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Abstract If F is a full factorial design and D is a fraction of F , then for a given mono-
mial ordering, the algebraic method gives a saturated polynomial basis for D which
can be used for regression. Consider now an algebraic basis for the complementary
fraction of D in F , built under the same monomial ordering. We show that the basis
for the complementary fraction is the Alexander dual of the first basis, constructed by
shifting monomial exponents. For designs with two levels, the Alexander dual uses the
traditional definition for simplicial complexes, while for designs with more than two
levels, the dual is constructed with respect to the basis for the design F . This yields
various new constructions for designs, where the basis and linear aberration can easily
be read from the duality.

Keywords Alexander dual · Factorial design · Linear aberration

1 The algebraic method in experimental design

Pistone and Wynn (1996) first proposed the use of computational commutative algebra
approach to analyze full factorial designs and their fractions. This approach allows us
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668 H. Maruri-Aguilar et al.

to identify models for a design and extend the confounding relations which previously
were mostly studied for regular fractions.

Algebraic techniques are applicable to any design defined in continuous factors,
see the monograph Pistone et al. (2001) and also Riccomagno (2009). The techniques
have been extended to a variety of cases, such as the identifiability analysis of mixture
experiments in Maruri-Aguilar et al. (2007) and the study of orthogonality when the
factorial levels are defined via roots of unity in Pistone and Rogantin (2008). Recently,
the concept of minimal “linear aberration” in algebraic models has been studied in
Bernstein et al. (2010), together with a description of models in terms of their border
complexity measured with Betti numbers, see Maruri-Aguilar et al. (2012).

This paper is concerned with the study of models identified with fractions of factorial
designs. The main result is that for a given fraction, Alexander duality, a concept from
algebraic topology, relates the algebraic model of the fraction with that for the fraction
complement.

A short summary of algebraic method is first presented. In Sect. 1.1 we present
results concerning full factorial designs and designs which are special hierarchical
subsets of such full grids. In Sect. 1.2 we study Alexander duals of hierarchical sets
of monomials, both in the square-free (multilinear) case and as subset of a lattice.
Our main result is in Sect. 2, namely that the model for a fraction and the model for
the complement of that fraction are related by Alexander duality. We then extend the
bounds on minimal aberration in Bernstein et al. (2010) using Alexander duality. In
Sect. 3 we present some special cases which still yield Alexander duality but without
resorting to operations with ideals. The first case is based on the aliasing table for reg-
ular fractions of factorial designs 2k , while the second case concerns designs obtained
by complements and reflections.

We start with a short summary of the algebraic method in experimental design.
The reader is referred for further references on polynomial ideals to Cox et al. (2007),
and for monomial ideals to Herzog and Hibi (2011) and to Miller and Sturmfels
(2005). Consider d indeterminates x1, . . . , xd . For a set of non-negative integers α =
(α1, . . . , αd) we define a monomial as

xα = xα1
1 xα2

2 · · · xαd
d .

Any monomial xα can be represented by its exponent α = (α1, . . . , αd) ∈ Z
d≥0. The

total degree of a monomial xα is |α| = ∑d
i=1 αi .

In statistics we are familiar with monomials as linear, quadratic, interaction, and so
on: x1, x2

2 , x1x2, . . ., etc. By taking linear combinations of monomials with coefficients
in a base field k we obtain a ring of polynomials, R := k[x1, . . . , xd ]. We can write a
polynomial in R compactly as

f (x) =
∑

α∈M

θαxα,

where M is a set of distinct multi-exponents. For example, the standard quadratic
response surface in two variables is:
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Alexander duality in experimental designs 669

f (x1, x2) = θ00 + θ10x1 + θ01x2 + θ20x2
1 + θ11x1x2 + θ02x2

2 ,

and M = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}.
A design D is considered to be a finite set of n distinct points in R

d . Each point in
D is sometimes referred to as treatment combination. We ignore replication, that is,
repeated observations at the same design site. In the algebraic method the design is
expressed as the solution of a set of equations and thus thought of as a zero-dimensional
algebraic variety. The set of all polynomials that vanish on all points of D is the design
ideal, I (D) ⊂ R.

We define a monomial term ordering (monomial ordering, for short) which is a
total ordering ≺ on all monomials satisfying a) 1 ≺ xα for all α �= 0, and b) if
xα ≺ xβ then xα+γ ≺ xβ+γ , for all integer γ ≥ 0. Given a term ordering, there
is a unique reduced Gröbner basis (G-basis) for I (D). This reduced Gröbner basis
is a finite set of polynomials {g1, . . . , gm} ⊂ I (D) which is a generator of I (D),
that is I (D) = 〈g1, . . . , gm〉. Additionally, the ideal generated by the leading terms
of the Gröbner basis equals the ideal of leading terms of I (D), i.e. 〈LT (gi ) : i =
1, . . . , m〉 = 〈LT ( f ) : f ∈ I (D)〉. Recall that the leading term LT( f ) of a polynomial
f is the largest term with non-zero coefficient under the monomial ordering ≺.

The quotient ring

k[x1, . . . , xk]/I (D) (1)

can be seen as a vector space spanned by a special set of monomials. This monomial
basis can be found using the Gröbner basis of I (D), as the set of all monomials which
are not divisible by the leading terms of the G-basis. In terms of exponent vectors,
L = {α : α < βi for all βi where LT(gi ) = xβi }; note that the inequality is applied
coordinate-wise. We call this set {α ∈ L} the quotient basis and note that |L| = |D|,
see Cox et al. (2007) and Pistone and Wynn (1996).

The set of multi-indices (exponents) in L has the “order ideal” property: α ∈ L
implies β ∈ L for any 0 ≤ β ≤ α (coordinatewise). For example, if x2

1 x2 is in the
quotient basis so are 1, x1, x2, x1x2 and x2

1 . This order ideal property of a model basis
is well known in statistical literature, where a linear model that satisfies it is termed
a “hierarchical model”, see Nelder (1977) and Peixoto (1990). Several free software
systems are available for determining quotient bases, such as Macaulay2 or CoCoA;
see Grayson and Stillman (2009) and CoCoATeam (2009).

Any function y(x) : D → R has a unique polynomial interpolator over D given
by

f (x) =
∑

α∈L

θαxα (2)

such that y(x) = f (x), x ∈ D. For a given pair (D, L) the “design matrix” (or
X -matrix) is a n × n matrix with rows indexed by design points and columns indexed
by the monomials in L:

X = {xα}x∈D,α∈L .
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670 H. Maruri-Aguilar et al.

The fact that L is a basis for the quotient ring (1) implies that X has full rank n, see
Babson et al. (2003). If Y is a column vector that contains values y(x) for x ∈ D, then
X−1Y gives the values of coefficients θα that guarantee that (2) interpolates values at
design points.

A final remark, in this section, is that the algebraic analysis of experimental designs
helps considerably to understand aliasing or confounding. An algebraic version of this
is that two polynomials p(x), q(x) are aliased if they agree on the design: p(x) = q(x)

for all x ∈ D. Equivalently p(x) − q(x) ∈ I (D), see Pistone and Wynn (1996).

1.1 Full factorial and staircase designs

A full factorial design F in d variables is a product set in which factor xi takes ni

distinct levels {xi,0, . . . , xi,ni −1} for i = 1, . . . , d:

F =
d⊗

i=1

{xi,0, . . . xi,ni −1}.

Throughout this paper the vector whose entries are the number of levels of each factor
will be denoted as n := (n1, . . . , nd), and the notation 1 indicates the vector (1, . . . , 1).
It can easily be established that, under any monomial ordering, the Gröbner basis of
I (F) is the set

⎧
⎨

⎩

ni −1∏

j=0

(xi − xi, j ), i = 1, . . . , d

⎫
⎬

⎭
,

with leading terms {xni
i , i = 1, . . . , d}. The unique quotient basis is thus

L = {xα, 0 ≤ α ≤ n − 1}, (3)

where the inequality is verified for every coordinate.
The property that we obtain a single quotient basis, L , for any monomial ordering

is also true of an important class of designs called echelon designs in Pistone et al.
(2001), which contains the full factorial as a special case. These are designs of staircase
shape, such as the example below for d = 2:

Note that for the design to be of this form we do not require the spacings between
points to be equal, as above. These designs are defined formally via a set of “directing”
design points:
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Alexander duality in experimental designs 671

{x (k) = (x1,k1 , . . . xd,kd ), k = 1, . . . , m},

so that

D = {(x1,i1 , . . . , xd,id ) : (0, . . . , 0) ≤ (i1, . . . , id) ≤ (ik1 , . . . , ikd ), k = 1, . . . , m}.

For the above design, the directing points have indexes (3, 1), (1, 3) and (0, 4). The
G-basis for this design can be found from the staircase, but it is easier to go directly
to the quotient basis L . We simply take L to be of the same shape as the design but
use the integer grid:

L(D) = {α : (0, . . . , 0) ≤ (α1, . . . , αd) ≤ (ik1 , . . . , ikd ), k = 1, . . . , m}.

Continuing with the above design, the basis L(D) is the set of monomials with expo-
nents {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (3, 1), (0, 2), (1, 2), (0, 3),

(1, 3), (0, 4)}. The directing monomials of L are x3
1 x2, x1x3

2 , x4
2 and mirror the role

of directing points above. The leading terms of the G-basis are x4
1 , x2

1 x2
2 , x1x4

2 and x5
2 .

We add the position of the leading terms of the G-basis in the diagram, with crosses.

Note that due to the staircase structure of the design, until this point all the analysis
has been performed without knowledge of the actual design levels. Now assume that
levels of x1 in the design are 0, 1, 2, 3 and of x2 are 0, 1, 2, 3, 4. The G-basis itself is
constructed again using the diagram. We simply present the form for this example,

{x1(x1 − 1)(x1 − 2)(x1 − 3), x1(x1 − 1)x2(x2 − 1),

x1x2(x2 − 1)(x2 − 2)(x2 − 3),

x2(x2 − 1)(x2 − 2)(x2 − 3)(x2 − 4)}.

1.2 Alexander duality

The Alexander dual of a simplicial complex � in a ground set V is the simplicial com-
plex �∗ constructed by those subsets of V whose complement is not in �. Alexander
duality plays an important role in simplicial topology, indeed an important homolog-
ical connection exists between a simplicial complex � and its Alexander dual �∗.
Alexander duality consequently arises when considering the ideals generated by com-
plements of those complexes, see Miller and Sturmfels (2005) and Herzog and Hibi
(2011).

In this development we are concerned with the role of Alexander duality for models
of fractions of factorial designs. The main interest lies in the relation of the model of a
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fraction of a design, with the model of the complementary fraction. We first examine
the two level case which corresponds precisely to the above definition of Alexander
duality, and then examine a generalization of the duality.

1.2.1 Simplicial case: fractions of factorial designs with two levels

If the factors have only two levels in the design, the quotient basis given by L is square-
free. That is to say no element of a exponent vector in L is greater than or equal to two,
i.e. the model is multilinear. The basis L then naturally forms an (abstract) simplicial
complex with vertices indexed by the linear terms x1, x2, . . ., edges by interactions
xi x j , and a k − 1 dimensional simplex indexed by a kth order interaction. Thus the
hierarchical property corresponds to the simplicial complex property, i.e. if a simplex
is in the complex so are all of its sub-simplexes. We can abuse the notation a little
by referring to the simplicial complex as L , and in what follows we will sometimes
use L(D) to emphasize the dependence of the simplicial complex (model) on design
D.

The Alexander dual L∗ is obtained from L in the following way. First note that
the full factorial two-level design F basis has the basis consisting of all square-free
monomials: L(F) = {xα : α ∈ ⊗d

i=1{0, 1}}. Now list all square-free monomi-
als (in the same d factors) not in L , namely L(F) \ L . Note that this set generates
the Stanley–Reisner ideal, associated with L when thought of as simplicial com-
plex. Then take complements of the binary strings in L(F) \ L . The Alexander dual
is

L∗ = {1 − α : α ∈ L(F) \ L} .

Example 1 Take L to be the model with directing monomials x1x2x3 and x3x4, i.e.
L = {1, x1, x2, x3, x4, x1x2, x1x3, x2x3, x3x4, x1x2x3}. The set of monomials in the
complement of L is L(F)\L = {x1x4, x2x4, x1x2x4, x1x3x4, x2x3x4, x1x2x3x4}. We
now take complements of monomials in L(F)\L , for instance the complement of x1x4
is x2x3, obtained using the complement of exponent vector above 1−α = (1, 1, 1, 1)−
(1, 0, 0, 1) = (0, 1, 1, 0). Thus the Alexander dual is L∗ = {1, x1, x2, x3, x1x3, x2x3},
see Fig. 1.

Alternatively, if L is considered as a simplicial complex, its Stanley–Reisner ideal
(see Miller and Sturmfels (2005)) is IL = 〈x1x4, x2x4〉. Thus L∗ has directing mono-
mials x2x3 and x1x3, obtained as complements of generators of IL .

Fig. 1 Simplicial model L (left) and its Alexander dual L∗ (right)
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Alexander duality in experimental designs 673

Fig. 2 Model L(D) (bullets,
left panel) and Alexander dual
L∗(D) relative to L(F) with
directing exponent (3, 2) (right
panel)

1.2.2 Designs with more than two levels

The notion of Alexander duality extends to the general case, see Miller and Sturmfels
(2005). We take the design D to be embedded in a full factorial grid F , and thus L(D)

is a subset of the model for a full factorial L(F). Recall that the model L(F) is defined
in (3) by the directing term with exponent vector n − 1 (see notation in Sect. 1.1). The
Alexander dual L∗(D) of L(D) is computed relative to L(F).

The first step is, as before, to take L(F) \ L(D). One can see that this tends to
give higher degree monomials, and for non-empty D, the set L(F) \ L(D) will never
contain the monomial 1. The Alexander dual is based on pivoting downwards from
the “corner” point of L(F). We call this operation “flipping”:

L∗(D) = {n − 1 − α : α ∈ L(F) \ L(D)} .

Example 2 In the left panel in Fig. 2, bullets represent exponents of L(D) as a subset
of the model for a 4×3 full factorial design F with directing exponent n − 1 = (3, 2).
The crosses represent term exponents in L(F) \ L(D). The Alexander dual L∗(D)

is obtained by flipping the crosses to give the right panel in the same figure. In this
example, the Alexander dual of L(D) = {1, x1, x2, x2

1 , x1x2} relative to the 4 × 3 full
factorial is L∗(D) = {1, x1, x2, x2

1 , x1x2, x2
2 , x3

1}. For the same design with model
L(D), the Alexander dual relative to the 3×2 full factorial is very simple: L∗(D) = {1}.

2 The main result

Given a design D embedded in a full factorial F , that is to say a fraction of a full
factorial, we can consider the complementary design (fraction) D̄ := F \ D. Our
main result says that the basis of the complementary design obtained by the algebraic
method under a monomial ordering is the Alexander dual (relative to F) of the basis
of the original design obtained with the same ordering. Put as succinctly as possible:

L∗(D) = L(D̄). (4)

Theorem 1 Let ≺ be a fixed monomial ordering. Let F be a full factorial design F with
a fraction D ⊂ F. Then the bases of the quotient rings of D and the complementary
design D̄ = F \ D, with respect to ≺, are Alexander dual, relative to F.

We start with a lemma.

Lemma 1 Let {gi } and {h j } be the G-bases for D and D̄, respectively, with respect

to term ordering ≺. Let the leading terms be LT (gi ) = xα(i)
, LT (h j ) = xβ( j)

. Let
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674 H. Maruri-Aguilar et al.

the basis for F be given as in Eq. (3). Then for all i, j

α(i) + β( j) ∈ Z
d≥0 \ L(F).

Proof Since the polynomial gi is zero on D, and h j is zero on D̄, then gi h j is zero on
D ∪ D̄ = F . It follows that LT (gi h j ) is in the leading term ideal of F which consists
of all monomials xδ, δ ∈ Z

d≥0 \ L(F). By the properties of monomial orderings,

LT (gi h j ) = LT (gi )LT (h j ) = xα(i)+β( j)
.

It follows that α(i) + β( j) ∈ Z
d≥0 \ L(F). 
�

To prove Theorem 1, we need to establish (4) above, the proof is by contradiction.

Proof Firstly, the cardinalities agree:

|L(F)| = |L∗(D)| + |L(D)|.

Thus, if we suppose (4) is not true then there is a vector γ ∈ L(F), neither in (L∗(D))c

nor in L(D)c. This follows from the identity

|C | = |A| + |B| − |A ∩ B| + |Ac ∩ Bc|,

when A, B ⊆ C and where C = F, Ac = F\A, Bc = F\B, taking A = L(D), B =
L∗(D̄).

Then γ /∈ L(D) and (flipping back) n − 1 − γ /∈ L(D̄). But then monomials with
exponents γ and n − 1 − γ must be in their respective leading term ideals. Thus there
exist an α(i) ≤ γ and a β( j) ≤ n − 1 − γ . But then α(i) + β( j) ≤ n − 1 which is in
L(F). So α(i) + β( j) ∈ L(F), contradicting Lemma 1. 
�

2.1 Algebraic fan, aberration and Alexander dual

Theorem 1 has direct implications for models obtained using algebraic techniques.
Recall that the algebraic fan of a design A(D) is the collection of all models obtained
by the techniques in Sect. 1 when considering all term orderings

A(D) := {L≺(D) : over all term orderings ≺ in k[x1, . . . , xk]},

where we have written L≺(D) to emphasize the dependance of basis for the quotient
ring (1) on term ordering ≺. Mora and Robbiano (1988) showed that this collection
of bases is finite. Furthermore each basis is in one-to-one correspondence with a cone
in the Gröbner fan and with a vertex of a special polytope called the state polytope,
see Bayer and Morrison (1988) and Babson et al. (2003). A number of algorithms and
implementations are available to compute A(D), such as the package Gfan by Jensen
(2011), or the algorithms for universal term orderings Babson et al. (2003).
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Alexander duality in experimental designs 675

A corollary of Theorem 1 relates the algebraic fan of a design A(D) to that of its
complement, relative to a full factorial design F . Indeed both sets A(D) and A(F \ D)

have the same cardinality, and models in A(F \ D) are the Alexander duals of those
in A(D).

Corollary 1 The bases in the algebraic fan of D are in one-to-one correspondence
with bases in the algebraic fan of F \ D.

Using model aberration and the state polytopes of I (D) and of I (F \ D), we now
provide a description of the relation between the two collections of models for D and
for F \ D. For a basis L , define its full state vector as V (L) := ∑

α∈L α, i.e. the
coordinate-wise sum of exponent vectors of monomials in L . As an example, for the
models L and L∗ of Example 1 we have V (L) = (4, 4, 5, 2) and V (L∗) = (2, 2, 3, 0).
The state polytope of a design ideal I is built with the convex hull of all full state vectors
in the algebraic fan:

S(I ) := conv ({V (L) : L ∈ A(D)}) + R
d≥0,

where the last term above is added with Minkowski summation. Inspecting the vertices
of the state polytope index models in the design fan, and their polytopes, we can
compare designs in terms of model aberration and minimal linear aberration of designs,
see Bernstein et al. (2010).

Alexander duality allows a direct link between the vertexes of the state polytopes
for I (D) and for I (F \ D). We state this result in the following Lemma. The lemma
is based on a direct calculation, noting that

V (L(F)) = V (L(D)) + V (L(F) \ L(D)) .

Lemma 2 Let F be the full factorial design with size n1n2 · · · nd; let L be the model
for a subset D of F, and let L∗ be the Alexander dual of L relative to F. Then

V (L∗) = (n − 1)
|L∗| − |L|

2
+ V (L). (5)

The first summand on the right hand side of (5) depends only on the lattice F and
on the sizes of fractions |D| = |L| and |F \ D| = |L∗|. A summary of Corollary 1
and Lemma 2 is that the state polytope of I (D) and that of I (F \ D) are related by a
shift, given by the first summand in (5).

Corollary 2 Let F be a full lattice design with an even number of points and let D
and D̄ = F \ D be half fractions of F, i.e. |D̄| = |D|. Then the state polytopes for
I (D) and for I (F \ D) coincide.

The corollary follows from Lemma 2, noting that fractions D and complement
F \ D have the same size, then |L| = |L∗| above and thus V (L∗) = V (L). This in
turn implies that both state polytopes for I (D) and for I (F \ D) are equal as they have
the same set of vertices. However, note that two designs having the same state polytope
does not imply that models in the algebraic fans are the same, as next example shows.
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Example 3 Consider F to be a 4×4 full factorial design with levels 0, 1, 2, 3, and the
fraction D = {(0, 1), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (3, 1), (3, 3)}. For the stan-
dard term ordering in CoCoA, the model for D is L = {1, x1, x2, x2

1 , x1x2, x2
2 , x2

1 x2,

x1x2
2 }, while its Alexander dual and basis for F \ D is L∗ = {1, x1, x2, x2

1 , x1x2, x2
2 ,

x3
1 , x3

2}. We observe L �= L∗, yet V (L) = V (L∗) = (7, 7). For the same
design D ⊂ F , and a reverse lexical term ordering, the model for D is L =
{1, x1, x2, x2

1 , x1x2, x2
2 , x3

1 , x2
1 x2}, which equals its Alexander dual L∗. In this sec-

ond case the full state vector is V (L) = V (L∗) = (9, 5).

The aberration of a model L measures the (weighted) degree of L , and is defined
in Bernstein et al. (2010) as A(w, L) := 1

n V (L)wT , where w = (w1, . . . , wd) is a

non-negative weight vector with
∑d

i=1 wi = 1. The result of Lemma 2 implies a direct
relation between aberrations for L and its Alexander dual L∗:

A(w, L∗) = b(1 − c) + cA(w, L) (6)

with

b = 1

2
w(n − 1)T

and c = |L|/|L∗|. In other words, the aberration of Alexander dual L∗ consists of a
shifting and scaling of the aberration of model L .

We finish by considering the minimal aberration of a design. Recall that the mini-
mal aberration is computed for a fixed weighing vector by minimizing A(w, L) over
all models L in the algebraic fan A(D). This minimisation is equivalent to linear min-
imization over the vertices of the state polytope, i.e. for fixed w, the minimal value
of wxT over x ∈ S(I ) is attained at a vertex of S(I ). Values of minimal aberration
achieve their lowest value over all designs when considering a generic design. A design
D is generic when it identifies the set of all corner cut models (of the same size n and
dimension d as the design), and recall that a model is a corner cut when its set of
exponents can be separated from its complement by a single hyperplane, see Onn and
Sturmfels (1999).

If the design D is generic, then the algebraic fan A(D) consists of corner cut models,
and bounds on minimal aberration of D are

A+ − 1 ≤ Ã(w, L) ≤ A+ + 1 (7)

with A+ = (|L|d!w1 · · · wd)1/d d
d+1 and Ã(w, L) is the minimum value of A(w, L)

computed over all models in A(D), see Bernstein et al. (2010). By the result in (6)
above, the bounds in Eq. (7) translate directly into bounds on the minimal aberration
of F \ D, whose fan is the collection of Alexander duals of corner cuts:

b(1 − c) + c(A+ − 1) ≤ Ã(w, L∗) ≤ b(1 − c) + c(A+ + 1). (8)

Here Ã(w, L∗) is the minimum value of aberration over all Alexander duals of corner
cuts. In other words, the bound on corner cuts in (7) maps linearly to bounds (8) for
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Alexander duality in experimental designs 677

Fig. 3 Minimal linear
aberration (solid) and bounds
(dashed) for design F \ D of
Example 4

complements of corner cuts. Note that if L is corner cut model, its Alexander dual L∗
relative to F is not necessarily a corner cut, see Example 4. There are, however, at
least two simple cases when the Alexander dual of a corner cut remains so: when F
is a 2 × 2 design and D comprises points in opposite corners of F ; and when F is a
factorial design of two points and D and F \ D have only one point.

Example 4 Consider the design D = {(1, 3), (0, 0), (2, 2), (4, 1), (3, 4)} in two fac-
tors. The design D is generic and thus its algebraic fan A(D) has six corner cut models
with full state vectors (10, 0), (0, 10), (6, 1), (1, 6), (4, 2) and (2, 4). Now consider
D as subset of the full 5 × 5 factorial design F with levels 0, 1, 2, 3 and 4. The alge-
braic fan of the complement of D in F , namely A(F \ D), has six models with full
state vectors (40, 30), (30, 40), (36, 31), (31, 36), (34, 32) and (32, 34). As expected,
none of the models in A(F \ D) are corner cuts, for instance the corner cut model
{1, x1, x2, x2

1 , x3
1 } ∈ A(D), with full state vector (6, 1) has a non-corner cut Alexander

dual consisting of twenty monomials which are directed by x4
1 x2

2 , x3
1 x3

2 , x4
2 , and that

has full state vector (36, 31).
The state polytopes of I (F\D) and that of I (D) are related by a shift of coordinates,

as explained by Eq. (5). The bounds for minimal linear aberration of Eq. (8), are
5
4 +

√
10
6

√
w1 − w2

1 and 7
4 +

√
10
6

√
w1 − w2

1, computed with b = 2 and c = 1
4 .

Figure 3 shows the computed bounds, together with the minimal linear aberration of
that family of non-corner cut models in A(F \ D).

3 Special constructions

3.1 Regular fractions

There are classes of designs for which the natural models are given by other types of
algebraic constructions. Here we show how the Alexander duality applies to classical
regular factorial fractions. We confine ourselves here to the 2k case. The prime power
case is similar.

The 2d full factorial design in the ±1 coding is {−1, 1}d . For any term ordering, the
reduced G-basis is: {x2

1 − 1, . . . , x2
d − 1}. To obtain a regular 2d−k fraction, we set k

algebraically independent square-free “defining” monomials each equal to ±1, giving
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the “defining equations”. This yields 2k disjoint fractions (often called blocks) each
of size 2d−k . Selecting one of these blocks as the design D above we can compute
L(D) which has 2d−k terms.

We now consider as an abelian group under the relations x2
1 = 1, . . . , x2

d = 1.
The equations defining the fraction, together with all their pairwise products are the
equations that generate the “defining sub-group”. The alias classes, that is equivalence
classes of monomials congruent under division by I (D) cause the monomials of the
full design model to fall in 2d−k classes which provide the rows of the alias table.
They are the cosets of the defining subgroup. If we take a single block as our design
the rule is we should take at most one monomial term from each row of the alias; two
terms from the same row lead to equal columns of the X -matrix (up to sign change).
But terms from different rows of the table give orthogonal columns, leading to wide
usefulness and efficiency in practice.

As a simple example let d = 5 and take the defining relations

x1x2x3 − 1 = 0, x3x4x5 − 1 = 0. (9)

This gives the 1
4 fraction:

D = { (1, 1, 1, 1, 1), (−1,−1, 1, 1, 1), (1, 1, 1,−1,−1),

(−1, 1,−1,−1, 1), (−1, 1,−1, 1,−1), (1,−1,−1, 1,−1),

(1,−1,−1, 1,−1), (−1,−1, 1,−1,−1)}
Using the algebraic method and the DegRevLex monomial ordering (see
CoCoATeam 2009), the quotient basis is L(D) = {1, x1, x2, x3, x4, x5, x1x5, x2x5}.
The alias table is built as a table in which the monomials for the defining subgroup
appear in the first row; terms in the model L(D) are listed in the first column, and
each entry has the complements of model term in the row with respect to the defining
monomial in the column. For the current example the relation x1x2x4x5 − 1 = 0
appears as the pairwise product of generators in (9), and thus the table is:

For a general two-level design with the ±1 coding, the flip operation is simply
multiplication by the full product g = ∏d

i=1 xi and reduction using x2
i = 1 for

i = 1, . . . , d. For example x2x3x5 → x2x3x5 · x1x2x3x4x5 = x1x4.
Following this remark we can use Theorem 1 to write down the Alexander dual

basis, under the same monomial ordering, for the 3
4 fraction F \ D. We express this as

a derived 8 × 3 table, constructed from the last three columns of the alias table above
by transforming each monomial using the “flip” operation.
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This represents a hierarchical model with eight three-way interactions as maximal
simplices (cliques).

Some of the orthogonality of the original model is preserved. To repeat, for design
D, theory says that any monomial term in L(D) in different rows of the alias table
gives orthogonal vectors over D. For F \ D, any term in different rows of the derived
matrix (which come from different rows in the original table) leads to orthogonal
columns of the X -matrix for D̄ and L(D̄) = L∗.

Take α, β ∈ L(D̄) = L∗, α �= β, be in different rows of the derived table. Note
that if g = ∏d

i=1 xi then g2 = 1, over the full factorial design F . Then

0 =
∑

x∈D̄

xαxβ = g2
∑

x∈D̄

xαxβ

=
∑

x∈D̄

gxαgxβ

=
∑

x∈F\D

gxαgxβ

=
∑

x∈F

gxαgxβ −
∑

x∈D

gxαgxβ

=
∑

x∈F

xαxβ −
∑

x∈D

gxαgxβ.

Since all monomial terms are orthogonal over L(F) the first term on the right hand
side is zero. The second term is zero, because the terms gxα, gxβ are in different rows
of the original alias table.

3.2 Self-dual designs

A special type of design is given by certain half fractions of 2d designs for which the
algebraic fan of both fractions coincide.

Definition 1 Let D and F \ D be half fractions of a 2d design. The design D is called
self-dual if all the models in its algebraic fan are self-Alexander dual, i.e. L = L∗ for
every model L in A(D).

The definition above implies that the algebraic fans of D and of F \ D are equal.
The following theorem follows from close examination of the alias table of regular
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half fraction design, in which every monomial in the model has only one monomial
aliased with it.

Theorem 2 Let D be a regular 1/2 fraction of factorial design 2d . Then each model L
in the algebraic fan A(D) equals its Alexander dual L∗ ∈ A(F \ D) and the algebraic
fan A(D) equals A(F \ D)

Proof We first identify an algebraic model for D. Without lack of generality, consider
the fraction with generator xβ − 1 = 0, for a square-free exponent vector β �=
(0, . . . , 0). For every monomial xα in L(F), pair it with the monomial xα⊕β , where
⊕ is the bitwise XOR operation performed over elements of exponent vectors. Note
that β �= (0, . . . , 0) guarantees that each pair contains different monomials; also that
trivially the monomial xα⊕β is always an element of L(F) and thus the pairing is
well defined, with every monomial appearing only once in a pair. This action creates
2d−1 pairs of aliased monomials. Now set a term order ≺, order each pair and list
the collection of smallest monomials (per pair). This list is an identifiable algebraic
model, and the list of largest monomials gives the second column in the aliasing table,
which contains 2d−1 rows, one per pair of monomials.

We next show that the models identified are self-Alexander duals. There are two
cases. Firstly, if β = 1 then the operation α⊕β = β⊕α equals 1⊕α = 1−α and thus
each monomial pair has a monomial and its complement xα and x1⊕α . The Alexander
dual of the model is obtained by taking complement of the largest monomial for each
pair, which gives the same model and thus the model is Alexander self-dual.

Secondly, if β �= 1 then for a monomial xα1 there exists a monomial xα2 in a
different pair, such that α2 = 1 ⊕ α1, i.e. xα2 and xα1 are complements of each other.
This matching of pairs always exists as all monomials in L(F) are present in the list of
pairs. The monomial xα1⊕β is complement of xα2⊕β = x1⊕α1⊕β . In other words, for
a pair of monomials xα1 , xβ⊕α1 there is another pair which contains complementary
monomials x1⊕α1 , x1⊕β⊕α1 . Note that both xα1 and its complement x1⊕α1 cannot
be identified simultaneously as this would contradict the term ordering selected ≺.
By taking complements of the largest monomials, Alexander duality of the model is
verified. 
�

Thus a regular half fraction of 2d is a self-dual design. For example, consider the
half fraction D obtained from the 25 design using the generator x1x2x3x4x5 = 1. The
algebraic fan of D has 81 models and equals the fan of its complementary fraction F\D
with generator x1x2x3x4x5 = −1. In some cases where the fraction is non-regular,
the design is still self-dual, as the next example shows.

Example 5 Consider the design D shown in Table 1 (left side), where symbols + and
− stand for 1 and −1, respectively. This is a non-regular half fraction of 24, whose
algebraic fan A(D) has three models, see Fig. 4. The three models are self-Alexander
dual, and thus the design is a self-dual design and A(D) = A(F \ D).

However, the equality of algebraic fans does not hold in general for non-regular
half fractions of 2d factorial designs. In this situation the sizes of the fans A(D) and
A(F \ D) still coincide and the state polytopes of the design and its complementary
fraction are still the same object, but models are not necessarily self-Alexander dual.
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Table 1 Non-orthogonal half fractions of 24 (left) and of 25 (right)

Fig. 4 Self-Alexander dual models of Example 5

Fig. 5 Model L (left) and Alexander dual L∗ (right), see Example 6

Example 6 The set D in Table 1 (right side) forms a sixteen run, non-orthogonal half
fraction of a 25 design. The algebraic fan A(D) has 15 models, of which 8 are of total
degree 26 and 7 of degree 27. The state polytopes of I (D) and of I (F \ D) coincide,
despite the fact that there are no common models in both fans. In other words, the fan
A(F \ D) has the same size and distribution of models by degree as thatbreak for D.

Two models L ∈ A(D) and L∗ ∈ A(F \ D) are shown in Fig. 5. Models L and
L∗ have of total degree 27 and are related by Alexander duality. Lemma 2 is verified
as they have the same full state vector V (L) = (4, 5, 5, 7, 6) = V (L∗). However, the
models are not equal, and they share only twelve out of their sixteen monomials.

3.3 Complements and reflections

Taking the complement of designs for which we immediately know the basis leads to
bases for a whole hierarchy of designs. It is pleasing to explain this with diagrams. To
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start let us take the complement of a 22 full factorial in a symmetrically placed 42 full
factorial. The diagram showing D and F \ D is

The complement of the full factorial (bullets) is the crosses. The two bases L(D)

and L∗(D) are shown below, where we have preserved the bullet and cross notation.

The second diagram gives the basis:

L∗(D) = {1, x1, x2, x2
1 , x1x2, x2

2 , x3
1 , x2

1 x2, x1x2
2 , x3

2 , x3
1 x2, x1x3

2}.

Now take the design of 12 points shown above with crosses and obtain its comple-
ment within a 6 × 6 factorial. Both designs are shown in the next diagram. The 12
points signalled by crosses as before, and its complement shown with diamonds:

To compute the basis for the design with diamonds, the only action required is to
compute the Alexander dual of the model for the design with crosses. The basis has
diagram:

To generate more designs easily, we shall use an extension of the staircase designs
using symmetry. Consider the following diamond-shaped pattern.

(10)
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We claim that this has basis given by the diagram

(11)

We have used the following symmetry result.

Theorem 3 Let D be a design which (i) is invariant under all ± reflections through
the origin in all coordinates (ii) D+ = D ∩R

d≥0 is a staircase design. Then under any
monomial order, the basis L(D) is constructed from the (staircase) basis L(D+) using
the following rule. Replace any basis element xα for which r of the α j components is
non-zero by a block of 2r monomials with “edges” {x2α j , x2α j +1} for α j �= 0.

This is explained for the diamond (10) by boxing the points in (11):

The proof relies on the explicit construction of the G-basis. For clarity, we highlight
below, for the diamond, the correspondence between the position of a leading term on
L(D+) and L(D).

Proof Let {xβ(k)
, k = 1, . . . , m} be the set of leading terms for the design D+. We

first exhibit the leading terms for the design D. They are {x β̃(k)
, k = 1, . . . , m}, where

β̃
(k)
j =

{
2β

(k)
j − 1 if β

(k)
j > 0

0 otherwise

For D+ the Gröbner basis is {gk(x), k = 1, . . . , m}, where gk(x) has an explicit

formula, well known from the staircase property, gk(x) = ∏d
i=1

∏β
(k)
j −1

j=0 (xi − j). In

the diagram below, for the monomial marked with a star, x2
1 x2 is the leading term of

x1(x1 − 1)x2.
Every element of the Gröbner basis for D+ gives us exactly one element for the

Gröbner basis for D which is obtained by adding the sign changes. They are g̃k(x) =
∏d

i=1

(
xi

∏β
(k)
j −1

j=1 (xi ± j)
)

, where (xi ± j) = (xi − j)(xi + j). The element of the

Gröbner basis in the above example is x1(x1 − 1)(x1 + 1)x2 whose corresponding
leading term for D is x3

1 x2.
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We claim that the zero set of {g̃k(x), k = 1, . . . , m} is the design D. This claim is
verified by intersecting the zero set of all the g̃k(x), see Miller and Sturmfels (2005,
Section 18.2). The fact that this set is a Gröbner basis is standard and follows from
the position of the exponents in the staircase structure L(D), and indeed it is also a
universal Gröbner basis which establishes the result for any term ordering. 
�

The full Gröbner basis for the diamond shape in (10) is

{x2(x2 + 1)(x2 − 1)(x2 + 2)(x2 − 2), x1x2(x2 + 1)(x2 − 1),

x1(x1 + 1)(x1 − 1)x2, x1(x1 + 1)(x1 − 1)(x1 + 2)(x1 − 2)}.
Using symmetry and complements we can produce a large variety of designs and

read off the basis directly. As a final example consider the 72 tableau below in which
the dot design is based on a double use of the reflection.

Using Theorem 3, the respective bases are given by the following patterns;

3.4 Combining interpolators over fractions

In experimental design, it is often of interest to combine information coming from
different experiments. In the following example we describe a technique to combine
interpolators, where the emphasis is on combining information and still achieving inter-
polation. This technique is a variation of the general interpolation technique described
by Becker and Weispfenning (1991).

Theorem 4 Let F be a full factorial design, and let D and D̄ be complementary
fractions of F. For a fixed term ordering, let yF , yD and yD̄ be the exact inter-
polators of data with respect to their basis L(F), L(D) and L(D̄). Then y f =
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NF
(
yD1D + yD̄(1 − 1D), I (F)

)
, where 1D and 1D̄ are the polynomial indicator

functions of D and D̄ over F, and NF( f, I ) is the normal form of the polynomial
F with respect to the ideal I .

Proof The polynomial indicators of the design fraction D and of its complement
D̄ := F \ D are linear combinations of monomials in L(F), defined as 1D(x) ={

1 if x ∈ D
0 if x ∈ D̄

and 1D̄(x) = (1 − 1D(x)). The interpolating polynomial functions yD

and yD̄ , when multiplied by indicators yield 1D(x)yD(x) =
{

yF (x) if x ∈ D
0 if x ∈ D̄

and

1D̄(x)yD̄(x) =
{

0 if x ∈ D
yF (x) if x ∈ D̄

and thus yD1D + yD̄(1 − 1D) equals yF over all

points in F . However, this sum yD1D + yD̄(1−1D) contains terms of high degree and
does not coincide with yF outside points in F . By taking its normal form we achieve
the desired result. The uniqueness of the normal form guarantees the equality with yF .


�
Example 7 The numbers 12, 10, 6, 16, 18, 20, 24, 14 are synthetic response values
for a full factorial experiment F in three factors x1, x2, x3, each with two levels ±1.
The response values above are presented in Yates’ order, see Box et al. (2005).

Set D to be the regular 23−1 fraction of F with generator x1x2x3 = 1 and set D̄
to be the complementary fraction of D so that D ∪ D̄ = F . For the standard term
ordering in CoCoA, the basis for D is L(D) = {1, x1, x2, x3}. By Theorem 2, bases
L(D) and L(D̄) are mutual Alexander duals and so L(D̄) = L(D). Using the above
data, the interpolator for response values over D is yD = 18 + 2x2 + 4x3, and the
corresponding interpolator over D̄ is yD̄ = 12 − 2x2 + 4x3.

We now combine interpolators over the fractions to obtain a global interpolator. To
achieve this, we use indicator functions 1D = (1−x1x2x3)/2 and 1D̄ = 1−1D so that

yD1D + yD̄(1 − 1D) = 15 + 4x3 − 3x1x2x3 − 2x1x2
2 x3, (12)

which although interpolating the data, contains higher order terms. A reduction of (12)
computing the normal form (see Cox et al. 2007) with respect to the ideal of the full
design F gives the interpolator

yF = 15 + 4x3 − 2x1x3 − 3x1x2x3.

This reduced polynomial still interpolates the given response values over the full design
F , and coincides with the interpolating polynomial using all of the design and data.

The results above concern interpolation. Using Alexander duality ideas to attain
relationships between testing, residuals etc. over D and D̄ is under development.
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