2, . . .,
where h(ν) = cos−1(−1/ν)+ ν

√
1 − 1/ν2.

Proof The proof proceeds as in the proof of Proposition 1 in Abe et al. (2009) and is
therefore omitted. �	

2.1.3 Shape properties

In addition to the assumptions of Sect. 2.1.2, here we further assume that the second
derivative of f0(θ), f ′′

0 (θ), exists and is continuous and that f0(θ) > 0 for all θ (−π ≤
θ < π). Since f ′

ν(0) = 0, the curvature of fν(θ) at θ = 0, defined as f ′′
ν (0)/[1 +

{ f ′
ν(0)}2]3/2, equals f ′′

ν (0).

Proposition 2 For −1 ≤ ν1 < ν2 ≤ 1:

(a) fν1(0) < fν2(0) and fν1(−π) < fν2(−π),
(b) f ′′

ν1
(0) > f ′′

ν2
(0) and f ′′

ν1
(−π) < f ′′

ν2
(−π).

Proof (a) First note that 0 < θ + νi sin θ < π (i = 1, 2) and thus θ + ν1 sin θ <
θ + ν2 sin θ for all θ in the interval (0, π). Since f0(θ) has a unique mode at θ = 0
and is strictly decreasing on the interval (0, π), it holds that

cν1 = 2
∫ π

0
f0(θ + ν1 sin θ)dθ > 2

∫ π

0
f0(θ + ν2 sin θ)dθ = cν2 .

Hence,

fν1(0) = c−1
ν1

f0(0) < c−1
ν2

f0(0) = fν2(0).

Similarly, fν1(−π) < fν2(−π). (b) As

f ′′
ν (θ) = c−1

ν

{
−ν sin θ f ′

0(θ + ν sin θ)+ (1 + ν cos θ)2 f ′′
0 (θ + ν sin θ)

}
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and f ′′
0 (0) < 0, it follows that

f ′′
ν1
(0) = c−1

ν1
(1 + ν1)

2 f ′′
0 (0) > c−1

ν2
(1 + ν2)

2 f ′′
0 (0) = f ′′

ν2
(0).

Similarly, f ′′
ν1
(−π) < f ′′

ν2
(−π). �	

Given the two results above, ν is clearly a shape parameter which controls the
peakedness/flat-toppedness properties of the density. If conditions (a) and (b) are
satisfied, we will say that fν1 is more flat-topped than fν2 ; or, equivalently, fν2 is more
sharply peaked than fν1 . Obviously, if ν < 0, then fν is more flat-topped than the
original base density f0, and if ν > 0, then fν is more sharply peaked than the original
base density f0.

2.2 A symmetric extension of the Jones–Pewsey family

Here we apply the general construction of Sect. 2.1 to produce a symmetric extension
of the Jones–Pewsey family which has even more shape flexibility. Various important
special cases of it are identified, and maximum likelihood estimation of its parameters
is discussed.

2.2.1 Definition and special cases

Applying the general construction of Sect. 2.1.1 to the Jones–Pewsey density (10)
results in what we will refer to as the symmetric extended Jones–Pewsey (SEJP)
family of distributions with density

fSEJP(θ)=c−1
κ,ψ,ν {1+tanh(κψ) cos(θ−μ+ν sin(θ−μ))}1/ψ , −π ≤ θ <π, (12)

where −π ≤ μ < π , κ ≥ 0, −∞ < ψ < ∞, −∞ < ν < ∞ and cκ,ψ,ν =∫ π
−π {1 + tanh(κψ) cos(θ + ν sin θ)}1/ψdθ must generally be computed numerically.

This density reduces to a Jones–Pewsey density when ν = 0, a Papakonstantinou
SEC density with k = tanh(κ) when ψ = 1 and a Batschelet SEvM density when
ψ = 0. When ψ = −1, a symmetric extended wrapped Cauchy (SEWC) distribution
is obtained with density

fSEWC(θ) = c−1
κ,−1,ν {1 − tanh(κ) cos(θ − μ+ ν sin(θ − μ))}−1 , −π ≤ θ < π.

The shape flexibility of unimodal SEJP densities is apparent from the densities
portrayed in Fig. 1. Contour plots of the circular kurtosis, γ2, (see Sect. 3.2.3 for a
general definition) for unimodal members of the SEJP family are presented in Fig. 2.
The achievable levels of circular kurtosis for the base Jones–Pewsey distribution are
those associated with the value ν = 0. The extra levels of kurtosis offered by the SEJP
family are associated with |ν|-values close to 1 and, generally, ψ-values close to 0.
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Fig. 1 Unimodal SEJP densities with μ = 0, κ = 1 and (a) ψ = −1 (SEWC), (b) ψ = 0 (SEvM), (c)
ψ = 1 (SEC) and (d) ψ = 2. The line types, in order of increasing height at the origin, are dotted for
ν = −1,−0.5, solid for ν = 0 and dashed for ν = 0.5, 1. The densities are plotted on [−π, π) using a
common vertical scale
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Fig. 2 Contour plots of the circular kurtosis, γ2, for unimodal members of the SEJP family as a function
of −6/κ < ψ < 6/κ and −1 ≤ ν ≤ 1, for (a) κ = 0.5 and (b) κ = 2

2.2.2 Maximum likelihood estimation

Let θ1, . . . , θn denote a random sample of size n drawn from a SEJP distribution with
density (12). We consider the most relevant practical inferential scenario in which all
four parameters, μ, κ , ψ and ν, are unknown. The log-likelihood function is
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(μ, κ, ψ, ν) = −n log cκ,ψ,ν

+ 1

ψ

n∑
i=1

log{1 + tanh(κψ) cos(θi − μ+ ν sin(θi − μ))}. (13)

The first- and second-order partial derivatives of (13) with respect to each of the
parameters, used in the score vector and information matrices, are somewhat involved
and to save on space we do not reproduce them here. For those interested in obtaining
them, we would recommend the use of symbolic mathematical computing packages,
such as Mathematica or the open source Sage software.

For a random sample of SEJP data grouped into the m class intervals [θ0, θ1),
[θ1, θ2),…,[θm−1, θm), where θ0 = θm , with n j observations in the j th interval and
thus a total of n = n1 + n2 + · · · + nm observations, the log-likelihood function is
given by


†(μ, κ, ψ, ν) = −n log cκ,ψ,ν

+
m∑

j=1

n j log
∫ θ j

θ j−1

{1 + tanh(κψ) cos(θ − μ+ ν sin(θ − μ))}1/ψdθ. (14)

In general, there are no closed-form expressions for the maximum likelihood esti-
mates (MLEs) and numerical methods of optimisation are required to identify them.
We have developed a suite of scripts for the open source R statistical software with
which to perform likelihood based inference for the SEJP family. Scripts RS1 and
RS2, specifically designed for use with the first data set analysed in Sect. 4, are repro-
duced in the Appendix. The data in question are grouped but we also have analogous
scripts for use with continuous data, as well as others for computing the profile log-
likelihood functions of the other three parameters. The full suite of R scripts is freely
available from the authors upon request. The most important R functions used in the
various scripts are integrate and optim for computing cκ,ψ,ν and minimizing
the negative log-likelihood, respectively. The optim function is particularly power-
ful as it allows the user to try different starting values for the optimization process
and includes an option for computing the Hessian matrix evaluated at the maximum
likelihood solution. When it exists, the latter is easily inverted to obtain the observed
information matrix and asymptotic correlation matrix for the parameter estimates, and
hence asymptotic normal theory based confidence sets for the parameters. The optim
function also allows the user to impose box-constraints on the parameters via the use
of the “L-BFGS-B” method of optimisation due to Byrd et al. (1995). We make use
of this optimisation method in the illustrative examples of Sect. 4.

3 Skewing symmetric distributions

3.1 General construction

Here we generalise the approach of Papakonstantinou (1979) and Batschelet (1981,
Sect. 15.7) based on the transformation (4) (or, equivalently, (5)) to one which can
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be used to produce skew extensions of symmetric circular densities. Results are also
given for the modality of the densities which ensue.

3.1.1 Definition

We will assume here too, without loss of generality, that the location parameter, μ,
equals 0. Suppose that g(sin θ) (−π ≤ θ < π) denotes a circular density which is
symmetric about π/2. Then

fν(θ) = d−1
ν g(sin(θ + ν sin θ)), −π ≤ θ < π, (15)

where −∞ < ν < ∞ and d−1
ν is a normalising constant, is also a circular density.

Clearly, when ν = 0, fν(θ) reduces to the original density, i.e., f0(θ) = g(sin θ), and
so we can write fν(θ) = d−1

ν f0(θ + ν sin θ) where dν = ∫ π
−π f0(θ + ν sin θ)dθ and

dν = d−ν . Density (15) is symmetric about π/2 if ν = 0; otherwise it is asymmetric.
Setting φ = θ − π/2, (15) is transformed into fν(φ) = d−1

ν g(cos(φ + ν cosφ)),
where −3π/2 ≤ φ < π/2 and f−ν(φ) = fν(−φ).

3.1.2 Modality

In what follows we make use of the representation (15) because of its mathematical
tractability. In that representation, the function Hν(θ) = θ + ν sin θ : [−π, π ] →
[−π, π ] is monotone increasing if |ν| ≤ 1. Thus, for |ν| ≤ 1, θ∗

ν = H−1
ν (π/2) is

defined uniquely.
We will assume that the density f0(θ) = g(sin θ) is unimodal with mode at θ = π/2

and antimode at θ = −π/2. We further assume that it has a continuous first derivative
and that f ′

0(π/2) = 0.

Proposition 3 Density (15) is unimodal with a mode at θ = 0 and an antimode at
θ = −π if and only if |ν| ≤ 1. For |ν| > 1, (15) has (2|m| + 1) modes if mπ <

h(ν) ≤ (m + 1)π for m = 1, 2, . . . or mπ ≤ h(ν) < (m + 1)π for m = −1,−2, . . .,
where h(ν) = cos−1(−1/ν)+ ν

√
1 − 1/ν2.

Proof The derivative of (15) with respect to θ is

f ′
ν(θ) ∝ (1 + ν cos θ) cos(Hν(θ))g

′(sin Hν(θ)),

which is 0 for θ = θ∗
ν and θ = −θ∗

ν . It is also 0 if 1 + ν cos θ = 0 or cos Hν(θ) = 0.
If |ν| ≤ 1, then f ′

ν(θ) is non-zero for all θ such that θ �= θ∗
ν or θ �= −θ∗

ν . As fν(θ∗
ν ) >

fν(−θ∗
ν ), fν(θ) is unimodal with mode θ∗

ν and antimode −θ∗
ν . Now assume that |ν| > 1

and consider the number of solutions to the equation H ′
ν(θ) = 1 + ν cos θ = 0 or

Hν(θ) = θ + ν sin θ = ( j + 1/2)π ( j = ±1,±2, . . .) in the interval (0, π) since
Hν(θ) is an odd function of θ . Let θ1 = cos−1(−1/ν) (0 < θ1 < π ), which is a
unique solution to the equation 1 + ν cos θ = 0. Note that, for ν > 1 (ν < −1),
1 + ν cos θ is positive (negative) if 0 < θ < θ1 and is negative (positive) if θ1 <

θ < π . Since H ′
ν(θ) = 1 + ν cos θ , Hν(θ) takes an extreme value at θ = θ1. Set

h(ν) = Hν(θ1) = cos−1(−1/ν) + ν
√

1 − 1/ν2. Then h is a monotone increasing
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function since h′(ν) = √
1 − 1/ν2 > 0, and thus h(ν) > h(1) = π if ν > 1 and

h(ν) < h(−1) = 0 if ν < −1. From the above, for −π ≤ θ < π , fν(θ) has two
modes if π < h(ν) ≤ 3π/2 or −π/2 ≤ h(ν) < 0 and 2|m| modes if (m − 1/2)π <
h(ν) ≤ (m + 1/2)π (m = 2, 3, . . .) for ν > 1 or (m + 1/2)π ≤ h(ν) < (m + 3/2)π
(m = −2,−3, . . .) for ν < −1. �	

3.2 A unimodal skew Jones–Pewsey family

Here we apply the general construction of Sect. 3.1 to produce a skew unimodal exten-
sion of the Jones–Pewsey family. We identify important special cases of it, provide
results for the shape characteristics of densities within it and discuss maximum like-
lihood estimation of its parameters. We also study the properties of, and method of
moments estimation for, its AEC subclass.

3.2.1 Definition

Due to the periodicity of circular distributions, the Jones–Pewsey density can also be
represented as

fJP(θ) ∝ {1 + tanh(κψ) sin(θ − μ)}1/ψ , −π ≤ θ < π.

As an application of (15), we propose the asymmetric extended Jones–Pewsey
(AEJP) distribution with density

fAEJP(θ)=d−1
κ,ψ,ν {1+tanh(κψ) sin(θ−μ+ν sin(θ−μ))}1/ψ , −π ≤ θ <π, (16)

where −π ≤ μ < π , κ ≥ 0, −∞ < ψ < ∞ and, to ensure unimodality, −1 ≤
ν ≤ 1. The normalising constant is the inverse of dκ,ψ,ν = ∫ π

−π {1+ tanh(κψ) sin(θ +
ν sin θ)}1/ψdθ which must generally be computed numerically.

As special cases, (16) reduces to Papakonstantinou’s AEC density (8) when ψ = 1
and k = tanh(κ), and to Batschelet’s AEvM density (9) when ψ = 0. When ψ = −1,
an asymmetric extended wrapped Cauchy (AEWC) distribution, with density

fAEWC(θ) = d−1
κ,−1,ν{1 − tanh(κ) sin(θ − μ+ ν sin(θ − μ))}−1, −π ≤ θ < π,

is obtained. The densities portrayed in Fig. 3 provide an indication of the flexibility
of the AEJP family. The achievable levels of circular skewness, γ1, (see Sect. 3.2.3
for a general definition) for densities within the AEJP family are pictured in Fig. 4.
The highest levels of circular skewness are associated with |ν|-values close to 1 and
ψ-values close to 0.

3.2.2 Shape properties

Here we present results which summarise how the parameters ν and ψ control the
peakedness/flat-toppedness of AEJP densities. To save on space, we will denote an
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Fig. 4 Contour plots of the circular skewness, γ1, for members of the AEJP family as a function of
−6/κ < ψ < 6/κ and −1 ≤ ν ≤ 1, for (a) κ = 0.5 and (b) κ = 2

AEJP density with parameter ν by fν(θ). As in Sect. 3.1.2, we denote the mode of
such a density by θ∗

ν . Since f ′
ν(θ

∗
ν ) = d−1

κ,ψ,ν(1 + ν cos θ∗
ν ) f ′

0(π/2) = 0, the curvature

of fν(θ) at the mode, defined as f ′′
ν (θ

∗
ν )/[1 + { f ′

ν(θ
∗
ν )}2]3/2, equals f ′′

ν (θ
∗
ν ).
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Proposition 4 For 0 ≤ |ν1| < |ν2| ≤ 1, it holds that

(a) fν1(θ
∗
ν1
) < fν2(θ

∗
ν2
), fν1(−θ∗

ν1
) < fν2(−θ∗

ν2
), fν1(0) < fν2(0) and fν1(−π) <

fν2(−π) if ψ < 1;
(b) fν1(θ

∗
ν1
) = fν2(θ

∗
ν2
), fν1(−θ∗

ν1
) = fν2(−θ∗

ν2
), fν1(0) = fν2(0) and fν1(−π) =

fν2(−π) if ψ = 1. Moreover, these properties hold for all ν1, ν2 ∈ (−∞,∞);
(c) fν1(θ

∗
ν1
) > fν2(θ

∗
ν2
), fν1(−θ∗

ν1
) > fν2(−θ∗

ν2
), fν1(0) > fν2(0) and fν1(−π) >

fν2(−π) if ψ > 1;
(d) f ′′

ν1
(θ∗
ν1
) > f ′′

ν2
(θ∗
ν2
) and f ′′

ν1
(−θ∗

ν1
) < f ′′

ν2
(−θ∗

ν2
).

Proof (a) First, assume that 0 ≤ ν ≤ 1, ψ < 1 (ψ �= 0). Consider the derivative of
dκ,ψ,ν with respect to ν, i.e.,

∂ dκ,ψ,ν
∂ν

= tanh(κψ)

ψ

∫ π

−π
sin θ cos Hν(θ){1 + tanh(κψ) sin Hν(θ)}1/ψ−1dθ

= tanh(κψ)

ψ

∫ π

0
sin θ cos Hν(θ)[{1 + tanh(κψ) sin Hν(θ)}1/ψ−1

−{1 − tanh(κψ) sin Hν(θ)}1/ψ−1]dθ

= tanh(κψ)

ψ

(∫ θ∗
ν

0
+

∫ π

θ∗
ν

)
sin θ cos Hν(θ)[{1+tanh(κψ) sin Hν(θ)}1/ψ−1

−{1 − tanh(κψ) sin Hν(θ)}1/ψ−1]dθ
= tanh(κψ)

ψ

∫ 0

−π/2

(
sin H−1

ν (−u)

1 + ν cos H−1
ν (−u)

− sin H−1
ν (u + π)

1 + ν cos H−1
ν (u + π)

)

× cos u[{1 − tanh(κψ) sin u}1/ψ−1 − {1 + tanh(κψ) sin u}1/ψ−1]du.

Define the function q(u) as

q(u) = sin H−1
ν (−u)

1 + ν cos H−1
ν (−u)

− sin H−1
ν (u + π)

1 + ν cos H−1
ν (u + π)

.

We show that q(u) is negative for all u ∈ (−π/2, 0). Since sin x/(1+ν cos x) is a
monotone increasing function of x ∈ (0, π/2), it follows that the first term of q(u),
sin H−1

ν (−u)/{1 + ν cos H−1
ν (−u)}, is monotone decreasing. The second term of

q(u), sin H−1
ν (u + π)/{1 + ν cos H−1

ν (u + π)}, is minimum when u = −π/2 or
u = 0. So, q(u) is negative for all u ∈ [−π/2, 0] because the maximum of q(u)
is q(−π/2) = q(0) = 0. From the fact that {1 − tanh(κψ) sin u}1/ψ−1 − {1 +
tanh(κψ) sin u}1/ψ−1 > 0 when ψ < 1 (ψ �= 0), it follows that ∂dκ,ψ,ν/∂ν < 0
and dκ,ψ,ν is a monotone decreasing function of ν ∈ [0, 1]. Since dκ,ψ,ν = dκ,ψ,−ν ,
we conclude that dκ,ψ,ν1 > dκ,ψ,ν2 if 0 ≤ |ν1| < |ν2| ≤ 1 andψ < 1 (ψ �= 0). The
same inequality holds for the AEvM distribution, obtained when ψ = 0. Hence,

fν1(θ
∗
ν1
) = d−1

κ,ψ,ν1
f0(π/2) < d−1

κ,ψ,ν2
f0(π/2) = fν2(θ

∗
ν2
)

if ψ < 1. Similarly, we obtain the inequalities fν1(−θ∗
ν1
) < fν2(−θ∗

ν2
), fν1(0) <

fν2(0) and fν1(−π) < fν2(−π).
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(b) The assertion is trivial.
(c) Noting that {1 − tanh(κψ) sin u}1/ψ−1 − {1 + tanh(κψ) sin u}1/ψ−1 < 0 when

ψ > 1, then ∂dκ,ψ,ν/∂ν > 0, and the assertion follows immediately.
(d) When ψ ≤ 1 and 0 ≤ |ν1| < |ν2| ≤ 1, it follows from

f ′′
ν (θ) = d−1

κ,ψ,ν

[
−ν sin θ f ′

0(θ + ν sin θ)+ (1 + ν cos θ)2 f ′′
0 (θ + ν sin θ)

]

and f ′′
0 (π/2) < 0 that

f ′′
ν1
(θ∗
ν1
) = d−1

κ,ψ,ν1
(1 + ν1 cos θ∗

ν1
)2 f ′′

0 (π/2)

> d−1
κ,ψ,ν2

(1 + ν2 cos θ∗
ν2
)2 f ′′

0 (π/2) = f ′′
ν2
(θ∗
ν2
).

Note that 1 + ν1 cos θ∗
ν1
< 1 + ν2 cos θ∗

ν2
and 1 − ν cos θ∗−ν = 1 + ν cos θ∗

ν . Similarly,
we have f ′′

ν1
(−θ∗

ν1
) < f ′′

ν2
(−θ∗

ν2
).

When ψ > 1, the results follow if dκ,ψ,ν/(1 + ν cos θ∗
ν )

2 is a monotone decreasing
function of ν. This is proved as follows: let 0 < ν ≤ 1. Note that θ∗

ν
′ = − sin θ∗

ν /(1 +
ν cos θ∗

ν ) and consider the derivative of dκ,ψ,ν/(1 + ν cos θ∗
ν )

2 with respect to ν, i.e.,

− 2(ν + cos θ∗
ν )

(1 + ν cos θ∗
ν )

4 dκ,ψ,ν + 1

(1 + ν cos θ∗
ν )

2 d ′
κ,ψ,ν

= 1

(1 + ν cos θ∗
ν )

2

∫ π

0

(
− 2(ν + cos θ∗

ν )

(1 + ν cos θ∗
ν )

2 − ν + cos θ

(1 + ν cos θ)2

)

×({1 + tanh(κψ) sin Hν(θ)}1/ψ + {1 − tanh(κψ) sin Hν(θ)}1/ψ)dθ

= 1

(1 + ν cos θ∗
ν )

2

∫ π

0

{
− 2(ν + cos θ∗

ν )

(1 + ν cos θ∗
ν )

2 − ν + cos H−1
ν (t)

(1 + ν cos H−1
ν (t))2

}

×[{1 + tanh(κψ) sin t}1/ψ + {1 − tanh(κψ) sin t}1/ψ ] dt

1 + ν cos H−1
ν (t)

.

In the last equality, we made use of the change of variable t = Hν(θ). Now define the
function s(u) as

s(u) = − 2(ν + cos θ∗
ν )

(1 + ν cos θ∗
ν )

2 − ν + cos u

(1 + ν cos u)2
.

Then there exists a unique δ ∈ (0, π) such that s(δ) = 0. Noting that θ∗
ν + θ∗−ν = π ,

we have

s(θ∗−ν) = − 2(ν + cos θ∗
ν )

(1 + ν cos θ∗
ν )

2 − ν − cos θ∗
ν

(1 − ν cos θ∗
ν )

2 .
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Since ν − cos θ∗
ν is a monotone decreasing function of ν and its minimum is attained

at 0, we obtain s(θ∗−ν) < 0. Moreover, we have s(0) < 0 and

s(π) > −2(ν + cos θ∗
ν )+ 1

1 − ν
> −4ν + 1

1 − ν
= (2ν − 1)2

1 − ν
≥ 0.

From these facts, we have (π/2 <) θ∗−ν < δ. On the other hand,

∫ π

0

(
− 2(ν + cos θ∗

ν )

(1 + ν cos θ∗
ν )

2 − ν + cos H−1
ν (t)

(1 + ν cos H−1
ν (t))2

)
dt

1 + ν cos H−1
ν (t)

=
∫ π

0

(
− 2(ν + cos θ∗

ν )

(1 + ν cos θ∗
ν )

2 − ν + cos θ

(1 + ν cos θ)2

)
dθ

=
∫ π

0
s(θ)dθ = −2π(ν + cos θ∗

ν )

(1 + ν cos θ∗
ν )

2 < 0,

and taking into account the fact that {1+tanh(κψ) sin t}1/ψ and {1−tanh(κψ) sin t}1/ψ

are symmetric about π/2, we see that the derivative of dκ,ψ,ν/(1 + ν cos θ∗
ν )

2 with
respect to ν is negative. Therefore, dκ,ψ,ν/(1 + ν cos θ∗

ν )
2 is a monotone decreasing

function of ν and the results hold. �	

3.2.3 Properties of the AEC distribution

In what follows we describe the properties of the subclass of the AEJP family formed
by the Papakonstantinou asymmetric extended cardioid distributions with density (8).
Throughout we assume, without loss of too much generality, thatμ = 0. In Sect. 3.2.4
we consider method of moments estimation for the parameters of an AEC distribution.

Clearly, (8) tends to the circular uniform density as k → 0 and to a cardioid density
as ν → 0.

Abe et al. (2009) provide the Fourier series expansion of Papakonstantinou’s sym-
metric extended cardioid density (6) expressed in terms of Bessel functions of the first
kind (see (7)). To obtain the Fourier series expansion of (8) we make use of the fact
that sin(θ + ν sin θ) can be represented in terms of Bessel functions of the first kind
as

sin(θ + ν sin θ) =
∞∑

p=1

{Jp−1(ν)+ (−1)p Jp+1(ν)} sin pθ

=
∞∑

p=1

{
2J ′

2p−1(ν) sin(2p − 1)θ + 4p

ν
J2p(ν) sin 2pθ

}
.

The second equality in the above is obtained using the first and second formulae in
(Abramowitz and Stegun 1972, p. 361, Eq. 9.1.27). Hence,
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f AEC (θ) = 1

2π
{1 + k sin(θ + ν sin θ)}

= 1

2π
+ k

π

∞∑
p=1

{
J ′

2p−1(ν) sin(2p − 1)θ + 2p

ν
J2p(ν) sin 2pθ

}
.

For p = 1, 2, . . ., the pth cosine and sine moments of a random variable  with
an AEC distribution, αp = E(cos p) and βp = E(sin p), are therefore given by

αp = 0, β2p−1 = k J ′
2p−1(ν), β2p = 2pk

ν
J2p(ν),

from which the pth trigonometric moment, φp = E(eip), follows immediately.

Writing φp = ρpeiμ0
p (ρp > 0), then μ0

p = arg(αp + iβp), with μ0 = μ0
1 = π/2

as a special case. Setting φ̄p = E(eip(−μ0)), ᾱp = E[cos p( − μ0)] and β̄p =
E[sin p(−μ0)], we obtain φ̄p = (−i)pφp, ᾱ2p−1 = (−1)p−1k J ′

2p−1(ν), ᾱ2p = 0,

β̄2p−1 = 0, β̄2p = (−1)p2pk J2p(ν)/ν.
The mean resultant length is given by ρ = |φ1| = k J ′

1(ν). For 0 ≤ k ≤ 1 and
−1 ≤ ν ≤ 1, ρ ranges from 0 to 0.5 with its maximum value occurring when ν = 0.
The circular variance, V , and circular standard deviation, σ , are thus

V = 1 − ρ = 1 − k J ′
1(ν)

and

σ = {−2 log(1 − V )}1/2 = {−2 log k J ′
1(ν)

}1/2
.

Finally, the circular skewness, γ1, and circular kurtosis, γ2, are given by

γ1 = β̄2

V 3/2 = − 2k J2(ν)

ν{1 − k J ′
1(ν)}3/2

and

γ2 = ᾱ2 − ρ4

V 2 = − ρ4

(1 − ρ)2
= − k4{J ′

1(ν)}4

{1 − k J ′
1(ν)}2 .

Note that the circular kurtosis is always negative.

3.2.4 Method of moments estimation for the AEC distribution

Method of moments (MM) estimation for the three parameters of Papakonstantinou’s
AEC distribution proceeds by first estimating the mean direction, μ, by θ̄ −π/2 (mod
2π ), where θ̄ is the sample mean direction (see, for example, Mardia and Jupp 1999,
p. 15 for a formal definition of θ̄ ). Then k and ν can be estimated by equating the first
two sample mean resultant lengths, R̄1 = n−1{(∑n

i=1 cos θi )
2 + (

∑n
i=1 sin θi )

2}1/2
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Fig. 5 The function 2J2(ν)/

(ν J ′
1(ν)) for −5 ≤ ν ≤ 5. Note

that 2J2(1)/J ′
1(1) = 0.7068

4 2 2 4

3

2

1

1

2

3

and R̄2 = n−1 ∑n
i=1{(

∑n
i=1 cos 2θi )

2+(∑n
i=1 sin 2θi )

2}1/2, with their corresponding
population moments, ρ1 = k J ′

1(ν) and ρ2 = 2k J2(ν)/ν and solving for k and ν.
Equating ρ2/ρ1 with R̄2/R̄1, a method of moments estimate for ν, ν̃, is obtained

as the solution to the equation 2J2(ν̃)/(ν̃ J ′
1(ν̃)) = R̄2/R̄1. From a consideration of

the behaviour of the odd function 2J2(ν)/(ν J ′
1(ν)), portrayed in Fig. 5, there will

be a unique solution for ν̃ if ν̃ is restricted to taking values in (−1.8412, 1.8412).
Moreover, the MM solution will correspond to an underlying unimodal distribution
(with |ν̃| ≤ 1) if |R̄2/R̄1| ≤ 0.7068.

Equating ρ1 with R̄1, substituting ν̃ for ν and solving for k, a method of moments
estimate for k is given by k̃ = R̄1/J ′

1(ν̃). Note that, for ν ∈ (−1.8412, 1.8412), the
minimum value of J ′

1(ν) = (J0(ν) − J2(ν))/2 is 0. Thus, as 0 ≤ R̄1 ≤ 1, k̃ must be
non-negative. However, k̃ can take values greater than 1.

The method of moments estimates of the parameters of an assumed underlying SEC
distribution can provide useful starting values for maximum likelihood estimation,
which we consider next.

3.2.5 Maximum likelihood estimation for the AEJP distribution

Let θ1, . . . , θn denote a random sample of size n drawn from an AEJP distribution
with density (16). We assume here also that all four of the parameters are unknown.
The log-likelihood function is


(μ, κ, ψ, ν) = −n log dκ,ψ,ν

+ 1

ψ

n∑
i=1

log{1 + tanh(κψ) sin(θi − μ+ ν sin(θi − μ))}. (17)

As was the case for the SEJP distribution, the first- and second-order partial deriv-
atives of (17) are rather involved and we do not reproduce them here. Once more, we
would recommend the use of symbolic mathematical computing packages like Sage
or Mathematica to those interested in obtaining them.

For a random sample of AEJP data grouped into the m class intervals [θ0, θ1),
[θ1, θ2),…,[θm−1, θm), where θ0 = θm , with n j observations in the j th interval and
thus a total of n = n1 + n2 + · · · + nm observations, the log-likelihood function is
given by
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†(μ, κ, ψ, ν) = −n log dκ,ψ,ν

+
m∑

j=1

n j log
∫ θ j

θ j−1

{1+tanh(κψ) sin(θ − μ+ν sin(θ − μ))}1/ψdθ. (18)

As for the SEJP model, in general numerical methods must be used to identify the
maximum likelihood estimates. In the Appendix we provide the R scripts RS3 and
RS4 used to perform maximum likelihood based inference for the second grouped data
set analysed in Sect. 4. Again, scripts for use with continuous data and for calculating
the profile log-likelihood functions of the other three parameters, are available from
the authors upon request.

4 Illustrative examples

Mooney et al. (2003) provide the monthly totals of sudden infant death syndrome
(SIDS) cases in England, Wales, Scotland and Northern Ireland for the years 1983–
1998 and fit circular models to the data for each year. This period covers the introduc-
tion of the ‘Back to Sleep’ campaign in the early 1990s which led to a considerable
reduction in the number of SIDS cases. Here we present analyses of the data for the
years 1989 and 1985 which illustrate the application of the SEJP and AEJP distribu-
tions, respectively. When fitting both models we allowed for grouping and different
month lengths using the log-likelihood functions (14) and (18). Four R scripts used in
fitting the two models are presented in the Appendix.

4.1 Fitting the SEJP distribution to the 1989 SIDS data

In 1989 there was a total of 1526 SIDS cases. Positioning each case at the centre of
the month in which it occurred, the p-value for Pewsey’s large-sample test for circular
reflective symmetry was 0.97. Also, the histogram of the data portrayed in Fig. 6
suggests the underlying distribution to be unimodal. Thus, we use the 1989 data to
illustrate how unimodal members of the SEJP family and its SEC, SEvM, SEWC and
JP subclasses can be fitted using constrained maximum likelihood estimation. As can
be appreciated from the R script RS1 in the Appendix, the unimodality constraint,
i.e. −1 ≤ ν ≤ 1, is imposed through the lower and upper modifiers of optim’s
L-BFGS-B method of optimisation.

Results for the five unimodal fits are presented in Table 1. We consider the use
of chi-squared goodness-of-fit testing to be justified in this context because (Mooney
et al. 2003) data reporting unequivocally determines 12 class intervals and there is no
need to combine class intervals because the expected number of cases in each of them
is far in excess of 5. The p-values for the chi-squared goodness-of-fit test indicate that
all five submodels provide quite adequate fits to the data.

As the maximum likelihood estimate of ν occurs on the boundary of the parameter
space constrained to ensure unimodality (i.e. with −1 ≤ ν ≤ 1), optim is unable to
compute the Hessian matrix. Thus, instead of using standard asymptotic normal theory
to calculate nominally 95 % confidence intervals for the individual parameters we
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Fig. 6 Linear histogram of the monthly numbers of SIDS cases in 1989, with the day of the year represented
in radians lying between −3.167 (start of July) and 3.116 (end of June). Each bar represents a month, its
width being proportional to the length of that month in days. The superimposed densities correspond to
the best fitting unimodal members of the SEJP family (solid) and its SEC (dot), SEvM (dash), SEWC
(dash-dot) and JP (dash-dot-dot) subclasses

Table 1 Maximum likelihood estimates (MLEs) for the fits to the 1989 SIDS data of unimodal members
of the SEJP family and its SEC (ψ = 1), SEvM (ψ = 0), SEWC (ψ = −1) and JP (ν = 0) submodels

Distribution MLE MLL AIC p (g-o-f)

μ κ ψ ν

SEJP 0.25 0.40 −4.05 −1.00 −3728.73 7465.45 0.21

SEC 0.27 0.44 1 −0.16 −3729.02 7464.04 0.25

SEvM 0.27 0.44 0 −0.38 −3728.94 7463.88 0.26

SEWC 0.27 0.43 −1 −0.58 −3728.87 7463.75 0.27

JP 0.27 0.45 1.64 0 −3729.07 7464.15 0.24

The maximised log-likelihood (MLL) and AIC values, and p-value for the chi-squared goodness-of-fit test,
are included as fit diagnostics. BIC values have not been included because the data are grouped

employed profile log-likelihood based methods. The script RS2 of the Appendix was
the one we used to compute the confidence interval for ν. It is based on the large-sample
theory of Self and Liang (1987) for the limiting distribution of the maximum likelihood
estimator when the true parameter value may be on the boundary of the parameter
space. According to that theory, the asymptotic distribution of the likelihood-ratio
test statistic for testing the value of an individual parameter is not the usual chi-
squared on 1 degree of freedom obtained using standard asymptotic theory. Instead
it is that of Y = Z2 I (Z > 0), where Z denotes a standard normal random variable
and I (Z > 0) is the indicator function which takes the value 1 when Z > 0 and 0
otherwise. Trivially then, P(Y > y) = P(Z2 > y)P(Z > 0) = 1

2 P(X > y), where
X = Z2 is a chi-squared random variable on 1 degree of freedom. Hence, a nominally
100(1 − α)% confidence interval for ν is given by the set of those ν-values for which
the difference between their profile log-likelihood values and that for the maximum
likelihood estimate of ν (on the boundary of the parameter space) is less than 1

2χ
2
1 (2α),

where χ2
1 (2α) denotes the upper 2α quantile of the chi-squared distribution with 1

degree of freedom. The nominally 95 % confidence for ν, calculated from its profile
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Fig. 7 Profile log-likelihood functions of (a) μ, (b) κ , (c) ψ and (d) ν for the 1989 SIDS data. The dashed
horizontal line in each plot delimits the cut-point for the construction of a nominally 95 % confidence
interval for the parameter in question. The confidence interval contains those parameter values with profile
log-likelihood values above the cut-point

log-likelihood function displayed in Fig. 7d, is [−1, 1]; all the profile log-likelihood
values lying above the cut-point are delimited by the dashed horizontal line. Thus, for
any ν-value in [−1, 1], there is a unimodal SEJP distribution whose log-likelihood
value is not significantly different, at the 5 % significance level, from that of the
maximum likelihood unimodal SEJP fit.

The maximum likelihood estimates of the parametersμ, κ andψ are interior points
of the parameter space and hence individual profile log-likelihood based confidence
intervals for them can be calculated using the usual chi-squared distribution on 1 degree
of freedom for the distribution of the likelihood-ratio test statistic. The R scripts for
doing so have much in common with the script RS4 presented in the Appendix. Their
nominally 95 % confidence intervals, calculated from their profile log-likelihood func-
tions displayed in Fig. 7, are (0.09, 0.43), (0.33, 0.56) and (−6.86, 12.61), respec-
tively. The relatively wide intervals for ψ and ν reflect the fact that their profile
log-likelihood functions are fairly flat over sizeable parts of their ranges. The shape
of the profile log-likelihood function for μ is far closer to being quadratic. In keeping
with these findings, likelihood-ratio tests fail to identify any significant improvement
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in fit of the full SEJP family over any of its four unimodal submodels considered in
Table 1.

The AIC identifies the SEWC fit as providing the most parsimonious model for
the data. This fit is the one for which the chi-squared goodness-of-fit test is least
significant. The densities of the five fits are superimposed upon a linear histogram
of the data in Fig. 6. The major differences in fit occur around the peak and in the
shoulders. The SEWC density, judged to provide the best fit, is the most peaked of the
five flat-topped fits.

4.2 Fitting the AEJP distribution to the 1985 SIDS data

In 1985, again prior to the ‘Back to Sleep’ campaign, there was a total of 1504 SIDS
cases; about the same number as in 1989. Pewsey’s test, with a p-value of 0.0001,
emphatically rejects an underlying symmetric circular distribution and so we explored
the fit of the AEJP family and its AEC, AEvM and AEWC subclasses. Analogous
results to those presented previously in Table 1 appear in Table 2. For these data,
θ̄ = 0.1651, R̄1 = 0.2269 and R̄2 = 0.0782, and the MM estimates for the parameters
of the AEC subclass are μ̃ = −1.41, κ̃ = 0.59 and ν̃ = 0.61, close to their ML
counterparts.

The p-values for the chi-squared goodness-of-fit test indicate that only the full
AEJP model and its AEC submodel provide adequate fits to the data. Approximate
95 % confidence intervals for the parameters μ, κ,ψ and ν of the full AEJP family,
calculated from their individual profile log-likelihood functions together with standard
chi-squared theory, are (−1.56,−1.30), (0.50, 0.74), (0.15, 2.22) and (0.34, 0.83),
whilst those calculated using the observed information matrix and standard asymptotic
normal theory are (−1.56,−1.30), (0.49, 0.73), (0.15, 2.13) and (0.37, 0.86). The
similarity of the two sets of confidence intervals reflects the fact that the profile log-
likelihoods of the four parameters (not shown) are all close to quadratic in shape.
Both intervals for ψ contain the value 1 but neither 0 nor −1, supporting the previous
findings regarding the lack of fit of the AEvM and AEWC models. The fit for the
full AEJP model is very close to that for its AEC submodel, and the likelihood-
ratio test, with a p-value of 0.78, leads to the conclusion that it does not provide a

Table 2 Maximum likelihood estimates (MLEs) for the fits to the 1985 SIDS data of the full AEJP family
and its AEC (ψ = 1), AEvM (ψ = 0) and AEWC (ψ = −1) submodels

Distribution MLE MLL AIC p (g-o-f)

μ κ ψ ν

AEJP −1.43 0.61 1.14 0.61 −3650.22 7308.45 0.07

AEC −1.43 0.60 1 0.62 −3650.26 7306.53 0.11

AEvM −1.43 0.55 0 0.63 −3652.71 7311.43 0.02

AEWC −1.44 0.50 −1 0.58 −3657.53 7321.10 0.00

The maximised log-likelihood (MLL) and AIC values, and p-value for the chi-squared goodness-of-fit test,
are included as fit diagnostics. BIC values have not been included because the data are grouped
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Fig. 8 Linear histogram of the monthly numbers of SIDS cases in 1985, with the day of the year represented
in radians lying between −2.634 (start of August) and 3.649 (end of July). Each bar represents a month, its
width being proportional to the length of that month in days. The superimposed densities correspond to the
best fitting members of the AEJP family (solid) and its AEC (dot), AEvM (dash) and AEWC (dash-dot)
subclasses

significant improvement over the AEC submodel. The AIC also identifies the AEC fit
as providing the most parsimonious model for the data. The densities of the four fits
are superimposed upon a linear histogram of the data in Fig. 8. This figure highlights
the similarity of the full AEJP and AEC fits as well as the difference between them and
their AEvM and AEWC counterparts. The R script RS4 of the Appendix was the one
used to compute the profile log-likelihood function for ψ . The scripts for computing
the profile log-likelihood functions for the other three parameters are very similar to
it in structure and have therefore not been reproduced. The code used to carry out
the other forms of inference reported above is contained in the R script RS3 of the
Appendix.

5 Concluding remarks

Over the years, various extensions of symmetric circular distributions have been pro-
posed within the literature; the motivation for doing so having been to provide dis-
tributions with greater modelling flexibility. Here, greater modelling flexibility refers
to the ability to model wider ranges of peakedness/flat-toppedness and/or asymme-
try and/or multimodality. Of these extensions we would highlight the generalised
von Mises models (Maksimov 1967; Gatto and Jammalamadaka 2007), Beran (1979)
exponential family models, Azzalini (1985) type perturbation based models (Umbach
and Jammalamadaka 2009; Abe and Pewsey 2011) and the models of Kato and Jones
(2010) related to Möbius transformation. The generalisation of Papakonstantinou and
Batschelet’s transformation of argument approach, considered here, provides an alter-
native. One of its appealing features is that the argument in the base symmetric density
is simply replaced by a transformation of that same argument. However, as we have
seen, there is a price to be paid for this simplicity, namely that the normalising constant
has to be recomputed, generally numerically as usually there will be no closed-form
expression for it. Nevertheless, as the R scripts in the Appendix demonstrate, the
quadrature involved in its computation is easily carried out in R.
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The sine and cosine functions employed in the transformations of argument in (3)
and (4), respectively, are appealing because they are periodic, continuous, differen-
tiable everywhere and exist for all θ . In an attempt to build other flexible models, one
could try replacing the sine and cosine functions by some other function, say t (θ).
Whilst t (θ) need not necessarily be periodic itself, to obtain well-behaved circular
densities cos(θ + νt (θ)) should be periodic, continuous, differentiable everywhere
and exist for all θ . These four requirements rule out, for instance, the use of the tan-
gent function and all three inverse trigonometric functions. In related work, Jones and
Pewsey (2012) propose “inverse Batschelet” distributions based on “transformation
of scale”. One of their approaches to skewing a symmetric base model has the appeal
that the normalising constant remains unchanged, although at the expense of having
to invert a function numerically.

In our applications of the transformation of argument approach we chose the Jones–
Pewsey family as the base symmetric model. The Jones–Pewsey family is an appealing
choice because of its inclusion of numerous well-known symmetric circular distribu-
tions. The modelling flexibility of the resulting SEJP and AEJP families is illustrated
in the examples of Sect. 4 and by the densities in Figs. 1 and 3. The analyses performed
in Sect. 4 show how likelihood-based inference provides a powerful tool for investi-
gating the fit of the two families and their submodels. When defining the AEJP family
we constrained the densities within it to being unimodal by imposing the restriction
−1 ≤ ν ≤ 1. Letting ν take values in (−∞,∞) further extends the family’s flexibility
by admitting multimodality but at the expense of ν losing its appealing interpretation
as a skewness parameter.

Mooney et al. (2003, 2006) refer to a generic asymmetric annual SIDS case signature
with a rapid increase in cases during the autumn, a flat peak over the winter months and
a slower decline during the spring and summer. Whilst the AEC fit for the 1985 SIDS
data is consistent with this description, the SEWC fit for the 1989 data clearly is not.
Moreover, Mooney et al. (2003, 2006) identify bimodal distributions providing best
fits to the data for some of the years after the ‘Back to Sleep’ campaign. As mentioned
previously, that campaign led to a pronounced decrease in the numbers of SIDS cases.
However, the decrease was more pronounced in some months than it was in others,
producing what appears to have been a general tendency towards uniformity in the
distribution of SIDS cases.

Appendix: R Scripts

Here we provide four of the R scripts employed when fitting the SEJP family to the
1989 SIDS data, and the AEJP family to the 1985 SIDS data, using likelihood based
methods. Both data sets are grouped. For the 1989 SIDS data, the script RS2 for
computing the profile log-likelihood function for ν is founded upon asymptotic theory
for maximum likelihood estimation on the boundary of the parameter space due to Self
and Liang (1987). For the 1985 SIDS data, the script RS4 for computing the profile
log-likelihood function for ψ employs standard asymptotic chi-squared theory.

123



Extending circular distributions 855

RS1: Maximum likelihood estimation for the unimodal SEJP family: 1989 SIDS
grouped data

RS2: Profile log-likelihood function of ν for the unimodal SEJP family: 1989 SIDS
grouped data
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RS3: Maximum likelihood estimation for the AEJP family: 1985 SIDS grouped data
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RS4: Profile log-likelihood function of ψ for the AEJP family: 1985 SIDS grouped
data
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