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Abstract In this paper, we develop robust estimation for the mean and covariance
jointly for the regression model of longitudinal data within the framework of general-
ized estimating equations (GEE). The proposed approach integrates the robust method
and joint mean–covariance regression modeling. Robust generalized estimating equa-
tions using bounded scores and leverage-based weights are employed for the mean
and covariance to achieve robustness against outliers. The resulting estimators are
shown to be consistent and asymptotically normally distributed. Simulation studies
are conducted to investigate the effectiveness of the proposed method. As expected,
the robust method outperforms its non-robust version under contaminations. Finally,
we illustrate by analyzing a hormone data set. By downweighing the potential out-
liers, the proposed method not only shifts the estimation in the mean model, but also
shrinks the range of the innovation variance, leading to a more reliable estimation in
the covariance matrix.
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618 X. Zheng et al.

1 Introduction

Longitudinal data are often characterized by the dependence of repeated observations
over time within the same subject. Observations within the same subject are prone to
be correlated. In a marginal model, the typical correlation among a subject’s repeated
measurements is not of primary interest, but it should be taken into account to make
proper inference. In fact, ignoring the within-subject correlation can result in an inef-
ficient estimator of a regression model, see Qu et al. (2000) and Wang (2003). A
well-modeled covariance can decrease the bias of mean estimation for longitudinal
data including missing values Daniels and Zhao (2003) and maintain a reliable esti-
mation for the covariance matrix even when the mean model is not correctly specified
Pan and Mackenzie (2003). In some cases, the correlation structure plays the role as
important as the mean structure, which suggests that the estimation of the covariance
matrix is crucial in longitudinal study.

To overcome these challenges, there has been substantial recent literature con-
sidering the mean and covariance matrix simultaneously. Pourahmadi (1999, 2000)
developed a parametric joint mean and covariance model in the framework of GEE by
the modified Cholesky decomposition, but their method does not deal with irregular
observed measurements. Pan and Mackenzie (2003) exploited a reparameterisation of
the marginal covariance matrix to extend Pourahmadi’s work to irregular cases. Wu
and Pourahmadi (2003) proposed non-parametric smoothing to regularize the estima-
tion of covariance matrix, using the two-step estimation of Fan and Zhang (2000). To
relax the parametric assumption in mean and covariance structure, Fan et al. (2007)
and Fan and Wu (2008) proposed semiparametric model for the mean and covariance
structure. However, they only considered the normal data or nearly normal data. For
longitudinal data analysis, Liang and Zeger (1986) introduced the technique of gener-
alized estimating equations and generalized estimating equations were developed for
both mean and covariance parameters in Ye and Pan (2006). To relax the parametric
assumption posed in Ye and Pan (2006), Leng et al. (2010) proposed a semiparametric
model for mean and covariance structure.

GEE approach takes advantage of the built-in robustness since no specification of
the full likelihood is required. However, in a longitudinal data set, one outlier in the
subject level may generate a set of outliers in the sample due to repeated measure-
ments. Therefore, robustness study is required for the reason that estimating equations
are highly sensitive to outliers in the sample. Robust regression methods have been
developed for estimation on mean parameters and covariance matrix estimation sepa-
rately. An incomplete list of recent works on the robust GEE methods includes Cantoni
(2004), He et al. (2005), Wang et al. (2005a), Qin and Zhu (2007), Qin et al. (2009)
and Croux et al. (2012).

However, as far as we know, there is little discussion on robust estimation on
joint mean and covariance model. Croux et al. (2012) considered robustification on
the mean and covariance where they set up estimating equations for both the mean
and the dispersion parameter. The constraint of their approach is that they assumed an
inflexible covariance structure determined by two parameters. In this article, following
Ye and Pan (2006) and He et al. (2005), we establish a set of robust generalized
estimating equations for analyzing a parametric joint mean and covariance regression
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Robust estimation in joint mean–covariance regression model 619

model for longitudinal data. Robust generalized estimating equations using bounded
scores and leverage-based weights are developed for the mean and covariance to
achieve robustness against outliers. The advantage of the proposed joint model relies
on modeling the covariance matrix with moderate number of parameters, rather than
assuming a fixed structure or introducing unstructured covariance matrix causing the
curse of dimensionality.

Similar to He et al. (2005), the Mallows-type weights are used to downweigh the
effect of leverage points when a bounded score function on the Pearson residuals is
employed to reduce the effect of outliers in the response. The Mallows-type weights
have also been used by Qin and Zhu (2007) in generalized semiparametric mixed model
and Qin et al. (2009) in generalized partial linear mixed model for longitudinal data
analysis. The resulting estimators for the regression coefficients in both the mean and
covariance are shown to be consistent and asymptotically normally distributed. In sim-
ulation studies, for one thing, we apply the robust method in the joint model to obtain
better estimators for both mean and covariance parameters under contaminations. On
the other side, we find robustifications in mean and in covariance matrix estimation
are both necessary, owing to the fact that the triple-robust estimating method performs
far better than the mean-robust estimating method. In the analysis of the hormone data
analysis, the main advantage of the robust method lies in successfully detecting both
the subject-level and observation-level potential influential outliers, which results in
a more reliable estimation in both the mean and covariance.

The rest of the article is organized as follows: In Sect. 2, we formulate the robust
joint mean and covariance model and introduce the estimation methods. Theoretical
properties are established in this section as well. Simulation studies are presented in
Sect. 3. Finally, we carry out a hormone data set analysis to illustrate the proposed
method in Sect. 4.

2 Methodology

2.1 Joint mean–covariance model

Suppose that we have a sample of m subjects. Let yi = (yi1, . . . , yini )
′ be the ni

repeated measurements at time point ti = (ti1, . . . , tini )
′ of the i th subject. Let E(yi ) =

μi = (μi1, . . . , μini )
′ and Cov(yi ) = �i be the ni × 1 mean vector and ni × ni

covariance matrix of yi , respectively.
According to the positive definite property of the covariance matrix�i , there exists

a unique lower triangular matrix Φi with 1’s being the diagonal entries and a unique
diagonal matrix Di with positive diagonals such that

Φi�iΦ
′
i = Di . (1)

As indicated by Pourahmadi (1999), Φi and Di have clear statistical interpretation.
The lower-diagonal entries of Φi are the negatives of the autoregressive coefficients
φi jk defined in
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ŷi j = μi j +
j−1∑

k=1

φi jk(yik − μik), (2)

which is the linear least squares predictor of yi j based on its predecessors
yi( j−1), . . . , yi1. The diagonal entries σ 2

i j of Di can be seen as the innovation variance

σ 2
i j = var(εi j ), where εi j = yi j − ŷi j .

The modified Cholesky decomposition can guarantee�i to be positive definite thus
takes the advantage that φi jk and σ 2

i j are unconstrained. Similar to Ye and Pan (2006),
we adopt three generalized linear models for the mean, generalized autoregressive
parameters and innovation variances:

g(μi j ) = x ′
i jβ, φi jk = z′

i jkγ, log σ 2
i j = z′

i jλ, (3)

where i = 1, . . . ,m, j = 1, . . . , ni , k = 1, . . . , j − 1, xi j , zi jk and zi j are p ×
1, q ×1 and d ×1 vectors of covariates, and β, γ and λ are the associated parameters.
The known link function g(·) is assumed to be monotone and differentiable. The
covariates zi jk and zi j may contain the baseline covariates, the time and the associated
interactions. Orthogonal form for the polynomials of the time are recommended as
the covariates for the autoregressive components by Ye and Pan (2006):

zi jk = (1, (ti j − tik), (ti j − tik)
2, . . . , (ti j − tik)

q−1).

In the above models, estimation for the autoregressive coefficients and innovation
variances are treated as important as the estimation for the mean.

2.2 Robust generalized estimating equations for the mean

To estimate the regression parameter β in Sect. 2.1, generalized estimating equations
(Liang and Zeger 1986) can be represented as

m∑

i=1

μ̇′
i V −1

i (yi − μi ) = 0, (4)

where Vi is the covariance matrix of yi assumed as Vi = A1/2
i R(α)A1/2

i and μ̇i is
the first derivative of μ(·) evaluated at (xi1, . . . , xini )

′β. Here, Ai is a diagonal matrix
with the marginal variance of yi as the diagonal component, and R(α) is a working
correlation matrix.

He et al. (2005) mentioned that the GEE approach has some built-in robustness
since it requires no specification of the full likelihood. However, estimating equations
are highly sensitive to outliers in the sample. In longitudinal studies, an outlier in a
subject-level measurement can generate multiple outliers in the sample. Sinha (2004)
also emphasized that a small proportion of the data may come from an arbitrary
distribution rather than the distribution in the assumption, i.e. the deviations from
underlying distributions, which can result in outliers or influential observations in the
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data. Therefore, robust method is desirable to mitigate the effect of outliers and to
obtain bounded influence functions.

To improve the efficiency of the GEE estimator under contamination, He et al.
(2005) defined the following robust generalized estimating equations (RGEE) for the
mean parameter:

m∑

i=1

X ′
i�i (μi (β))(V

β
i )

−1hβi (μi (β)) = 0,

where Xi = (xi1, . . . , xini )
′, �i (μi (θ)) = diag{μ̇i1(β), . . . , μ̇ini (β)}, with μ̇i j (·)

denoting the first derivative of μ(·) evaluated at x ′
i jβ; and hβi (μi (β)) = Wβ

i [ψβ
(μi (β)) − Cβ

i (μi (β))]. In hβi (μi (β)), they employed a Huber function ψ on the

Pearson residual and a weighting matrix Wβ
i to control the influence from outliers.

Cβ
i (μi (β)) is developed to ensure the consistency of the estimating equation. Detailed

explanation of the notations are in the following subsection.

2.3 Robust estimating equations for joint mean and covariance model

In the previous subsections, we have constructed the joint mean–covariance model.
However, we have introduced robust generalized estimating equation only for the
mean. Now we propose the following robustified generalized estimating equations for
θ = (β ′, γ ′, λ′)′

U (θ) = (U1(β)
′, U2(γ )

′, U3(λ)
′)′.

To be specific, the detailed estimating equations for the mean, generalized autoregres-
sive parameters and innovation variances are

U1(β) =
m∑

i=1

X ′
iΔi (μi (β))(V

β
i )

−1hβi (μi (β)) = 0, (5)

U2(γ ) =
m∑

i=1

T ′
i (V

γ

i )
−1hγi (r̂i (γ )) = 0, (6)

U3(λ) =
m∑

i=1

Z ′
i Di (V

λ
i )

−1hλi (σ
2
i (λ)) = 0, (7)

where hβi (μi (β)) = Wβ
i [ψβ(μi (β)) − Cβ

i (μi (β))], hγi (r̂i (γ )) = W γ

i [ψγ (r̂i (γ )) −
Cγ

i (r̂i (γ ))] and hλi (σ
2
i (λ)) = W λ

i [ψλ(σ 2
i (λ))−Cλ

i (σ
2
i (λ))] act as the core of the esti-

mating equations with ψβi , ψ
γ

i , ψ
λ
i , Cβ

i , Cγ

i , Cλ
i , Wβ

i , W γ

i and W λ
i to be specified

later; Xi = (xi1, . . . , xini )
′ and Zi = (zi1, . . . , zini )

′, ri and r̂i are ni ×1 vectors with

j th components ri j = yi j − μi j and r̂i j = E(ri j |ri1, . . . , ri( j−1)) = ∑ j−1
k=1 φi jkrik .

We denote
∑0

k=1 as zero when j = 1. In U3(λ), ε
2
i and σ 2

i are ni × 1 vectors
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with j th components ε2
i j and σ 2

i j , respectively, where εi j = yi j − ŷi j . We have

E(ε2
i ) = σ 2

i . Δi (μi (θ)) = diag{μ̇i1(β), . . . , μ̇ini (β)}, with μ̇i j (·) denoting the first
derivative ofμ(·) evaluated at x ′

i jβ; T ′
i = ∂ r̂ ′

i/∂γ is the q ×ni matrix with j th column

∂ r̂i j/∂γ = ∑ j−1
k=1 rikφi jk ; Di = diag{σ 2

i1, . . . , σ
2
ini

}.
Furthermore, V β

i = A−1/2
i �i , Ai is the diagonal elements of �i ; V γ

i = D1/2
i ;

V λ
i = Ã−1/2

i �̃i , Ãi is the diagonal elements of �̃i . Similar to Ye and Pan (2006), the

sandwich working covariance structure �̃i = B1/2
i Ri (δ)B

1/2
i can be used to model the

true �̃i = V ar(ε2
i ) with Bi = 2diag{σ 4

i1, . . . , σ
4
ini

} and Ri (δ) mimics the correlation

between ε2
i j and ε2

ik by introducing a new parameter δ. Typical structures for Ri (δ)

include compound symmetry and AR(1). Although no particular suggestion on how to
choose the structure and the value of δwas provided Ye and Pan (2006), the parameter δ
has little effect on the estimation in practice, which is also confirmed in the simulation
study reported in the later section. Moreover, we will show that the working correlation
structure also has little effect on the estimates. In fact, ri in U2(γ ) and ε2

i in U3(λ)

play a role similar to that of yi in U1(β) and they can be viewed as working responses.
Hence the ideas behind Eqs. (6) and (7) are in agreement with that in Eq. (5), which
enhance the importance of estimation for the covariance matrix.

2.4 Huber’s score function ψ and weights wi j

In the core of the estimating equations, ψβ(μi ) = ψ(A−1/2
i (yi − μi )), ψ

γ (r̂i ) =
ψ(D−1/2

i (ri − r̂i )) and ψλ(σ 2
i ) = ψ( Ã−1/2

i (ε2
i − σ 2

i )). The function ψ(·) is chosen
to limit the influence of outliers in the response variable, and a common choice is
Huber’s score function ψc(x) = min{c,max{−c, x}} for some constant c, normally
chosen to be between 1 and 2.

Huber’s score function is the most widely used robustness technique as a bounded
function, truncating large Pearson residuals symmetrically, which ensures the asymp-
totic normally of the estimator. The tuning constant c controls the robustness and the
level of asymptotic efficiency. In practice, c = 1.345, c = 1.5 or c = 2 can be used
depending on the seriousness of the contamination in a data set. We do simulations
on different c and find the choice of c is not critical to gaining a good robust estimate.
In this article, we use c = 2 in our implementation, which is sufficient to prove the
improvement of efficiency by adopting robust estimating equations.

To ensure Fisher consistency, we use Cβ
i (μi ) = E[ψ(A−1/2

i (yi −μi ))], Cγ

i (r̂i ) =
E[ψ(D−1/2

i (ri − r̂i ))] and Cλ
i (σ

2
i ) = E[ψ( Ã−1/2

i (ε2
i − σ 2

i ))]. Given the assumption
that yi are under normal distribution, the three expectations depend only on the choice
of constant c in Huber’s score function. In the following parts, we use Cβ

i = 0, Cγ

i = 0
and Cλ

i = −0.05 that calculated under normality assumption.
In general cases, unless the true distribution is correctly specified, the expectation

Ci in estimating equations that used to ensure the Fisher consistency are not available.
Qin and Zhu (2007) discussed the difficulty of calculating Ci . They mentioned that Ci

can be calculated easily for binary data as yi j only take values 0 and 1 while hard to
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obtain for the data following other distributions as the calculation of expectation Ci

involves intractable integrals. As an alternative, some numerical integration methods
or approximations are required to achieve the expectation Ci in this situation. Wang
et al. (2005b) provided a bias correction method for robust estimation functions.

The weighting matrix Wβ
i = diag(wβi1, . . . , w

β
ini
), W γ

i = diag(wγi1, . . . , w
γ

ini
)

and W λ
i = diag(wλi1, . . . , w

λ
ini
) are diagonal weighting matrices assigning weights

to each observation. Here, diagonal entries wi j can assign different weights on each
observation, instead of assigning unique weight on observations from a single subject.

Following Qin et al. (2009), we choose the weight functionwi j as a function of the
Mahalanobis distance in the form

wi j = w(pi j ) = min

⎧
⎨

⎩1,

[
b0

(pi j − m p)T S−1
p (pi j − m p)

]ρ/2⎫⎬

⎭ ,

with ρ ≥ 1, m p and Sp are some robust estimates of the location and scale of pi j

such as the minimum covariance determinant estimators, where pi j is corresponding
to the design space. As a result, wi j is a weight function that can downweigh any
leverage point in the design space. In the following simulation study, b0 is chosen as
the 95th percentile of the chi-squared distribution with degrees of freedom equal to
the dimension of pi j and ρ is fixed as 1. Moreover, since zi j = xi j (the design spaces
for β and λ are the same), we choose pi j = xi j for all three weighting matrices and
denote them as Wi = diag(wi1, . . . , wini ) for simplicity.

The three proposed robust estimation equations within the framework of general-
ized estimating equations that do not require the normal distribution assumption are
extensions for the method illustrated in Ye and Pan (2006) since our equations can
resist the contamination and downweigh the potential influential points. By introduc-
ing the modified Cholesky decomposition, the positive definiteness of the covariance
matrix can be guaranteed. A different variance correlation decomposition on certain
type of matrix is implemented in Fan et al. (2007). Furthermore, the dimension of the
parameter space of the covariance matrix has been substantially reduced that allows
us to consider the regression model for the generalized autoregressive parameters
and innovation variances simultaneously with the mean. Most importantly, we apply
Mallows-type robust estimations for the mean and covariance jointly for the regres-
sion model which enjoy thorough robustness comparing to the single robust estimating
equation established in He et al. (2005).

2.5 Estimators of parameters

Quasi-Fisher scoring algorithm is applied in solving β, γ and λ iteratively. First we
choose a starting value for β, γ and λ, respectively. If we choose the special case of
working independence Ri = I , which implies a convenient starting value of γ and λ
to be γ (0) = 0 and λ(0) = 0, then (5) no longer depends on γ and λ. Hence, an initial
estimate β(0) of β is set to be the solution to (5) in this special case as the robust GEE
estimator under working independence covariance structure.
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Given Σi , we solve (5) to find the estimate of β using the iterative procedure

β(k+1) = β(k) +
⎧
⎨

⎩

[
m∑

i=1

X ′
iΔi (V

β
i )

−1Γ
β

i Δ
′
i Xi

]−1 m∑

i=1

X ′
iΔi (V

β
i )

−1hβi (μi (β))

⎫
⎬

⎭

∣∣∣∣∣∣
β=β(k)

,

(8)

where Γ βi = Eḣβi (μi (β)) = E∂hβi (μi )/∂μi |μi =μi (β), for i = 1, . . . ,m. In practice,
if we know the distribution of the data set, such as normal or t distribution, we can
calculate the expectation analytically. Otherwise, we can use the sample mean or sam-
ple median to approximate the expectation when we do not know the true underlying
distribution.

Given β and λ, γ can be updated approximately through

γ (k+1) =
⎧
⎨

⎩

[
E

m∑

i=1

T ′
i (V

γ

i )
−1Γ

γ

i Ti

]−1 m∑

i=1

T ′
i (V

γ

i )
−1hγi (r̂i (γ ))

⎫
⎬

⎭

∣∣∣∣∣∣
γ=γ (k)

, (9)

with Γ γi = Eḣγi (r̂i (γ )) = E∂hγi (r̂i )/∂ r̂i |r̂i =r̂i (γ ), for i = 1, . . . ,m.
Finally, given β and γ, the innovation variance parameters λ can be updated using

λ(k+1) = λ(k) +

⎧
⎪⎨

⎪⎩

⎡

⎣
m∑

i=1

Z ′
i Di (V

λ
i )

−1Γ λi D′
i Zi

⎤

⎦
−1 m∑

i=1

Zi Di (V
λ
i )

−1hλi (σ
2
i (λ))

⎫
⎪⎬

⎪⎭

∣∣∣∣∣∣∣
λ=λ(k)

,

(10)

where Γ λi = Eḣλi (σ
2
i (λ)) = E∂hλi (σ

2
i )/∂σ

2
i |σ 2

i =σ 2
i (λ)

, for i = 1, . . . ,m.
In summary, these sets of parameters can be estimated using weighted least squares.

The main algorithm processes iteratively as follows:

Step 1: Select an initial value (β(0)
′
, γ (0)

′
, λ(0)

′
)′ and use model (3) to form Φ

(0)
i and

D(0)
i . Then Σ(0)

i , the starting value of Σi , is obtained.
Step 2: Using the weighted least squares estimators (8)–(10) to calculate the estima-

tors β(1), γ (1) and λ(1) of β, γ and λ, respectively.
Step 3: Replace β(0), γ (0) and λ(0) with the estimators β(1), γ (1) and λ(1).

Repeat Steps 2–3 until convergence of the parameter estimators.
In simulation, the proposed robust method works well under different contami-

nations. When the sample size is moderate, the difficulty of the convergence in the
non-robust method of the algorithm lies in the non-convergence of λ̂m in most of the
cases, especially in those having serious contaminations.

The robust method is supposed to outperform the non-robust method substantially in
serious contaminations. However, the non-robust method has difficulties in obtaining
a reliable result under heavy contaminations. Therefore, we can only compare them
under mild contaminations in simulation studies.
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2.6 Asymptotic properties and hypotheses testing

Following Ye and Pan (2006), we can obtain the following theorems.

Theorem 1 Suppose there is only one root θ̂m = (β̂ ′
m, γ̂

′
m, λ̂

′
m)

′ for the generalized
estimating equations. Under some mild regularity conditions stated in Appendix, the
generalized estimating equation estimator θ̂m = (β̂ ′

m, γ̂
′
m, λ̂

′
m)

′ is strongly consistent
for the true value θ0 = (β ′

0, γ
′
0, λ

′
0)

′; that is, θ̂m = (β̂ ′
m, γ̂

′
m, λ̂

′
m)

′ → θ0 =
(β ′

0, γ
′
0, λ

′
0)

′ almost surely as m → ∞.
We denote Vm = (vkl

m )k,l=1,2,3 as the covariance matrix of the function U (θ)/
√

m =
(U ′

1(β), U ′
2(γ ), U ′

3(λ))/
√

m, where vkl
m = m−1cov(Uk,Ul) for k �= l and vkk

m =
m−1var(Uk) (k, l = 1, 2, 3). For the following theorem, the covariance matrix Vm

evaluated at the true value θ0 is assumed to be positive definite. Furthermore, at θ0
we assume that

Vm =
⎛

⎝
v11

m v12
m v13

m
v21

m v22
m v23

m
v31

m v32
m v33

m

⎞

⎠ → V =
⎛

⎝
v11 v12 v13

v21 v22 v23

v31 v32 v33

⎞

⎠ as m → ∞.

Theorem 2 Under some necessary regularity conditions stated in Appendix, the
generalized estimating equation estimator θ̂m = (β̂ ′

m, γ̂
′
m, λ̂

′
m)

′ is asymptotically
normally distributed with

√
m

⎛

⎝
β̂m −β0
γ̂m −γ0

λ̂m −λ0

⎞

⎠→N

⎧
⎪⎨

⎪⎩
0,

⎛

⎝
v11 0 0
0 v22 0
0 0 v33

⎞

⎠
−1⎛

⎝
v11 v12 v13

v21 v22 v23

v31 v32 v33

⎞

⎠

⎛

⎝
v11 0 0
0 v22 0
0 0 v33

⎞

⎠
−1

⎫
⎪⎬

⎪⎭

in distribution as m → ∞, where the matrices vkl (k, l = 1, 2, 3) are evaluated at
the true value θ = θ0.

The proofs are given in Appendix.
Note that when the responses yi are normally distributed, we have vkl = 0 (k �= l)

and the asymptotic covariance matrix in Theorem 2 reduces to {diag(v11, v22, v33)}−1.
For inference, we use a robust estimator for the covariance matrix of β̂:

Cov(β̂) = (Ĥm)
−1 K̂m(Ĥm)

−1,

where Ĥm and K̂m are defined by

Ĥm =
m∑

i=1

X ′
iΔi (V

β
i (β̂m))

−1Γ
β

i Δi Xi ,

K̂m =
m∑

i=1

X ′
iΔi (V

β
i (β̂m))

−1hβi (μi (β̂m))h
β
i (μi (β̂m))

′(V β
i (β̂m))

−1Δi Xi .

In the sandwich type estimator of covariance matrix, we adopt similar Mallows-
type weights and Huber’s function to control the influence of outliers. The covariance
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matrices of γ̂ and λ̂ can be estimated in an analogous way. In the same manner of He
et al. (2005), we compare the average estimated standard errors and the Monte Carlo
standard errors in simulations. Overall, we note the standard error estimation works
well for different AR(1) correlation structure no matter the contamination exists or not.
Similar findings have also been obtained in Leng et al. (2010). As a result, we consider
the asymptotic covariance formula quite acceptable as the large-sample estimation.

For hypothesis testing, within the framework of generalized estimating equations,
the quasi-score test based on the derivative of the generalized estimating equations
may be constructed. See Ye and Pan (2006) for details.

3 Simulation study

In this section, simulations including contaminated cases are conducted to assess the
performance of the proposed robust method. Four estimation methods are considered:
NR refers to the non-robust method, which is given in Ye and Pan (2006). HRm

means the half-robust method on the mean. In other words, we only adopt the robust
estimating equation (5), which is the estimating equation for the mean. In contrast,
we have HRc that stands for the other half-robust method on the covariance matrix
only. The R (robust) method is our proposed method which includes all three robust
estimating equations. Note that the non-robust estimators of β, γ and λ are defined
through the same equations except that ψ(x) = x and Wi = Ii , where Ii are ni × ni

identity matrices.
Study 1. The following Guassian linear model is used:

yi j = β0 + β1xi j + ei j , i = 1, . . . ,m; j = 1, . . . , ni ,

where m = 100, xi j ∼ N (0, 2), β1 = 1, β0 = 0.5 and ei j ∼ N (0,Σi ).
The error term (ei1, . . . , eini ) is generated from a multivariate normal distribu-

tion with mean 0 and covariance Σi satisfying TiΣi T ′
i = Di , where Ti and Di are

described in Sect. 2.1 with zi jk = (1, (ti j − tik))′ and zi j = xi j . Two specifica-
tions are considered: Case (1) γ = (0.2, 0.3)′, λ = (−0.5, 0.2)′ and Case (2)
γ = (0.2, 0)′, λ = (−0.5, 0.2)′. The difference between these two cases lies in the
choice of γ2.

Similar to the sampling scheme in Fan et al. (2007), the observation times are
regularly scheduled but may be missing in practice. Missing at random is considered.
More precisely, each subject has a set of scheduled time point {0, 1, . . . , 12}, in which
each element (except time 0) has a 20 % probability of being missing. A uniform [0, 1]
random variable is added to a non-missing scheduled time. This results in irregular
(not on a grid) observed time points ti j per individual and then ti j is transformed onto
interval [0, 1].

To study robustness, we denote NC as no contamination situation and consider the
following three contaminations:

C1: randomly choose 2 % of xi j to be xi j − 3;
C2: randomly choose 2 % of yi j to be yi j + 6;
C3: randomly choose 2 % of xi j to be xi j − 3 and 2 % of yi j to be yi j + 6;
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Table 1 Simulation results of bias and MSE for β, γ and λ in Study 1 (Case 1)

NC C1 C2 C3

Bias MSE Bias MSE Bias MSE Bias MSE

β0 = 0.5

NR 0.001 0.0004 0.059 0.0044 0.117 0.0159 0.174 0.0332

HRm 0.000 0.0004 0.038 0.0022 0.045 0.0035 0.096 0.0115

HRc 0.000 0.0004 0.056 0.0041 0.117 0.0159 0.170 0.0318

R 0.000 0.0004 0.029 0.0017 0.029 0.0020 0.067 0.0066

β1 = 1

NR 0.000 0.0001 −0.041 0.0019 0.001 0.0003 −0.042 0.0021

HRm 0.000 0.0001 −0.030 0.0011 0.001 0.0002 −0.036 0.0016

HRc 0.000 0.0001 −0.045 0.0022 0.001 0.0004 −0.043 0.0023

R 0.000 0.0001 −0.032 0.0012 0.001 0.0002 −0.035 0.0015

γ1 = 0.2

NR 0.001 0.0003 0.026 0.0014 0.057 0.0049 0.059 0.0050

HRm 0.001 0.0003 0.026 0.0014 0.058 0.0051 0.061 0.0052

HRc 0.001 0.0003 0.025 0.0013 0.053 0.0046 0.057 0.0048

R 0.001 0.0003 0.025 0.0013 0.054 0.0047 0.059 0.0051

γ2 = 0.3

NR −0.033 0.0033 −0.102 0.0177 −0.270 0.0881 −0.295 0.1010

HRm −0.036 0.0033 −0.104 0.0180 −0.278 0.0926 −0.303 0.1056

HRc −0.037 0.0033 −0.097 0.0163 −0.250 0.0796 −0.284 0.0954

R −0.041 0.0032 −0.100 0.0169 −0.257 0.0840 −0.298 0.1038

λ1 = −0.5

NR 0.000 0.0016 0.388 0.1532 0.958 0.9198 1.101 1.213

HRm 0.000 0.0016 0.390 0.1541 0.961 0.9256 1.103 1.219

HRc −0.002 0.0025 0.186 0.0371 0.364 0.1369 0.546 0.302

R −0.002 0.0025 0.181 0.0352 0.363 0.1360 0.548 0.305

λ2 = 0.2

NR 0.003 0.0000 −0.184 0.0346 −0.116 0.0166 −0.193 0.0389

HRm 0.002 0.0004 −0.186 0.0352 −0.169 0.0167 −0.193 0.0391

HRc 0.004 0.0005 −0.084 0.0078 −0.039 0.0024 −0.126 0.0172

R 0.004 0.0005 −0.081 0.0072 −0.036 0.0023 −0.125 0.0169

NR refers to the non-robust method; HRm means the half-robust method on the mean; HRc stands for the
other half-robust method on the covariance matrix; R is the proposed robust method which adopts all three
robust estimating equations

We consider 200 replications for the simulation. Table 1 shows the performance of
the NR, HRm , HRc and R estimators for both the mean and the covariance in Case 1.
It is found that the non-robust, half-robust and robust estimation perform equally well
in the case of uncontaminated data (NC), although there is some loss of efficiency
in the robust method with slightly larger MSE of λ1. However, for the contaminated
data, the robust method generally achieves smaller biases resulting in smaller MSEs.
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First we look into performance of estimating in β. For β0, we notice that in C1,
C2 and C3, the half-robust method on mean outperforms the non-robust method and
the half-robust method on covariance. Meanwhile, the robust method performs better
than the half-robust method and therefore becomes the best performer for β0 among
the three. This does not happen in the estimation of β1. For β1, the robust method R
and the half-robust method HRm have similar performance. Both of them have much
smaller MSEs than that of the non-robust method and the other half-robust method
HRc. However, no great difference can be detected between the estimation of the
former two, i.e. R and HRm .

Next we pay attention to the estimation for parameters in the covariance matrix.
All four methods show little difference in estimating γ, because the corresponding
covariates for γ only contain t , which has no contamination at all. It supports in
one way that the proposed robust method performs equally well when there is no
contamination in γ . On the other hand, the robust method has no advantage under no
contamination. As for λ, while the half-robust method for mean performs as poor as
the non-robust method (in both biases and MSEs), the robust estimators take great
advantage uniquely (even slightly better than the half-robust method for covariance).
For bothλ1 andλ2, the robust estimators have about half of the biases and one quarter of
the MSEs as those of the non-robust and mean half-robust methods. Overall, the robust
method performs favorably in comparison with the non-robust and the half-robust
methods in estimation of the covariance matrix. This point supports a better estimate
for the covariance matrix in the robust method resulting a better estimate for the mean
parameter β0. In summary, the proposed robust method generally outperforms both
the half-robust method and the non-robust method under different contaminations in
the simulation study.

In previous discussion, we did not provide a method to choose the structure Ri (δ).
Instead, we considered the typical AR(1) structure with δ equal to 0, 0.2, 0.5 and
0.8 for a test of sensitivity on the choice of δ. Table 2 summarizes the MSEs for
β, γ and λ due to different values of δ in case 1 without contamination and under
contamination C3. From the table, we observe very similar performance when we
select δ = 0, 0.2 or 0.5. When δ = 0.8, MSEs for the mean parameter β still stay
close to those for other δs. However, the increase of MSEs for λ cannot be ignored
in the case without contamination. We suppose this choice of δ is a bit apart from the
truth that leads to an inefficient estimation comparing with other choices of value for
δ. In sum, we may conclude that the choice of δ or the structure has no significant
influence in our simulation in the mean model. Similar conclusions can be obtained
from the performances of estimation under C1 and C2 and thus we omit the results. In
the rest of the article, we select an acceptable δ equal to 0 for convenience. We have
considered simulations for Case 2 as well. The results are similar to those of Case 1
and so they are omitted for brevity.

In addition to the bias and MSE criteria that we considered, two loss functions are
introduced to see how the four methods work in estimating the covariance matrix.
They are the entropy loss

L1(Σ, Σ̂) = m−1
m∑

i=1

{trace(Σi Σ̂
−1
i )− log|Σi Σ̂

−1
i | − ni },
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Table 2 Mean squared errors for estimates using different δ’s in Study 1 (×100)

δ 0 0.2 0.5 0.8

NC

β0 NR 0.034 0.034 0.034 0.034

R 0.036 0.037 0.037 0.037

β1 NR 0.009 0.009 0.009 0.009

R 0.012 0.012 0.012 0.012

γ1 NR 0.036 0.036 0.036 0.036

R 0.037 0.037 0.037 0.037

γ2 NR 0.333 0.333 0.334 0.335

R 0.338 0.338 0.339 0.340

λ1 NR 0.169 0.168 0.183 0.306

R 0.270 0.270 0.293 0.456

λ2 NR 0.044 0.050 0.064 0.076

R 0.052 0.057 0.075 0.089

C3

β0 NR 3.14 3.14 3.14 3.16

R 0.57 0.57 0.57 0.58

β1 NR 0.21 0.21 0.21 0.21

R 0.15 0.15 0.15 0.15

γ1 NR 0.46 0.46 0.47 0.47

R 0.46 0.46 0.46 0.46

γ2 NR 9.71 9.71 9.79 9.87

R 9.60 9.61 9.63 9.70

λ1 NR 122 122 124 128

R 29.7 29.9 30.9 33.1

λ2 NR 3.68 3.64 3.62 3.61

R 1.66 1.61 1.58 1.59

and the quadratic loss

L2(Σ, Σ̂) = m−1
m∑

i=1

trace(Σ−1
i Σ̂i − Ii )

2,

whereΣi is the true covariance matrix and Σ̂i is its estimator. Each of these losses is 0
when Σ̂i = Σi and positive otherwise. The entropy loss is the same as the Kullback–
Leibler loss after switching the roles of the covariance matrix and its inverse. As
indicated by Levina et al. (2008), the entropy loss is a more appropriate measure if the
covariance matrix itself is the primary object of interest.

Now we focus on the evaluation on the overall performance of the covariance matrix
estimation. Table 3 demonstrates that the robust method reduces both the entropy loss
and the quadratic loss substantially especially when the contamination is heavier,
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Table 3 Entropy loss and
quadratic loss in estimating Σ in
Study 1

NC C1 C2 C3

Entropy loss

NR 0.05 0.81 2.51 3.40

HRm 0.05 1.09 2.54 3.76

HRc 0.06 0.27 0.77 1.38

R 0.06 0.29 0.76 1.41

Quadratic loss

NR 0.26 5.32 25.1 29.9

HRm 0.26 6.16 25.1 31.1

HRc 0.42 1.52 5.52 10.2

R 0.42 1.55 5.50 10.2

although it has larger losses in the case of no contamination. Here we see clearly
that the mean half-robust method has little improvement in resisting contamination in
estimating the covariance matrix, since the losses are nearly the same as those of the
non-robust method. In contrast, the half-robust method on covariance works as good
as the robust method in covariance matrix estimation.

It is to be noted that the results in Table 3 are obtained from 200 replications with
successful convergence in estimation. The robust method successfully converged in all
situations. However, the non-robust and the half-robust methods did not converge in
a few percents of the simulations. Thus, the robust method is recommended since the
non-convergence problem should not be neglected. Moreover, it is also found that the
larger the contamination, the poorer the convergence performance by the non-robust
and half-robust methods. And this is one of the reasons why we only compare the
performance of the four methods under relatively mild contaminations.

Study 2. This study is designed to compare the performance of the proposed robust
method and the non-robust method when the data sets are from non-normal distribu-
tions. The half-robust methods are not chosen because they are outperformed by the
robust method. The setting is similar to those in study 1 except that we consider the
error terms (ei1, . . . , eini ) which are drawn from (a) a multivariate t-distribution with
3 degrees of freedom and covariance matrix Σi and (b) a mixed multivariate normal
distribution with 30 % coming from a normal distribution N (−0.7 × μmn,Σi ) and
the other 70 % from N (0.3 × μmn,Σi ), where μmn will be specified later. Note that
the error terms drawn from (b) are asymmetric in distribution. Only the case of no
contamination and the case of 3rd contamination C3 are considered.

We report MSE of the mean parameter β0 and β1 in Table 4, together with the
entropy loss and quadratic loss in Table 5. Results for error terms from normal dis-
tribution, t distribution and mixed normal distributions with μmn = 0.5, 1 and 2 are
listed (They are termed MM0.5, MM1 and MM2, respectively). It is predictable that
MSE of β increases when the error terms are more asymmetric, for the reason that
the bias corrected term Cβ

i , Cγ

i and Cλ
i in the estimating equation can be misspeci-

fied. Meanwhile, the robust method always has smaller MSE for β and losses of the
covariance matrix than the non-robust method under contamination.
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Table 4 Mean squares errors for β0 and β1 in Study 2 (×100)

Distribution Normal t(3) MN0.5 MN1 MN2

NC (no contamination)

β0 NR 0.035 0.036 0.087 0.277 1.008

R 0.036 0.040 0.094 0.300 1.181

β1 NR 0.009 0.010 0.010 0.013 0.015

R 0.012 0.012 0.013 0.014 0.016

C3 (contamination 3)

β0 NR 3.33 3.33 3.43 3.68 4.50

R 0.66 0.66 0.76 1.09 2.21

β1 NR 0.20 0.20 0.20 0.20 0.20

R 0.15 0.15 0.13 0.14 0.15

Table 5 Entropy loss and quadratic loss in estimating Σ in Study 2

Distribution Normal t(3) MN0.5 MN1 MN2

NC (no contamination)

Entropy loss NR 0.035 0.039 0.265 1.351 3.476

R 0.044 0.049 0.251 1.316 3.413

Quadratic loss NR 0.216 0.216 1.002 3.452 7.976

R 0.359 0.365 0.660 2.374 5.730

C3 (contamination 3)

Entropy loss NR 5.229 5.220 5.490 6.053 7.320

R 2.178 2.164 2.523 3.357 5.067

Quadratic loss NR 43.43 42.44 42.51 41.57 40.01

R 13.70 13.61 14.42 15.31 17.51

Furthermore, we find it interesting that, under cases of asymmetric distribution
errors, the robust covariance matrix estimator possesses even smaller entropy (and
quadratic) losses than the non-robust estimator under no contamination (Table 5). It
supports the view that the robust method cultivates a better estimation for the covari-
ance matrix, which can be seriously affected by outliers, non-normal errors or mis-
specifications of the underlying distributions. In all, study 2 demonstrates that the
proposed robust method is able to accommodate the effect of outliers and improve the
efficiency of parameter estimation under non-normal or asymmetric distributions.

4 Real data analysis

We apply the proposed method to analyze the longitudinal data of a hormone study
on progesterone (Zhang et al. 1998). This data set involves a total of 492 observa-
tions among the 34 subjects. The log-transformed progesterone level is taken to be
the response (yi j ). Other than time (t), two covariates age (AGE) and body mass
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Table 6 Regression coefficient
estimates and standard
deviations (in parentheses) for
AGE and BMI of the hormone
data

GEE NR R

Intercept 0.95(0.11) 0.87(0.13) 0.80(0.14)

AGE 2.05(1.96) 2.48(2.16) 3.95(2.05)

BMI −1.72(2.26) −1.71(2.92) −0.42(3.49)

index (BMI) are considered. Following Zhang et al. (1998) and other researchers who
have imposed a non-linear relationship between yi j and ti j, we consider the following
model:

yi j = β0 + β1AGEi + β2BMIi + β3ti j + β4t2
i j + β5t3

i j + ei j ,

φi jk = (1, (ti j − tik), (ti j − tik)
2, (ti j − tik)

3)′ γ,
logσ 2

i j = (1, AGEi , BMIi , ti j , t2
i j , t3

i j )
′ λ.

Table 6 lists the intercepts and the regression coefficients for AGE and BMI
obtained from both the robust and the non-robust methods as well as those of
the GEE method for comparison. The effects of AGE and BMI are found to be
insignificant for both the robust and non-robust methods due to the large standard
errors. In Table 6, the response looks less negatively affected by the body mass
index in the robust model than that in the non-robust model, while more positively
affected by the age in the robust estimation. The obvious numerical differences of the
estimates between the robust and non-robust methods implies that the data may be
contaminated.

The weight functions wi j in our robust method are calculated from pi j =
(AGEi ,BMIi ). The heavily downweighted points are from subject 18 (a cluster of
points from case 244 to case 263), with wi j = 0.459. A closer inspection of the
data set shows that subject 18 has an extremely high BMI of 38. To further look into
robustness, we consider the standardized residual si j which is the j th component of

Σ̂
−1/2
i (yi − μ̂i ). Case 10 appears to be the most extreme point with si j = −4.58. The

progesterone level of the 10th observation for subject 1 (case 10) is 2.46, which is
very different from its neighborhood observations 9 and 11 measured one day before
and one day after, with the progesterone level being 12.8 and 13.4 respectively. In
fact, other 13 observations on the subject 1 range from 8.5 to 13.4 except this case.
In particular, this observation is the lowest progesterone level in the whole data set.
Therefore, we conclude that case 10 is a clear outlier from subject 1, which is con-
sistent with Fung et al. (2002). When the sample size is moderate, a subject-level
potential outlier can have significant influence on estimation and inference. Subject
24 is a potential outlier as the mean of its standardized residuals is 2.66, with si j of
case 337–346 ranging from 2.09 to 3.80. Subject 24 turns out to be a young women
with very low BMI and the highest average progesterone level. Consequently, we find
the robust method downweighs substantially the effect of both the subject-level and
the observation-level outliers. This is the main reason that the robust method leads to a
shift of estimation for the coefficients in the mean model compared with its non-robust
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Fig. 1 Analysis of the hormone data. The fitted curve of the cubic polynomial of time, against time. The
solid line is the robust estimate and the dotted line is the non-robust estimate

version. We believe that the robust estimation is more reliable. Nevertheless, the large
standard errors of the estimates suggest that a much larger sample is needed to have
any concrete finding.

Figure 1 displays the fitted curves for the cubic polynomial of time. From Fig. 1,
we can see that the cubic polynomial of time decreases in the first 7 days and increases
steadily later on. They reach a peak around the 23rd day in the cycle and then decrease
again. The trajectory of the mean curve is very similar to that in Mao et al. (2011).
Furthermore, although there are outliers in the data set, their effects are not too large
on the estimation of the mean curve as we can see from Fig. 1 that the robust and
non-robust estimates are rather close to each other.

Figure 2a plots the estimated generalized autoregressive parameters φ against the
time lag between measurements in the same subject, which is also modeled as a cubic
polynomial. The graph shows that the generalized autoregressive parameter decreases
sharply from 0.6 to 0 if the time lag is less than 8 days and then drops slowly when
the lag becomes larger. It is noted that the robust and non-robust estimates of the
parameter, which is essentially a mean parameter as seen from (2), are also quite close
to each other. From Fig. 2b, it is observed that the non-robust estimate fluctuates more
intensely than the robust estimate for the innovation variance. The figure provides
us some idea of how the robust method works. The shrinkage of estimation for the
innovation variance (from above 0.6 to less than 0.5) suggests that our method can
downweigh the effect of outliers to achieve robustness. Unlike the estimation on the
mean parameter (Fig. 1), the non-robust estimate of the variance parameter (innovation
variance) is strongly affected by outliers, and is rather different from the robust estimate
(Fig. 2b). Although little difference can be detected in the mean model from Fig. 1,
the robust method improves estimation for the covariance matrix, especially for the
innovation variance.
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Fig. 2 Analysis of the hormone data. a Estimate for autoregressive coefficient against time lag. b Estimate
for innovation variance against time. In a, the solid line is the robust estimate and the dotted line is the
non-robust estimate. In b, the solid circle is the robust estimate and the hollow circle is the non-robust
estimate

5 Discussion

In this paper, we propose simultaneous robust model for the mean and covariance
matrix of longitudinal data. The proposed method has the following advantages and
properties: (i) the robust covariance model guarantees the positive definiteness based
on the covariance decomposition with a proper statistical interpretation (ii) it is able
to control the influence of outliers in the mean and covariance model simultaneously
that cultivates a more reliable estimation for the joint mean and covariance model (iii)
the robust algorithm has a much greater chance to obtain a convergence solution than
the non-robust algorithm. The robust estimating equations we proposed here should
enhance the development of joint mean and covariance model for longitudinal data.

A limitation of the proposed method is that the model may include redundant
covariates. If we have no prior knowledge of the covariance structure, then we are
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prone to include all the time and mean associated variables. Redundant covariates
may bring in outliers and also increase the computational burden. Robust estimating
equations that can serve the goal of both estimating and penalizing the models with
too many covariates are under development.

Appendix

Proofs

Regularity conditions:

A1. We assume that the dimensions p, q and d of the covariates xi j zi j and zi jk

are fixed and that {ni } is a bounded sequence of positive integers. The first four
moments of yi j exist.

A2. The parameter space of (β ′, γ ′, λ′)′, Θ , is a compact subset of R p+q+d , and the
true parameter value (β ′

0, γ
′
0, λ

′
0)

′ is in the interior of the parameter space Θ .
A3. The covariates zi jk and zi j , the matrices W −1

i are all bounded, meaning that all
the elements of the vectors are bounded. The function ġ−1(·) has bounded second
derivatives.

Proof of Theorem 1 For illustration we only give the proof that β̂m → β0 almost
surely. The proofs for γ̂m and λ̂m are similar. According to McCullagh (1983), we
have

β̂m − β0 =
{

1

m

m∑

i=1

X ′
iΔi (V

β
i )

−1Γ
β

i Δ
′
i Xi

}−1

β=β0

×
{ m∑

i=1

X ′
iΔi (V

β
i )

−1hβi (μi (β))

}

β=β0

+ op(m
−1/2).

On the other hand, the expectation and variance matrix of U1i = X ′
iΔi (V

β
i )

−1

hβi (μi (β)) at β = β0 are given by E0(U1i ) = 0 and

var0(U1i ) =
{

X ′
iΔi (V

β
i )

−1Γ
β

i Δ
′
i Xi

}

β0

= (G0
i X ′

i Xi )
′(V β

i )
−1Γ

β
i (G

0
i X ′

i Xi ),

where G0
i = diag{ġ−1(x ′

i1β0), . . . , ġ−1(x ′
ini
β0)} is an ni × ni diagonal matrix.

Since V β
i = A−1/2

i Σi andΣ−1
i = Φ ′

i D−1
i Φi , the variance can be further written as

var0(U1i ) = (G0
i X ′

i Xi )
′Φi (D

−1
i A−1/2

i )Φ ′
iΓ

β
i (G

0
i X ′

i Xi ). Condition A3 above implies
that there exists a constant κ0 such that var0(U1i ) ≤ κ01p×p for all i and all θ ∈ Θ ,
where 1p×p is the p × p matrix with all elements being 1’s, meaning that all elements
of var0(U1i ) are bounded by κ0. Thus

∑∞
i=1 var0(U1i )/ i2 < ∞. By Kolmogorov’s

strong law of large numbers we know that
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{
1

m

m∑

i=1

X ′
iΔi (V

β
i )

−1hβi (μi (β))

}

β=β0

→ 0

almost surely as m → ∞. In the same manner it can be shown that

{
1

m

m∑

i=1

X ′
iΔi (V

β
i )

−1Γ
β

i Δ
′
i Xi

}

β=β0

is a bounded matrix. This leads to β̂m − β0 → 0 almost surely as m → ∞. The proof
is complete. ��
Proof of Theorem 2 First we give some notations. Define

Hm =
m∑

i=1

X ′
iΔi (V

β
i )

−1Γ
β

i Δi Xi ,

Bm =
m∑

i=1

T ′
i (V

γ

i )
−1Γ

γ

i Ti ,

Cm =
m∑

i=1

Z ′
i Di (V

λ
i )

−1Γ λi Di Zi .

Ũ1(β) =
m∑

i=1

X ′
iΔ0i (V

β
0i )

−1hβ0i (μ0i (β)), (11)

Ũ2(γ ) =
m∑

i=1

T ′
i (V

γ

0i )
−1hγ0i (r̂0i (γ )), (12)

Ũ3(λ) =
m∑

i=1

Z ′
i D0i (V

λ
0i )

−1hλ0i (σ
2
0i (λ)). (13)

ξ = H1/2
m (β − β0), ξ̂ = ξ(β̂m) = H1/2

m (β̂m − β0), ξ̃ = H1/2
m Ũ1;

η = B1/2
m (γ − γ0), η̂ = η(γ̂m) = B1/2

m (γ̂m − γ0), η̃ = B1/2
m Ũ2;

ζ = C1/2
m (λ− λ0), ζ̂ = ζ(λ̂m) = C1/2

m (λ̂m − λ0), ζ̃ = C1/2
m Ũ3.

Next we prove the following Lemma:

Lemma Under condition (A1)–(A3),

||ξ̂ − ξ̃ || = op(1), (14)

||η̂ − η̃|| = op(1), (15)

||ζ̂ − ζ̃ || = op(1). (16)
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Define

�(ξ) = H1/2
m U1(β) = H1/2

m U1(ξ), (17)

Φ(ξ) = H1/2
m Ũ1(ξ)− ξ. (18)

By condition (A1)–(A3), �(ξ) and U1 give the same root for ξ . The solution of Φ is
ξ̃ . Following the proof of Theorem 1 in He et al. (2005), we immediately obtain that

sup||ξ ||≤L ||�(ξ)−Φ(ξ)|| = op(1), ||ξ || = Op(1),

where L is a sufficiently large number. By Brouwer’s fixed-point theorem, (11) is
verified. We can prove (12) and (13) similarly. ��

By Lemma, we only need to show the asymptotic normality of (ξ̃ ′, η̃′, ζ̃ ′)′/
√

m. This
is equivalent to the asymptotic normality of (Ũ ′

1, Ũ ′
2, Ũ ′

3)/
√

m. Note that Conditions
(A1)–(A3) imply that

E0[ς ′{X ′
iΔ0i (V

β
i )

−1hβi } + ω′{T ′
i (V

γ

i )
−1hγi } + φ′{Z ′

i D0i (V
ρ
i )

−1hλi }]3 < κ,

for any ς ∈ R p+K, ω ∈ Rq andφ ∈ Rd+K ′
, where κ is a constant independent of i .

Furthermore, we have

1

m

m∑

i=1

V [ς ′{X ′
iΔ0i (V

θ
i )

−1hθi } + ω′{T ′
i (V

γ

i )
−1hγi } + φ′{Z ′

i D0i (V
ρ
i )

−1hρi }]

= (ς ′, ω′, φ′) 1

m
Vm(ς

′, ω′, φ′)′ → (ς ′, ω′, φ′)′V (ς ′, ω′, φ′)′ > 0.

Therefore, the asymptotic normality of (Ũ ′
1, Ũ ′

2, Ũ ′
3)/

√
m is easily proved by multi-

variate Liapounov central limit theorem. Therefore,

√
m

⎛

⎝
β̂m − β0
γ̂m − γ0

λ̂m − λ0

⎞

⎠ =
⎛

⎝
(Hm/m)−1 0 0

0 (Bm/m)−1 0
0 0 (Cm/m)−1

⎞

⎠

⎛

⎝
Ũ1/

√
m

Ũ2/
√

m
Ũ3/

√
m

⎞

⎠ (19)

→ N

⎧
⎪⎨

⎪⎩
0,

⎛

⎝
v11 0 0
0 v22 0
0 0 v33

⎞

⎠
−1 ⎛

⎝
v11 v12 v13

v21 v22 v23

v31 v32 v33

⎞

⎠

⎛

⎝
v11 0 0
0 v22 0
0 0 v33

⎞

⎠
−1

⎫
⎪⎬

⎪⎭
(20)

The proof of Theorem 2 is completed. ��
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