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Abstract In this paper, we consider the goodness-of-fit for checking whether the
nonparametric function in a partial linear regression model with missing covariate at
random is a parametric one or not. We estimate the selection probability by using
parametric and nonparametric approaches. Two score type tests are constructed with
the estimated selection probability. The asymptotic distributions of the test statistics
are investigated under the null and local alterative hypothesis. Simulation studies are
carried out to examine the finite sample performance of the sizes and powers of the
tests. We apply the proposed procedure to a data set on the AIDS clinical trial group
(ACTG 315) study.

Keywords Partial linear model · Lack-of-fit test · Covariates missing at random ·
Inverse probability weights

1 Introduction

To fix notation, let Y denote a continuous outcome variable, X and T be the exposure
variables with p and q-dimensional vectors, respectively, the partial linear model can
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be written as

Y = X τ β + g(T ) + ε, (1)

where β is an unknown parameter vector of dimension p, g(·) is an unknown mea-
surable function, and ε is the error term with E(ε|X, T ) = 0 and E(ε2|X, T ) =
σ 2(X, T ) < ∞. We use the superscript τ in (1) denote a transpose. Here, we assume
that the variable T is a scalar for simplicity. The proposed methods in this paper can
be extended to the situation when T is a multivariate variable.

When the data set is completed, there are many literature investigating the goodness-
of-test for a partial linear model. For checking whether the partial linear model in (1)
is correct for data fitting, i.e., H0 : E(Y |X, T ) = X τ β + g(T ) for some β and g(·),
among others, Whang and Andrews (1993) and Yatchew (1992) used sample split-
ting to recommend ad hoc methods to handle this problem. To avoid the use of ad
hoc modification and improve the power performance, Fan and Li (1996), based on a
kernel estimator of the conditional expectation of residuals given (X, T ), constructed
a consistent test for the above H0. To obtain some distribution-free test, Zhu and Ng
(2003) proposed a residual marked process test. For the implementation of their pro-
cedure, they resorted to a variant of the wild bootstrap approximation called “Random
Symmetrization”.

In practice, we are also concerned with the question whether the nonparametric part
in (1) is a parametric function, that is, H0 : g(·) = g(·, θ) for some θ and a known
function g(·, θ). If the null hypothesis for some known function g(·, θ) such as linear
function holds, we can carry out more efficient statistical inference. On the other hand,
if we misspecify the regression model, we are at the risk of getting biased estimator
and unreliable inference. For this issue, among others, Li et al. (2011) proposed a test
to check the linearity of the nonparametric portion by a linear interpolation and obtain
the p value using the fiducial method. Liang (2006) developed a Crámer-von Mises
statistic and likelihood ratio test for checking the linearity of nonparametric function.
Li (2009) proposed two Wald-type spline-based test statistics to check the linearity of
partially linear models.

It is quite common in practice that some covariates variable, denoted it as U with
X = (U, V ), may be not available. Missing covariates data can arise due to various
reasons such as limited budget to measure for the full study cohort, refusals to reply
to certain question to supply the desired information, drop outs due to serious side
effects, failure on the part of investigator to gather correct information, errors in the
measuring apparatus, and so forth.

When the partial linear model is missing response at random, there are many investi-
gations in the literature for the estimation of β and g(·), and goodness-of-fit problems.
For estimation of the partial linear model, among others, Wang et al. (2004) defined
a class of estimators including semiparametric regression imputation estimator, mar-
ginal average estimator and (marginal) propensity score weighted estimator for the
marginal mean of response. Wang and Sun (2007) proposed imputation, semipara-
metric regression surrogate and inverse marginal probability weighted methods to
estimate the parameters and nonparametric function, respectively. Liang et al. (2007)
developed a class of semiparametric estimators for the partial linear model with miss-
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ing response variables and error-prone covariates. For testing of the partial linear
model, among others, Xu et al. (2012) constructed two completed data sets based on
imputation and marginal inverse probability weighted methods, and developed two
empirical process-based tests for checking whether the nonparametric part in (1) is a
parametric function. Sun et al. (2009) proposed two empirical process-based tests for
checking whether model (1) with missing response is plausible for data fitting.

When the covariates are missing, Liang et al. (2004) estimated the regression para-
meter by employing the augmented inverse weight probability method asbreak in
Robins et al. (1994). Wang (2009) proposed a model calibration-based method and a
weighted way to estimate the parameter and nonparametric function, respectively. To
our knowledge, few works focus on the goodness-of-fit for the partial linear model
with missing covariate data. Evidently, it is an interesting topic for testing whether
the nonparametric function is a parametric form in model (1) with missing covariates,
and the existing methods for complete data may not be used directly.

In this paper, for the model (1) with covariates missing at random, we consider
testing

H0 : g(·) = g(·, θ) (2)

for some θ and known function g(·, θ). Our test statistics are based on a weighted
version of the residual. We choose the commonly used inverse selection probability
as the weighted function, which is estimated parametrically and nonparametrically,
respectively. Based on the parametric and nonparametric estimation of the weight
function, two types of the score test are constructed. We investigate the finite sample
property of our proposed tests through simulation studies.

The rest of this paper is organized as follows. In Sect. 2, we construct the test statis-
tics and derive their asymptotic properties under null hypothesis and local alternative
hypothesis. In Sect. 3, some simulation analysis and a real data analysis is carried out
to illustrated the proposed tests. The proofs of the asymptotic results are presented in
the Appendix.

2 Test procedure

2.1 Construction of test statistics

Let X = (U, V ) and we assume that the covariate U is missing at random (MAR)
throughout this paper, while Y, V and T are fully observed. Here U, V are p1, p2-
dimensional random vectors, respectively. Let δ be the missing indicator for the indi-
vidual. It is defined as δ = 1 if U is observed and δ = 0 if otherwise. MAR implies
that δ and U are conditional independent given other variables Y, V and T . Thats,

P(δ = 1|Y, U, V, T ) = P(δ = 1|Y, V, T ) = π(Z),

here Z = (Y, V, T ). MAR is commonly assumed in the statistical analysis with
missing data and is suitable in many practical situations, see Little and Rubin (1987).
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Our tests are based on the consideration that under H0, we have

E
( δ

π(Z)
(Y − X τ β − g(T, θ))

)
= 0, (3)

while under alternative hypothesis with Pr(g(T ) = g(T, θ)) < 1, we can obtain

E
( δ

π(Z)
(Y − X τ β − g(T, θ))

)
�= 0.

Consequently, we can construct the following two residual-based test statistics based
on the left hand side of the empirical version in (3)

Tn1 = 1√
n

n∑
i=1

δi

π̂(zi )
(yi − xτ

i β̂ − g(ti , θ̂ )), (4)

Tn2 = 1√
n

n∑
i=1

δi

π(zi , α̂)
(yi − xτ

i β̂ − g(ti , θ̂ )), (5)

where β̂, θ̂ are the estimators of β, θ , and π̂(zi ) and π(zi , α̂) are the parametric and
nonparametric estimators of π(zi ), respectively. The parameter estimators β̂ and θ̂ ,
and the function estimation π̂(zi ) and π(zi , α̂) will be specified later. The difference
between the test (4) and (5) is that the test (4) considers the estimator of π(zi ) to be
nonparametric function while (5) considers that to be parametric form.

Let g1(T ) = E(δX |T )/E(δ|T ), g2(T ) = E(δY |T )/E(δ|T ), and their correspond-
ing estimators are denoted by

ĝ1(t) =
∑n

j=1
δ j x j Kh(t − t j )

∑n

j=1
δ j Kh(t − t j )

, ĝ2(t) =
∑n

j=1
δ j y j Kh(t − t j )

∑n

j=1
δ j Kh(t − t j )

here Kh(·) = K (·/h)/h with K (·) being a kernel function and h being a bandwidth.
We estimate the regression parameters β by using the following expression:

β̂ =
(

n∑
i=1

δi (xi − ĝ1(ti ))(xi − ĝ1(ti ))
τ

)−1 n∑
i=1

δi (xi − ĝ1(ti ))(yi − ĝ2(ti )).

Based on the above estimator for β̂, the weighted least square estimator θ̂ of θ is
defined as

θ̂ = arg min
θ

1

n

n∑
i=1

δi

π̂(zi )

(
yi − xτ

i β̂ − g(ti , θ)
)2

,
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or

θ̂ = arg min
θ

1

n

n∑
i=1

δi

π(zi , α̂)

(
yi − xτ

i β̂ − g(ti , θ)
)2

,

which is dependent on whether the inverse probability function is estimated paramet-
rically or nonparametrically.

When the dimension of Z is not high and we do not have the idea about the form of
π(Z), we can apply the following kernel estimation method to estimate π(Z), thats,

π̂(zi ) =
∑n

j=1
δ j Kh(zi − z j )

∑n

j=1
Kh(zi − z j )

. (6)

However, as verified in the literature, when the dimension of Z is high, the fully
nonparametric kernel estimator may suffer from the curse of dimensionality and
impede its use in practice. At this time, if we have some a priori knowledge about
the structure of π(Z) which is also very common in practice, parametric estima-
tion is another alterative method. For example, we assume that π(Z , α) to be a
logistic function based on δi , yi , ti , i = 1, . . . , n. More specifically, we suppose
π(zi , α) = (1 + exp(−α0 − α1 yi − α2ti − ατ

3vi ))
−1 where α = (α0, α1, α2, α3)

τ is
an unknown vector parameter. We denote the maximum likelihood estimator of α as
α̂ = (α̂0, α̂1, α̂2, α̂3)

τ , and the corresponding estimator of π(z, α) is

π(zi , α̂) = (1 + exp(−α̂0 − α̂1 yi − α̂2ti − α̂τ
3vi ))

−1. (7)

When π(Z) is not parametric, the parametric method may obtain inconsistent esti-
mator. However, from the numerical analysis of the paper, the test (5) is robust to the
missing mechanisms. The estimators π̂(zi ) and π(zi , α̂) in (4) and (5) are from that
in (6) and (7), respectively.

2.2 Asymptotic behavior of the test statistics

Let π ′(Z , α) = gradα(π(Z, α)), g′(T, θ) = gradθ (g(T, θ)), 
 = (1, Z), �α =
E(π(Z, α)(1−π(Z, α)
τ
) and �θ = E(g′(T, θ)τ g′(T, θ)). Under mild conditions,
see Jennrich (1969), we have

√
n(θ̂ − θ) = �−1

θ

1√
n

n∑
i=1

g′(ti , θ)τ
δi

π̂(zi )
(yi − xτ

i β̂ − g(ti , θ)) + op(1), (8)

For the MLE estimator of α, α̂, we have

√
n(α̂ − α) = �−1

α

1√
n

n∑
i=1


τ (δi − π(zi , α)) + op(1), (9)
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where the π̂(zi ) should be updated as π(zi , α̂) when π(zi ) is estimated parametrically.
We first introduce some notations that are related to the limiting variance of the test

statistic. Let �0 = E[δ(X − g1(T ))(X − g1(T ))τ ], and

A1(ti , θ) = 1 − Eg′(T, θ)�−1
θ g′(ti , θ)τ ,

A2(θ) = E(X τ ) − Eg′(T, θ)�−1
θ E(g′(T, θ)τ X τ ),

M = E((1 − π(Z , α))
A1(T, θ)ε),

L1(xi , ti , θ) = A1(ti , θ) − A2(θ)�−1
0 (xi − g1(ti ))π(zi ),

L2(xi , ti , θ) = A1(ti , θ) − A2(θ)�−1
0 (xi − g1(ti ))π(zi , α)

Under null hypothesis, the asymptotic properties of Tni (i = 1, 2) in (4) and (5) are as
follows.

Theorem 1 Under H0 and the conditions in appendix, we have

Tn1 → N (0, V1) and Tn2 → N (0, V2),

where

V1 = E
( δε

π(Z)
L1(X, T, θ) + π(Z) − δ

π(Z)
A1(T, θ)E(ε|Z)

)2
,

V2 = E
( δε

π(Z , α)
L2(X, T, θ) − M�−1

α 
τ (δ − π(Z , α))
)2

.

We now investigate the sensitive of the tests for a sequence of local alternatives
with the form

H1n : g(T ) = g(T, θ) + CnG(T ) + η, (10)

where E(η|T ) = 0 and the function G(·) satisfies E(G2(T )) < ∞. Then we have the
following theorem under H1n ,

Theorem 2 Assume the same conditions as Theorem 1, under local alternatives H1n,
we have,

(i) If n1/2Cn → 1, Tn1 → N (μ1, V1) and Tn2 → N (μ2, V2), where μ1 = μ2 =
E(G(T )A1(T, θ));

(ii) If nr Cn → a with 0 < r < 1/2 and a �= 0, then Tn1 → ∞ and Tn2 → ∞.

We realize, from Theorem 2, that, when local alternatives are distinct from the null
hypothesis at the rate n−r with 0 < r < 1/2, the proposed test in the paper can
have asymptotic power 1; when that are distinct from the null hypothesis at the rate
n−1/2, the test can also detect alternatives. The rate n−1/2 is the possible fastest rate
for lack-of-fit test.

The asymptotical properties of Tn2 in Theorem 1 and 2 are from the assumption
that π(Z , α) is specified correctly. When the assumption is violated, we denote the

123



Checking the adequacy of partial linear models 479

true probability function as π0(Z , α̃) instead of π(Z , α). In this case, the left hand
side in (3) can be proved that

E

(
δ

π(Z , α)
(Y − X τ β − g(T, θ))

)
= E

[
π0(Z , α̃)

π(Z , α)
E((Y −X τ β − g(T, θ))|Z)

]
.

(11)

Note that E((Y − X τ β − g(T, θ))|Z) = E((Y − X τ β − g(T, θ))|Y, V, T ), which
may not be equal to zero, the term in (11) cannot be proved to be zero consequently.
Hence, when π(zi , α) is misspecified, Theorem 1 and 2 are not corrected for the tests
theoretically. In order to avoid this problem, in the paper, we also propose the test Tn1
based on the nonparametric estimator of selection probability π(Z).

Remark 1 We establish the asymptotic normality of the test Tn2 in Theorem 1 and 2
when π(Z , α) is logistic regression. If π(Z , α) is any other parametric function instead
of logistics regression function, we can similarly obtain the corresponding asymptotic
property of the test Tn2 by modifying the asymptotical behavior of α̂ in (9). Other
popular parametric methods, such as generalized estimating equations (GEE), can
also be applied to estimate the parameter α. We only need to update the asymptotic
expansion of α̂ derived from other estimation procedures and the asymptotic result for
the test Tn2 should be changed correspondingly.

3 Numerical analysis

3.1 Simulation study

In this section, we report results from several simulation studies to evaluate the finite
sample behavior of the proposed test statistics, and generate 2,000 simulated data sets
for all simulations. We take K (u) = 15/16(1 − u2)2, if |u| ≤ 1; 0 otherwise as the
kernel function. Though bandwidth selection has been studied extensively in nonpara-
metric estimation problem, it is still an open problem in model checking area as pointed
out by Zhu and Ng (2003) and Zhu (2005). From our experience, a good empirical
choice of the bandwidth is h0 = σ̂ (T )n−1/3 here σ̂ (T ) is the empirical estimator of
the standard deviation of variable T . Evidently, this bandwidth satisfies condition (5)
in Appendix. To investigate the sensitivity of the bandwidth selection, we also con-
sider several bandwidth selection, that is, h0 = σ̂ (T )n−1/3, h1 = 0.5σ̂ (T )n−1/3 and
h2 = 2σ̂ (T )n−1/3.

Study 1. The data was generated according to the following partial linear model

Y = β X + 1 + T + aT 2 + ε, (12)

where β = 1, X ∼ N (0, 1), T ∼ U (0, 1), ε ∼ N (0, 0.4) and g(T ) = 1 + T + aT 2.
For model (12), the testing problem is whether g(T ) is a linear function of 1 + T , i.e.,
H0 : g(T ) = θ(1 + T ) when X is missing. It is clear that a = 0 is corresponding to
the null hypothesis and a �= 0 to alternatives.
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Table 1 Simulated size and power under sample size n = 100, missing mechanisms π1(y, t), and different
a for Study 1

a Tn1 Tn2

h1 h0 h2 h1 h0 h2

0.0 0.054 0.052 0.061 0.051 0.055 0.055

0.2 0.060 0.065 0.072 0.102 0.100 0.105

0.4 0.186 0.185 0.200 0.259 0.238 0.248

0.6 0.398 0.390 0.410 0.477 0.482 0.480

0.8 0.652 0.659 0.660 0.719 0.737 0.739

1.0 0.840 0.868 0.856 0.879 0.885 0.900

1.2 0.950 0.950 0.952 0.963 0.963 0.971

1.4 0.987 0.987 0.983 0.995 0.994 0.989

1.6 0.997 0.999 0.998 0.995 0.998 0.997

1.8 0.999 1.000 1.000 0.999 1.000 0.999

2.0 1.000 1.000 1.000 0.999 1.000 1.000

Two missing probability mechanisms are chosen as follows:

π1(y, t) = P(δ = 1|Y = y, T = t) = 1/(1 + exp(−(1 + y + t)),
π2(y, t) = P(δ = 1|Y = y, T = t) = 1/(1 + 0.5y2/(y2 + t2)).

For the above two cases, the mean response rates are Eπ1(y, t) ≈ 0.91 and
Eπ2(y, t) ≈ 0.71, respectively. Furthermore, π1(y, t) is a parametric function with
logistic form, while π1(y, t) does not have this form.

In this simulation, by varying the values of a in (12), the sample size n = 100, 200
and missing mechanism πi (y, t) (i = 1, 2), we study the size and power performance
of the proposed tests. Also, the effect of the bandwidth on the performance of the test
is studied by choosing h = h0, h1 and h2. According to our simulation results, the
size and power of the test statistics are not too sensitive for bandwidth h = h0, h1, h2,
we report the simulation results with sample size n = 100 and missing mechanism
π1(y, t) in Table 1 for space consideration. All the simulation runs are shown in Fig. 1
for fixed bandwidth h = h0.

From Table 1, we can know clearly that the bandwidth has little influence on the
behavior of both tests. For example, the powers for Tn1 with n = 100 and a = 0.80 are
0.652, 0.659 and 0.660, which are corresponding to h = h1, h0 and h2, respectively.
While for Tn2, the corresponding powers at this time are 0.719, 0.737 and 0.739,
which are corresponding to h = h1, h0 and h2, respectively.

Figure 1a and b present the plots with missing probability π1(y, t), while the plots
with π2(y, t) are depicted in Fig. 1c and d. From these two figures, we can observe
that our proposed tests Tn1 and Tn2 maintain the significance level very well. For the
alternative hypothesis, we can notice that the power increases quickly as a in (12)
increases, i.e., the tests are very sensitive to the alternatives. Also, we can find that
when the sample size is n = 200, the power performances of both tests improve
much compared with that under sample size n = 100. Further, the proposed tests with
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Fig. 1 Empirical powers of tests for Study 1 with n = 100 and n = 200: a for π1(y, t) and n = 100; b
for π1(y, t) and n = 200; c for π2(y, t) and n = 100; d for π2(y, t) and n = 200; The dashed line is for
Tn1, and the solid line is for Tn2. The model for generating data is Y = β X + 1 + T + aT 2 + ε, where
β = 1, X ∼ N (0, 1), T ∼ U (0, 1), ε ∼ N (0, 0.4) and g(T ) = 1 + T + aT 2. The null hypothesis is
H0 : g(T ) = θ(1 + T )

missing probability mechanisms π1(y, t) is more efficient than that with π2(y, t). Note
that the mean response rates of π1(y, t) is larger than that of π2(y, t); we can conclude
that larger sample size or more information generally improves the performance of
the tests.

We turn to compare the tests Tn1 and Tn2. We find that when the missing proba-
bility is π1(y, t), which is a logistics function, Tn2 is more powerful than Tn1, while
they are going in the opposite way with nonparametric missing mechanism π2(y, t).
When we know the parametric form of the missing mechanism, using this information
can generally produce more efficient checking procedure. On the other hand, if we
misspecify the missing mechanism, parametric procedure may result in inferior power
performance. However, we also notice that in this case, the performance of Tn2 is still
comparable to that of Tn1.
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Study 2. We generate the data according to the following model

Y = β1 X1 + β1 X2 + β2 X3 + 1 + T + a sin(2πT ) + ε, (13)

where β1 = β1 = β2 = 1, X1, X2, X3 ∼ N (0, 1), T ∼ U (0, 1), ε ∼ N (0, 0.4),
and g(T ) = 1 + T + a sin(2πT ). For model (13), we check whether g(T ) is a linear
function, i.e., H0 : g(T ) = θ(1 + T ). The null hypothesis is true when a = 0, and
a �= 0 is corresponding to the alternative hypothesis. We also assume X1 missing is
missing according to the following missing mechanisms:

π1(y, x2, x3, t) = 1/(1 + 0.25|y/(y + x2 + x3 + t)|);
π2(y, x2, x3, t) = 1/(1 + (y2/(y2 + x2

2 + x2
3 + t2))).

At this time, the mean response rates are Eπ1(y, x2, x3, t) ≈ 0.83 and Eπ2(y, x2, x3,

t) ≈ 0.67, respectively. For this study, we investigate the effect of dimension of the
variables Z = (Y, X2, X3, T ) on Tn1 and the robustness of Tn2 to the nonparametric
missing mechanisms.

We show the results in Fig. 2a and b with π1(y, x2, x3, t) and in Fig. 2c and d
with π2(y, x2, x3, t). From this Figure, we can get the similar conclusions as Study
1, except the following findings. When the dimension of Z is four, the performance
of Tn1 is comparable. In other words, Tn1 does not suffer the curse of dimension too
much. Meanwhile, the test Tn2 is robust to the missing mechanism, and it can perform
very well even when the missing mechanism is not parametric.

3.2 Real data analysis

In this section, we apply our method to the analysis of an AIDS clinical trial group
(ACTG 315) study. There are 53 HIV-1-infected patients treated, of which five patients
quitted the study due to drug intolerance and other problems. Hence, 48 evaluable
patients enrolled in ACTG 315. The response variable is viral load and the covariates
are CD4+ cell counts and treatment time. All the patients are repeatedly measured, and
a total of 317 observations are available from 48 patients with 64 CD4+ cell counts
missing. That is, the missing proportion is 20.19 %. The data set has been studied by
Wu and Wu (2001, 2002), and Yang et al. (2009) etc.

In general, immunologic response (measured by CD4+ cell count) and the virologic
response (measured by viral load) are negatively correlated during antiviral treatments.
It is suggested by Liang et al. (2004) that the impact of CD4+ cell count and treatment
time on the viral load is linear and nonparametric, respectively. However, it is impor-
tant to check whether the assumption about the nonparametric relationship between
the viral load and the treatment time is validated or not. Note that this data set is
actually longitudinal. We ignore the correlation structure for hypothesis testing since
the proposed tests can be extended to a working independence analysis of longitu-
dinal data, that is, the correlation structure is ignored as in Liang et al. (2004) and
Yang et al. (2009).

Let Y be the viral load, T be the treatment time and X be the CD4+ cell counts.
Denote δ = 0 if CD4+ is missing, otherwise δ = 1. The following model is considered
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Fig. 2 Empirical powers of tests for Study 2 with n = 50 and n = 100: a for π1(y, x2, x3, t) and
n = 50; b for π1(y, x2, x3, t) and n = 100; c for π2(y, x2, x3, t) and n = 50; d for π2(y, x2, x3, t)
and n = 100; The dashed line is for Tn1, and the solid line is for Tn2. The model for generating data is
Y = β1 X1 + β2 X2 + β2 X3 + 1 + T + a sin(2πT ) + ε, where β1 = β2 = β3 = 1, Xi ∼ N (0, 1), (i =
1, 2, 3), T ∼ U (0, 1), ε ∼ N (0, 0.4) and g(T ) = 1+T +a sin(2πT ). The null hypothesis is H0 : g(T ) =
θ(1 + T )

for data fitting:

Y = Xβ + g(T ) + ε. (14)

For models (14), we want to check whether the term g(T ) in (14) is linear or not.
Both the p values for Tn1 and Tn2 are 0.000 for the null hypothesis H0 : g(T ) = θT .
Thus we can reject the null hypothesis, and the linear form of g(T ) is not feasible.
The result suggests that the nonparametric function g(T ) is appropriate in model (14)
as in Liang et al. (2004) and Yang et al. (2009).
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Appendix: Proof of the theorems

The following conditions are required for the theorems in Sect. 2.

1. g(·, θ) is continuously differentiable with respect to θ in the interior set of �, and
g1(·) and g2(·) satisfy Lipschitz condition of order 1;

2. π(z) has bounded partial derivatives up to order k(> 2) almost surely;
3. �0, �α,�θ are all positive definite matrix;
4. sup E(ε2|X = x, T = t) < c1 for some c1 and all x and t, E |X |4 < ∞, and

E |Y |4 < ∞;
5. As n → ∞,

√
nh2 → 0, and

√
nh → ∞;

6. The density of Z , say f (z) on support C, exists and has bounded derivatives up to
order 2 and satisfies

0 < inf
z∈C

f (z) ≤ sup
z∈C

f (z) < ∞;

7. The continuous kernel function K (·) satisfies: (i) the support of K (·) is the interval
[−1, 1]; (ii) K (·) is symmetric about 0; iii)

∫ 1
−1 K (u)du = 1 and

∫ 1
−1 |u|K (u)du �=

0.

Remark 2 Conditions (1), (5) and (7) are typical for obtaining convergence rates when
nonparametric estimation is applied. Condition (2) is a common assumption in missing
data study, which is also used in Wang et al. (2004), and so on. The conditions (3) and
(4) are necessary for the asymptotic normality of the least squares estimator. Condition
(6) is a typical condition for avoiding the boundary effect for nonparametric estimate.

Lemma 1 Under conditions 1–7 in the Appendix, the asymptotic properties of
√

n(β̂−
β) under the null hypothesis in (2) or the local alternatives in (10) are the same as
follows

√
n(β̂ − β) = �−1

0√
n

n∑
i=1

δi (xi − g1(ti ))εi + op(1).

Proof for Lemma 1 Under the null hypothesis, we have

√
n(β̂ − β) = �−1

0√
n

n∑
i=1

δi (xi − g1(ti )){yi − g2(ti ) − (xi − g1(ti ))
τ β} + op(1)

= �−1
0√
n

n∑
i=1

δi (xi − g1(ti ))(yi − xτ
i β − g(ti , θ)) + op(1)

= �−1
0√
n

n∑
i=1

δi (xi − g1(ti ))εi + op(1).
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Under the local alternatives, we have

√
n(β̂ − β) = �−1

0√
n

n∑
i=1

δi (xi − g1(ti )){yi − g2(ti ) − (xi − g1(ti ))
τ β} + op(1)

= �−1
0√
n

n∑
i=1

δi (xi − g1(ti ))(yi − xτ
i β − g(ti , θ) − CnG(ti )) + op(1)

= �−1
0√
n

n∑
i=1

δi (xi − g1(ti ))εi + op(1).

Thus, Lemma 1 is proved. ��

Proof of Theorem 1 First, we prove the asymptotical distribution of Tn1 under null
hypothesis. It can be verified that

Tn1 = 1√
n

n∑
i=1

δi

π̂(zi )
(yi − xτ

i β − g(ti , θ)) − 1√
n

n∑
i=1

δi

π̂(zi )
xτ

i (β̂ − β)

− 1√
n

n∑
i=1

δi

π̂(zi )
g′(ti , θ)(θ̂ − θ)

= Tn11 − Tn12 − Tn13. (15)

For Tn12 in (15), it can be verified that

Tn12 = 1√
n

n∑
i=1

δi

π(zi )
xτ

i (β̂ − β) + 1√
n

n∑
i=1

(π(zi ) − π̂(zi ))δi

π2(zi )
xτ

i (β̂ − β) + op(1)

= E(X τ )
√

n(β̂ − β)

+ 1√
n

n∑
i=1

∑n

j=1
(π(zi ) − δ j )Kh(z j − zi )δi xτ

i

π2(zi )n f (zi )
(β̂ − β) + op(1)

= E(X τ )
√

n(β̂ − β) + 1√
n

n∑
j=1

π(z j ) − δ j

π(z j )
E(X τ |z j )(β̂ − β) + op(1)

= E(X τ )
√

n(β̂ − β) + op(1). (16)

The last equation follows from the fact that n−1 ∑n
i=1(π(zi )−δi )π(zi )

−1 E(X τ |zi ) =
op(1) and

√
n(β̂ − β) = Op(1).
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For Tn13 in (15), we have

Tn13 = E(g′(T, θ))
√

n(θ̂ − θ)

= E(g′(T, θ))�−1
θ

1√
n

n∑
i=1

g′(ti , θ)τ
δi

π̂(zi )
(yi − xτ

i β̂ − g(ti , θ)) + op(1)

= E(g′(T, θ))�−1
θ

1√
n

n∑
i=1

δi

π̂(zi )
g′(ti , θ)τ (εi − xτ

i (β̂ − β)) + op(1)

= E(g′(T, θ))�−1
θ

1√
n

n∑
i=1

g′(ti , θ)τ
δiεi

π̂(zi )

−E(g′(T, θ))�−1
θ E(g′(T, θ)τ X τ )

√
n(β̂ − β) + op(1). (17)

Based on the expressions (15), (16) and (17), and note that

A1(ti , θ) = 1 − Eg′(T, θ)�−1
θ g′(ti , θ)τ ;

A2(θ) = E(X τ ) − Eg′(T, θ)�−1
θ E(g′(T, θ)τ X τ ),

we can get

Tn1 = 1√
n

n∑
i=1

δiεi

π̂(zi )
A1(ti , θ) − A2(θ)

√
n(β̂ − β) + op(1). (18)

According to Lemma 1, for β̂, we have

√
n(β̂ − β) = �−1

0
1√
n

n∑
i=1

δi (xi − g1(ti ))εi + op(1).

Note that,

1√
n

n∑
i=1

δiεi

π̂(zi )
A1(ti , θ) = 1√

n

n∑
i=1

δiεi + (π(zi ) − δi )E(ε|zi )

π(zi )
A1(ti , θ) + op(1),

the expression Tn1 in (18) can be further derived as:

Tn1 = 1√
n

n∑
i=1

δiεi

π(zi )
{A1(ti , θ) − A2(θ)�−1

0 (xi − g1(ti ))π(zi )}

+ 1√
n

n∑
i=1

π(zi ) − δi

π(zi )
A1(ti , θ)E(ε|zi ) + op(1).

Then the asymptotical distribution of Tn1 in Theorem 1 is proved.
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Below we prove the asymptotical distribution of Tn2, it can be easily derived that

Tn2 = 1√
n

n∑
i=1

δi

π̂(zi , α)
(yi − xτ

i β − g(ti , θ)) − 1√
n

n∑
i=1

δi

π̂(zi , α)
xτ

i (β̂ − β)

− 1√
n

n∑
i=1

δi

π̂(zi , α)
g′(ti , θ)(θ̂ − θ)

= Tn21 − Tn22 − Tn23. (19)

For Tn22 in (19), we have

Tn22 = 1√
n

n∑
i=1

[ δi xτ
i

π(zi , α)
(β̂ − β) − (π(zi , α̂) − π(zi , α))δi xτ

i

π2(zi , α)
(β̂ − β)

]
+ op(1)

= Tn22,1 − Tn22,2 + op(1). (20)

Note that 
i = (1, zi ),
√

n(α̂−α) = Op(1) and π(zi , α̂)−π(zi , α) = π ′(zi , α)(α̂−
α) + op(n−1/2) = π(zi , α)(1 − π(zi , α))
i (α̂ − α) + op(n−1/2), for Tn22,2, we have

Tn22,2 = E((1 − π(Z , α))
X τ )
√

n(α̂ − α)(β̂ − β) + op(1) = op(1).

Consequently, Tn22 = E(X τ )
√

n(β̂ − β).
For Tn23 in (19), it can be proved that

Tn23 = Eg′(T, θ)
√

n(θ̂ − θ)

= Eg′(T, θ)�−1
θ

1√
n

n∑
i=1

g′(ti , θ)τ
δiεi

π(zi , α̂)

−Eg′(T, θ)�−1
θ E(g′(T, θ)τ X τ )

√
n(β̂ − β) + op(1). (21)

According to the Eqs. (19), (20) and (21), we have

Tn2 = 1√
n

n∑
i=1

δiεi

π(zi , α̂)
A1(ti , θ) − A2(θ)

√
n(β̂ − β) + op(1)

= T̄n21 − T̄ n22 + op(1). (22)

For T̄n21, it can be verified that

T̄n21 = 1√
n

n∑
i=1

A1(ti , θ)
[ δiεi

π(zi , α)
− (π(zi , α̂) − π(zi , α))δiεi

π2(zi , α)

]
+ op(1)

= 1√
n

n∑
i=1

A1(ti , θ)
δiεi

π(zi , α)
− M

√
n(α̂ − α), (23)
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where M = E((1 − π(Z , α))
A1(T, θ)ε).
Following lemma 1 and the Eqs. (22) and (23), we obtain

Tn2 = 1√
n

n∑
i=1

δiεi

π(zi , α)

[
A1(ti , θ) − A2(θ)�−1

0 (xi − g1(ti ))π(zi , α)
]

−M�−1
α

1√
n

n∑
i=1


τ (δi − π(zi , α)) + op(1).

Then the asymptotical distribution of Tn2 in Theorem 1 is proved, and Theorem 1 is
proved. ��
Proof of Theorem 2 For Tn1, it can be divided as

Tn1 = 1√
n

n∑
i=1

δi (ηi + CnG(ti ))

π̂(zi )
A1(ti , θ) − A2(θ)

√
n(β̂ − β) + op(1)

= T̃n11 + T̃n12 − T̃n13 + op(1).

For T̃n12, we can easily obtain

T̃n12 = Cn√
n

n∑
i=1

δi G(ti )

π(zi )
A1(ti , θ) + Cn√

n

n∑
i=1

(π(zi ) − δi )G(ti )

π(zi )
A1(ti , θ) + op(1)

= Cn
√

nE(G(T )A1(T, θ)) + op(1),

where the last equation follows according to the fact that

V ar

(
Cn√

n

n∑
i=1

(π(zi ) − δi )G(ti )A1(ti , θ)

π(zi )

)
= C2

n V ar

(
(π(Z) − δ)G(T )A1(T, θ)

π(Z)

)
→ 0.

From Lemma 1, we know

√
n(β̂ − β) = �−1

0
1√
n

n∑
i=1

δi (xi − G1(ti ))εi + op(1).

As a result, if n1/2Cn → 1, we can obtain

Tn1 = 1√
n

n∑
i=1

δiεi

π(zi )
{A1(ti , θ) − A2(θ)�−1

0 (xi − g1(ti ))π(zi )}

+ 1√
n

n∑
i=1

π(zi ) − δi

π(zi )
A1(ti , θ)E(ε|zi ) + E(G(T )A1(T, θ)) + op(1).
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If nr Cn → a, 0 < r < 1/2, then it yields
√

nCn → ∞, as n → ∞. As a result, we
have Tn1 → ∞.

We investigate the asymptotic property of Tn2 below. Note that

Tn2 = 1√
n

n∑
i=1

δi (ηi + CnG(ti ))

π(zi , α̂)
A1(ti , θ) − A2(θ)

√
n(β̂ − β) + op(1)

= T̃n21 + T̃n22 − T̃n23 + op(1).

For T̃n22, it can be derived that

T̃n22 = Cn√
n

n∑
i=1

δi G(ti )

π(zi , α)
A1(ti , θ)

− Cn√
n

n∑
i=1

(π(zi , α̂) − π(zi , α))δi G(ti )

π2(zi , α)
A1(ti , θ) + op(1)

= Cn
√

nE(G(T )A1(T, θ))

−Cn E[(1 − π(Z , α))G(T )A1(T, θ)
]√n(α̂ − α) + op(1)

= Cn
√

nE(G(T )A1(T, θ)) + op(1).

The last equation follows because
√

n(α̂ − α) = Op(1) and Cn → 0.
Consequently, according to Lemma 1, we have

Tn2 = 1√
n

n∑
i=1

δiεi

π(zi , α)

[
A1(ti , θ) − A2(θ)�−1

0 (xi − g1(ti ))π(zi , α)
]

−M�−1
α

1√
n

n∑
i=1


τ (δi − π(zi , α)) + Cn
√

nE(G(T )A1(T, θ)).

The asymptotic properties of Tn2 can be obtained based on the above equation. Thus,
Theorem 2 is proved. ��
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