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Abstract Estimating equation approaches have been widely used in statistics infer-
ence. Important examples of estimating equations are the likelihood equations. Since
its introduction by Sir R. A. Fisher almost a century ago, maximum likelihood estima-
tion (MLE) is still the most popular estimation method used for fitting probability dis-
tribution to data, including fitting lifetime distributions with censored data. However,
MLE may produce substantial bias and even fail to obtain valid confidence intervals
when data size is not large enough or there is censoring data. In this paper, based
on nonlinear combinations of order statistics, we propose new estimation equation
approaches for a class of probability distributions, which are particularly effective
for skewed distributions with small sample sizes and censored data. The proposed
approaches may possess a number of attractive properties such as consistency, suf-
ficiency and uniqueness. Asymptotic normality of these new estimators is derived.
The construction of new estimation equations and their numerical performance under
different censored schemes are detailed via Weibull distribution and generalized expo-
nential distribution.
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1 Introduction

Consider the general problem of inferring a family of distribution F(x; λ, α) for var-
ious forms of censoring and also for the complete sample case. Statistical inference
(point estimation and interval estimation) often include inference on unknown para-
meters λ and α, even a function of λ and α such as mean and quantile, as well survival
function or reliability function.

In this paper, F(x; λ, α) belongs either of the family

F(x; λ, α) = 1 − [1 − G(x; λ)]C(α,λ), (1)

or the family

F(x; λ, α) = [G(x; λ)]C(α,λ), (2)

where (a, t) �→ C(a, t) is a bivariate function defined on the parameters set and
function G(·; λ) is a distribution function dependent only on λ.

The distribution family with the form of F(x; λ, α) includes Weibull distribution
and many known distributions. It also includes a newly proposed generalized exponen-
tial distribution (Gupta and Kundu 1999, 2001, 2006, 2007; Mitra and Kundu 2008;
Raqab 2002; Kundu et al. 2005), which can be used as an alternative to Gamma or
Weibull distribution in many situations and has attracted much attention in literature
recently. The quantity C(α, λ) could depend only on λ or could allow for a new para-
meter α. We focus on the later case and we suppose that, for each fixed t , the map
a �→ C(a, t) is one-to-one. In other words, the map (α, λ) �→ (η, λ) = (C(α, λ), λ) is
a reparametrization of the family of distribution functions (1) and (2). Clearly, one can
work with the parameters (η, λ) and not introduce C(α, λ). However, there might be
no consensus on a unique parametrization of families of laws to be used in applications
(for instance because of the interpretation the parameters may have), in which case it
could in interesting to allow for our C(α, λ). A well-known example is the Weibull
distribution which may have different parametrizations in different textbooks.

Estimating equation approaches have been widely used in statistics inference of
probability distribution. Important examples of estimating equations are the likeli-
hood equations. However, MLE may produce substantial bias, or even fail for interval
estimation as when the distribution is highly skewed, or sample size is not large enough
or the data are highly censored. Take the Weibull distribution as an example, which
has the distribution function as

F(x;α, λ) = 1 − e−(αx)λ , x > 0, (3)

where α > 0, λ > 0 are unknown parameters. With this parametrization we have
C(α, λ) = αλ in Eq. (1). The MLEs of its parameters have been discussed by a
number of authors. For the point estimation, since the solution is numerical, issues
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New estimating equation approaches 591

of existence and uniqueness of the estimates have to be addressed, which in the case
of censored data can get quite involved. For the interval estimation, many software
programs compute confidence limits based on the standard errors of the maximum
likelihood estimates, however Dodson (1994) cautions against the interpretation of
confidence limits computed from MLEs. In general, when the shape parameter λ is
<2, the variance estimates computed for MLEs lack accuracy.

In this paper, based on nonlinear combinations of order statistics, we have explored
new estimation equation approaches to inference the family of probability distribu-
tions. We expect new estimation equation approaches to provide not only unique and
consistent parameter estimates but also exact confidence intervals, including exact con-
fidence interval for reliability, which is challenging for existing methods of estimation
equations.

Section 2 illustrates the general structure of the estimation equations for the fam-
ily of probability distributions with both right censored and left-censored samples.
Section 3 features construction details from some of the more typical examples
of censored schemes, including exact confidence intervals for reliability function.
Section 4 illustrates the numerical performance of new estimation equation approaches
under a variety of scenarios. Section 5 derives the asymptotic normality of new para-
meter estimators. Section 6 concludes with a brief account of new results.

2 The basic estimation equations

Order statistics appears in a natural way in inference procedures when the sample is
censored. Linear combinations of order statistics, such as L-statistics which have been
shown to exhibit the desirable property of robustness, play an important role in the
theory of estimation (Hampel et al. 1986; Giorgi 1999; Jones and Zitikis 2003; among
others). In particular, Hosking (1990, 1995) discussed L-moments (the expectations
of certain L-statistics) as the analysis and estimation of distributions. But there are
virtually no research topics on some sophisticated nonlinear combinations of order
statistics (NL-statistics) for statistics inference.

Given a random independent sample (X1, X2, . . . , Xn) from a distribution function
F(x; λ, α), let (X(1), X(2), . . . , X(n)) be the induced order statistics, then a general
class of NL-statistics could be defined as

∑
i ani fni (X), where fni (i = 1, . . . , n) is

some selected functionals such that the NL-statistic possess expected properties. In
this paper, write F(x) for F(x; λ, α) and consider an NL-statistic of the form:

NL-statistic =
n−1∑

i=1

(−2 log(U(i))), (4)

with

U(i) = Yi

Yn
, (i = 1, . . . , n − 1),

Yi =
i∑

j=1

W j , (i = 1, . . . , n),
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W1 = nV(1), Wi = (n − i + 1)(V(i) − V(i−1)), (i = 2, . . . , n),

V(i) = − log(1 − F(X(i); λ, α)) with the distribution family (1)

or V(i) = − log(F(X(n−i+1); λ, α)) with the distribution family (2). (5)

Clearly, for a generic F(·), {V(i)}n
i=1 are the corresponding order statistics from the

standard exponential distribution. However, while V ′s are not independent W ′s are.
Eventually, the NL-statistic given by (4) has an exact χ2 distribution. As {U(i)}n−1

i=1 can
be regarded as induced order statistics from an independent sample, {Ui }n−1

i=1 , from a
standard distribution U (0, 1). Thus, the NL-statistic in (5) can be equivalently written
as a simple sum of independent, identically distributed random variables with finite
moments, then it follows from the Strong Law of Large Numbers strong-consistency
exists for the statistic.

Moreover, the ratio Yi and Yn for U(i) cancels out parameter α, as U(i) does not
contain parameter C(α, λ) for F(x;α, λ). This idea is also used in the analysis of
Weibull distribution analysis with progressive censored data (Wang et al. 2010). It is
well known that the accuracy of statistical inference for a particular parameter can be
considerably improved if there is no nuisance parameter involved. Existing methods
for this aim typically include likelihood-based conditional inference. Modern Gibbs
sampling and MCMC, which are developed for this aim, are able to integrate out
nuisance parameters. However, MLE-based equation equations or other estimation
equation approaches cannot cancel out a nuisance parameter.

2.1 Estimation equation for the family of distributions under censored samples

In reliability analysis and biomedical research, censoring often exists. Depending on
the direction of the censoring, censored data can be classified into right censored and
left censored. Right censored includes type-I and type-II right censored, depending
on whether the failure number is random or fixed in advance. Type I: completely
random dropout (e.g. emigration) and/or fixed time of end of study no event having
occurred, and type II: study ends when a fixed number of events amongst the subjects
has occurred.

We first consider estimation equation approach with a typical right-censored
sample.

Let m < n and X(1) ≤ · · · ≤ X(m) be a type-II-censored sample from the family
(1) with

F(x; λ, α) = 1 − [1 − G(x; λ)]C(α,λ),

then

S(1) = − log[1 − G(X(1); λ)] ≤ · · · ≤ S(m) = − log[1 − G(X(m); λ)]
is a type-II-censored sample from the exponential distribution with mean 1/C(α, λ).

Write Yi = S(1) + · · · + S(i) + (n − i)S(i), i = 1, . . . , m, then along the same line
as construction of Eq. (4), we have the estimation equations for the family (1) under
a type-II right-censored sample as:
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New estimating equation approaches 593

m−1∑

i=1

log

(
Ym

Yi

)

= m − 2, (6)

C(α, λ) = m − 1

Ym
,

α = C−1
(

m − 1

Ym
, λ

)

, (7)

where C(., λ)−1 is the inverse of a �→ C(a, λ).

Remark The estimation equations (6) and (7) still hold when m = n, which correspond
to the case with complete sample.

Similarly, let 0 < r < n and X(r+1) ≤ · · · ≤ X(n) be a type-II left-censored sample
from the family (2) with

F(x; λ, α) = [G(x; λ)]C(α,λ),

then

S(1) = − log[G(X(n); λ)] ≤ · · · ≤ S(n−r) = − log[G(X(r+1); λ)]

is a type-II-censored sample from the exponential distribution with mean 1/C(α, λ).
Write Yi = S(1) +· · ·+ S(i) +(n− i)S(i), i = 1, . . . , r . According to the discussion

above, we have the estimation equations for the family (2) as:

n−r∑

i=1

log

(
Yn−r

Yi

)

= n − r − 2, (8)

C(α, λ) = n − r − 1

Yn−r
,

α = C−1
(

n − r − 1

Yn−r
, λ

)

. (9)

Remark The estimation Eqs. (8) and (9) still hold when r = 0, which correspond to
the case with complete sample.

3 Estimation equations and exact confidence intervals in action

3.1 Weibull distribution with type-II censoring

For type-II censoring, a reliability testing is ended when there is a prespecified number
of failures. If X denotes the response variable, X ≥ 0, and we are assuming that every
subject follows the same distribution function F(x), then the reliability function is
R(x) = Pr(X > x) = 1 − F(x). While confidence interval estimation of reliability
function as well as mean time to failure is challenging for MLE and many existing
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estimation equation approaches, we consider new approach for a type-II-censored
data consisting of failure times X = (X(1), . . . , X(m)), where m(≤ n) is specified in
advance. The test ends at the mth failure time X(m), and (n − m) units have survived.

Note that, in the Weibull case, C(α, λ) = αλ and S(i) = Xλ
(i), hence the estimating

Eq. (8) reduces to

W (λ) = 2
m−1∑

i=1

log

{∑m
j=1 Xλ

( j) + (n − m)Xλ
(m)

∑i
j=1 Xλ

( j) + (n − i)Xλ
(i)

}

.

Clearly, W (λ) is a function of λ only and does not depend on α and has the χ2

distribution with 2(m −1) degrees of freedom. Hence W (λ)/(2m −4) converges with
probability one to 1. Also W (λ) is a strictly increasing function of λ due to that fact
below:

Ym

Yi
= 1 +

∑m
j=i+1(X( j)/X(i))

λ + (n − m)(X(m)/X(i))
λ − (n − i + 1)

∑i
j=1(X( j)/X(i))λ + (n − i + 1)

,

where (X( j)/X(i))
λ is a strictly increasing function of λ (resp. decreasing) for j >

(resp. <)i . Therefore, the point estimator of λ from W (λ) = 2(m − 2) is unique. Let
λ̂ is a solution of W (λ̂) = 2(m − 2). Similarly, note that

2 C(α, λ) Ym = 2 C(α, λ)

⎛

⎝
m∑

j=1

Xλ
( j) + (n − m)Xλ

(m)

⎞

⎠

has the χ2 distribution with 2m degrees of freedom, the estimating Eq. (9) reduces to
provide the estimator α̂ of the parameter α as

α̂ =
⎛

⎝ m − 1
∑m

j=1 X λ̂
( j) + (n − m)X λ̂

(m)

⎞

⎠

1/λ̂

.

Furthermore, an exact 1 − p(0 < p < 1) confidence interval for the parameter λ

of the Weibull distribution which does not depend on α is given by:

[
W −1{χ2

1−p/2(2(m − 1))}, W −1{χ2
p/2(2(m − 1))}

]
,

where χ2
p(v) is the upper p percentile of the χ2 distribution with v degrees of freedom

and W −1(t) is the value of λ satisfying the equation W (λ) = t .
Let g(W, X) be the unique solution of W (λ) = W , where W ∼ χ2(2(m − 1)).

Notice that

α =
(

Ym
∑m

j=1 Xλ
( j) + (n − m)Xλ

(m)

)1/λ

,
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according to the substitution method given by Weerahandi (2004), we substitute
g(W, X) for λ in the expression for α we obtain the following generalized pivotal
quantity for the parameter α:

T1 =
⎛

⎝ Ym
∑m

j=1 xg(W,x)

( j) + (n − m)xg(W,x)

(m)

⎞

⎠

1/g(W,x)

, (10)

where x = (x(1), . . . , x(m)) is the observed value of X = (X(1), . . . , X(m)).
Let T1,p denote the upper pth percentile of T1, then T1,1−p and T1,p are the 1 − p

generalized lower and upper confidence limits for α, respectively. The values T1,1−p

and T1,p can be obtained using Monte Carlo simulations which can be achieved using
the following algorithm. For a given data set (n, m, x), generate W ∼ χ2(2m −2) and
2C(α, λ)Ym ∼ χ2(2m), independently. Using these values, we compute the values
of T1 in (12). This process of generating the value of T1 is repeated m1 times for the
fixed values of (n, m, x). Based on the generated values of T1, the values T1,1−p and
T1,p can be obtained.

Now notice that the survival function of the Weibull distribution is given by S(x0) =
exp[−(αx0)

λ], along the same line as the derivation of T1 for parameter α, we obtain
a generalized pivotal quantity for S(x0) as

T2 = exp

⎛

⎝− Ym
∑m

j=1 xg(W,x)

( j) + (n − m)xg(W,x)

(m)

· xg(W,x)
0

⎞

⎠ . (11)

Let T2,p denotes the upper pth percentile of T2. Then T2,p is the 1 − p lower
confidence limits for S(x0).

In the following section, we study the performance of coverage probabilities of
these confidence intervals for α and S(x0) via simulation.

3.2 Generalized exponential distribution with left censoring

Now consider a reliability analysis based on the generalized exponential distribution
(Gupta and Kundu 1999). The probability density function and the cumulative distri-
bution function of a generalized exponential distribution are given by

f (x, α, λ) = αλ
(
1 − e−λx)α−1

e−λx , x > 0,

and

F(x, α, λ) = (
1 − e−λx)α , x > 0,

respectively, where α > 0, λ > 0 are the unknown shape and scale parameters,
respectively. Henceforth, for simplicity of notations let the generalized exponential
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distribution be denoted by GE(α, λ). For 0 < α ≤ 1, the density function is a decreas-
ing function and for α > 1, it becomes an uni-modal function.

While its peer members such as Weibull and Gamma distributions are particularly
useful in censored data analysis, however, (Gupta and Kundu 2007) noted that not
much development has taken place for censored data with the generalized exponen-
tial distribution. In particular, interval estimation maybe difficult to obtain for this
distribution with existing methods.

Let X(r+1), . . . , X(n) be the last n − r order statistics from GE(α, λ) with sample
size n. If r = 0, then the left-censored sample corresponds to complete sample. Hence
complete sample is a special case of left-censored sample.

To derive confidence interval for the parameter λ, the following Lemma 1 is needed
and its proof is given in the Appendix.

Lemma 1 Let

f (λ) = log(1 − e−bλ)

log(1 − e−aλ)
,

where b > a > 0 are constants. Then f (λ) is strictly decreasing on (0,+∞).

We now discuss the interval estimation of the parameter λ.
Since X(r+1), . . . , X(n) is a left-censored sample from GE(α, λ) with sample size

n, then

−α log
(

1 − e−λX(n)

)
,−α log

(
1 − e−λX(n−1)

)
, . . . ,−α log

(
1 − e−λX(r+1)

)

is a type-II-censored sample from the standard exponential distribution with sample
size n.

Note that, in the generalized exponential distribution, C(α, λ) = α and S(i) =
− log

(
1 − e−λX(n−i+1)

)
, hence the estimating Eq. (10) reduces to

W (λ) = 2
n−r−1∑

i=1

log

(
Yn−r

Yi

)

.

This W (λ) has the χ2 distribution with 2(n − r − 1) degrees of freedom. Further,
from

Yn−r

Yi
= 1 +

S(i+1)

S(i)
+ · · · + S(n−r)

S(i)
+ r

S(n−r)

S(i)
− (n − i)

S(1)

S(i)
+ · · · + S(i−1)

S(i)
+ (n − i + 1)

,

we have from Lemma 1 that the W (λ) is strictly increasing on (0,+∞), and

lim
λ→0+ W (λ) = 0, lim

λ→+∞ W (λ) = +∞.
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Therefore, we have

P(W −1(χ2
1−p/2(2n − 2r − 2)) ≤ λ ≤ W −1(χ2

p/2(2n − 2r − 2)))

= P(χ2
1−p/2(2n − 2r − 2) ≤ W (λ) ≤ χ2

p/2(2n − 2r − 2)) = 1 − p.

In all, the exact confidence interval for λ could be described as follows:
Suppose X(r+1), . . . , X(n) is a left-censored sample from GE(α, λ) with sample

size n. Then, for any 0 < p < 1,

[W −1(χ2
1−p/2(2n − 2r − 2)), W −1(χ2

p/2(2n − 2r − 2))]

is a 1 − p confidence interval for the scale parameter λ.
The point estimators of λ and α can be obtained as below:
The estimator λ̂ of λ is from the following equation:

W (λ) = 2n − 2r − 4, (12)

and by Lemma 1, the solution of Eq. (14) is unique.
Noting that V = 2αYn−r has χ2 distribution with 2n − 2r degrees of freedom, the

estimator α̂ of α is from the following equation:

α̂ = n − r − 1

Yn−r
. (13)

Finally, similar to Eq. (13) for the Weibull distribution, we can obtain the generalized
pivotal quantity for the survival function S(x0) = 1 − (

1 − e−λx0
)α

of generalized
exponential distribution as

T3 = 1 −
(

1 − e−g(W,x)x0
)V/

(
−2

[∑n−r
i=1 log(1−e−g(W,x) x(n−i+1) )+r log(1−e−g(W,x) x(r+1) )

])

,

where g(W, X) is the unique solution of W (λ) = W , and x = (x(r+1), . . . , x(n)) is
the observed value of X = (X(r+1), . . . , X(n)).

4 Numerical performance

To assess the finite sample properties of the proposed estimation equation approaches,
in particular, the performance of new confidence intervals, we carry out numerical
analysis for Sect. 3 under a variety of scenarios.

4.1 Performance of Weibull distribution

First, a simulation study was conducted to study the coverage probabilities and the
average interval lengths of the proposed confidence intervals for survival function
under Weibull distribution with type-II right-censored sampling discussed in Sect. 3.1.
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Table 1 Coverage probabilities and the average interval lengths (in parentheses) for the confidence intervals
of α and S(1.2) with Weibull distribution

(n, m) GCI BBCP

α S(1.2) α S(1.2)

0.90 0.95 0.90 0.95 0.90 0.95 0.90 0.95

(10, 5) 0.911 0.944 0.908 0.945 0.740 0.802 0.796 0.817

(0.981) (1.189) (0.519) (0.599) (0.686) (0.849) (0.408) (0.447)

(10, 8) 0.886 0.946 0.887 0.941 0.800 0.866 0.837 0.885

(0.719) (0.906) (0.375) (0.442) (0.556) (0.678) (0.378) (0.438)

(20, 10) 0.900 0.957 0.905 0.960 0.819 0.863 0.847 0.878

(0.645) (0.779) (0.398) (0.464) (0.530) (0.644) (0.349) (0.394)

(20, 15) 0.914 0.952 0.908 0.952 0.859 0.904 0.872 0.911

(0.472) (0.578) (0.293) (0.346) (0.411) (0.494) (0.287) (0.336)

(30, 10) 0.895 0.951 0.898 0.947 0.846 0.908 0.869 0.903

(0.756) (0.897) (0.456) (0.524) (0.656) (0.798) (0.390) (0.434)

(30, 15) 0.895 0.951 0.904 0.953 0.868 0.918 0.892 0.933

(0.508) (0.611) (0.339) (0.397) (0.449) (0.541) (0.318) (0.364)

(50, 15) 0.902 0.941 0.899 0.946 0.836 0.897 0.863 0.904

(0.641) (0.760) (0.409) (0.472) (0.594) (0.718) (0.357) (0.402)

(50, 25) 0.896 0.959 0.910 0.951 0.861 0.910 0.877 0.919

(0.382) (0.458) (0.275) (0.323) (0.361) (0.433) (0.260) (0.302)

Since α is the scale parameter and the estimators are appropriately scale equi- and in-
variant, in our simulation study we take α = 1.

In Table 1, we report the coverage probabilities and average lengths of the general-
ized confidence intervals (GCI) at confidence levels 0.9 and 0.95 for the scale parameter
α and the survival function S(1.2) when λ = 2. We also compare the performance
of GCI with bootstrap bias-corrected percentile confidence intervals (BBCP). These
values were computed over 1000 replications for each different case using m1 = 1000.
The average interval lengths are given in parentheses. Clearly, from so many different
combinations of censoring schemes and (small) sample sizes, the simulated probabil-
ities with the proposed GCI for confidence levels 0.9 and 0.95 of are quite close to
their corresponding nominal levels, but the simulated probabilities of BBCP for these
levels are not close to their corresponding nominal levels in most of cases.

4.2 Performance of generalized exponential distribution

To assess the finite sample properties of the proposed approaches for generalized
exponential distribution discussed in Sect. 3.2, including parameter estimation and
confidence interval for survival function, a simulation study was conducted to compare
the performance of the proposed point estimators with MLEs used by Mitra and Kundu
(2008) for the generalized exponential distribution GE(λ, α).
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Table 2 the relative biases and relative MSE of the estimators when α = 1.0

n r Bias MSE

α λ α λ

NL MLE NL MLE NL MLE NL MLE

15 0 0.0247 0.2369 0.0057 0.1795 0.1967 0.3807 0.1519 0.2269

15 1 0.0321 0.2800 0.0050 0.1942 0.2644 0.5639 0.1636 0.2524

15 3 0.0623 0.4232 0.0043 0.2319 0.5306 1.5804 0.1885 0.3150

20 0 0.0116 0.1582 0.0002 0.1255 0.1215 0.1980 0.1043 0.1407

20 1 0.0150 0.1778 0.0000 0.1333 0.1395 0.2383 0.1088 0.1498

20 3 0.0219 0.2259 −0.0018 0.1497 0.1881 0.3625 0.1175 0.1694

20 5 0.0375 0.3042 −0.0023 0.1722 0.3036 0.6886 0.1337 0.2022

30 0 0.0099 0.1018 0.0029 0.0838 0.0707 0.0982 0.0632 0.0779

30 1 0.0103 0.1082 0.0025 0.0866 0.0754 0.1070 0.0648 0.0807

30 5 0.0162 0.1452 0.0017 0.1010 0.1073 0.1678 0.0732 0.0948

30 10 0.0320 0.2291 −0.0001 0.1262 0.1959 0.3693 0.0869 0.1209

50 0 0.0046 0.0568 0.0013 0.0482 0.0385 0.0468 0.0371 0.0417

50 5 0.0068 0.0697 0.0013 0.0539 0.0475 0.0602 0.0400 0.0460

50 15 0.0141 0.1116 −0.0003 0.0686 0.0856 0.1214 0.0485 0.0585

100 0 0.0036 0.0289 0.0011 0.0240 0.0179 0.0198 0.0179 0.0189

100 10 0.0043 0.0346 0.0008 0.0265 0.0216 0.0244 0.0190 0.0204

100 30 0.0075 0.0532 0.0001 0.0336 0.0361 0.0431 0.0233 0.0255

We consider different sample sizes n and left-censored numbers r . Since λ is the
scale parameter and all estimators are scale invariant, we take λ = 1 in our simulation
study and consider different values of α. We report the average relative biases and
average relative mean square errors (MSE) over 10000 replications for different cases.
The simulation results are presented in Table 2 when α = 1. The other results not being
shown here have consistent result with following.

It is quite clear from the Table 2 that for a fixed sample size, as the left failure
number r increases the average relative biases and average relative MSE’s also increase
as expected. It is also be observed that the average biases and the average MSE’s
decrease as sample size increases. It follows from simulation results that the proposed
estimators outperform the MLEs from both bias and MSE for all cases. According to
these simulation results, we suggest the proposed estimators for small and moderate
sample sizes.

In Table 3 we report the coverage probabilities and average lengths of the GCI
at confidence levels 0.9 and 0.95 for the scale parameter α and survival function of
GE(λ, 2.5) when λ is unknown. The average interval lengths are given in parentheses.
We also compare the performance of GCI with BBCP. These values were computed
over 1,000 replications for each different case using m1 = 1000. Similar to Table
1 under Weibull distribution case, the simulated probabilities of the proposed GCI
under generalised exponential distribution are also much closes to their corresponding
nominal levels than those of BBCP.
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Table 3 Coverage probabilities and average interval lengths (in parentheses) for the confidence intervals
of α and survival function of GE(λ, 2.5) with unknown λ

n r GCI BBCP

α S(1.2) α S(1.2)

0.90 0.95 0.90 0.95 0.90 0.95 0.90 0.95

15 0 0.908 0.948 0.914 0.947 0.870 0.924 0.902 0.937

(6.260) (8.307) (0.314) (0.370) (5.585) (7.572) (0.343) (0.411)

15 3 0.905 0.957 0.893 0.951 0.872 0.931 0.901 0.936

(9.052) (11.942) (0.336) (0.395) (12.025) (19.368) (0.375) (0.450)

20 0 0.912 0.954 0.896 0.952 0.856 0.921 0.901 0.941

(3.560) (4.331) (0.275) (0.325) (4.233) (5.507) (0.295) (0.353)

20 1 0.910 0.950 0.905 0.946 0.875 0.918 0.902 0.942

(4.143) (5.085) (0.278) (0.329) (4.674) (6.165) (0.300) (0.359)

20 5 0.889 0.941 0.897 0.942 0.880 0.931 0.909 0.939

(7.752) (10.006) (0.302) (0.356) (8.420) (12.169) (0.330) (0.397)

50 0 0.897 0.953 0.919 0.953 0.897 0.946 0.897 0.940

(2.014) (2.418) (0.177) (0.210) (2.038) (2.502) (0.182) (0.218)

50 5 0.901 0.953 0.921 0.955 0.880 0.941 0.898 0.942

(2.279) (2.746) (0.181) (0.215) (2.361) (2.920) (0.188) (0.224)

50 15 0.891 0.947 0.902 0.947 0.872 0.934 0.890 0.929

(3.178) (3.881) (0.201) (0.239) (3.362) (4.262) (0.210) (0.251)

50 25 0.899 0.946 0.899 0.954 0.876 0.925 0.871 0.919

(5.179) (6.540) (0.254) (0.300) (6.115) (8.258) (0.261) (0.313)

4.3 Two illustrative examples

Example 1 Consider the pseudo-random data from example 2 of Lawless (1975)
which is also reproduced in Lawless (2003). These data were type-II right-censored
data with n = 40, r = 28. Following Lawless (1975, 2003), we assume that
the lifetime follows the Weibull distribution. According to page 223 of Lawless
(2003), the (conditional) 90 % confidence intervals for the parameters λ and α are
(0.7813, 1.3889) and (0.8958, 1.6653), respectively, and the lower limit of the
(conditional) 95 % confidence interval for the survival function S(x0) with x0 =
exp(−1) is 0.647.

According to Sect. 3.1, the 90 % exact confidence interval for the parameter λ

is (0.7805, 1.3785), 90 % generalized confidence interval for α is (0.8987, 1.6742)

and the lower limit of the 95 % confidence interval for the survival function S(x0)

with x0 = exp(−1) is 0.6471. These are quite similar to the (conditional) confi-
dence intervals. However, our method can obtain generalized confidence interval for
an important parameter in lifetime data analysis, namely, the expected lifetime or
the mean time to failure. It is noted that the estimation of this parameter via stan-
dard method such as MLE-based methods is very challenging. In fact, the mean
of the Weibull distribution is given by μ = �(1 + 1/λ)/α, and along the same
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lines as the derivation of T1 and T2 in Eqs. (12) and (13) for parameter α and sur-
vival function S(x0), we obtain the following generalized pivotal quantity T4 for

μ: T4 =
(∑m

j=1 xg(W,x)

( j) +(n−m)xg(W,x)

(m)

Ym

) 1
g(W,x)

�
(

1 + 1
g(W,x)

)
, then in this example the

90 % generalized confidence interval for μ is (0.8791, 1.7590).

Example 2 Let us consider the data sets on failure times of the air conditioning system
of two different air planes from Gupta and Kundu (2003). Gupta and Kundu (2003) use
the data to illustrate closeness of Gamma and generalized exponential distributions.

The left-censored sample generated from the data set 2 with r = 3, n = 12 is as
follows: 55, 56, 104, 176, 182, 220, 239, 246, 320. The MLEs for the α and λ are
1.8397 and 0.0094, respectively. The NL-statistics-based estimators of α and λ from
Eqs. (14) and (15), on the other hand, are α̂ = 1.4542, λ̂ = 0.0084, respectively,
which are quite different from their MLEs. Further, with the proposed approaches in
Sect. 3.2, we are able to explore interval estimation for the parameters and many asso-
ciated quantities of the distribution. For example, The 90 % exact confidence interval
for the parameter λ is (0.0034, 0.0142) and the 90 % generalized confidence interval
for the parameter α is (0.5707, 3.4952). The 90 % generalized confidence intervals for
the survival function S(x0) at x0 = 100 and expected lifetime are (0.3722, 0.7694)

and (104.4428, 259.8360), respectively.

5 Asymptotic normality of estimations

Classical estimators like MLEs usually have asymptotic normality, which is also a
fundamental issue for parameter estimation. In this section, we aim to derive the
asymptotic normality of point estimates of the parameters λ and α. Although our pre-
sentation focuses on families of distributions supported on the nonnegative half-line,
the proofs allow the supports to be any kind of bounded or unbounded interval of real
numbers.

Let N be such that N/n → p ∈ (0, 1). The cases we have in mind are N = m − 1
and N = n−r −1. If F(·;α, λ) stands for the distribution function of the observations,
let

Wn(a, t; N ) = 2
N∑

i=1

log

{
Z N+1(a, t)

Zi (a, t)

}

− 2(N − 1), (14)

where

Zi (a, t) = −1

n

⎧
⎨

⎩

i∑

j=1

log(1 − F(X( j); a, t)) + (n − i) log(1 − F(X(i); a, t))

⎫
⎬

⎭
,

if the model is the one defined in (1), or Zi (a, t) are defined in the same way but with
1 − F(X( j); a, t) replaced by F(X( j); a, t) if model (2) is considered. For simplicity,
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hereafter we will only use Zi (a, t) defined as for model (1), but all the statements
below obviously adapt for the model (2).

In view of Eqs. (1) and (2) above, we are interested in the cases where Wn(a, t)
does not depend on a. This means that Zi (a, t) can be factorized like Zi (a, t) =
C(a, t)Zi (t) with C(a, t) depending only on the parameters (and not on the observa-
tions), and

Zi (t) = −1

n

⎧
⎨

⎩

i∑

j=1

log(1 − G(X( j); t)) + (n − i) log(1 − G(X(i); t))

⎫
⎬

⎭

depending on the parameter t only. For instance, in the Weibull case, we have C(a, t) =
at and 1 − G(x; t) = exp(−xt ) and thus

Wn(t) = 2
N∑

i=1

log

{∑N+1
j=1 Xt

( j) + (n − N − 1)Xt
(N+1)

∑i
j=1 Xt

( j) + (n − i)Xt
(i)

}

− 2(N − 1). (15)

Keeping in mind the factorization property, hereafter we replace definition (14) by

Wn(t) = 2
N∑

i=1

log

{
Z N+1(t)

Zi (t)

}

− 2(N − 1), (16)

where Zi (t) is the (positive) factor in the decomposition of Zi (a, t) that depends only
on t and the observations, that is Zi (t) = Zi (a, t)/C(a, t). Here, and in the following,
we simply write Wn(t) instead of Wn(t; N ).

For simplicity, we focus on the asymptotic normality aspect and hence in the argu-
ments we provide below we implicitly suppose that λ̂ is consistent. Moreover, we take
N = [np] where [·] is the integer part function. It will be quite clear from below how
these two simplifications could be dropped at the expense of more technicalities that
will be omitted.

In the cases we have in mind, the function t �→ Wn(t) is strictly monotonic. The
estimator λ̂ we propose is then the unique solution of the equation Wn(t) = 0, the true
value of the parameter being t = λ. Therefore, for proving asymptotic normality we
adopt a variant of the approach of Maritz (1995) and Brown (1985).1 Following the
notation of Maritz (1995), chapter 8, let

Sn(t) = Wn(t)

2
√

n
.

Suppose that for each n the function t �→ Wn(t) is continuously differentiable for
almost all samples (that means, except for a set of zero probability under the sampling
model) and let

1 The monotonicity property of t �→ WN (t) is guaranteed for the examples provided in the paper, hence
the approach in the textbook Maritz (1995) is sufficiently general in that cases. However, our theoretical
arguments for proving asymptotic normality adapt rapidly to nonmonotonic maps t �→ WN (t).
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cn(t) = ∇t Wn(t)

2n
= ∇t Sn(t)

n1/2 ,

(here ∇t stands for the partial derivative with respect to the parameter t). Next, fol-
lowing Maritz (1995) let us write t = λ + δn−1/2 and define

U (δ) = Sn(t) − Sn(λ) − δcn(λ).

Since Wn(λ) + 2(N − 1) has exactly a χ2 distribution with 2(N − 1) degrees of
freedom, clearly

Sn(λ)
D−→ N (0, p). (17)

On the other hand, suppose that

cn = cn(λ) → c0, in probability, (18)

where c0 is some nonzero constant. By a minor modification of the proof of Proposition
8.2 of Maritz (1995), see also the proof of Theorem 2 of Brown (1985), we can deduce
that if the function t �→ Wn(t) is monotone increasing, and conditions (17) and (18)
hold true, and for all fixed δ

Un(δ) → 0 as n → ∞, in probability, (19)

then

√
n(λ̂ − λ)

D−→ N (0, pc−2
0 ).

5.1 The asymptotic normality result for the parameter λ

Let us gather the previous facts in the following statement. For this purpose we need
some notation. Define

φ(x) = −∇t [log(1 − G(x; t))]t=λ

and let φ′(·) denote the derivative of φ(·). Let F(·) be a short notation for F(x;α, λ)

and Q(u) = inf{x : F(x) ≥ u}.
Theorem 1 Suppose that N/n → p ∈ (0, 1) and that Property 1 in the Appendix
holds true. Let λ̂ be the unique solution of the equation Wn(t) = 0 with Wn(·) defined
in (16). Then

√
n(λ̂ − λ)

D−→ N (0, pc−2
0 ),
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where

c0 = C(α, λ)

[

H(p) −
∫ p

0

H(u)

u
du

]

and

H(u) =
∫ Q(u)

Q(0)

φ′(x)(1 − F(x)) dx, u ≥ 0.

The technical conditions necessary for proving Theorem 1 are satisfied by common
models, like for instance the Weibull model, a case that we consider in the following
corollary.

Corollary 1 Let F(x) = 1 − exp(−(αx)λ), x > 0, be the distribution function of
a Weibull law of parameters α, λ > 0. Let λ̂ be the unique solution of the equation
Wn(t) = 0 with Wn(·) defined in (15). Suppose that N/n → p ∈ (0, 1) and let

c0 = H̃(p) −
∫ p

0

H̃(u)

u
du

where

H̃(u) =
∫ α−1 log1/λ[1/(1−u)]

0
{log(x) − λ−1}F ′(x) dx, 0 < u ≤ p.

If c0 �= 0, then

√
n(λ̂ − λ)

D−→ N (0, pc−2
0 ).

5.2 Asymptotics for α

Suppose that the conditions of Theorem 1 hold true. Consider the family of distribu-
tions functions defined in Eq. (1) above [(the arguments for (2) are similar]. Suppose
that for each fixed t , the map a �→ C(a, t) is one-to-one. Let v �→ C−1(v; t) denote
the inverse of the map a �→ C(a, t). In view of the identity

YN = −C(α, λ)

⎧
⎨

⎩

N∑

j=1

log(1 − G(X( j); λ)) + (n − N ) log(1 − G(X(N ); λ))

⎫
⎬

⎭

(20)

where YN is a sum of N independent standard exponential, let us define an estimator
of α as

α̂ = C−1(an(λ̂); λ̂),
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where

an(t) = − N
∑N

j=1 log(1 − G(X( j); t)) + (n − N ) log(1 − G(X(N ); t))
.

The limit in probability of an(λ) is a(λ) defined by

a(λ) = p
[∫ Q(p)

Q(0) hG(x; λ)(1 − F(x; λ, α)) dx
]

= − C(α, λ)p
[∫ Q(p)

Q(0) (1 − F(x; λ, α))′ dx
] = C(α, λ),

where hG(x; λ) = G ′(x; λ)/(1−G(x; λ)) is the hazard function associated to G(x; λ),
while the limit in probability of ∇t an(λ) = ∇t an(t)|t=λ is given by

∇t an(t)|t=λ = −p−1 a2(λ)

∫ Q(p)

Q(0)

∇t hG(x; t)|t=λ(1 − F(x; λ, α)) dx

= −p−1 C2(α, λ)

∫ Q(p)

Q(0)

∇t hG(x; t)|t=λ(1 − G(x; λ))C(α,λ)−1 dx .

The delta-method implies that

√
n(α̂ − α)

D−→ N (0, pc−2
0 [∇t C

−1(a(λ); λ)]2),

where

∇t C
−1(a(λ); λ) = ∇t C

−1(a(t); t)|t=λ = ∇t a(t)|t=λ

C(α, λ)
+ ∇t C

−1(C(α, λ); t)|t=λ.

6 Conclusion

This paper proposes new estimation equation approaches for a large class of proba-
bility distributions, including exact confidence intervals for parameters, a function of
parameters and survival function under a variety of censored schemes. Asymptotic
theory associated with the approaches are derived in a novel way. The new inference
for both point estimation and interval estimation has been shown to have good per-
formance, even more efficient than maximum likelihood estimation (MLE) for fitting
lifetime distributions with censored data and small sample sizes. Next we maybe able
to extend the work by introducing covariates into C(α, λ) in the distributions fam-
ilies (2) and (3), then consider modeling C(λ, α) by a parametric or nonparametric
regression model, so that the research would fairly link to Cox model for survival
analysis.
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7 Appendix

Property 1 1. For almost all samples the map t �→ Wn(t) defined in (16) is contin-
uously differentiable and strictly monotonic.

2. For any α the function t �→ C(α, t) = n−1{E[Z1(t)]}−1 is continuously differen-
tiable.

3. c0 = C(α, λ)[H(p) − ∫ p
0 u−1 H(u) du] �= 0

4. Conditions (27), (28), (32), (33), (35) through (38), and (39) through (42) below
hold true.

7.1 Proof of Theorem 1

To prove Theorem 1, we have to check conditions (18) and (19).

7.1.1 Proof of (18)

Below we only consider the case of model (1). The case of model (2) could be handled
with obvious adaptations. In the following c, C, . . ., are constants that may change
from line to line. Since

cn(λ) = N

n

{
∇t Z N+1(λ)

Z N+1(λ)
− 1

N

N∑

i=1

∇t Zi (λ)

Zi (λ)

}

,

we investigate the behavior of the quantities ∇t Zi (λ)/Zi (λ). By construction
E[Zi (λ)] = i/[C(α, λ)n] and var [Zi (λ)] = i/[C(α, λ)n]2. By the identity y/x −
y/x0 = y(x0 − x)/(x0x) and Cauchy–Schwarz inequality we have

E

[∣
∣
∣
∣
∇t Zi (λ)

Zi (λ)
− ∇t Zi (λ)

E[Zi (λ)]
∣
∣
∣
∣

]

= E

[∣
∣
∣
∣
∇t Zi (λ)

Zi (λ)
− ∇t Zi (λ)

iC−1(α, λ)n−1

∣
∣
∣
∣

]

= C(α, λ)

i/n
E

[∣
∣
∣
∣
∇t Zi (λ)

Zi (λ)
{E[Zi (λ)] − Zi (λ)}

∣
∣
∣
∣

]

≤ C(α, λ)

i/n
E1/2

[{∇t Zi (λ)

Zi (λ)

}2
]

var1/2[Zi (λ)]

= 1√
i

E1/2

[{∇t Zi (λ)

Zi (λ)

}2
]

. (21)

Next, we impose the following mild assumption: there exists a sequence rn, n ≥ 1
such that, for all i = 1, . . . , N ,

E1/2

[{∇t Zi (λ)

Zi (λ)

}2
]

≤ rn (22)
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and rn/
√

n → 0 as n → ∞. In this case, we have

E [|cn(λ) − cn(λ)| ] = (N/n)

[
rn√

N
− rn

N

N∑

i=1

1√
i

]

→ 0, as n → ∞,

where

cn(t) = C(α, λ)N

n

{
∇t Z N+1(t)

(N + 1)/n
− 1

N

N∑

i=1

∇t Zi (t)

i/n

}

=: C(α, λ)N

n
c1n(t).

(23)

Hence, condition (18) will be implied by the following one:

cn(λ) → c0, in probability.

Next, we concentrate on the quantity c1n(λ) defined of the right-hand side of (23).
For any u > 0, consider the statistic

Hn(u) = 1

n

[nu]∑

j=1

φ(X( j)) + (1 − [nu]/n)φ(X([nu]))

= 1

n

[nu]∑

j=1

(n + 1 − j)[φ(X( j)) − φ(X( j−1))]

where φ(·) is some continuously differentiable function of the observations. The values
Hn(u) are related to the so-called total time on test, see Csörgő and Yu (1997). By
construction, we have

∇t Zi (λ) = Hn(i/n)

with

φ(x) = −∇t [log(1 − G(x; t))]t=λ .

Let Fn(·) and Qn(·) = F−1
n (u) = inf{x : Fn(x) ≥ u}, 0 ≤ u ≤ 1 be the empirical

distribution and the left-continuous quantile functions, respectively. If φ′(·) stands for
the derivative of the function φ(·), we can rewrite

Hn(u) =
∫ Qn(u)

X(1)

φ′(x)(1 − Fn(x)) dx, u ≥ X(1).
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The theoretical counterpart of Hn(u) is defined by

H(u) =
∫ Q(u)

Q(0)

φ′(x)(1 − F(x)) dx, u ≥ 0 (24)

where hereafter F(·) is a short notation for F(x;α, λ) and Q(u) = F−1(u) = inf{x :
F(x) ≥ u}. Now, let

c2n = p−1 Hn(p) − p−1
∫ p

1/(n+1)

Hn(u)

u
du.

We claim that under mild conditions on the function φ(·),

c2n → p−1 H(p)− p−1
∫ p

0

H(u)

u
du, in probability,

and c2n −c1n(λ)=oP (1). (25)

Hence

cn(λ) → c0 = C(α, λ)

[

H(p) −
∫ p

0

H(u)

u
du

]

, in probability. (26)

Concerning the conditions on φ(·), without any loss of generality, we set φ(Q(0)) =
0. Moreover, we assume that

φ(·) is monotonic on an interval (Q(0), r), (27)

for some Q(0) < r < Q(p) and

∫ ε

0

|φ(Q(u))|
u

du < ∞, (28)

for some ε > 0. The monotonicity condition (27) is a very mild convenient restriction.
By simple algebra, it is easy to check that conditions (27) and (28) and the fact that
φ′(·) is bounded on [r, Q(p)] guarantee that

∫ p

0

|H(u)|
u

du < ∞

and thus c0 is well defined. A simple way to ensure c0 �= 0 is to check that the
function u �→ H(u)/u is monotonic on (0, p). For instance, this is the case when
H(·) is concave or convex on (0, p).

Define

H̃n(u) =
∫ Q(u)

Q(0)

φ′(x)(1 − Fn(x)) dx =
∫ Q(u)

X(1)

φ′(x)(1 − Fn(x)) dx
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and notice that

∣
∣H(u) − H̃n(u)

∣
∣ ≤ sup

0≤x<∞
|Fn(x) − F(x)|

∫ Q(u)

Q(0)

∣
∣φ′(x)

∣
∣ dx ≤

∫ Q(u)

Q(0)

∣
∣φ′(x)

∣
∣ dx .

The integrability of the function u �→ u−1
∫ Q(u)

Q(0)

∣
∣φ′(x)

∣
∣ dx on (0, p] follows from

(27) and (28) and the boundedness of φ′(·) on compact intervals. Next, from this,
Glivenko–Cantelli theorem, and the dominated convergence theorem,

∫ p

1/(n+1)

H̃n(u)

u
du −

∫ p

0

H(u)

u
du → 0, almost surely.

Moreover, it is clear that H(p) − H̃n(p) → 0, almost surely. Hence, to prove the
first part of (25) it suffices to show that

c2n − c̃2n → 0, in probability, (29)

where

c̃2n = p−1 H̃n(p) − p−1
∫ p

1/(n+1)

H̃n(u)

u
du.

It is easy to see that the regularity of the function φ(·) and the almost sure conver-
gence of Qn(p) towards Q(p) imply H̃n(p) − Hn(p) → 0, almost surely. Hence for
proving (29) it remains to show

∫ p

1/(n+1)

H̃n(u) − Hn(u)

u
du → 0, in probability. (30)

Now, fix some x0 such that Q(p) < x0 < Q(1). To control the large values of Qn(u),
let us decompose

Hn(u) =
∫ Qn(u)∧x0

X(1)

φ′(x)(1 − Fn(x)) dx +
∫ Qn(u)

Qn(u)∧x0

φ′(x)(1 − Fn(x)) dx

= : H1n(u) + H2n(u).

It is easy to check that

P

(∫ p

1/(n+1)

|H2n(u)|
u

du > 0

)

≤ P(Qn(p) > x0) → 0.

On the other hand, for some constant C > 0 we have

∣
∣H̃n(u) − H1n(u)

∣
∣ ≤ C |φ(Qn(u) ∧ x0) − φ(Q(u))|
= C |φ′(Q(θn(u)))| |Qn(u) − Q(u)|
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with F(Qn(u)) ∧ u ≤ θn(u) ≤ F(Qn(u) ∧ x0) ∨ u. To derive (30) it suffices then to
show

∫ p

1/(n+1)

|φ′(Q(θn(u)))|
f (Q(u))u1/2η(u)

|ρn(u)| du = OP (1) (31)

for some continuous function η(·) such that limu↓0 η(u) = 0, where f (·) = F ′(·) is
the density of the observations and, like in Csörgő and Horváth (1990), ρn(u) is the
quantile process, that is

ρn(u) = √
n f (Q(u))(Qn(u) − Q(u)), 0 < u < 1.

To show (31) we will apply Theorem 2.1 of Csörgő and Horváth (1990) with p = 1.
However, before proceeding we have to bound φ′(Q(θn(u))) for small values of u.
For this purpose, let us suppose that there exists some constants c > 0 and a, d ≥ 0
such that

|φ′(x)| ≤ c f a(x)F−d(x), ∀ Q(0) < x ≤ x0. (32)

At this point, it becomes more clear why we consider x0 < Q(1): condition (32)
may be too restrictive on the whole support of the observations. Now, since

F(Qn(u)) ∧ u ≤ θn(u) ≤ F(Qn(u) ∧ x0) ∨ u ≤ F(Qn(u)) ∨ u

and

(1 − F(Qn(u))) ∧ (1 − u) ≤ (1 − F(Qn(u) ∧ x0)) ∧ (1 − u)

≤ 1 − θn(u)≤ (1 − F(Qn(u))) ∨ (1 − u),

by minor modifications of the arguments used by Csörgő and Horváth (1990) on page
76, see also Lemma 1 of Csörgő and Révész (1978), deduce that if

sup
Q(0)<x<Q(1)

F(x)(1 − F(x))
| f ′(x)|
f 2(x)

< ∞ (33)

and f �= 0 on (Q(0), Q(1)), then

sup
1/(n+1)≤u≤n/(n+1)

f (Q(θn(u)))

f (Q(u))
= OP (1).

This, condition (32) and Eq. (31) indicate that property (30) holds if

∫ p

1/(n+1)

|ρn(u)|/q(u) du = OP (1) (34)
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with

q(u) = u1/2+dη(u) f 1−a(Q(u)).

To apply Theorem 2.1 of Csörgő and Horváth (1990), the functions Q(·), f (·) and
q(·) should satisfy the following additional assumptions:

f (Q(·)) is positive and continuous on (0, p]; (35)

∫ p

0
u1/2/q(u) du < ∞; (36)

1/ f (Q(u)) ≤ w(u), where w(·) is a monotone function on (0, p]; (37)

∫ p

0
f (Q(u))w(u/ν)u1/2/q(u) du < ∞, ∀ν > 1 (resp. ν < 1) (38)

if w(·) is ↗ (resp. ↘) on (0, p].

Theorem 2.1 of Csörgő and Horváth (1990) implies (34) and so eventually we
obtain (30) and thus the first part of (25). The arguments for second part of (25) are
elementary and hence will be omitted. ��

7.1.2 The proof of (19)

By the Taylor expansion, U (δ) = Sn(t) − Sn(λ) − δcn(λ) = δ[cn (̃t) − cn(λ)], where
|̃t −λ| ≤ |δ|n−1/2. To show (19), let us impose the following convenient assumptions
that are satisfied in the common examples encounter in reliability analysis: for any
fixed p ∈ (0, 1), α and λ, one can chose some (small) ζ0 > 0 such that

• there exists a constant C > 0 such that

[1 − F(x, α, λ)]1+Cζ ≤ 1 − F(x, α, λ + ζ ) ≤ [1 − F(x, α, λ)]1−Cζ , (39)

∀x ∈ (Q(0), Q(p)) and ∀|ζ | ≤ ζ0;
• a uniform version of condition (22) holds true, that is there exists a sequence rn

satisfying rn/
√

n → 0 such that ∀ 1 ≤ i ≤ N

E1/2

[

sup
|ζ |≤ζ0

{∇t Zi (λ + ζ )

Zi (λ + ζ )

}2
]

≤ rn (40)

• for any p̄ ∈ (0, p) there exist a function h(·) ≥ 0 with h(ζ ) → 0 when ζ → 0
such that

∣
∣
∣φ′

λ+ζ (x) − φ′
λ(x)

∣
∣
∣ ≤ �(x)h(ζ ), ∀x ∈ (Q( p̄), Q(p)), ∀|ζ | ≤ ζ0, (41)
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where φt (x) = −∇t log(1 − G(x; t)) and �(·) is a function independent of p̄
which satisfies condition (32) with the same constants a and d like φ′

λ(·) (possibly
with a different constant c).

• for any p̄ ∈ (0, p) there exist a real-valued function γ1(·) and a nonnegative
function γ2(·) with γ j (ζ ) → 0, j = 1, 2, when ζ → 0 and a constant c > 0 such
that

∣
∣
∣φ′

λ+ζ (x)

∣
∣
∣≤c{|φ′

λ(x)|}1+γ1(ζ )F(x)−γ2(ζ ),

∀x ∈ (Q(0), Q( p̄)), ∀|ζ |≤ζ0. (42)

Condition (39) implies that ∀ 1 ≤ i ≤ N and ∀ |ζ | ≤ ζ0,

C(α, λ)[1 − Cζ ]
C(α, λ + ζ )

Zi (λ) ≤ Zi (λ + ζ ) ≤ C(α, λ)[1 + Cζ ]
C(α, λ + ζ )

Zi (λ).

From this and under the assumption of a continuous differentiable function t �→
C(α, t), deduce that ∀ 1 ≤ i ≤ N and ∀ |ζ | ≤ ζ0, |1 − E[Zi (λ + ζ )]C(α, λ)n/ i | ≤
C1ζ for some C1 > 0. Moreover,

E

[

sup
|ζ |≤ζ0

|Zi (λ + ζ ) − E[Zi (λ + ζ )]|2
]

≤ C2ζ
2{E[Z2

i (λ)] + E2[Zi (λ)]}

≤ C3ζ
2i2n−2,

for some constants C2, C3 > 0. Now, we can write

∇t Zi (λ + ζ )

Zi (λ + ζ )
− ∇t Zi (λ)

E[Zi (λ)] = ∇t Zi (λ + ζ )

(
1

Zi (λ + ζ )
− 1

E[Zi (λ + ζ )]
)

+∇t Zi (λ + ζ ) − ∇t Zi (λ)

E[Zi (λ + ζ )]
+∇t Zi (λ)

(
1

E[Zi (λ + ζ )] − 1

E[Zi (λ)]
)

=: �1(i, ζ ) + �2(i, ζ ) + �3(i, ζ ).

Let � j (ζ ) = N−1 ∑N
i=1 � j (i, ζ ), j = 1, 2, 3. The term �1(i, ζ ) could be

bounded using a Cauchy–Schwarz inequality, see also (21), and the uniform bounds
on the first- and second-order moments above. From these facts we can deduce that
sup|ζ |≤δn−1/2 �1(ζ ) = OP (rn/

√
n) = oP (1). For the term �3(ζ ), take absolute values

and, one one hand, use the fact that |E[Zi (λ + ζ )] − E[Zi (λ)]| ≤ C1 E[Zi (λ)]ζ and,
on the other hand, apply the arguments used for proving (18) with φ′

λ(·) replaced by
|φ′

λ(·)|. Deduce that sup|ζ |≤δn−1/2 �3(ζ ) = oP (1). Finally, for any small p̄ > 0, the
sum defining �2(ζ ) could be split in two parts:

∑
1≤i≤N = ∑

1≤i≤n p̄ +∑
n p̄<i≤N .

For the second sum, use assumption (41) and apply the arguments used for (18)
with φ′

λ(·) replaced by |�(·)|. Deduce that the second sum converges in probabil-
ity to a positive real number that can be made arbitrarily small is ζ is sufficiently
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close to zero. For the first sum, take absolute values, use assumption (42), trian-
gle inequality and apply again the arguments used for (18) with φ′(·) replaced by
|φ′

λ(·)| + c|φ′
λ(x)|1+γ1(ζ ). Deduce that the first sum converges in probability to a pos-

itive real number that can be made arbitrarily small is p̄ is sufficiently close to zero.
Conclude that sup|ζ |≤δn−1/2 �2(ζ ) = oP (1). Gather results and deduce that

sup
|ζ |≤δn−1/2

|cn(λ + ζ ) − cn(λ)| → 0 in probability,

which implies (19) and thus completes the proof. ��

7.2 Proof of Corollary 1

In the Weibull case,2 the estimator λ̂ is the solution of the equation Wn(t) = 0 with
Wn(t) defined in (15). Conditions 1 and 2 of Property 1 are quite obvious. By lengthy
but quite elementary calculations, it can be shown that for any α, λ > 0, condition 3 is
satisfied with any p ∈ (0, 1) except at most two values. Now let us check condition 4
of Property 1. We have, Q(0) = 0, φ(x) = xλ log(x) so that φ(·) is strictly decreasing
on (0, exp(−1/λ)), which guarantees (27). Moreover, Q(u) = α−1 log1/λ(1/(1−u)).
Since log(1/(1 − u)) ≤ u/(1 − u), deduce that

|φ(Q(u))| ≤ C
u

1 − u
log

(
u

1 − u

)

, 0 < u ≤ p

for some constant C , thus condition (28) also holds. Conditions (33) and (35) are
clearly fulfilled. Next, 1/ f (Q(u)) = cQ1−λ(u)(1 − u)−1 for some c > 0. Since
limu↓0 u−1 log(1/(1 − u)) = 1, deduce that (37) is fulfilled with w(u) = Cu−1+1/λ

for some C > 0. Finally, for the definition of the q(·) function one can take η(u) = uγ

for some (small) γ > 0 and thus conditions (36) and (38) are satisfied if
∫ p

0
f (Q(u))a−1u−γ−d du < ∞.

To check that the last integral is finite it suffices to notice that in the Weibull model
with λ �= 1 condition (32) holds with d = 0 and a = 1 + b/(1 − λ) and arbitrarily
small b > 0 (and x0, c0 > 0 sufficiently large), so that f (Q(u))a−1u−γ ≤ Cu−γ−b/λ

with γ + b/λ < 1 and some C > 0. When λ = 1, the function f (Q(·)) is bounded
on (0, p] so that it suffices to take a = 0 and d > 0 sufficiently small. Clearly,
conditions (36) and (38) also hold for ā and d̄ sufficiently close to a and d. Condition
(39) obviously holds with C = 1. To check condition (40), notice that in the Weibull
case, ∀ λ + ζ > 0,

2 In this section, c and C are constants that may change from line to line.
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∣
∣
∣
∣
∇t Zi (λ + ζ )

Zi (λ + ζ )

∣
∣
∣
∣ ≤ max

{| log(X(1))|, | log(X(N+1))|
}
.

Using the moments of the order statistics from an exponential distribution, it is easy
to check that (40) is satisfied for rn = C log n with C some positive constant (that
depends on λ). For checking condition (41) it suffice to notice that |φ′

λ+ζ (x)−φ′
λ(x)| ≤

φ′
λ(x)|1− xζ [(λ+ ζ ) log(x)+1]/[λ log(x)+1]| where c is some constant depending

on λ, ζ and p̄ and x belongs to a compact interval to the right of the origin. Finally,
for (42) notice that if λ �= 1, ζ > 0 and p̄ < exp(−1/λ),

|φ′
λ+ζ (x)| = {xλ−1|λ log(x) + 1|}1+γ1(ζ )�(x) = |φ′

λ(x)|1+γ1(ζ )�(x)

where γ1(ζ ) = ζ/(2(λ − 1)) and �(x) = {xζ/2|λ log(x) + 1|−1−ζ/(2(λ−1))|(λ +
ζ ) log(x) + 1|} is a bounded function on (0, p̄). Hence (42) holds with γ2(ζ ) = 0.
The case λ �= 1 and ζ < 0 can be handled similarly. When λ = 1, take γ1(ζ ) = 1
and, for instance, γ2(ζ ) = |ζ |. ��

7.3 Proof of Lemma 1

f ′(λ) =
be−bλ

1−e−bλ log(1 − e−aλ) − ae−aλ

1−e−aλ log(1 − e−bλ)

(log(1 − e−aλ))2

= b(eaλ − 1) log(1 − e−aλ) − a(ebλ − 1) log(1 − e−bλ)

(eaλ − 1)(ebλ − 1)(log(1 − e−aλ))2 .

Let

g(λ) = b(eaλ − 1) log(1 − e−aλ) − a(ebλ − 1) log(1 − e−bλ),

then

g′(λ) = ab

[
log(1 − e−bλ)

−e−bλ
− log(1 − e−aλ)

−e−aλ

]

.

Note that log(1 + x)/x is strictly decreasing on (0, ∞) and that −e−λx is strictly

increasing in x > 0 for λ > 0, we have that log(1−e−λx )

−e−λx is strictly decreasing in x > 0
for λ > 0. Thus g′(λ) < 0 on (0, ∞). Hence g(λ) is strictly decreasing on (0, ∞).
Therefore, for λ > 0, we have

g(λ) < lim
λ→0+ g(λ) = 0.

So we have that f ′(λ) < 0 on (0, ∞), thus f (λ) is strictly decreasing on (0, ∞).
��
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