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Abstract We consider the problem of comparing sojourn time distributions of a
transient state in a general multistate system in two samples (groups) when the tran-
sition times are right censored. Using the reweighting principle, a two-sample Mann–
Whitney type of U -statistic is constructed that compares only the uncensored sojourn
times from the two distributions. A second Mann–Whitney type of statistic is also
constructed using a different reweighting that allows for comparisons when one of the
two sojourn times is either uncensored or singly censored. Both these statistics are
asymptotically unbiased, asymptotically normally distributed and reduce to the stan-
dard Mann–Whitney statistic when there is no censoring. A test of equality of sojourn
time distributions in two independent samples is constructed by symmetrizing the sec-
ond statistic. The testing methodology is illustrated using a data set on kidney disease
patients.

Keywords Censoring · Martingale · Mann–Whitney statistic ·
Reweighting principle · U -statistic · Waiting time

1 Introduction

The Mann–Whitney U test (Mann and Whitney 1947) is perhaps the most commonly
used nonparametric procedure in comparing two distributions based on independent
samples. Procedurally, it is equivalent to Wilcoxon’s rank-sum test and because of
that test is sometimes collectively referred to as Wilcoxon–Mann–Whitney test. The
test was proposed initially by Wilcoxon (1945) for equal sample sizes in two groups
and later extended by Mann and Whitney (1947) for possibly unequal sample sizes.
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Practitioners often regard the Mann–Whitney test as the nonparametric counterpart of
the parametric two-sample t test. However, the method is more robust than the t test
and can be applied to ordinal data in addition to continuous data. It is especially useful
when the assumption of normality is not met.

Unfortunately, the traditional Mann–Whitney U test does not take missing values
into account. In this paper, we are interested in comparing the sojourn times (waiting
times) in two independent samples when the transition times (e.g., both the state entry
and the state exit times) are subject to right censoring. In this situation, missing data
could arise if at least one of the state entry or exit times is right censored. Unlike
right-censored failure time data (Latta 1977; Prentice 1978, etc.), there are currently
no extensions of the Wilcoxon–Mann–Whitney test that applies to this situation since
the censoring induced on the set of sojourn times is more complex than independent
right censoring.

Our attempts to extend the Mann–Whitney U -statistic to sojourn times under right-
censored transition times are based on its representation as a generalized U -statistic.
Traditional U -statistics (Serfling 1980) are one-sample statistics, whereas generalized
U -statistics are based on k (≥2) samples {X1,1, . . . Xn1,1}, . . . , {X1,k , . . . Xnk ,k} from
distributions F1, . . . , Fk, respectively. See, e.g., Serfling (1980, p. 175) for a formal
definition.

Datta et al. (2010) proposed an inverse probability of censoring weighted (IPCW)
U -statistics for right-censored data. Earlier, Schisterman and Rotnizky (2001) con-
sidered inverse probability weighting for constructing U -statistics based on missing
data. We adopt similar reweighting principles to deal with missing sojourn times.
However, the current setup is more complicated for two reasons. First of all, unlike
U -statistics, generalized U -statistics involve multiple groups and, more importantly,
the right-censoring mechanism operates on the transition times and not on the sojourn
times inducing a dependent censoring.

The rest of the paper is organized as follows. In Sect. 2, we introduce the two pro-
posed Mann–Whitney type of U -statistics to compare two sojourn time distributions
when transition times are right censored. In the third section, we describe the asymp-
totic properties of the proposed statistics including variance estimation. In Sect. 4,
we consider testing the null hypothesis of equality of sojourn time distributions from
two independent samples. We construct our test statistic using a symmetrization of a
Mann–Whitney type of U -statistic introduced by us. We present results from a number
of simulation studies for both estimation and testing by generating data from different
scenarios in Sect. 5. In Sect. 6, we apply the testing methodology to a kidney disease
data set as an illustration. We conclude the main body of the paper with discussion
in Sect. 7. The proofs of asymptotic normality of the two Mann–Whitney type of
statistics are placed in the Appendix.

2 Mann–Whitney U-statistics for sojourn times in the presence of right
censoring

We begin this section by introducing the notation necessary to describe our statis-
tics. Suppose we have right-censored entry and exit time data from two indepen-
dent populations (groups). Let X∗

i, j and V ∗
i, j be the possibly unobserved (due to right
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censoring) state entry and exit times, respectively, for the i th subject in the j th group,
both of which are subject to right censoring by a common censoring time Ci, j which is
assumed to be independent of the pair (X∗

i, j , V ∗
i, j ). Our observed data consist of the four

tuples (Xi, j , ξi, j , Vi, j , δi, j ), 1 ≤ i ≤ n j , j = 1, 2, where Xi, j = min(X∗
i, j , Ci, j )

and Vi, j = min(V ∗
i, j , Ci, j ) are the (right) censored state entry and exit times, and

ξi, j = I (X∗
i, j ≤ Ci, j ) and δi, j = I (V ∗

i, j ≤ Ci, j ) are the censoring indicators for the

i th subject in the j th group. Also let, for future use, ξi, j = 1−ξi, j and δi, j = 1− δi, j .
Let W ∗

i, j = V ∗
i, j − X∗

i, j be the possibly unobserved sojourn times and we define
Wi, j = Vi, j − Xi, j . Note that Wi, j is computable from the observed data and equals
W ∗

i, j if and only if δi, j = 1. Let Fj be the sojourn time distribution function in group
j and S j = 1 − Fj .

When we compare two sojourn time distributions with no missing observations,
the Mann–Whitney U -statistic is given by U∗ = (n1n2)

−1 ∑n1
i1=1

∑n2
i2=1 I (W ∗

i1,1
≤

W ∗
i2,2

). In the present context, we replace W * by the observed data quantities W
for each pair with both δ = 1; i.e., we only select the fully observed sojourn times
from each group for comparison. In order to compensate for this selection bias, we
reweigh each summand by the inverse of the selection probabilities conditional on the
state exit times for such a sample pair leading to the following extension of Mann–
Whitney statistic

U1 = 1

n1n2

n1∑

i1=1

n2∑

i2=1

I (Wi1,1 ≤ Wi2,2)δi1,1δi2,2

K1(Vi1,1−)K2(Vi2,2−)
,

where K j (t) = P{C j > t} is the survival function of the censoring times in group j .
The following simple argument shows that indeed U1 agrees with the full data

Mann–Whitney statistic U∗ on average:

E(U1) = 1

n1n2

n1∑

i1=1

n2∑

i2=1

E

[

E

{
I (W ∗

i1,1
≤ W ∗

i2,2
)δi1,1δi2,2

K1(V ∗
i1,1

−)K2(V ∗
i2,2

−)

∣
∣
∣
∣X∗

i1,1,V
∗
i1,1,X∗

i2,2,V
∗
i2,2

}]

= 1

n1n2

n1∑

i1=1

n2∑

i2=1

E

{
I (W ∗

i1,1
≤ W ∗

i2,2
)

K1(V ∗
i1,1

−)K2(V ∗
i2,2

−)
P(Ci1,1 ≥ V ∗

i1,1|X∗
i1,1, V ∗

i1,1)

×P(Ci2,1 ≥ V ∗
i2,1|X∗

i2,2, V ∗
i2,2)

}

by independence of two samples,

= 1

n1n2

n1∑

i1=1

n2∑

i2=1

E

{
I (W ∗

i1,1
≤ W ∗

i2,2
)

K1(V ∗
i1,1

−)K2(V ∗
i2,2

−)
K1(V ∗

i1,1−)K2(V ∗
i2,2−)

}

,

by independence of Ci j and {X∗
i j , V ∗

i j },

123



152 J. Fan, S. Datta

= 1

n1n2

n1∑

i1=1

n2∑

i2=1

E
{

I (W ∗
i1,1 ≤ W ∗

i2,2)
}

= E(U∗).

Note that U1 is not a statistic in the strict sense of the word since it involves the
population quantities K1 and K2. We estimate K j by the group-specific Kaplan–Meier

estimator K̂ j for the censoring survival function. Note that K̂ j (t−) can be computed
based on sample j (= 1, 2) by the standard Kaplan–Meier formula where the roles of
failure and censoring times are switched and a Ci j exceeding the corresponding exit
times V ∗

i, j is considered to be censored. Substituting K̂ j in place of K j , we get our
first Mann–Whitney type statistic

Û1 = 1

n1n2

n1∑

i1=1

n2∑

i2=1

I (Wi1,1 ≤ Wi2,2)δi1,1δi2,2

K̂1(Vi1,1−)K̂2(Vi2,2−)
.

Next, we propose a second generalization of Mann–Whitney U -statistic for sojourn
times that allows for comparison of additional pairs even when they are not fully
observed. Note that the indicator kernel I (W ∗

i1,1
≤ W ∗

i2,2
) can be evaluated when

W ∗
i1,1

= Wi1,1 is non-missing and we can conclude that W ∗
i2,2

is larger than Wi1,1
from the fact that Wi2,2 is larger than Wi1,1. In other words, the second entry time
X∗

i2,2
= Xi2,2 has to be non-missing as well and the second censoring time is at

least Wi1,1 + Xi2,2. The probability of both of these events occurring together given
{X∗

i1,1
, V ∗

i1,1
, X∗

i2,2, V ∗
i2,2} is K1(V ∗

i1,1
−)K2(W ∗

i1,1
+ X∗

i2,2
−), which is the same as

K1(Vi1,1−)K2(Wi1,1 + Xi2,2−) on the set δi1,1ξi2,2 = 1. Thus, we obtain our second
generalization of Mann–Whitney sojourn times statistic

Û2 = 1

n1n2

n1∑

i1=1

n2∑

i2=1

I (Wi1,1 ≤ Wi2,2)δi1,1ξi2,2

K̂1(Vi1,1−)K̂2(Wi1,1 + Xi2,2−)
. (1)

Its unbiasedness, with the true K j in place of K̂ j , can be established as before. We
expect it to be more efficient than Û1, since it is based on non-zero scores on a larger
number of pairs.

3 Large sample properties

We denote the population quantity P{W ∗
1 ≤ W ∗

2 } estimated by the Mann–Whitney
U -statistics by θ . Note that θ ∈ [0, 1] provides a measure of stochastic order between
the two continuous sojourn time distributions. In particular, θ <, =, > 1/2, when
the sojourn time distribution in the first group is stochastically larger than, equal to, or
smaller than the sojourn time distribution in the second group, respectively. Besides
testing the equality of two distributions, the Mann–Whitney statistic is also useful for
providing a point estimate of θ .

We need to introduce the following counting process notation (see., e.g., Andersen
et al. 1993). Let N c

i, j (t) = I (Vi, j ≤ t, δi, j = 0) be the counting processes of
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censoring, Yi, j (t) = I (Vi, j ≥ t) be the “number at-risk” processes, and Mc
i, j (t) =

N c
i, j (t) − ∫ t

0 Yi, j (u)d�c
j (u) be the martingale of the censoring process defined with

respect to the appropriate filtration for the two samples; here, �c
j is the cumulative

hazard for censoring in the j th group, j = 1, 2. Let Y j (t) = ∑n
i=1 Yi j (t), j = 1, 2,

and let n j be the sub-distribution function of the pair (W j , Vj ) corresponding to
δ j = 1, j = 1, 2, and n3 be the sub-distribution function of the pair (W2, X2)

corresponding to ξ2 = 1,

n j (w, v) = P{W j ≤ w, Vj ≤ v, δ j = 1}, j = 1, 2,

n3(w, x) = P{W2 ≤ w, X2 ≤ x, ξ2 = 1}.

Consider the following univariate functions on [0,∞) :

ω1(s) = 1

y1(s)

∫

I (v > s)
S2(w)

K1(v−)
dn1(w, v), (2)

ω2(s) = 1

y2(s)

∫

I (v > s)
F1(w−)

K2(v−)
dn2(w, v), (3)

ω3(s) = 1

y2(s)

∫
I (w1 + x2 > s)I (w1 < w2)dF1(w1)dn3(w2, x2)

K2(w1 + x2−)
(4)

where y j (s) = P(Vj ≥ s), j = 1, 2, s ≥ 0.

Theorem 1 Under suitable regularity conditions (see the Appendix), as n→∞, where

n = n1+n2, we get
√

n(Û1 − θ)
d→ N (0, σ 2

1 ),whereσ 2
1 =c−1

1 var{S2(W1)δ1/K1(V1−)

+ ∫ ∞
0 ω1(s)dMc

1(s)} + c−1
2 var{F1(W2−)δ2/K2(V2−) + ∫ ∞

0 ω2(s)dMc
2(s)}, and

√
n(Û2 − θ)

d→ N (0, σ 2
2 ), where σ 2

2 = c−1
1 var{S2(W1)δ1/K1(V1−) + ∫ ∞

0 ω1(s)d
Mc

1(s)} + c−1
2 var [ξ2

∫ ∞
0 {I (w ≤ W2)/K2(w + X2−)}dF1(w) + ∫ ∞

0 ω3(s)dMc
2(s)],

with c j = lim(n j/n), j = 1, 2.

The above expressions for the asymptotic variances also suggest the following
natural estimators:

σ̂ 2
1 = n

n1(n1 − 1)

n1∑

i1=1

(Si1,1 − S1)
2 + n

n2(n2 − 1)

n2∑

i2=1

(Si2,2 − S2)
2,

where

Si,1 = Ŝ2(Wi,1)δi,1

K̂1(Vi,1−)
+ ω̂1(Vi,1)δi,1 −

n1∑

i1=1

ω̂1(Vi1,1) I (Vi,1 ≥ Vi1,1)δii ,1

Y1(Vi1,1)
, (5)

Si,2 = F̂1(Wi,2)δi,2

K̂2(Vi,2−)
+ ω̂2(Vi,2)δi,2 −

n2∑

i2=1

ω̂2(Vi2,2) I (Vi,2 ≥ Vi2,2)δi2,2

Y2(Vi2,2)
, (6)
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S j = n−1
j

n j∑

i=1
Si j , j > 1, and where

ω̂1(s) = 1

Y1(s)

n1∑

i=1

I (Vi,1 > s)
Ŝ2(Wi,1)δi,1

K̂1(Vi,1−)
, (7)

ω̂2(s) = 1

Y2(s)

n2∑

i=1

I (Vi,2 > s)
F̂1(Wi,2−)δi,2

K̂2(Vi,2−)
. (8)

In (5) and (7) above, Ŝ2 is the Satten–Datta estimator (Satten and Datta 2002) of the
survival function of W ∗

2 based on sample 2, i.e.,

Ŝ2 (Wi,1) = 1

n2

n2∑

i2=1

I (Wi2,2 > Wi,1)δi2,2

K̂2(Vi2,2−)
;

in (6) and (8), F̂1 = 1 − Ŝ1 is the Satten–Datta estimator of the distribution function
of W ∗

1 based on sample 1, i.e.,

F̂1 (Wi,2) = 1

n1

n1∑

i1=1

I (Wi1,1 ≤ Wi,2)δi1,1

K̂1(Vi1,1−)
.

Similarly, σ 2
2 can be estimated by

σ̂ 2
2 = n

n1(n1 − 1)

n1∑

i1=1

(Si1,1 − S1)
2 + n

n2(n2 − 1)

n2∑

i2=1

(Si2,3 − S3)
2

with

Si,3 = ξi,2
1

n1

n1∑

i1=1

I (Wi1,1 ≤ Wi,2)δi1,1

K̂1(Vi1,1−)K̂2(Wi1,1 + Xi,2−)
+ ω̂3(Vi,2)ξ i,2

−
n2∑

i2=1

ω̂3(Vi2,2) I (Vi,2 ≥ Vi2,2)ξ i2,2

Y2(Vi2,2)
,

and

ω̂3(s) = 1

Y2(s)

n1∑

i1=1

n2∑

i2=1

δi1,1ξi2,2 I (Wi1,1 + Xi2,2 > s)I (Wi1,1 < Wi2,2)

K̂1(Vi1,1−)K̂2(Wi1,1 + Xi2,2−)

with ξ i2,2 = 1 − ξi2,2.
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Consistency of the above variance estimators can be shown using projection tech-
niques for generalized U -statistics and results for reweighting as in the proof of
Theorem 1.

Remark 1 Even though the computation of Û2 is more involved than Û1, we expect it to
be more efficient since it effectively uses a larger number of sample pairs. In simulation
studies reported in Sect. 5, we note that indeed Û2 has a slightly smaller variance than
Û1, in all the settings that were tried while the biases were comparable. Therefore, we
only consider Û2 for constructing our test statistic in the following section.

4 Testing the equality of sojourn time distributions in 2 groups

We now use the second Mann–Whitney type of statistic Û2 for testing the equality
of sojourn time distributions in two groups based on independent samples from these
groups in the presence of right censoring on the transition times. We assume that the
sojourn time distributions are continuous. In this section, we denote by Û (1, 2) the
test-statistic Û2 given in (1) based on group 1 and group 2 samples in that order. Note
that, for our censored setup, the statistics Û (1, 2) and 1 − Û (2, 1) will be close, but
not equal unless all sojourn times are non-missing for a sample. Therefore, we could
take their average T = 0.5{Û (1, 2) + 1 − Û (2, 1)} as the (one-sided) test statistic
for testing the null hypothesis H0 : F1 = F2 of equality of group 1 and 2 sojourn
time distributions. Under the null hypothesis, T has an asymptotic mean of θ = 0.5.
Following the same linearizations as in Theorem 1, we can estimate its asymptotic
variance n−1σ̂ 2

H0
by

σ̂ 2
H0

= n

4n1(n1 − 1)

n1∑

i1=1

(Si1,4 − S4)
2 + n

4n2(n2 − 1)

n2∑

i2=1

(Si2,5 − S5)
2,

where

Si,4 = Ŝ2(Wi,1)δi,1

K̂1(Vi,1−)
+ ω̂1(Vi,1)δi,1 −

n1∑

i1=1

ω̂1(Vi1,1) I (Vi,1 ≥ Vi1,1)δii ,1

Y1(Vi1,1)

−ξi,1

n2

n2∑

i2=1

I (Wi2,1 ≤ Wi,2)δi2,1

K̂2(Vi2,1−)K̂1(Wi2,1 + Xi,2−)
− ω̂4(Vi,1)ξ i,1

+
n1∑

i1=1

ω̂4(Vi1,1) I (Vi,1 ≥ Vi1,1)ξ i1,1

Y1(Vi1,1)

and

Si,5 = ξi,2

n1

n1∑

i1=1

I (Wi1,1 ≤ Wi,2)δi1,1

K̂1(Vi1,1−)K̂2(Wi1,1 + Xi,2−)
+ ω̂3(Vi,2)ξ i,2
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−
n2∑

i2=1

ω̂3(Vi2,2) I (Vi,2 ≥ Vi2,2)ξ i2,2

Y2(Vi2,2)

− Ŝ1(Wi,2)δi,2

K̂2(Vi,2−)
− ω̂5(Vi,2)δi,2 +

n2∑

i2=1

ω̂5(Vi1,2) I (Vi,2 ≥ Vi2,2)δi2,2

Y2(Vi2,2)

with

ω̂4(s) = 1

Y1(s)

n1∑

i1=1

n2∑

i2=1

ξi1,1δi2,2 I (Xi1,1 + Wi2,2 > s)I (Wi2,2 < Wi1,1)

K̂1(Xi1,1 + Wi2,2−)K̂2(Vi2,2−)

and

ω̂5(s) = 1

Y2(s)

n2∑

i=1

I (Vi,2 > s)
Ŝ1(Wi,2)δi,2

K̂2(Vi,2−)
.

Theorem 2 Under the null hypothesis H0 : F1 = F2, Z := √
nσ̂−1

H0
(T − 0.5)

d→
N (0, 1), as n → ∞, provided the regularity conditions of Theorem 1 hold.

An empirical power study of this test is carried out in the second part of Sect. 5 to
investigate the performance of this test in small to moderate samples.

Remark 2 One could apply the classical Mann–Whitney test using the censored Wi j

disregarding the fact that some of them are censored. Since their group-specific dis-
tribution is a functional of the distribution of true W ∗ and the censoring variable, this
naive approach may indeed be valid provided the censoring distributions (patterns)
are the same in the two groups. However, this could lead to a substantial loss in power.
Furthermore, when the censoring distributions in the two groups differ, this test may
inflate the size. We demonstrate these very clearly in a simulation study reported in
the next section.

5 Simulation studies

We conducted a number of simulation studies for investigating the finite sample behav-
iors of the Mann–Whitney type of statistics (Sect. 3) and the large sample test (Sect. 4)
for the equality of two sojourn time distributions.

5.1 A semi-Markov model

In this simulation scenario, we generated sojourn times independently of the state
entry times. The same distributions were used in both groups leading to θ = 0.5.
The state entry and the sojourn times were each generated from a standard lognormal
distribution. The censoring times are also generated from a lognormal distribution
with unit scale parameter, but with possibly different log mean parameters in the two
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Table 1 Simulation results for U -statistics in a semi-Markov model when the censoring rates are different
in two groups

Group size Censoring rate 1/censoring rate 2

θ = 0.5 θ = 0.9

0.25/0.25 0.50/0.50 0.75/0.75 0.25/0.5 0.25/0.75 0.5/0.75 0.5/0.5

25

Bias(Û1) −0.011 −0.038 −0.096 −0.034 −0.082 −0.087 −0.174

Bias(Û2) −0.016 −0.042 −0.105 −0.038 −0.092 −0.097 −0.092

ESE(Û1) 0.099 0.132 0.197 0.119 0.175 0.181 0.141

ESE(Û2) 0.096 0.122 0.157 0.109 0.123 0.132 0.108

SE(Û1) 0.098 0.125 0.169 0.115 0.143 0.151 0.169

SE(Û2) 0.095 0.116 0.148 0.105 0.117 0.127 0.130

50

Bias(Û1) −0.005 −0.019 −0.060 −0.017 −0.052 −0.053 −0.121

Bias(Û2) −0.008 −0.024 −0.060 −0.023 −0.052 −0.053 −0.064

ESE(Û1) 0.070 0.094 0.139 0.086 0.122 0.128 0.106

ESE(Û2) 0.068 0.086 0.119 0.077 0.096 0.104 0.080

SE(Û1) 0.069 0.089 0.126 0.082 0.107 0.113 0.120

SE(Û2) 0.067 0.083 0.111 0.075 0.088 0.095 0.091

SE standard error, ESE estimated standard error

groups which were varied to achieve different censoring rates. Here and subsequently,
by censoring rates we refer to the probability P(V ∗

i j > Ci j ) of the exit times being
right censored.

In all cases, equal sample sizes (n j = 25 and 50) in two groups were used. The
left columns (3–6) in Table 1 report the results when the same censoring rates were
used in two groups. The common censoring rates varied from low (25 %) to heavy
(75 %). A Monte Carlo size of 1,000 was used to compute the answers reported in
Table 1. From Table 1, it is evident that the variance formulas work since the estimated
standard errors are close to the empirical standard errors for both methods. Biases and
standard errors increase for both methods when the censoring rate increases and/or
the group sample size decreases, as expected. We also find that the bias for Û1 is very
slightly smaller than Û2 under this simulation scenario for the smaller sample size;
however, the estimated standard error for Û1 is consistently larger than that for Û2.

Results for different degrees of censoring in the two groups are reported in columns
7–9 of Table 1. They have similar patterns for the bias and the standard error for the
two methods as in the cases of equal censoring rates.

For the sake of completeness, we also report some results for the case when the
sojourn times in the two groups do not have the same distribution. More precisely, we
generate the sojourn times for the second group from a lognormal distribution with a
log mean value of 1.8, whereas the sojourn time distribution for group 1 is unchanged
from the earlier setting. This yields a value of θ = 0.9. For the sake of brevity, we
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only report the results when the censoring rates are 50 % in both groups. The results
are reported in the rightmost column of Table 1. Both estimators now exhibit greater
biases and standard errors than before. Presumably, this is due to the fact that the
calculation involves summands and estimated weights that are more toward the tail of
a distribution. Interestingly, now Û2 beats Û1 both in terms of bias and variance.

Based on all these simulations, we can conclude that the second statistics Û2 is a
better choice for extending the Mann–Whitney statistic to the current setup involving
right censoring on the transition times.

5.2 A Markov model

In this simulation setting, we generate entry times within each group from a standard
lognormal distribution. After obtaining an entry time X∗, for example, the correspond-
ing exit time was obtained by the formula

V ∗ = D−1[D(X∗) + U {1 − D(X∗)}],

where D(·) is the distribution function of the standard lognormal distribution, U is a
number randomly generated from a uniform distribution in the interval [0, 1] and D−1

denotes the quantile function of the standard lognormal distribution. Note that this
ensures that V ∗ ≥ X∗; furthermore, the resulting system is Markov and the transition
hazard for V ∗ is also that of a standard lognormal. The censoring times were generated
by the same mechanism as in simulation 1 where we varied the common log mean
parameter to control the censoring rates.

Table 2 summarizes the results of this simulation. Once again, the estimated standard
errors are close to their population counterparts; both bias and standard error decrease
with the sample size and increase with censoring percentage. There is no consistent
comparative patterns for the biases, but the estimated standard error for Û2 is still
consistently smaller than that for Û1.

5.3 Testing hypotheses for equality of sojourn times

We also conducted simulations for a power study using the test Z described in Sect. 4.
We also include the standard Mann–Whitney test based on the censored version of the
sojourn times Wi j (see Remark 1 of the previous section) for comparison. A nominal
size of 5 % was selected for all tests.

First, we consider a situation when the two groups have the same censoring dis-
tribution in the two groups. We varied log mean in [−1.5, 1.5] with a step of 0.1 in
group 2, while keeping the other parameters the same as those in the simulation 1
with the censoring rate equal to 25 % (under H0); in particular, the group 1 sojourn
times were generated from a standard lognormal distribution. To reduce computational
burden, we computed the power at fewer values when the common group size was
50. We simulated 1,000 data sets under each parameter setting. For each generated
sample data set, the studentized test statistic Z was applied. The empirical power
of the test at each alternative parameter setting was calculated by the proportion of

123



Comparing sojourn times under censoring 159

Table 2 Simulation results for U -statistics under a Markov model; equal censoring rates

Group size Censoring rate

0.25 0.5 0.75

25

Bias(Û1) −0.015 −0.047 −0.123

Bias(Û2) −0.019 −0.049 −0.113

ESE(Û1) 0.097 0.136 0.200

ESE(Û2) 0.094 0.116 0.158

SE(Û1) 0.098 0.125 0.168

SE(Û2) 0.094 0.114 0.146

50

Bias(Û1) −0.009 −0.029 −0.082

Bias(Û2) −0.010 −0.029 −0.072

ESE(Û1) 0.066 0.090 0.146

ESE(Û2) 0.065 0.082 0.117

SE(Û1) 0.068 0.089 0.127

SE(Û2) 0.067 0.082 0.111

Here, the true θ is 0.5
SE standard error, ESE estimated standard error
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Fig. 1 Power plots for the proposed generalized Mann–Whitney test along with those for a naive Mann–
Whitney tests comparing the censored sojourn times. The sojourn time distributions in both groups are
lognormal with unit scale; the log mean in group 1 is 0; the power curves are plotted with respect to the
log mean parameters in group 2. The censoring rate was kept at 25 % under the null hypothesis. The dotted
curve corresponds to a sample size of 25 and the solid curve corresponds to sample size of 50 in each group,
respectively

times the null hypothesis was rejected by this test out of 1,000 samples. Figure 1
displays the resulting power curves. While both tests maintained the nominal size,
the power of our test is uniformly larger than the naive Mann–Whitney test for a
given sample size. Power curves behave reasonably for both tests; in particular, they
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are piecewise monotonic on (−∞, 0) and (0,∞) and the power increases with the
sample size.

Next, we consider the setting as in Table 1, where the censoring rate in one group is
25 % and in the other group 50 % and, more importantly, the censoring distributions
in the two groups were different. The sojourn times in the two groups have the same
distributions. The size of the naive Mann–Whitney test was greatly inflated (the empir-
ically estimated size was equal to 0.711). On the other hand, the size of our test was
maintained at the nominal level. The empirically estimated size was 0.060 with a 95 %
confidence interval of (0.045, 0.075). This example clearly demonstrates the danger
of using a naive Mann–Whitney test and the utility of our modified Mann–Whitney
test in comparing two sets of sojourn times.

6 An illustration using kidney disease data

McGilchrist and Aisbett (1991) reported a study on recurrent events of infections in 38
kidney disease patients, who use a portable dialysis machine. Two times to recurrence
of an infection (days since catheter placement for each episode) were recorded as
T1 and T2 for each patient; δ1 and δ2 were also recorded as the event (infection or
censoring) indicators. The data contained a number of covariates including gender.
In our illustration, we are interested in determining if gender has an effect on the
within-subject variability of the kidney disease infection times.

The range of the event times Tj and the corresponding censoring rates (by gen-
der and overall) are presented in Table 3. We note that McGilchrist and Aisbett
(1991) analyzed this data using a Cox type model with a subject-specific frailty
term. Alternatively, an accelerated failure time model (see, e.g., Fan and Datta
2011 and the references therein) with repeated measures can also be fit using the
inverse probability of censoring reweighting approach. One would however like to
ensure that the model errors are homogeneous in the two gender groups. Note that it
amounts to testing the equality of the distribution of |log(T ∗

2 ) − log(T ∗
1 )| in the two

groups.
Next, we show that, through a suitable reformulation of the problem, the test devel-

oped in this paper can be applied to test this hypothesis. To that end, consider a (hypo-
thetical) system where state entry and exit take place at times X∗ = log(T ∗

1 )∧ log(T ∗
2 )

and V ∗ = log(T ∗
1 ) ∨ log(T ∗

2 ), respectively. Then the state sojourn time equals
W ∗ = |log(T ∗

2 ) − log(T ∗
1 )|. Furthermore, we can compute the censored version of

X∗, V ∗ and W ∗ and the corresponding event indicators ξ and δ using the available
data. Overall, 23 of the 38 sojourn times were fully observed. Breaking them by gen-

Table 3 Summary of kidney infection times (in days)

T1 Percent censored T2 Percent censored

Male [2,562] 20 [7,152] 0

Female [5,536] 32.1 [5,511] 25

Overall [2,562] 28.9 [5,511] 18.4
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der, we found that about 20 % of all sojourn times were missing for the male patients
and 46 % for the female patients. For these data, the statistic T defined in Sect. 4
turned out to be 0.487 with a null standard error of 0.119. Using a two-sided Z test,
we obtain a p value of 0.915 and conclude that there is no evidence to suggest that the
error distributions in the two gender groups are different.

We also inspected the censoring patterns by gender in this artificial staged system.
A formal test (Peto and Peto modification of the Gehan–Wilcoxon test; see, Harrington
and Fleming 1982) did not indicate a difference in the censoring distribution in the
two groups (p value = 0.56). Given the small sample size and the total amount of
censoring, the study is likely to be underpowered to detect any difference in censoring
distribution in the two groups even if that were the case. Fortunately, the validity of
our test does not rest on this assumption. For comparison, we also performed a naive
Mann–Whitney tests on the censored sojourn times Wi j . The resulting p value was
about 0.40 leading to the same conclusion as our test.

7 Discussion

Traditional approaches of analyzing event time data include semi-parametric regres-
sion models, such as the proportional hazards model, which lead to appropriate esti-
mating equations in the presence of right-censored data. A two-sample comparison
amounts to testing the effect of a single binary covariate on event times and the test
that arises from a Cox model is the log-rank test. However, in many applications, time
is measured since an initiating event rather than the calendar time. In other words, we
may be dealing with a sojourn time and the standard estimating equations do not hold
since the censoring will not be independent of the sojourn times (Wang and Wells
1998). Furthermore, for some samples, even the state entry time may be censored.
Adaptation of semi-parametric methods, such as the Cox regression to sojourn (or
gap) times, have been considered through appropriate reweightings in an estimating
equation (Huang 2002; Schaubel and Cai 2004; Strawderman 2005, etc.). A relatively
complicated nonparametric testing methodology of comparing distributions of sojourn
times was developed in Lin and Ying (2001), where the stage entry times lay below a
threshold. The greatest advantage our method offers over these approaches is that it is
completely nonparametric and therefore provides a valid and robust inference in the
most general setting.

The methodology developed in this paper is based on a novel reweighting scheme
that extends the notion of a Mann–Whitney statistic to the present setup, in which we
are capable of directly comparing pairs of observable sojourn times plus additional
pairs where one of the sojourn times may be missing since the exit time is right
censored. The resulting statistic has desirable large sample properties including a
closed form variance estimate. The large sample inference is also fairly effective in
moderate samples as shown by the simulation studies. The test may be extended to
a multigroup comparison in a number of standard ways, such as considering suitable
linear combinations, taking a maxima, or by a quadratic form of pair-specific test
scores. Another multivariate extension will be to compare two or more groups based
on several sojourn times.
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We have obtained a closed form estimate of the asymptotic variance of our statistics
through large sample calculations (e.g., asymptotic linearity). However, the resulting
summands are fairly complex and involve estimation of some auxiliary functions. As
a result, care must be taken to compute it efficiently. An alternative approach will be
to use the bootstrap method to estimate the variances. The proper bootstrap method in
this case will be to resample the entire vector of observed data (Xi j , ξi j , Vi j , δi j ) to
obtain a bootstrap sample. A bootstrap variance estimate is then given by the empirical
variance of the statistics calculated across (independently) repeated bootstrap samples.

A Mann–Whitney test is generally applied when the two distributions under com-
parison only differ in location. However, the theoretical reason for this convention
(or assumption) arose purely from the point of view of the power function, since the
Mann–Whitney test is locally the most powerful rank test in such models with logistic
distributions. However, the situation is too complex in the case of censored data and
a simple interpretation like this does not hold. However, it is still a valid test asymp-
totically from the perspective of maintaining the right size under the null hypothesis
of equality of two distributions.

The nonparametric methodology of this paper is for marginal comparisons of two
sojourn times even if covariates are present and are observed. It is possible to incorpo-
rate the effect of covariates that may affect the censoring distribution by recalculating
the K function, which will now be individual specific and not just group specific. Of
course, the asymptotic variance of the test statistic will depend on the type of models
used for the censoring hazard. Resampling is a viable alternative in such cases. If one
is interested in comparing the two distributions after adjusting for covariates, one can
potentially use our Mann–Whitney test based on the model residuals after fitting an
accelerated failure time model to the two sets of sojourn times. Of course, once again,
the asymptotic variance will have to be recalculated. Another (nonparametric) way
to deal with this for a low-dimensional covariate X will be to calculate a form of a
conditional U -statistic given the covariate via similar inverse probability of censoring
reweighting combined with smoothing techniques. An overall test may be computed
from these local (i.e., for each x) test statistics by a suitable L1 or L2 averaging,
or by taking the supremum over a suitable range of x . The details may be pursued
elsewhere.

Appendix A: Technical details

Regularity conditions for the theorems

(i) n j/(n1 + n2) → c j ∈ (0, 1), for j = 1 , 2.
(ii)

∫
ω2

1(t)λC1(t)dt < ∞ and
∫ {ω2

2(t) + ω2
3(t)}λC2(t)dt < ∞.

(iii)
∫ S2

2 (w1)

K 2
1 (v1−)

dn1(w1, v1) < ∞,
∫ F2

1 (w2−)

K 2
2 (v2−)

dn2(w2, v2) < ∞,

and
∫ I (w1<w2)

K 2
2 (w1+x2−)

dF1(w1)dn3(w2, x2) < ∞.

Condition (i) is a standard design condition on the relative sample sizes in the two
group settings, which helps us identify the asymptotic variance. It also ensures that we
continue to have enough samples from both groups, as the total sample size increases.
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Conditions (ii) ensure that certain martingales corresponding to the censoring process
are squared integrable, so that an appropriate central limit theorem applies. Conditions
in (iii) are technical conditions that ensure that certain summands are square integrable,
so that L2 projection calculations are possible. In particular, they also suggest that the
values of the censoring survival functions K j should not be too small on the range of V .

A.1 Proof of Theorem 1

Express

√
n (Û1 − θ) = √

n (U1 − θ)

−
√

n

n1n2

∑

i1,i2

I (Wi1,1 < Wi2,2)δi1,1δi2,2

K̂1(Vi1,1−)

{
K̂2(Vi2,2−) − K2(Vi2,2−)

K̂2(Vi2,2−)K2(Vi2,2−)

}

−
√

n

n1n2

∑

i1,i2

I (Wi1,1 < Wi2,2)δi1,1δi2,2

K2(Vi2,2−)

{
K̂1(Vi1,1−) − K1(Vi1,1−)

K̂1(Vi1,1−)K1(Vi1,1−)

}

.

By an L1 analysis of the difference as in Datta et al. (2010), we can replace K̂ j , j =
1, 2, by their in probability limits K j in the denominator of the last two terms, provided
we add an extra op(1) term. Since

√
n j (K̂ j − K j ) = −√

n j K j (�̂
c
j − �c

j ) + op(1), (9)

by the delta method, where �c
j is the cumulative censoring hazard in group j and �̂c

j is
its Nelson–Aalen estimator,

√
n(Û1 − θ) = √

n(U1 − θ) +
√

n

n1n2

∑

i1,i2

[
I (Wi1,1 < Wi2,2)δi1,1δi2,2

K1(Vi1,1−)K2(Vi2,2−)

×
{
�̂c

1(Vi1,1−) − �c
1(Vi1,1−) + �̂c

2(Vi2,2−) − �c
2(Vi2,2−)

}]

+ op(1);

the details can be worked out by an L2 analysis of the error term in (9). By L2 projection
calculations, as in Hoeffding’s decomposition (Hoeffding 1948; Serfling 1980, page
188), the above equals

1√
n

[
1

c1

n1∑

i1=1

{ S2(Wi1,1)δi1,1

K1(Vi1,1−)
− θ

}
+ 1

c2

n2∑

i2=1

{ F1(Wi2,2−)δi2,2

K2(Vi2,2−)
− θ

}

+ 1

c1

n1∑

i1=1

S2(Wi1,1)δi1,1

K1(Vi1,1−)
{�̂c

1(Vi1,1−) − �c
1(Vi1,1−)}

+ 1

c2

n2∑

i2=1

F1(Wi2,2−)δi2,2

K2(Vi2,2−)
{�̂c

2(Vi2,2−) − �c
2(Vi2,2−)}

]

+ op(1).
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Using a martingale representation (Andersen et al. 1993, page 178) for �̂c
j (·)−� j (·),

we see that the above expression equals

1√
n

[
1

c1

n1∑

i1=1

{ S2(Wi1,1)δi1,1

K1(Vi1,1−)
− θ

}
+ 1

c2

n2∑

i2=1

{ F1(Wi2,2−)δi2,2

K2(Vi2,2−)
− θ

}

+ 1

c1
√

n1

n1∑

i1=1

S2(Wi1,1)δi1,1

K1(Vi1,1−)

{∫ Vi1,1−

0

dM
c
1(s)

y1(s)

}

+ 1

c2
√

n2

n2∑

i2=1

F1(Wi2,2−)δi2,2

K2(Vi2,2−)

{∫ Vi2,2−

0

dM
c
2(s)

y2(s)

}]

+ op(1); (10)

here, Mc
i, j (t) = N c

i, j (t) − ∫ t
0 Yi, j (u)d�c

j (u) , N c
i, j (t) = I (Vi, j ≤ t, δi, j =

0), Yi, j (t) = I (Vi, j ≥ t), M j = n−1/2
j

∑n j
i=1 Mc

i, j and y j (t) = EYi, j (t), j = 1, 2.
From the asymptotically linear representation of a U -statistic (Serfling 1980, page
188), the second term in the RHS of (10) equals

√
n1

c1

∫
S2(w1)

K1(v1−)

{∫ v1−

0

dM
c
1(s)

y1(s)

}
dn1(w1, v1) + op(

√
n1),

which further equals

1

c1

n1∑

i1=1

∫ ∞

0

{
1

y1(s)

∫

I (v1 > s)
S2(w1)

K1(v1−)
dn1(w1, v1)

}

dMc
i1,1(s) + op(

√
n1),

= 1

c1

n1∑

i1=1

∫ ∞

0
ω1(s)dMc

i1,1(s) + op(
√

n1)

by Fubini’s theorem, where ω1 is given in (2). The third term can be handled the same
way leading to the following linearization

√
n(Û1 − θ) = 1√

n

[
1

c1

n1∑

i1=1

{ S2(Wi1,1)δi1,1

K1(Vi1,1−)
− θ +

∫ ∞

0
ω1(s)dMc

i1,1(s)
}

+ 1

c2

n2∑

i2=1

{ F1(Wi2,2−)δi2,2

K2(Vi2,2−)
− θ +

∫ ∞

0
ω2(s)dMc

i2,2(s)
}]

+ op(1), (11)

where ω2 is given by (3). Therefore, as n → ∞, we have

√
n(Û1 − θ)

d→ N (0, σ 2
1 ),

where σ 2
1 is as in the statement of Theorem 1. This proves the first assertion of

Theorem 1. The linearizations for Û2 can be carried out in a similar fashion.
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A.2 Estimation of variance

We estimate the asymptotic variance by the empirical variance of the linear approxi-
mation (11). Note that

∫

ω j (s)dM̂c
i, j (s) = ω j (Vi, j )δi, j −

∫
ω j (s)I (Vi, j ≥ s)

Y j (s)
dN c

j (s),

where M̂c
i, j (t) = N c

i, j (t) − ∫ t
0 Yi, j (u)d�̂c

j (u), �̂c
j being the Nelson–Aalen estimator

of �c
j ,

= ω j (Vi, j )δi, j −
∫ ∞

0

ω j (s) I (Vi, j ≥ s)

Y j (s)
d

⎧
⎨

⎩

n j∑

i1=1

N c
i1, j (s)

⎫
⎬

⎭
,

= ω j (Vi, j )δi, j −
n j∑

i1=1

ω j (Vi1, j ) I (Vi, j ≥ Vi1, j )δi1, j

Y j (Vi1, j )
.

This justifies the choice of the summands S1,i . The other parts can be obtained in
a similar fashion. Estimation of ω j uses the principle of inverse probability of cen-
soring reweighting (Datta et al. 2010). Consistency of σ̂ 2

j can be established using
projection techniques for generalized U -statistics and laws of large number results for
reweighting.

A.3 Proof of Theorem 2

Asymptotic linearization of the test statistic is obtained as a linear combination of
the linear approximations of the statistics Û (1, 2) and Û (2, 1) as obtained under
Theorem 1.
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