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Abstract We consider the problem of estimating the variance of a population using
judgment post-stratification. By conditioning on the observed vector of ordered in-
stratum sample sizes, we develop a conditionally unbiased nonparametric estimator
that outperforms the sample variance except when the rankings are very poor. This
estimator also outperforms the standard unbiased nonparametric variance estimator
from unbalanced ranked-set sampling.

Keywords Conditioning · Imperfect rankings · Judgment ranking · Ranked-set
sampling

1 Introduction

Judgment post-stratification (JPS), proposed by MacEachern et al. (2004), is a data
collection scheme in which a simple random sample is supplemented with judgment
ranking information. It differs from standard post-stratification (see Lohr 1999) in that
the strata are based on ranking information rather than covariate information. To draw
a JPS sample using set size m and sample size N , one first draws a simple random
sample of size N and makes a measurement on each of the N units. One then selects,
for each unit in the sample, an additional m − 1 independent units, yielding a set of
size m. The units in this set are ranked from smallest to largest by judgment, and the
rank of the unit from the simple random sample is recorded. This judgment rank need
not match the true in-set rank of the unit. The full JPS data set then consists of the
measured values for the N units, together with the rank of each unit within its set of
size m.
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552 J. Frey, T. G. Feeman

When the collection of measured units includes at least one unit with each rank
1 to m, the standard JPS mean estimator X̄JPS is simply the average of the post-
stratum sample means X̄[1], . . . , X̄[m]. However, it is possible that some of the post-
strata are empty. Indeed, if (n1, . . . , nm) is the vector of post-stratum sample sizes,
then (n1, . . . , nm) ∼ Multinomial(N , (1/m, . . . , 1/m)). When there are empty post-
strata, the standard JPS mean estimator X̄JPS is the average of the sample means for the
nonempty post-strata. It follows from symmetry considerations that X̄JPS is unbiased
for estimating the population mean μ, and MacEachern et al. (2004) showed that no
matter how the judgment rankings are done, X̄JPS is at least as efficient asymptotically
as the simple random sampling (SRS) mean estimator X̄SRS.

JPS uses the same sort of judgment ranking information that is used in ranked-
set sampling (RSS), a data collection scheme proposed by McIntyre (1952, 2005).
JPS tends to be less efficient than balanced RSS, but it offers advantages in terms of
flexibility. One advantage is that users of JPS retain the option of using SRS-based
analysis methods if needed, and a second advantage is that rankers may be permitted
to declare ties. MacEachern et al. (2004) pointed out these advantages, and they also
proposed several methods for estimating the population mean μ in the presence of ties.
Like RSS, JPS is preferable to SRS in settings where precise measurements are costly,
but reasonably accurate judgment rankings are easily available. Thus, JPS has potential
applications in areas such as environmental monitoring (Kvam 2003), forestry (Halls
and Dell 1966), medicine (Chen et al. 2005), and entomology (Howard et al. 1982).

Recent work has looked at JPS in several different contexts. Wang et al. (2006)
proposed JPS mean estimators for the case where multiple sets of judgment rankings
are available, and Wang et al. (2008) proposed an isotonic JPS mean estimator for
the case where the post-stratum means are believed to be stochastically ordered. Du
and MacEachern (2008) applied JPS in the context of designed experiments, and Frey
and Ozturk (2011) obtained alternate JPS mean estimators by deriving relationships
between the distributions for the m post-strata. More recently, Frey and Feeman (2012)
showed that the standard JPS mean estimator X̄JPS is inadmissible under squared error
loss. They also developed an improved JPS mean estimator by conditioning on the
ordered in-stratum sample sizes s1 ≥ · · · ≥ sk > 0, where k ≤ m is the number of
nonempty post-strata.

In this paper, we consider estimating the population variance σ 2 using JPS. At least
two variance estimators can be obtained simply by exploiting the connections between
JPS, SRS, and RSS. First, if we ignore the ranking information, then a JPS sample is
a simple random sample. Thus, the sample variance s2 is an unbiased estimator of σ 2.
Second, if we condition on the sample sizes (n1, . . . , nm), then we may think of the
JPS sample as a balanced or unbalanced ranked-set sample. Thus, variance estimators
that work with unbalanced RSS can also be applied with JPS. However, we find in this
paper that an alternate approach gives better results.

Following the approach of Frey and Feeman (2012), we condition on the ordered
in-stratum sample sizes s1 ≥ · · · ≥ sk > 0. Focusing on a natural class of conditional
variance estimators, we obtain both the conditional minimum mean squared error
(MSE) and the conditional minimum variance unbiased estimators. Both of these
estimators depend on the particular parent distribution and on the type of rankings,
but the conditional minimum variance unbiased estimator is relatively robust to these
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choices. Thus, using the conditionally minimum variance unbiased estimator for the
case where the parent distribution is uniform and the rankings are perfect, we obtain an
estimator σ̂ 2

C that performs well across a variety of choices for the parent distribution
and the ranking mechanism. In particular, it works well with perfect rankings, and it
is only slightly less efficient than the sample variance when the rankings are random.

In Sect. 2, we discuss variance estimation using RSS. In Sect. 3, we derive the
conditional minimum MSE estimator and the conditional minimum variance unbiased
estimator for JPS. In Sect. 4, we show that the conditional minimum variance unbiased
estimator is robust to the choice of the parent distribution and the type of rankings.
This leads us to recommend use of σ̂ 2

C . In Sect. 5, we compare the performance of
σ̂ 2

C to that of other potential estimators using a model for imperfect rankings, and in
Sect. 6, we compare the performance of the estimators using real data. In Sect. 7, we
give conclusions.

2 Variance estimation using ranked-set sampling

RSS differs from JPS in that the ranking step comes before one chooses the units for
measurement. To draw a balanced ranked-set sample using set size m and n cycles,
one first selects N = nm independent simple random samples (sets) of size m. One
then ranks the units in each set from smallest to largest. As in JPS, this judgment
ranking need not be perfectly accurate. One then selects a single unit from each set
for measurement. Specifically, one selects the unit with rank 1 from each of the first n
sets, the unit with rank 2 from each of the next n sets, and so on. This yields a sample
of N independent measured values, with n from each possible in-set rank.

To do unbalanced RSS, we simply relax the requirement that each in-set rank be
equally represented. Instead, we specify a set size m and a vector (n1, . . . , nm) so that
the sample includes n1 units with rank 1, n2 units with rank 2, and so on. Whether
the sample is balanced or unbalanced, we must employ blinding and appropriate
randomization to ensure that the judgment rankings are not affected by knowledge
of which ranked unit is to be selected from each set.

For balanced RSS with set size m and n cycles, Stokes (1980) proposed estimating
σ 2 using

σ̃ 2 = 1

nm − 1

m∑

i=1

n∑

r=1

(
X[i]r − μ̂

)2
,

where μ̂ = ∑
i
∑

r X[i]r/(nm) and X[i]r is the r th unit with in-set rank i . This
estimator is asymptotically unbiased, but it does not perform well for small samples.
In particular, it tends to overestimate the true variance.

As an alternative to σ̃ 2, MacEachern et al. (2002) proposed the estimator

σ̂ 2
M =

∑
i �= j
∑

r
∑

s

(
X[i]r − X[ j]s

)2

2n2m2 +
∑

i
∑

r
∑

s

(
X[i]r − X[i]s

)2

2n(n − 1)m2 .
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This estimator is unbiased, and it tends to be more efficient than σ̃ 2 when the rankings
are good. However, it applies only for balanced RSS with at least two cycles. For
unbalanced RSS with in-stratum sample sizes (n1, . . . , nm), MacEachern et al. (2002)
proposed the unbiased estimator

σ̂ 2
M = 1

2m2

∑

i �= j

1

ni n j

∑

r

∑

s

(
X[i]r − X[ j]s

)2

+ 1

2m2

∑

i

1

ni (ni − 1)

∑

r

∑

s

(
X[i]r − X[i]s

)2
, (1)

which can be applied as long as each of the in-stratum sample sizes is at least two.
Working independently of MacEachern et al. (2002), Perron and Sinha (2004) inves-

tigated the class of variance estimators of the form
∑

i
∑

j
∑

r
∑

s γi, j,r,s X[i]r X[ j]s ,
where the values {γi, j,r,s} are constants that satisfy γi, j,r,s = γ j,i,s,r . They showed
that the estimator (1) has minimum variance among unbiased estimators in this class.

One additional contribution to variance estimation using RSS was made by Yu et al.
(1999), who developed RSS-based variance estimators appropriate for use with normal
data under perfect rankings. Since our interest here is in nonparametric estimators
that perform well regardless of how the rankings are done, we do not consider these
estimators further.

3 Optimal variance estimators from a certain class

Consider estimating the population variance σ 2 in the standard JPS set-up. Let s1 ≥
· · · ≥ sk > 0 be the ordered sample sizes n1, . . . , nm , where k ≤ m is the number of
nonempty post-strata. Then, for i = 1, . . . , k, let Yi1, . . . , Yisi be the elements of the
post-stratum with sample size si . Assume that k ≥ 2 and s1 ≥ 2. Motivated by the
estimators from Sect. 2, we consider the class of estimators of the form

σ̂ 2 =
k∑

i=1

wi i ·
∑

r<s

(Yir − Yis)
2 +

∑

i< j

wi j ·
∑

r

∑

s

(
Yir − Y js

)2
, (2)

where the values {wi j } are scalar weights that depend only upon the post-stratum sizes
{si } and not on which judgment stratum is associated with each size. This class includes
the sample variance s2, and provided that each ni is at least two, the unbalanced RSS
estimator (1).

We want estimators that have small MSE. Thus, it is natural to consider the estimator
that minimizes the conditional MSE for estimators in the class (2) and the estimator
that minimizes the conditional variance among conditionally unbiased estimators in
the class (2). We show in what follows that each of these estimators can be obtained
using standard minimization techniques and appropriate expressions for the moments
of the random variables {Yir }. The theoretical results given below prove useful. To
ensure that all needed moments of σ̂ 2 exist, we assume that the fourth moment of the
parent distribution exists. Proofs of Results 2, 3, and 5 are given in the Appendix.
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Result 1 (Dell and Clutter (1972)) Let X be a single draw from the parent distribution,
and let X[i] be a single draw from the i th judgment post-stratum. If b is a real number
such that E[Xb] exists, then 1

m

∑m
i=1 E[Xb

[i]] = E[Xb].
Result 2 For any i and r, E[Yir |s1, . . . , sk] = μ and V (Yir |s1, . . . , sk) = σ 2.

Result 3 For any i and any r �= s,

E
[
(Yir − Yis)

2|s1, . . . , sk

]
= 2σ 2 − 2

m

m∑

l=1

(μ[l] − μ)2,

and for any i �= j and any r and s,

E
[
(Yir − Y js)

2|s1, . . . , sk

]
= 2σ 2 + 2

m(m − 1)

m∑

l=1

(μ[l] − μ)2.

Applying Result 3 to Eq. (2) gives us the following result.

Result 4 The conditional expected value for an estimator in the class (2) is

E
[
σ̂ 2|s1, . . . , sk

]
=

k∑

i=1

wi i

(
si

2

)(
2σ 2 − 2

m

m∑

l=1

(μ[l] − μ)2

)

+
∑

i< j

wi j si s j

(
2σ 2 + 2

m(m − 1)

m∑

l=1

(μ[l] − μ)2

)

The next result allows us to recognize the conditionally unbiased estimators. The
conditionally unbiased estimators are those in which the total weight given to between-
stratum comparisons is m − 1 times the total weight given to within-stratum compar-
isons.

Result 5 An estimator in the class (2) is conditionally unbiased for σ 2 if and only if

k∑

i=1

wi i

(
si

2

)
= 1

2m
and

∑

i< j

wi j si s j = m − 1

2m
. (3)

Suppose that we wish to find the conditional minimum MSE estimator in a case
where the post-stratum distributions are fully known. This requires that we minimize
MSE(σ̂ 2|s1, . . . , sk) = E

[
(σ̂ 2 − σ 2)2|s1, . . . , sk

]
over all choices of the weights

{wi j }. Expanding MSE(σ̂ 2|s1, . . . , sk) gives

MSE(σ̂ 2|s1, . . . , sk) = E
[
σ̂ 4|s1, . . . , sk

]
− 2σ 2 E

[
σ̂ 2|s1, . . . , sk

]
+ σ 4. (4)
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Thus, it is sufficient to minimize E
[
σ̂ 4|s1, . . . , sk

] − 2σ 2 E
[
σ̂ 2|s1, . . . , sk

]
over all

choices of {wi j }. Since E
[
σ̂ 4|s1, . . . , sk

]−2σ 2 E
[
σ̂ 2
∣∣ s1, . . . , sk] is a quadratic func-

tion of the weights {wi j }, this minimization can be done using techniques from mul-
tivariate calculus. The next result, which follows from squaring the expression for σ̂ 2

given in (2), provides the needed expression for E
[
σ̂ 4|s1, . . . , sk

]
.

Result 6 Let σ̂ 2 be given by (2), and define random variables {Si j : 1 ≤ i ≤ j ≤ k}
by Sii = ∑r<s(Yir − Yis)

2 and, for i < j, Si j = ∑si
r=1

∑s j
s=1(Yir − Y js)

2. We then
have that

E
[
σ̂ 4|s1, . . . , sk

]
=

k∑

i=1

w2
i i E[S2

i i |s1, . . . , sk] + 2
∑

i �= j

wi iw j j E[Sii S j j |s1, . . . , sk]

+2
k∑

i=1

∑

j<l

wi iw jl E[Sii S jl |s1, . . . , sk]+
∑

i< j

w2
i j E[S2

i j |s1, . . . , sk]

+2
∑

i< j

∑

l<t
(l,t) �=(i, j)

wi jwlt E[Si j Slt |s1, . . . , sk].

Minimizing the conditional MSE (4) requires setting

∂

∂wi i

{
E[σ̂ 4|s1, . . . , sk] − 2σ 2 E[σ̂ 2|s1, . . . , sk]

}
= 0 for i = 1, . . . , k (5)

and

∂

∂wi j

{
E[σ̂ 4|s1, . . . , sk] − 2σ 2 E[σ̂ 2|s1, . . . , sk]

}
= 0 for 1 ≤ i < j ≤ k. (6)

Using Results 4 and 6 to simplify the equations in (5), we get that

2
k∑

j=1

w j j E[Sii S j j |s1, . . . , sk] + 2
∑

j<l

w jl E[Sii S jl |s1, . . . , sk]

= 2σ 2

{(
si

2

)(
2σ 2 − 2

m

m∑

l=1

(μ[l] − μ)2

)}

for i = 1, . . . , k. Similarly, simplifying the equations in (6) gives us that

2
k∑

l=1

wll E[Si j Sll |s1, . . . , sk] + 2
∑

l<t

wlt E[Si j Slt |s1, . . . , sk]

= 2σ 2

{
si s j

(
2σ 2 + 2

m(m − 1)

m∑

l=1

(μ[l] − μ)2

)}
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for i and j satisfying 1 ≤ i < j ≤ k. If we substitute known values for the conditional
expectations such as E[Si j Sll |s1, . . . , sk], then we obtain a system of linear equations.
Solving this system yields the weights {wi j } for an estimator that we call the conditional
minimum MSE (CMM) estimator. For fixed ordered sample sizes s1 ≥ · · · ≥ sk > 0,
the weights for the CMM estimator depend both on the parent distribution and on the
ranking mechanism, but only through the first four moments of the distributions for
the m judgment post-strata.

Suppose now that we wish to find the estimator that minimizes the conditional
variance among conditionally unbiased estimators in the class (2). The conditional
variance of σ̂ 2 is E[σ̂ 4|s1, . . . , sk] − E[σ̂ 2|s1, . . . , sk]2 in general. However, for con-
ditionally unbiased estimators, this reduces to E[σ̂ 4|s1, . . . , sk]−σ 4. As a result, it is
sufficient to minimize E[σ̂ 4|s1, . . . , sk] under the constraints (3) from Result 5. This
minimization can be done using Lagrange multipliers (see Lange 1999, pp. 181–182)
with Lagrangian

F({wi j }, λ1, λ2) = E[σ̂ 4|s1, . . . , sk] + λ1

(
k∑

i=1

wi i

(
si

2

)
− 1

2m

)

+λ2

⎛

⎝
∑

i< j

wi j si s j − m − 1

2m

⎞

⎠ .

Setting partial derivatives of the Lagrangian equal to 0, we must have that

2
k∑

j=1

w j j E[Sii S j j |s1, . . . , sk] + 2
∑

j<l

w jl E[Sii S jl |s1, . . . , sk] + λ1

(
si

2

)
= 0

for i = 1, . . . , k, that

2
k∑

l=1

wll E[Si j Sll |s1, . . . , sk] + 2
∑

l<t

wlt E[Si j Slt |s1, . . . , sk] + λ2si s j = 0

for i and j satisfying 1 ≤ i < j ≤ k, and that the two constraints (3) hold. Solving
the resulting linear system yields the weights {wi j } for the estimator that we call the
conditional minimum variance unbiased (CMVU) estimator. Like the CMM estimator
developed earlier, the CMVU estimator depends both on the parent distribution and
on the ranking mechanism.

Computing the CMM and CMVU estimators requires that we compute expected val-
ues like E[S2

i i |s1, . . . , sk] and E[Si j Slt |s1, . . . , sk]. Each such value can be expressed
in terms of the moments of the {Yir } and the ordered sample sizes s1 ≥ · · · ≥ sk > 0,
and the calculations are routine, but lengthy. An R function for computing the weights
for the CMM and CMVU estimators when the needed moments are given is avail-
able from the authors, and the Appendix provides details for one moment-calculating
example, namely that of finding E[S2

11|s1, . . . , sk].
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Our work thus far applies as long as k ≥ 2 and s1 ≥ 2. If k = 1 or s1 = 1 so
that there is either no information about between-stratum variability or no information
about within-stratum variability, then we take the CMM and CMVU estimators to be
simply the sample variance s2. Having k = 1 becomes progressively less likely as N
increases, and s1 = 1 can occur only if N ≤ m.

4 Choosing a single estimator

Both the CMM and CMVU estimators depend on the particular parent distribution and
the ranking mechanism, but only through the first four moments of the distributions for
the m judgment post-strata. In practice, these moments are not known, and it is difficult
to estimate them accurately from a small sample. Our solution is to always use the
CMVU estimator designed for the case where the parent distribution is uniform and
the judgment rankings are perfect. To arrive at this solution, we computed conditional
MSEs for a variety of CMM and CMVU estimators both in settings where they are
optimal by construction and in other settings. In particular, we considered uniform,
normal, exponential, and Gamma(5) parent distributions, and we considered both
perfect rankings and random rankings. Table 1, which focuses on the case where
m = 3 and (s1, s2, s3) = (11, 10, 9), gives some representative results.

Each entry in Table 1 is the conditional MSE for a CMM or CMVU estimator relative
to the sample variance s2. Each conditional relative MSE was computed in such a way
that values above 1.0 indicate an advantage for the CMM or CMVU estimator. The
top four rows in Table 1 show the performance of CMM estimators designed for the
normal, uniform, exponential, and Gamma(5) distributions with perfect rankings, and
the bottom four rows show the performance of CMVU estimators designed for the
same four settings. To obtain the required conditional MSEs, we first generated, for
each combination of a parent distribution and a type of rankings, 1,000,000 random
sets of size m. We estimated all needed judgment post-stratum moments using the

Table 1 Conditional MSEs relative to that of s2 when m = 3 and (s1, s2, s3) = (11, 10, 9)

Estimator Perfect rankings Random rankings

Norm. Unif. Expo. Gamma Norm. Unif. Expo. Gamma

Normal CMM 1.231 1.106 0.933 1.101 0.404 0.267 0.558 0.467

Uniform CMM 1.173 1.272 0.918 1.055 0.499 0.357 0.633 0.557

Exponential CMM 0.826 0.543 1.315 0.998 0.381 0.174 1.055 0.556

Gamma(5) CMM 1.158 0.957 1.122 1.157 0.910 0.883 0.926 0.918

Normal CMVU 1.049 1.070 1.025 1.038 1.000 0.999 1.000 1.000

Uniform CMVU 1.049 1.072 1.026 1.039 0.998 0.998 0.998 0.998

Exponential CMVU 1.049 1.071 1.026 1.039 0.999 0.999 0.999 0.999

Gamma(5) CMVU 1.049 1.072 1.026 1.039 0.999 0.999 0.999 0.999

Values greater than 1.0 indicate that an estimator has outperformed s2. Bold values indicate estimators that
have minimum MSE within a certain class by construction
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empirical moments over the 1,000,000 sets, and we computed the conditional MSEs
using formula (4), together with Results 4 and 6. Bold values in Table 1 indicate
relative conditional MSEs that are optimal by construction.

Focusing on the bold values in the top four rows of Table 1, we see that the CMM
estimators perform very well in the perfect rankings settings for which they were
designed. However, they perform significantly less well in other perfect rankings
settings, and their performance is quite poor when the rankings are random. These
results, which suggest that CMM estimators are highly nonrobust to changes in the
parent distribution and the type of rankings, prompted us to drop CMM estimators
from further consideration.

The bottom four rows of Table 1 show the performance of the CMVU estimators.
We see that the four different CMVU estimators have virtually identical conditional
MSEs in all of the settings considered. They outperform s2 under perfect rankings,
and they are nearly as efficient as s2 under random rankings. Because of the similarity
between the four estimators, there is little performance-based reason to prefer one over
another, and the uniform-based CMVU estimator has the advantage that the required
moments can be readily computed. Result 7, which follows from the fact that uniform
order statistics have Beta distributions (see David and Nagaraja 2003, Example 2.3),
gives the moments that, when combined with our work in Sect. 3, make it possible to
compute the weights for σ̂ 2

C . Thus, in the remainder of the paper, we consider only the
CMVU estimator for the case of a uniform parent distribution and perfect rankings,
and we call this estimator σ̂ 2

C .

Result 7 If the parent distribution is uniform on [0, 1], the rankings are perfect, and
the set size is m, then the first four moments for a random draw from the i th judgment
post-stratum are i

m+1 ,
i(i+1)

(m+1)(m+2)
,

i(i+1)(i+2)
(m+1)(m+2)(m+3)

, and i(i+1)(i+2)(i+3)
(m+1)(m+2)(m+3)(m+4)

.

To compare the estimator σ̂ 2
C to the estimator σ̂ 2

M of MacEachern et al. (2002),
we computed Table 2, which shows the weights associated with σ̂ 2

C and σ̂ 2
M for all

possible choices of the ordered sample sizes when N = 10 and m = 3. Since σ̂ 2
M can

be computed only when each ni is at least two, it applies for only about half of the
tabled cases.

Under s2, all of the weights {wi j } are equal to 1/(N (N − 1)), but we see from
Table 2 that the weights are usually unequal for σ̂ 2

C . The general pattern we see in
Table 2 is that wi i is largest when si is small and that wi j is largest when both si and s j

are small. The same weighting pattern also holds for σ̂ 2
M , but the weights for σ̂ 2

M are
more variable than those for σ̂ 2

C . Note, for example, that in the (s1, s2, s3) = (5, 3, 2)

case, the ratio between the maximum and minimum weights is 10 for σ̂ 2
M , but less

than 2.4 for σ̂ 2
C .

The three estimators that we compare further in the next two sections all have
unbiasedness properties. The estimator s2 is unconditionally unbiased since E[s2] =
σ 2, but it is biased when we condition on a particular choice of the sample size vector
(n1, . . . , nm) or the ordered sample sizes s1 ≥ · · · ≥ sk > 0. The estimator σ̂ 2

C is
conditionally unbiased given ordered sample sizes s1 ≥ · · · ≥ sk > 0 such that s1 ≥ 2
and k ≥ 2, but it is slightly biased in the unconditional sense because we set σ̂ 2

C = s2

when k = 1 or s1 = 1. The estimator σ̂ 2
M is conditionally unbiased given any choice

123



560 J. Frey, T. G. Feeman

Table 2 Weights needed for computing σ̂ 2
C and σ̂ 2

M for all possible choices of the ordered sample sizes
when N = 10 and m = 3

(s1, s2, s3) Estimator w11 w12 w13 w22 w23 w33

(9, 1, 0) σ̂ 2
C 0.004630 0.037037 NA NA NA NA

(8, 2, 0) σ̂ 2
C 0.005069 0.020833 NA 0.024728 NA NA

(8, 1, 1) σ̂ 2
C 0.005952 0.017299 0.017299 NA 0.056553 NA

(7, 3, 0) σ̂ 2
C 0.005766 0.015873 NA 0.015192 NA NA

(7, 2, 1) σ̂ 2
C 0.006879 0.011520 0.015197 0.022214 0.032840 NA

(6, 4, 0) σ̂ 2
C 0.006791 0.013889 NA 0.010799 NA NA

(6, 3, 1) σ̂ 2
C 0.008009 0.009427 0.015361 0.015510 0.023827 NA

(6, 2, 2) σ̂ 2
C 0.008244 0.010551 0.010551 0.021505 0.020027 0.021505

σ̂ 2
M 0.003704 0.009259 0.009259 0.055556 0.027778 0.055556

(5, 5, 0) σ̂ 2
C 0.008333 0.013333 NA 0.008333 NA NA

(5, 4, 1) σ̂ 2
C 0.009560 0.008643 0.016691 0.011845 0.019255 NA

(5, 3, 2) σ̂ 2
C 0.009874 0.008921 0.010991 0.015588 0.014934 0.021159

σ̂ 2
M 0.005556 0.007407 0.011111 0.018519 0.018519 0.055556

(4, 4, 2) σ̂ 2
C 0.012135 0.008484 0.012349 0.012135 0.012349 0.021052

σ̂ 2
M 0.009259 0.006944 0.013889 0.009259 0.013889 0.055556

(4, 3, 3) σ̂ 2
C 0.012195 0.009627 0.009627 0.015583 0.011366 0.015583

σ̂ 2
M 0.009259 0.009259 0.009259 0.018519 0.012346 0.018519

For the sample variance s2, each weight is 1/90 ≈ 0.011111

of (n1, . . . , nm) where each ni is at least two. Thus, it is also conditionally unbiased
given ordered sample sizes s1 ≥ · · · ≥ sm ≥ 2.

5 Performance comparisons using a model

We compared σ̂ 2
C , σ̂ 2

M , and s2 in terms of MSE. We considered a variety of choices
for the set size m, the total sample size N , the parent distribution, and the type of
rankings, and we present representative results here. We considered both perfect and
imperfect rankings done according to a perceived size as in the Dell and Clutter
(1972) model. Specifically, when a random draw X from the parent distribution has
mean μ and standard deviation σ , we let the perceived size T be given by T =
ρ ·
(

X−μ
σ

)
+
(√

1 − ρ2
)

· Z , where Z is a standard normal random variable that is

independent of X and ρ is the user-chosen correlation between T and X . For values
X1, . . . , Xm in the same set, the ranking is done according to T1, . . . , Tm . If we use
ρ = 1, then we get perfect rankings, while if we use ρ = 0, then we get random
rankings.

We considered set sizes 2–5, total sample sizes 10–50, and ρ values of 0, 0.8, and
1.0. These ρ values were chosen to give perfect rankings (ρ = 1), random rankings
(ρ = 0), and rankings just good enough that schemes like RSS and JPS tend to be
substantially better than SRS for estimating the population mean μ (ρ = 0.8). The
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parent distributions that we considered were the normal, uniform, exponential, and
Gamma(5) distributions. Thus, we considered both symmetric and skewed distribu-
tions. We also considered both settings that match the setting in which σ̂ 2

C is optimal
by construction (uniform with perfect rankings) and settings where σ̂ 2

C is not optimal
by construction.

To compare σ̂ 2
C to s2 under a particular choice of m, N , ρ, and the parent distri-

bution, we first generated 1,000,000 random sets of size m and used the empirical
moments for the judgment post-strata to approximate the true moments. We then used
Eq. (4) from Sect. 3 to compute the conditional MSE for each estimator for each pos-
sible choice of the ordered sample sizes s1 ≥ · · · ≥ sk > 0 for the given m and N . By
weighting each conditional MSE by the probability of getting the ordered sample sizes
s1 ≥ · · · ≥ sk > 0, we obtained the unconditional MSE for each estimator. We then
compared the estimators by computing the relative efficiency MSE(s2)/MSE(σ̂ 2

C ),
which is designed so that values above 1.0 indicate an advantage for σ̂ 2

C .
Figures 1 and 2 show relative efficiencies for total sample sizes 10–50 when the set

size is m = 3 (Fig. 1) and m = 4 (Fig. 2). The four plots in each figure correspond
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Fig. 1 Efficiency of σ̂ 2
C relative to s2 for different choices of the sample size, the parent distribution, and

the quality of the rankings when m = 3. The rankings were done using a Dell and Clutter (1972) model
in which the correlation between the perceived and true values was either 0 (dotted curves), 0.8 (dashed
curves), or 1 (solid curves)
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Fig. 2 Efficiency of σ̂ 2
C relative to s2 for different choices of the sample size, the parent distribution, and

the quality of the rankings when m = 4. The rankings were done using a Dell and Clutter (1972) model
in which the correlation between the perceived and true values was either 0 (dotted curves), 0.8 (dashed
curves), or 1 (solid curves)

to the four choices of parent distribution, and the three curves in each plot correspond
to ρ values of 0 (dotted curves), 0.8 (dashed curves), and 1 (solid curves). We see
from the individual plots that σ̂ 2

C is always less efficient than s2 when ρ = 0, though
never by much. With ρ = 0.8, σ̂ 2

C is more efficient than s2 once N exceeds 20, and
with ρ = 1.0, σ̂ 2

C is noticeably more efficient than s2 even for sample sizes as small
as N = 10. The relative merits of the two estimators differ a bit from one parent
distribution to another, with the advantage for σ̂ 2

C being larger for the symmetric par-
ent distributions (uniform and normal) than for the right-skewed parent distributions
(exponential and Gamma(5)). Comparing Fig. 1 to Fig. 2 shows that if other fac-
tors are kept fixed, the advantage for σ̂ 2

C over s2 tends to increase when the set size
increases.

To compare σ̂ 2
C to σ̂ 2

M under a particular choice of m, N , ρ, and the parent distri-
bution, we again computed the conditional MSE for each estimator for each possible
choice of the ordered sample sizes s1 ≥ · · · ≥ sk > 0 for the given m and N . However,
since σ̂ 2

M only applies when each post-stratum sample size is at least two, we consid-
ered only such cases. By weighting each conditional MSE by the probability of getting
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Fig. 3 Efficiency of σ̂ 2
C relative to σ̂ 2

M for different choices of the sample size, the parent distribution, and
the quality of the rankings when m = 3. The rankings were done using a Dell and Clutter (1972) model
in which the correlation between the perceived and true values was either 0 (dotted curves), 0.8 (dashed
curves), or 1 (solid curves)

the ordered sample sizes s1 ≥ · · · ≥ sm ≥ 2, we obtained the MSE for each estimator,
conditional on each post-stratum sample size being at least two. We then compared
the two estimators by computing the relative efficiency MSE(σ̂ 2

M )/MSE(σ̂ 2
C ), which

is designed so that values over 1.0 indicate an advantage for σ̂ 2
C .

Figures 3 and 4 show results for total sample sizes 10–50 when the set size is
m = 3 (Fig. 3) and m = 4 (Fig. 4). The four plots in each figure correspond to the
four choices of parent distribution, and the three curves in each plot correspond to ρ

values of 0 (dotted curves), 0.8 (dashed curves), and 1 (solid curves). We see from the
individual plots that σ̂ 2

C is at least as efficient as σ̂ 2
M in all of the settings considered.

The advantage for σ̂ 2
C over σ̂ 2

M is largest when ρ = 0 and smallest when ρ = 1.
The advantage also tends to be largest for total sample sizes near 15 and smallest for
large total sample sizes. In addition, the advantage for σ̂ 2

C tends to be larger for the
symmetric parent distributions (uniform and normal) than for the right-skewed parent
distributions (exponential and Gamma(5)). Comparing Fig. 3 to Fig. 4 shows that if
other factors are fixed, the advantage for σ̂ 2

C over σ̂ 2
M tends to increase when the set

size increases.
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Fig. 4 Efficiency of σ̂ 2
C relative to σ̂ 2

M for different choices of the sample size, the parent distribution, and
the quality of the rankings when m = 4. The rankings were done using a Dell and Clutter (1972) model
in which the correlation between the perceived and true values was either 0 (dotted curves), 0.8 (dashed
curves), or 1 (solid curves)

6 Performance comparisons using data

In order to assess the performance of σ̂ 2
C with real judgment rankings as opposed to

rankings determined by a model, we repeated the comparisons of Sect. 5 using a data
set that is given in Web Table 2 of Wang et al. (2012). A similar data set was used by
MacEachern et al. (2004). The variable of interest is the average log adjusted brain
weight for a population of animal species, and the data set includes 20 sets of size
three, each of which was judgment-ranked by two different rankers. The two rankers
worked with the same sets, but did their judgment ranking independently of each other.
Proceeding separately for the two rankers and treating the 20 sets as the population of
all possible sets of size three, we obtained the first four empirical moments for each of
the three judgment order statistics and treated these as the true population moments.
We then computed relative efficiencies exactly as in Sect. 5. The results are given in
Table 3.

We see from Table 3 that σ̂ 2
C performed at least as well as s2 in all of the tabled

scenarios except the N = 10 case with Ranker #1. The advantage for σ̂ 2
C over s2
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Table 3 Efficiency of σ̂ 2
C

relative to s2 and σ̂ 2
M for

different choices of the total
sample size when the true
distribution is the empirical
distribution from the brain
weight data set

N Ranker #1 Ranker #2

Rel. to s2 Rel. to σ̂ 2
M Rel. to s2 Rel. to σ̂ 2

M

10 0.994 1.068 1.003 1.072

20 1.029 1.057 1.039 1.057

30 1.045 1.030 1.056 1.027

40 1.053 1.018 1.064 1.014

50 1.058 1.011 1.069 1.007

increased with increasing N . We also see from Table 3 that σ̂ 2
C outperformed σ̂ 2

M in
all of the tabled scenarios, with the advantage for σ̂ 2

C decreasing with increasing N .
Overall, the relative performance of the estimators here is consistent with what we
saw in Sect. 4.

7 Conclusions

By conditioning on the observed vector of ordered in-stratum sample sizes, we have
developed a conditionally unbiased nonparametric variance estimator for use with
JPS. This estimator outperforms both the standard variance estimator for unbalanced
RSS and the sample variance s2, and its efficiency relative to s2 tends to increase
when either the set size or the total sample size is increased. Frey and Feeman (2012)
showed that when using JPS to estimate the population mean, the gain in efficiency
from using JPS rather than SRS can be quite large when the judgment rankings are of
high quality. When using JPS to estimate the variance, the gain in efficiency is smaller,
but goes as high as 20 % in the scenarios considered in Sect. 5.

8 Appendix

Proof of Result 2 Since (n1, . . . , nm) ∼ Multinomial(N , (1/m, . . . , 1/m)), each of
the m post-strata is equally likely to be the one with sample size si . Thus,

E[Yir |s1, . . . , sk] = 1

m

m∑

l=1

E[X[l]] = μ,

where the last equality follows from Result 1. By similar logic,

E[Y 2
ir |s1, . . . , sk] = 1

m

m∑

l=1

E[X2[l]] = E[X2].

Putting these two observations together, we get that

V (Yir |s1, . . . , sk) = E[Y 2
ir |s1, . . . , sk] − E[Yir |s1, . . . , sk]2 = E[X2] − μ2 = σ 2.

This proves the result. ��
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Proof of Result 3 By Result 2, V (Yir |s1, . . . , sk) = V (Yis |s1, . . . , sk) = σ 2. Since
each post-stratum is equally likely to be the one with sample size si , we have that

E[Yir Yis |s1, . . . , sk] = 1

m

m∑

l=1

E[X[l]r X[l]s] = 1

m

m∑

l=1

μ2[l],

where the last equality follows from the fact that X[l]r and X[l]s are independent draws
from the lth post-stratum. Thus,

Cov(Yir , Yis |s1, . . . , sk) = 1

m

m∑

l=1

μ2[l] − μ2

= 1

m

m∑

l=1

μ2[l] −
(

1

m

m∑

l=1

μ[l]

)2

= 1

m

m∑

l=1

(μ[l] − μ)2,

which means that

E
[
(Yir − Yis)

2|s1, . . . , sk

]
= V (Yir |s1, . . . , sk) + V (Yis |s1, . . . , sk)

−2Cov(Yir , Yis |s1, . . . , sk)

= 2σ 2 − 2

m

m∑

l=1

(μ[l] − μ)2.

Since each pair of post-strata is equally likely to be the pair with sample sizes si

and s j ,

E[Yir Y js |s1, . . . , sk] = 1

m(m − 1)

∑

l �=t

E[X[l]r X[t]s]

= 1

m(m − 1)

∑

l �=t

μ[l]μ[t] = 1

m(m − 1)

[
(mμ)2 −

m∑

l=1

μ2[l]

]
.

Thus,

Cov(Yir , Y js |s1, . . . , sk) = 1

m(m − 1)

[
(mμ)2 −

m∑

l=1

μ2[l]

]
− μ2

= 1

m(m − 1)

[
(m2 − m(m − 1))μ2 −

m∑

l=1

μ2[l]

]

= − 1

m(m − 1)

m∑

l=1

(μ[l] − μ)2.
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Combining this observation with our earlier findings, we have that

E
[
(Yir − Y js)

2|s1, . . . , sk

]
= V (Yir |s1, . . . , sk) + V (Y js |s1, . . . , sk)

−2Cov(Yir , Y js |s1, . . . , sk)

= 2σ 2 + 2

m(m − 1)

m∑

l=1

(μ[l] − μ)2.

This proves the result. ��
Proof of Result 5 By Result 4, the conditional expectation of the estimator σ̂ 2 is

k∑

i=1

wi i

(
si

2

)(
2σ 2 − 2

m

m∑

l=1

(μ[l] − μ)2

)

+
∑

i< j

wi j si s j

(
2σ 2 + 2

m(m − 1)

m∑

l=1

(μ[l] − μ)2

)
,

which simplifies to

σ 2

⎧
⎨

⎩2
k∑

i=1

wi i

(
si

2

)
+ 2

∑

i< j

wi j si s j

⎫
⎬

⎭

+ 2

m

m∑

l=1

(μ[l] − μ)2

⎧
⎨

⎩
1

m − 1

∑

i< j

wi j si s j −
k∑

i=1

wi i

(
si

2

)⎫⎬

⎭ .

If the two conditions in the statement of Result 5 are met, then the first bracketed
expression is 1, and the second bracketed expression is 0. Thus, the estimator is
unbiased for σ 2.

To see that these two conditions are also necessary, note that the sum
∑

l (μ[l] − μ)2

takes on different values for different ranking schemes. For example, for random
rankings,

∑
l (μ[l] − μ)2 = 0, but for perfect rankings,

∑
l (μ[l] − μ)2 > 0. Thus, in

order for the estimator to be unbiased in both cases, the bracketed expressions must
be 1 and 0, respectively. This forces the conditions in the result to hold. ��
Computing E[S2

11|s1, . . . , sk]. Since the random variables Y11, . . . , Y1s1 are exchange-
able, we can write E[S2

11|s1, . . . , sk] as

E

⎡

⎣
(
∑

r<s

(Y1r − Y1s)
2

)2

|s1, . . . , sk

⎤

⎦ =
(

s1
2

)
E
[
(Y11 − Y12)

4|s1, . . . , sk

]

+s1(s1 − 1)(s1 − 2)E
[
(Y11 − Y12)

2(Y11 − Y13)
2|s1, . . . , sk

]

+
(

s1
2

)(
s1 − 2

2

)
E
[
(Y11 − Y12)

2(Y13 − Y14)
2|s1, . . . , sk

]
.
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Expanding the expected values in terms of moments of the {Yir }, we obtain the equiv-
alent expression

(
s1
2

){
E
[
Y 4

11|s1, . . . , sk

]
− 8E

[
Y 3

11Y 1
12|s1, . . . , sk

]
+ 6E

[
Y 2

11Y 2
12|s1, . . . , sk

]}

+s1(s1 − 1)(s1 − 2)
{

E
[
Y 4

11|s1, . . . , sk

]
− 4E

[
Y 3

11Y 1
12|s1, . . . , sk

]

+3E
[
Y 2

11Y 2
12|s1, . . . , sk

]}
+
(

s1
2

)(
s1 − 2

2

)

×
{

4E
[
Y 2

11Y 2
12|s1, . . . , sk

]
− 8E

[
Y 2

11Y12Y13|s1, . . . , sk

]

+4E
[
Y11Y12Y13Y14|s1, . . . , sk

] }
.

We can then find the necessary expected values using the same logic that we used in
proving Results 2 and 3. For example, since each of the m post-strata is equally likely
to have been the one with sample size s1, we have that

E[Y 2
11Y 2

12|s1, . . . , sk] = 1

m

m∑

i=1

E[X2[i]]2,

where X[i] is an i th judgment order statistic from the parent distribution.
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