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Abstract In this paper, recursive equations for waiting time distributions of r-th
occurrence of a compound pattern are studied via the finite Markov chain imbedding
technique under overlapping and non-overlapping counting schemes in sequences of
independent and identically distributed (i.i.d.) or Markov dependent multi-state trials.
Using the relationship between number of patterns and r-th waiting time, distributions
of number of patterns can also be obtained. The probability generating functions are
also obtained. Examples and numerical results are given to illustrate our theoretical
results.

Keywords Recursive equation · Simple and compound patterns · Waiting time ·
Finite Markov chain imbedding · Probability generating function

1 Introduction

In the past three decades, distribution theory of runs and patterns has been studied
widely and extensively (Fu 1996; Hirano and Aki 1993; Koutras and Milienos 2012;
Chang 2005; Koutras 1997). In particular, waiting time distributions and distribu-
tions of number of occurrences of patterns in a sequence of multi-state trials have
been applied in various areas, for example reliability (Cui et al. 2010), quality control
(Chang and Wu 2011; Fu et al. 2003), DNA sequence analysis (Nuel 2008), nonpara-
metric test (Lou 1996) and Eulerian and Newcomb numbers in combinatorial analysis
(Fu et al. 1999).
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Recently, two approaches, the finite Markov chain imbedding (FMCI) technique and
probability generating function (or double generating function), have been widely used
for obtaining the waiting time distributions and distributions of number of occurrences
of patterns. The FMCI technique was first proposed by Fu and Koutras (1994). The
idea is to turn a statistic of interest into a Markov chain, avoiding the complexity of
dealing with the statistic directly. Then the distribution can be obtained using a unified
formula based on transition probability matrices of the imbedded Markov chain (see,
e.g., Fu and Lou 2003). The generating function approach for waiting time distributions
was introduced by Aki (1992). The probability generating function is obtained as a
solution of a system of conditional probability generating functions. Since then, the
generating function approach has been extended to double generating function and has
been developed for general waiting time distributions by many authors (see, e.g., Inoue
and Aki 2007, 2009). One advantage of this approach is the efficiency for symbolic
computation, while the FMCI technique is powerful for numerical computation.

Many authors have developed various algorithms to accelerate the computational
speed (see, e.g., Zhao and Cui 2009). One important stream is to find the recursive
formulae which require less memory space. Han and Hirano (2003) derived recursive
equations for sooner and later waiting time distributions of two simple patterns using
overlapping indicator function. They also obtained the probability generating function
for the sooner waiting time distribution of a compound pattern. Inoue and Aki (2005)
studied the generalized Pólya model with m + 1 different balls in a urn and obtained
recursive equations for the probability generating function of joint distribution of
various run statistics. Recently, Chang et al. (2012) gave recursive equations for the
distributions of number of occurrences of a compound pattern based on the double
generating function which can always be expressed as a ratio of two polynomials.

Although there are many works on the recursive equations for waiting time distri-
butions and distributions of number of occurrences of patterns, none of them covers
the general settings, namely compound patterns, Makov dependent trials and overlap-
ping and non-overlapping counting schemes. In this manuscript, we derive recursive
equations for waiting time distributions and distributions of number of occurrences of
a compound pattern under general settings, based on the FMCI technique. In Sect. 2,
notations and basic results of the FMCI technique are introduced. In Sect. 3, the
recursive equations for distributions of r -th waiting time are derived. The probability
generating functions are also given for r = 1. An example and numerical results are
given in Sect. 4. Summary and discussion are given in Sect. 5.

2 Notations and preliminary results

Let Xn, n = 1, 2, . . . , be a sequence of first-order homogeneous Markov dependent
m-state (m ≥ 2) trials taking values in the set � = {a1, a2, . . . , am} with initial
distribution P(X0 = ∅) = 1, and transition probabilities P(X1 = a j |X0 = ∅) = p j

and P(Xn = a j |Xn−1 = ai ) = pi; j , for n = 2, 3, . . . , and i, j = 1, . . . , m. The
simple and compound patterns studied here are defined as follows:

Definition 1 Let � = ⋃L
i=1 �i and � is said to be a compound pattern generated by

L distinct simple patterns where �i = bi
1 · · · bi

li
is a simple pattern with bi

j ∈ � for
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Recursive equations in finite Markov chain imbedding 515

all j = 1, . . . , li . The length li of �i is fixed and the symbols in a simple pattern are
allowed to be repeated.

Let W (�i ) be the waiting time until the first occurrence of �i , and W (�) =
min{W (�i ) : i = 1, . . . , L} be the waiting time until the first occurrence of � =⋃L

i=1 �i . For a given integer r ≥ 1, the random variable W (r,�) denotes the waiting
time until the r -th occurrence of �. Let �(�i ) denote the set of all subpatterns of �i ,
excluding �i itself, �(�) = ⋃L

i=1 �(�i ), �+(�i ) = �(�i ) ∪ {�i } and �+(�) =
⋃L

i=1 �+(�i ). It has been shown that the waiting time variable W (r,�) is finite
Markov chain imbeddable (see, e.g., Fu 1996), and there exists an imbedded Markov
chain {Yn} defined on the state space

� = {∅} ∪ {(�, ω) : ω ∈ � ∪ �+(�), � = 0, . . . , r − 1} ∪ {α}, (1)

having transition probability matrix Mr of the form

Mr =
⎛

⎝
Nr Cr

0 1

⎞

⎠ .

It follows from the FMCI technique (Fu and Lou 2003) that the distribution of
W (r,�) is given by

P(W (r,�) > n) = ξ0Nn
r 1

′
, (2)

where ξ0 is the initial distribution with P(Y0 = ∅) = 1 and 1
′
is a column vector with

all elements 1. With minor modification in the transition probability matrix, Eq. (2)
holds for both overlapping and non-overlapping counting schemes (see, e.g., Chang
2005).

Given a compound pattern �, let Xn(�) be the number of occurrences of � in
X1, X2, . . . , Xn . It is well known that Xn(�) and W (r,�) have the following rela-
tionship

Xn(�) < r if and only if W (r,�) > n, (3)

and the probability P(Xn(�) = r) can be computed by

P(Xn(�) = r) = P(W (r + 1,�) > n) − P(W (r,�) > n). (4)

3 Recursive equations for distributions of waiting time W(r,�)

We study the recursive equations for distributions of W (r,�) under overlapping and
non-overlapping counting schemes in this section. Given a compound pattern � =
∪L

i=1�i , we define �i \ j = bi
1 · · · bi

li − j by removing the last j elements of �i , and
that �i is concatenated to �k is denoted by �i ·�k . For example, let �1 = ACT and

123



516 Y.-F. Hsieh, T.-L. Wu

�2 = GT , then �1 \ 1 = AC, �1 \ 2 = A and �1 · �2 = ACT GT . An indicator
function is defined by

I�k (�i \ j) =
{

1 if ω · (�i \ j) = �k, ω ∈ � ∪ �(�),

0 otherwise.
(5)

Note that the indicator function determines whether one pattern overlaps another. If
I�k (�i \ j) = 1 or I�i (�k\ j) = 1 for some j , then patterns �i and �k have an overlap
of li − j or lk − j elements, respectively, and if I�k (�i \ j) = 0 and I�i (�k \ j) = 0
for all j , then they do not overlap. For example, let �1 = ACT, �2 = GT and
�3 = CT T G, then I�1(�3 \ 2) = 1 and I�3(�2 \ 1) = 1 show both �1 and �2
overlap �3, but �1 and �2 do not overlap since I�1(�2 \ j) = 0 and I�2(�1 \ j) = 0
for all possible j .

3.1 Non-overlapping counting scheme

Given a compound pattern � = ⋃L
i=1 �i , let {W (r,�) = n, L O(�i )} denote the

event that W (r,�) = n and the last (r -th) pattern occurring is �i . It follows that the
probability P(W (r,�) = n) can be expressed as

P(W (r,�) = n) =
L∑

i=1

P(W (r,�) = n, L O(�i )).

Under non-overlapping counting, the event {W (r,�) = n, L O(�i )} can be con-
sidered in the following sense: let us fix �i to be the r -th pattern observed at time
n (Xn−li +1 = bi

1, . . . , Xn = bi
li

) and the (r − 1)-th pattern must occur before time
n − li + 1. However, due to the existence of overlapping between and within the
simple patterns, the event that the r -th pattern occurs between times n − li + 1 and
n − 1 may exist and should be excluded. We give an example to illustrate the above
idea.

Example 1 Consider a binary sequence with possible outcomes {S, F} and let � =
�1 ∪ �2 be a compound pattern generated by �1 = SF S and �2 = SS. For r = 2,
let us consider the event {W (2,�) = n, L O(�1)} where the second pattern �1
occurs at time n. As seen in Fig. 1, �1 is observed at time n (Xn−2 = S, Xn−1 =
F, Xn = S) and the first pattern occurs before n − 3 + 1, say at time k. Under this

Fig. 1 An illustration of non-overlapping counting scheme
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Recursive equations in finite Markov chain imbedding 517

circumstance, if Xn−4 = F, Xn−3 = F , then the event {W (2,�) = n, L O(�1)}
occurs; however, if Xn−4 = S, Xn−3 = F , then the second pattern �1 actually occurs
at time n − 2. Similarly, if Xn−3 = S, then the second pattern �2 actually occurs at
time n − 2. Therefore, those possibilities should be excluded in the consideration of
event {W (2,�) = n, L O(�1)}, since the overlapping part will not be counted toward
forming a new pattern under non-overlapping counting. The cases where the actual
r -th pattern may occur earlier than time n can be determined by the indicator function
I�k (�i \ j).

Throughout this section, the initial condition of the recursive equations for waiting
time distributions is P(W (r,�) > 0, X0 = ∅) = 1. To maintain consistent notation,
p j = P(X1 = a j |X0 = ∅) is sometimes written as p∅ j . By convention, we let
P(W (r,�) = n) = 0 and P(W (r,�) > n, Xn = z) = 0 if n < 0 and r = 0. In
view of Example 1, by the concept of the forward and backward principle of the FMCI
technique, we establish the following theorem.

Theorem 1 Let {Xn} be a sequence of Markov dependent m-state trials and � =⋃L
i=1 �i be a compound pattern. Then the recursive equations for the distribution of

W (r,�) under non-overlapping counting are given by

P(W (r,�) = n) =
L∑

i=1

P(W (r,�) = n, L O(�i )),

where

P(W (r,�) = n, L O(�i ))

=
∑

z∈�

P(W (r,�) > n − li , Xn−li = z)pz;bi
1

li −1∏

j=1

pbi
j ;bi

j+1

−
∑

z∈�

P(W (r − 1,�) > n − li , Xn−li = z)pz;bi
1

li −1∏

j=1

pbi
j ;bi

j+1

−
li −1∑

j=1

L∑

k=1

I�k (�i \ j)P(W (r,�) = n − j, L O(�k))

j∏

t=1

pbi
li −t ;bi

li −t+1
,

P(W (r,�) > n − li , Xn−li = z)

=
∑

y∈�

P(W (r,�) > n − li − 1, Xn−li −1 = y)py;z

−
L∑

k=1

Iz(b
k
lk )P(W (r,�) = n − li , L O(�k)),

and Iz(bk
lk
) equals 1 if z = bk

lk
, and 0 otherwise.
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Proof Let Bi = ∏li −1
j=1 pbi

j ;bi
j+1

, and define the subsets

C∅ = {∅},
C�(z) = {(�,w) : w ∈ � ∪ �+(�) and w ends with element z},

� = 0, . . . , r − 1, z ∈ �.

It follows from the FMCI technique that

P(W (r,�) > n − li , Xn−li +1 = bi
1, . . . , Xn = bi

li )

=
∑

z∈�

P(W (r,�) > n − li , Xn−li = z)P(Xn−li +1 = bi
1, . . . , Xn = bi

li |Xn−li = z)

=
∑

z∈�

ξ0 N n−li
[
U

′
(C0(z)) + · · · + U

′
(Cr−2(z))

]
pz;bi

1
Bi

+ξ0 N n−li U
′
(Cr−1(z))pz;bi

1
Bi , i = 1, . . . , L ,

where U
′
(C�(z)) is a column vector (0, . . . , 0, 1, . . . , 1, 0, . . . , 0)

′
with ones at the

locations associated with the states in C�(z). Along with {Xn−li +1 = bi
1, . . . , Xn =

bi
li
}, some states in Cr−1(z) may comprise a new pattern before time n and some may

not (r -th pattern occurs exactly at time n) as illustrated in Fig. 1. Thus, for each �i and
z ∈ �, Cr−1(z) can be partitioned into subsets C+

r−1(z) and C∗
r−1(z), where C+

r−1(z)
stands for the set of states which will comprise a new pattern when combined with
subpatterns of �i = bi

1 · · · bi
li

, and states in C∗
r−1(z) will not. Note that C+

r−1(z) and
C∗

r−1(z) depend on pattern �i but we suppress the index i for simplicity. Then we
have

P(W (r,�) > n − li , Xn−li +1 = bi
1, . . . , Xn = bi

li )

=
∑

z∈�

P(W (r − 1,�) > n − li , Xn−li = z)pz;bi
1
Bi

+ξ0 N n−li
[
U

′
(C+

r−1(z)) + U
′
(C∗

r−1(z))
]

pz;bi
1
Bi

=
∑

z∈�

P(W (r − 1,�) > n − li , Xn−li = z)pz;bi
1
Bi

+P(W (r,�) = n, L O(�i ))

+
li −1∑

j=1

L∑

k=1

I�k (�i \ j)P(W (r,�) = n − j, L O(�k))

j∏

t=1

pbi
li −t ;bi

li −t+1
.

The last term follows from the definition of the indicator function given in Eq. (5). For
any z ∈ �,

123



Recursive equations in finite Markov chain imbedding 519

P(W (r,�) > n − li , Xn−li = z)

=
∑

y∈�

P(W (r,�) > n − li − 1, Xn−li −1 = y)py;z

−P(W (r,�) = n − li , Xn−li = z)

=
∑

y∈�

P(W (r,�) > n − li − 1, Xn−li −1 = y)py;z

−
L∑

k=1

Iz(b
k
lk )P(W (r,�) = n − li , L O(�k)).

This completes the proof. �	
Next we study three special cases of our general Theorem 1 for r = 1, includ-

ing compound Makov dependent, compound i.i.d. and simple i.i.d.. The distribution
of waiting time until the first occurrence W (1,�) ≡ W (�) can be deduced from
Theorem 1. For simplicity, let P(W ∗(�i ) = n) = P(W (�) = n, L O(�i )). Let
	zW (�)(s) = ∑∞

n=2 sn P(W (�) > n − 1, Xn−1 = z), and ϕW (�)(s) and φW ∗(�i )(s)
be the probability generating functions of the sequences {P(W (�) = n)}∞n=1 and
{P(W ∗(�i ) = n)}∞n=1, respectively. Then we have the following corollary for com-
pound Markov dependent case.

Corollary 1 Let {Xn} be a sequence of Marakov dependent m-state trials and � =⋃L
i=1 �i be a compound pattern, then

(i) the recursive equations for the distribution of W (�) are given by

P(W (�) = n) =
L∑

i=1

P(W ∗(�i ) = n),

where for i = 1, 2, . . . , L,

P(W ∗(�i ) = n) =
∑

z∈�

P(W (�) > n − li , Xn−li = z)pz;bi
1
Bi

−
li −1∑

j=1

L∑

k=1

I�k (�i \ j)P(W ∗(�k) = n − j)
j∏

t=1

pbi
li −t ;bi

li −t+1
,

and

P(W (�) > n − li , Xn−li = z) =
∑

y∈�

P(W (�) > n − li − 1, Xn−li −1 = y)py;z

−
L∑

k=1

Iz(b
k
lk )P(W ∗(�k) = n − li ),

and
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(ii) the probability generating function for the distribution of W (�) is given by

ϕW (�)(s) = φW ∗(�1)(s) + · · · + φW ∗(�L )(s),

where (φW ∗(�1)(s), . . . , φW ∗(�L )(s)) satisfies the following simultaneous equa-
tions, for i = 1, . . . , L,

φW ∗(�i )(s) = sli pbi
1
Bi + sli −1

∑

z∈�

pz;bi
1
Bi	zW (�)(s)

−
li −1∑

j=1

L∑

k=1

I�k (�i \ j)s j
j∏

t=1

pbi
li −t ;bi

li −t+1
φW ∗(�k )(s),

where 	zW (�)(s), z ∈ �, are solutions, in terms of φW ∗(�k)(s), of the following
simultaneous equations

	zW (�)(s) = s2 pz +
∑

y∈�

spy;z	yW (�)(s) −
L∑

k=1

s Iz(b
k
lk )φW ∗(�k )(s).

Proof For part (i), it is a direct consequence of Theorem 1. Now we prove part (ii).
We have

ϕW (�)(s) =
∞∑

n=1

sn P(W (�) = n) =
∞∑

n=1

sn
L∑

i=1

P(W ∗(�i ) = n)

= φW ∗(�1)(s) + · · · + φW ∗(�L )(s).

It follows from part (i) that, for i = 1, . . . , L ,

φW ∗(�i )(s) =
∞∑

n=1

sn P(W ∗(�i ) = n)

= sli pbi
1
Bi +

∞∑

n=li +1

sn
∑

z∈�

P(W (�) > n − li , Xn−li = z)pz;bi
1
Bi

−
∞∑

n=li

sn
li −1∑

j=1

L∑

k=1

I�k (�i \ j)P(W ∗(�k) = n − j)
j∏

t=1

pbi
li −t ;bi

li −t+1

= sli pbi
1
Bi + sli −1

∑

z∈�

pz;bi
1
Bi	zW (�)(s)

−
li −1∑

j=1

L∑

k=1

I�k (�i \ j)s j
j∏

t=1

pbi
li −t ;bi

li −t+1
φW ∗(�k)(s),

and for each z ∈ �,
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	zW (�)(s) =
∞∑

n=2

sn P(W (�) > n − 1, Xn−1 = z)

= s2 pz +
∞∑

n=3

sn
∑

y∈�

P(W (�) > n − 2, Xn−2 = y)py;z

−
L∑

k=1

s Iz(b
k
lk )

∞∑

n=1

sn P(W ∗(�k) = n)

= s2 pz +
∑

y∈�

spy;z	yW (�)(s) −
L∑

k=1

s Iz(b
k
lk )φW ∗(�K )(s).

The proof is completed. �	
The second special case is when {Xn} is a sequence of i.i.d. trials and � is a

compound pattern. Let 	W (�)(s) = ∑∞
n=1 sn P(W (�) > n − 1) and the relationship

between ϕW (�)(s) and 	W (�)(s) is given by

	W (�)(s) = s(ϕW (�)(s) − 1)

s − 1
.

The following corollary can be derived immediately from Theorem 1 or Corollary 1.

Corollary 2 Let {Xn} be a sequence of i.i.d. m-state trials and � = ⋃L
i=1 �i be a

compound pattern, then

(i) the recursive equations for the distribution of W (�) are given by

P(W (�) = n) =
L∑

i=1

P(W ∗(�i ) = n),

where for each i = 1, 2, . . . , L,

P(W ∗(�i ) = n) = P(W (�) > n − li )
li∏

t=1

pbi
t

−
li −1∑

j=1

L∑

k=1

I�k (�i \ j)P(W ∗(�k) = n − j)
j∏

t=1

pbi
li −t+1

,

and

P(W (�) > n − li ) = P(W (�) > n − li − 1) − P(W (�) = n − li ),

and
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(ii) the probability generating function for the distribution of W (�) is given by

ϕW (�)(s) = φW ∗(�1)(s) + · · · + φW ∗(�L )(s),

where (φW ∗(�1)(s), . . . , φW ∗(�L )(s)) satisfies the following simultaneous equa-
tions

φW ∗(�i )(s) = sli −1
li∏

t=1

pbi
t
	W (�)(s)

−
li −1∑

j=1

L∑

k=1

I�k (�i \ j)s j
j∏

t=1

pbi
li −t+1

φW ∗(�k)(s).

The third and simplest case, where {Xi } is a sequence of i.i.d. trials and � is a
simple pattern, is given in Corollary 3.

Corollary 3 Let {Xn} be a sequence of i.i.d. m-state trials and � = b1 · · · bl be a
simple pattern, then

(i) the recursive equation for the distribution of W (�) is given by

P(W (�) = n) = P(W (�) > n − l)
l∏

t=1

pbt

−
l−1∑

j=1

I (� \ j)P(W (�) = n − j)
j∏

t=1

pbl−t+1,

where I (� \ j) = I�(� \ j), and
(ii) the probability generating function for the distribution of W (�) has a closed form

given by

ϕW (�)(s)=
∏l

t=1
pbt s

l

1 − s+
∏l

t=1
pbt s

l −(s − 1)
∑l−1

j=1
I (� \ j)s j

∏ j

t=1
pbl−t+1

. (6)

Remark 1 Our Theorem 2 covers the general case, including r -th occurrence, com-
pound pattern and Markov dependent trails. Han and Hirano (2003) mainly focused on
the waiting time distributions of two simple patterns and gave the probability generat-
ing function for a compound pattern. Their results can be considered as special cases
of our general Theorem 2. In particular, for r = 1, i.i.d. and simple pattern case, the
probability generating function given in Eq. (6) coincides with the result in Remark
3.1 of Han and Hirano (2003).
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3.2 Overlapping counting scheme

Under non-overlapping counting scheme, from the classification of states of the imbed-
ded Markov chain, only states in ∪z∈�C+

r−1(z) would cause the r -th pattern to occur
earlier than time n and only states in ∪z∈�C∗

r−1(z) would cause the r -th pattern to occur
at time n, when combined with pattern �i located at time n. However, under overlap-
ping counting scheme, certain states in ∪z∈�C�(z), possibly for all � = 0, 1, . . . , r −2,
may cause the r -th pattern to occur earlier, while some states may cause the r -th pat-
tern to occur at time n, when combined with pattern �i located at time n. Thus, for
each �i , C�(z), � = 0, . . . , r − 2 and Cr−1(z) can be partitioned as follows:

C�(z) = C−
� (z, r) ∪ C∗

� (z, r) ∪ C+
� (z, r), � = 0, . . . , r − 2,

Cr−1(z) = C∗
r−1(z, r) ∪ C+

r−1(z, r), z ∈ �,

where C+
� (z, r) consists of states that would lead to the occurrence of r -th pattern

before time n when combined with some subpatterns of �i , C∗
� (z, r) consists of

states that would lead to occurrence of r -th pattern at time n when combined with �i ,
and C−

� (z, r) is the remaining subset.
We give an example for illustration. Consider a simple pattern � = 11111, n =

100 and r = 5. Let � be fixed and located at time 100. It is easy to see that state
(2, 111) ∈ C+

2 (1, 5), at time t = 95, combined with the subpattern 1111 cause the
fifth pattern to occur earlier at time t = 99, and the fifth pattern would occur at t = 100
for state (3,1)∈ C∗

3 (1, 5), while these will not happen under non-overlapping counting
scheme. In a similar fashion to non-overlapping counting scheme, by classifying the
states of the imbedded Markov chain, we establish the following theorem.

Theorem 2 Let {Xn} be a sequence of Marakov dependent m-state trials and � =⋃L
i=1 �i be a compound pattern. Then the recursive equations for the distribution of

W (r,�) under overlapping counting are given by

P(W (r,�) = n) =
L∑

i=1

P(W (r,�) = n, L O(�i )),

where

P(W (r,�) = n, L O(�i ))

=
∑

z∈�

P(W (r,�) > n − li , Xn−li = z)pz;bi
1
Bi

−
∑

z∈�

P(W (r − 1,�) > n − li , Xn−li = z)pz;bi
1
Bi

−
li −1∑

j=1

L∑

k=1

I�k (�i \ j)
[
P(W (r,�) = n − j, L O(�k))

− P(W (r − 1,�) = n − j, L O(�k))
]

j∏

t=1

pbi
li −t ;bi

li −t+1
,
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and

P(W (r,�) > n − li , Xn−li = z)

=
∑

y∈�

P(W (r,�) > n − li − 1, Xn−li −1 = y)py;z

−
L∑

k=1

Iz(b
k
lk )P(W (r,�) = n − li , L O(�k)).

Proof

P(W (r,�) > n − li , Xn−li +1 = bi
1, . . . , Xn = bi

li )

=
∑

z∈�

ξ0 N n−li
[
U

′
(C0(z)) + · · · + U

′
(Cr−1(z))

]
pz;bi

1
Bi

=
∑

z∈�

ξ0 N n−li
[
U

′
(C−

0 (z, r)) + · · · + U
′
(C−

r−2(z, r))
]

pz;bi
1
Bi

+P(W (r,�) = n, L O(�i ))

+
li −1∑

j=1

L∑

k=1

I�k (�i \ j)P(W (r,�) = n − j, L O(�k))

j∏

t=1

pbi
li −t ;bi

li −t+1
. (7)

Note that we know

C+
� (z, r − 1) = C+

� (z, r) ∪ C∗
� (z, r), z ∈ �,

then the first term on the right hand side of the last equality in Eq. (7) is

∑

z∈�

ξ0 N n−li
[
U

′
(C−

0 (z, r)) + · · · + U
′
(C−

r−2(z, r))
]

pz;bi
1
Bi

=
∑

z∈�

ξ0 N n−li
[
U

′
(C0(z)) + · · · + U

′
(Cr−2(z))

]
pz;bi

1
Bi

−
∑

z∈�

ξ0 N n−li
[
U

′
(C+

0 (z, r − 1)) + · · · + U
′
(C+

r−2(z, r − 1))
]

pz;bi
1
Bi

=
∑

z∈�

P(W (r − 1,�) > n − li , Xn−li = z)pz;bi
1
Bi

−
li −1∑

j=1

L∑

k=1

I�k (�i \ j)P(W (r − 1,�) = n − j, L O(�k))

j∏

t=1

pbi
li −t ;bi

li −t+1
.

Substituting the above result back to Eq. (7) completes the first part of the proof. The
second part of the proof is the same as the proof of Theorem 1. �	
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Remark 2 The recursive equations for P(W (r,�) > n) can be used to obtain the
distribution of Xn(�) via the relationship in Eq. (3). Nevertheless, the recursive equa-
tions for P(Xn(�) = r) can also be derived using Theorem 1 and Theorem 2 along
with Eq. (3) and

P(W (r,�) = n, L O(�i )) = P(Xn−1(�) = r − 1, L On(�i )),

where {Xn−1(�) = r − 1, L On(�i )} represents that r − 1 patterns occur until time
n − 1 and also the r -th pattern occurs at time n. The details are left to the reader.

Remark 3 Fu (1996) derived the recursive equations for P(Xn(�) = r), based on the
backward multiplication of transition probability matrices, which directly involved
the transition probability sub-matrices of the imbedded Markov chain. The sizes of
the sub-matrices also depend on the size of the compound pattern �. Our recursive
equations do not involve the transition probability matrix of the imbedded Markov
chain, however the results indirectly relate to the FMCI technique as the idea and
proofs originated from the FMCI technique.

4 Numerical examples

We provide an example to illustrate the theoretical results and show the performance
of the proposed method.

Example 2 Consider a compound pattern

� = C AACCT GT T G ∪ AG AGCG A ∪ AG AG AG.

1. Let {Xn} be a sequence of i.i.d. four-state trials with probabilities P(X1 = A) =
0.6, P(X1 = C) = 0.2, P(X1 = G) = 0.1 and P(X1 = T ) = 0.1. With respect
to i.i.d. with overlapping and non-overlapping counting schemes, we denote by
I-O and I-N, respectively.

2. Let {Xn} be a sequence of Markov dependent four-state trials with initial prob-
abilities P(X1 = A) = 0.6, P(X1 = C) = 0.2, P(X1 = G) = 0.1 and
P(X1 = T ) = 0.1 and transition probability matrix

P =
A
C
G
T

⎡

⎢
⎢
⎣

0.2 0.3 0.2 0.3
0.2 0.3 0.3 0.2
0.1 0.3 0.2 0.4
0.4 0.1 0.2 0.3

⎤

⎥
⎥
⎦ .

With respect to Markov dependent with overlapping and non-overlapping counting
schemes, we denote by M-O and M-N, respectively.

The distributions of W (r,�), for r = 1, 5, 10, 20, under case M-O are given in Fig. 2.
Also, the distributions of Xn(�) for n = 500, 000 under two cases I-O and M-O
are given in Fig. 3. Figure 3 gives us an observation that, for the same pattern, the
probabilities can be rather different using different models or, say, if choosing a wrong
model.
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Fig. 2 The distributions of W (r, �) for r = 1, 5, 10, 20 under case M-O
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Fig. 3 The distributions of Xn(�) under cases I-O and M-O with n = 500,000

5 Summary and discussion

In this manuscript, based on the FMCI technique and the partition of the state space
of the imbedded Markov chain, we have derived the recursive equations for distri-
butions of waiting time of r -th occurrence of simple and compound patterns under
overlapping and non-overlapping counting schemes when the trials are i.i.d. or Markov
dependent. The probability generating functions for r = 1 are also derived. From the
dual relationship between W (r,�) and Xn(�), the distributions of Xn(�) can also be
obtained.

The result for probability generating function is improved as a solution to two
systems of simultaneous equations of fixed sizes L and m, respectively, where L is
the number of simple patterns and m is the size of �, while the result for probability
generating function in Chang (2005) is the solution to ω simultaneous equations where
ω is the size of the state space of the imbedded Markov chain and it grows as the lengths
of the simple patterns increase.
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All the numerical results are calculated by the computing software MATLAB. From
the figures in Sect. 4, our recursive equations are able to compute the probabilities
for r = 250 and n = 500, 000. As a byproduct, if we calculate the probability
P(X10,000(�) = 10) for example, then we automatically obtain the probabilities
P(Xn(�) = r) for all n ≤ 10, 000 and r ≤ 10.
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