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Abstract Objective priors, especially reference priors, have been studied extensively
for spatial data in the last decade. In this paper, we study objective priors for a CAR
model. In particular, the properties of the reference prior and the corresponding pos-
terior are studied. Furthermore, we show that the frequentist coverage probabilities of
posterior credible intervals depend only on the spatial dependence parameter ρ, and
not on the regression coefficient or the error variance. Based on the simulation study
for comparing the reference and Jeffreys priors, the performance of two reference
priors is similar and better than the Jeffreys priors. One spatial dataset is used for
illustration.

Keywords Conditional autoregressive · Jeffreys prior · Reference prior ·
Integrated likelihood · Propriety of posterior

1 Introduction

Conditional autoregressive (CAR) models were introduced by Besag (1974) almost
40 years ago but have been extensively used for the analysis of spatial areal data
only in the last two decades. This resurgence arises from the convenience of their
employment in the context of Gibbs sampling and more general Markov Chain Monte
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458 C. Ren, D. Sun

Carlo (MCMC) methods for fitting certain classes of hierarchical spatial models. Since
then, these models have been used to analyze data in many areas, such as epidemiology,
demography, economy and geography.

The most common method used to estimate the parameters in the CAR model
was maximum likelihood (e.g. Cressie and Chan 1989; Richardson et al. 1992; Cressie
et al. 2005). Although Bayesian analyses of CAR models have been extensively used
to estimate latent variables and spatially varying random effects in the context of
hierarchical models, not much has been done on Bayesian analysis of CAR models
to describe the observed data (with only rare exceptions, e.g., Bell and Broemeling
2000). This may be due to a lack of knowledge on adequate priors for these models
and frequentist properties of the resulting Bayesian procedures. De Oliveira (2012)
probably was the first to propose default Bayesian analyses for CAR models and to
study some of their properties, but he only considered two versions of the Jeffreys
prior, the independence Jeffreys and the Jeffreys-rule priors, for parameters.

It is well known that in spite of success in using Jeffreys priors for one-parameter
problems (Welch and Peers 1963; Berger and Bernardo 1992) gave examples where
the Jeffreys-rule prior provided inconsistent estimates in some multiparameter prob-
lems. Therefore, they suggested arranging the parameters in order according to the
importance of inference, and proposed an algorithm to derive a reference prior. This
algorithm depends on the Fisher information matrix and is based on the asymptotic
normality of the posterior distribution. This reference prior has been commonly used
in numerous applications in non-geostatistics context. For example, see Ye (1994),
Sun and Ye (1995) and Berger et al. (1998).

In addition, based on the simulation studies in geostatistics contexts for point data,
such as Berger et al. (2001) and Ren et al. (2012), in terms of frequentist performance,
the reference priors have a reasonable performance, but Jeffreys-rule prior can be
seriously inadequate. Therefore, it is very interesting and necessary to reconsider the
reference prior for CAR models. Although De Oliveira (2012) finally recommended
the independence Jeffreys prior as one default objective prior, we should realize that the
independence Jeffreys prior does not always yield a proper posterior. This is another
reason why we are studying the reference prior.

We propose the reference priors for the CAR model including one given in Remark 4
of De Oliveira (2012), but he had difficulty verifying properties such as posterior
propriety. Perhaps the difficulty arises from the expression of the prior when it was
expressed as the function of eigenvalues, which makes it very hard to find the lim-
iting behavior of marginal likelihood and the posterior when the spatial parameter
approaches the boundaries of its range. In our paper, the reference priors are expressed
in terms of the traces of matrices (see Proposition 2 in Sect. 2). The advantage of this
method is the ability to find the limiting behaviors. We will derive the results on pro-
priety of the resulting posterior distributions. In addition, we will perform a simulation
experiment to compare frequentist properties of inferences about the parameters based
on the Jeffreys and the proposed reference priors.

The organization of the paper is as follows: In Sect. 2, we give a brief description of
the CAR model, summarize two versions of the Jeffreys prior in De Oliveira (2012),
and consider commonly used reference priors. The property of the reference priors and
the propriety of the corresponding posterior distribution is given. In Sect. 3, it is shown
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that the frequentist coverage probabilities of Bayesian credible intervals under a large
class of priors depends only on the spatial parameter. Numerical simulations are given
to compare the frequentist coverage probabilities of Bayesian credible intervals for
four objective priors, the Jeffreys-rule, independence Jeffreys and two Type I reference
priors. Finally, one proposed reference prior is illustrated by an example. The summary
and comments are also given.

2 Main results

2.1 A CAR model

We consider a Gaussian Markov random field, where the study area is partitioned into
n regions, indexed by integers 1, 2, . . . , n. For region i , the variable of interest, yi , is
observed, and a set of p explanatory variables, xi = (xi1, . . . , xip)

′, is pre-specified.
For this class of models, spatial association is specified through a set of conditional
distributions,

(yi | y j , j �= i) ∼ N

⎛
⎝x′

iβ +
n∑

j=1

Wi j (ρ)(y j − x′
jβ), δ1

⎞
⎠ , (1)

where β = (β1, . . . , βp)
′ ∈ R

p are unknown regression parameters, δ1 > 0 and
Wi j (ρ) are covariance parameters, with Wii (ρ) = 0 for all i . It is from Besag (1974)
that the joint distribution of y is uniquely determined by the full conditional distribu-
tions (1). Often, Wi j (ρ) is a linear function of the weight Ci j . That is,

Wi j (ρ) = ρCi j , for all i, j. (2)

The matrix C = (Ci j )n×n is often called a Weight Matrix or Proximity Matrix.
Frequently the proximity matrix C is symmetric and known. Common choices of

C are as follows:

• Adjacency matrix Ci j = 1 if region i and region j share common boundary.
• k-neighbor Adjacency matrix Ci j = 1 if region j is one of the k nearest neighbors

of region i .
• Distance matrix Ci j = the distance between centroids of regions i and j .

The case of Adjacency matrix was introduced in Clayton and Kaldor (1987) and the
other two cases can be found in Cressie (1993) and Rue and Held (2005).

If we write y = (y1, . . . , yn)′ and X = (xi j )n×p, (1) and (2) are equivalent to

y ∼ Nn(Xβ, δ1(In − ρC)−1), (3)

here ρ is often called a ‘spatial parameter’. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the ordered
eigenvalues of C. Because tr(C) = 0, it is clearly that λ1 < 0 < λn . The range of
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the spatial parameter ρ is (λ−1
1 , λ−1

n ), including 0 as an interior point. The likelihood
function of parameters (ρ, δ1,β) in model (3) is given by:

L(ρ, δ1,β; y) = 1

(2πδ1)n/2|�ρ |1/2 exp

{
− (y − Xβ)′�−1

ρ (y − Xβ)

2δ1

}
, (4)

where �−1
ρ = In − ρC.

2.2 Common objective priors

Denote the eigenvector of C in model (3) corresponding to eigenvalue λi by ui , i =
1, 2, . . . , n. De Oliveira (2012) obtained two versions of the Jeffreys priors and present
the properties and propriety for the marginal Jeffreys priors and the corresponding
posterior distributions. One can find these results from Theorem 1, Lemma 2, and
Corollaries 1 and 2 in De Oliveira (2012). We summarize the results in the following
lemma.

Lemma 1 Consider the CAR model (3).

(a) The Jeffreys-rule prior π J (ρ, δ1,β) is given by

π J (ρ, δ1,β) ∝ 1

δ
1+p/2
1

√
|X′�−1

ρ X|[n tr(�ρC)2 − {tr(�ρC)}2]. (5)

(b) The independence Jeffreys prior treating (ρ, δ1) and β as independence, π I J , is

π I J (ρ, δ1,β) ∝ 1

δ1

√
n tr(�ρC)2 − {tr(�ρC)}2. (6)

(c) Suppose λ1 and λn are simple eigenvalues. Then as ρ → λ−1
1 , it holds that

π J (ρ) =
{

O{(1 − λ1ρ)−1/2}, if u1 ∈ C(X),

O{(1 − λ1ρ)−1}, if u1 /∈ C(X),

π I J (ρ) = O{(1 − λ1ρ)−1},

where C(X) is the column space of X consisting of all linear combinations of
column vectors of X. The same results hold as ρ → λ−1

n when λ1 and u1 are
replaced by λn and un, respectively.

(d) The marginal Jeffreys-rule priorπ J (ρ) is unbounded. Furthermore, it is integrable
when both u1 and un are in C(X), while it is not integrable when either u1 or un

is not in C(X).
(e) The marginal independence Jeffreys prior π I J (ρ) is unbounded and not inte-

grable.
(f) π J yields a proper posterior distribution.
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(g) When neither u1 nor un is in C(X), π I J yields a proper posterior distribution,
while it yields an improper posterior distribution when either u1 or un is in C(X).

The method for finding the reference priors based on Berger and Bernardo (1992)
algorithm can be applied to model (4) by specifying the order of parameter. We sum-
marize these in the following proposition and the proof is given in Appendix A.

Proposition 1 Consider the CAR model (3).

(a) The reference priors with the orderings {(ρ, δ1),β} or {β, (ρ, δ1)} or {ρ, δ1,β}
or {ρ,β, δ1} or {β, ρ, δ1} are all the same as π I J . Here the ordering {ρ, δ1,β}
means that ρ is the most important or the parameter of interest, δ1 is less important,
and β is least important.

(b) The reference priors with the orderings {δ1, ρ,β} or {δ1,β, ρ} or {β, δ1, ρ} are

π R(ρ, δ1,β) = π R(ρ)/δ1, (7)

where π R(ρ) ∝ √
tr(�ρC)2.

(c) Suppose λ1 and λn are simple eigenvalues. Then as ρ → λ−1
1 , it holds that

π R(ρ) = O{(1 − λ1ρ)−1}.

The same results hold as ρ → λ−1
n when λ1 and u1 are replaced by λn and un,

respectively. Thus, when neither u1 nor un is in C(X), π R yields a proper posterior
distribution, while it yields an improper posterior distribution when either u1 or
un is in C(X).

2.3 The “exact” reference priors

If we specify (ρ, δ1) as the parameter of interest and β as the nuisance parameter in
applying the reference prior method, then π R∗ (β|ρ, δ1) = 1 since this is the conditional
Jeffreys-rule (or reference) prior in model (4) when (ρ, δ1) is assumed to be known.
Thus, by factoring the prior distribution, we have

π R∗ (ρ, δ1,β) = π R∗ (β | ρ, δ1)π
R∗ (ρ, δ1) = π R∗ (ρ, δ1),

where π R∗ (ρ, δ1) is computed using the Jeffreys-rule prior based on the following
marginal model defined via the following integrated likelihood

L∗(ρ, δ1; y) =
∫

Rp
L(ρ, δ1,β; y)π Ri∗ (β | ρ, δ1) dβ

∝ δ
−(n−p)/2
1 |�ρ |−1/2|X′�−1

ρ X|−1/2 exp

{
− S2

2δ1

}
, (8)

where S2 = y′R�y, and R� = �−1
ρ − �−1

ρ X(X′�−1
ρ X)−1X′�−1

ρ . L∗ is named as
Type I integrated likelihood, which is used to distinguish it from L∗∗ called as Type
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II integrated likelihood in the following. The corresponding priors are called Type I
(II) reference priors if they are derived from Type I (II) integrated likelihood.

Based on the result in Harville (1974), there is a particular transformation of the
data which has sampling distribution proportional to (8), and hence it is legitimate
to calculate the associated Jeffreys-rule prior from (8). The results in Part (a) in the
following proposition can be derived from a result in Berger et al. (2001) and found
from Remark 4 in De Oliveira (2012), but it is expressed in terms of the traces of
matrices.

Proposition 2 Consider the model with sampling distribution (4).

(a) Type I reference prior distribution with orderings {(ρ, δ1),β} and {ρ, δ1,β} is
given by:

π R1∗ (ρ, δ1,β) ∝ 1

δ1
π R1∗ (ρ), (9)

where

π R1∗ (ρ) ∝ [(n − p)tr(�ρR��ρC)2 − {tr(�ρR��ρC)}2]1/2. (10)

(b) Type I reference prior distribution with ordering {δ1, ρ,β} is given by:

π R2∗ (ρ, δ1,β) ∝ 1

δ1
π R2∗ (ρ), (11)

where

π R2∗ (ρ) ∝ {tr(�ρR��ρC)2}1/2. (12)

With the above proposition, one can obtain the following conclusions. The proof
is given in Appendix B.

Proposition 3 Suppose λ1 and λn are simple eigenvalues. Then as ρ → λ−1
1 , for

i = 1, 2, there exists a positive constant d such that

π Ri∗ (ρ) ≤
{

d, if u1 ∈ C(X),

d(1 − λ1ρ)−1, if u1 /∈ C(X).
(13)

The same results hold as ρ → λ−1
n when λ1 and u1 are replaced by λn and un,

respectively.

Furthermore, we can show that the reference prior of δ1 is a scale invariant prior
1/δ1. We then derive Type II marginal likelihood of ρ,

L∗∗(ρ; y)=
∫ ∞

0

∫
Rp

L(ρ, δ1,β; y)
1

δ1
dβ dδ1 ∝|�ρ |−1/2|X′�−1

ρ X|−1/2(S2)−(n−p)/2.

(14)
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From Theorem 1 (the equivalence theory) in Ren et al. (2012), we have that L∗∗(ρ; y)
is essentially a proper density of the n − p − 1 dimensional random variable and
therefore it is legitimate to find the Fisher information matrix of ρ based on it. Similar
to Proposition 5 in Ren et al. (2012), one can obtain Type II reference prior, which is
equal to π R1∗ .

Theorem 1 Consider the model with sampling distribution (4).

(a) The marginal exact reference prior π Ri∗ (ρ), i = 1, 2 is bounded when both u1
and un are in C(X).

(b) The posterior distribution is proper under the prior π Ri∗ , for i = 1, 2.

The result in Theorem 1 (a) follows from Proposition 3 and the rest of the proof is
similar to Corollary 1 in De Oliveira (2012), so it is omitted.

Remark 1 All these objective priors belong to the following class of improper priors
for (ρ, δ1,β) ∈ � = (λ−1

1 , λ−1
n )×(0,∞)×R

p of the form, which was also introduced
by De Oliveira (2012),

π(ρ, δ1,β) ∝ π(ρ)

δa
1

, (ρ, δ1,β) ∈ � = (λ−1
1 , λ−1

n ) × (0,∞) × R
p, (15)

where a is a real value and π(ρ) is the marginal prior of ρ with support (λ−1
1 , λ−1

n ).

The corresponding marginal prior for ρ is denoted by the same notation as the prior
for (ρ, δ1,β). For example, from (5) in Proposition 2, the Jeffreys-rule prior can be
written as

π J (ρ, δ1,β) = π J (ρ)

δ
1+p/2
1

, where π J (ρ) ∝
√

|X′�−1
ρ X|[n tr(�ρC)2 − {tr(�ρC)}2].

Under the prior (15), a standard calculation yields

L∗∗a(ρ; y) =
∫ ∞

0

∫
Rp

L(ρ, δ1,β; y)
1

δa
1

dβdδ1

= �((n − p)/2)

(2π)(n−p)/2
|�ρ |−1/2|X′�−1

ρ X|−1/2(S2)−((n−p)/2+a−1). (16)

Therefore, the joint posterior distribution of (ρ, δ1,β) is proper if and only if

0 <

∫ λ−1
n

λ−1
1

L∗∗a(ρ; y)π(ρ) dρ < ∞. (17)

3 Comparison of the reference and Jeffreys priors

We first introduce a method that will simplify the computation tremendously. As Paulo
(2005) pointed out, evaluating any objective prior at a particular value of parameters
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is a computationally intensive task since it involves computing each of the matrices’
entries in the likelihood functions. Therefore, there is a considerable need to develop
new methods that make computation less expensive and more feasible. We use this
computational method to investigate the frequentist coverage of equal-tailed credible
intervals for one parameter of interest ρ when either the Jeffreys or reference prior is
used. The closer to the nominal level this frequentist coverage is, the ‘better’ the prior
is. Finally, we will analyze a real dataset.

3.1 Frequentist coverage probabilities

Suppose we are interested in τ = τ(ξ), a function of the parameter ξ = (ρ, δ1,β).
Note that τ could be a function of ρ only. For example, τ could be ρ.

For the fixed ξ = ξ∗ ≡ (ρ∗, δ∗
1 ,β∗), we simulate the data based on y | ξ∗. For any

α ∈ (0, 1), let τα(y) be the α-posterior quantile of τ given y. That is,

P(τ ∗ < τα(y) | y) = α, ∀α ∈ (0, 1). (18)

Here the probability is computed based on the marginal posterior distribution of τ

given y. We then consider the frequentist coverage of the one-sided credible interval
(τL , τα(y)), i.e.,

Pξ∗(τ ∗ < τα(y)), (19)

where τL is the low boundary of τ and the probability is based on the distribution of
y given ξ∗. We hope this coverage is close to α.

It seems that the coverage probability depends on the τα(y), which is often hard to
compute itself. Alternatively, we note that

τ ∗ < τα(y) if and only if F(τ ∗ | y) < α,

where F(τ | y) is the marginal cumulative posterior distribution of τ given y. Then

Pξ∗(τ ∗ < τα(y)) = Pξ∗(F(τ ∗ | y) < α). (20)

This formula shows that the frequentist coverage probabilities depend only on posterior
cumulative distribution function F(τ ∗| y) at the true values. Of course, it might depend
on the entire parameters ξ∗. Finding F(τ ∗| y) requires only integration, and there is
no need in finding the posterior quantiles in simulations. Another nice feature of
the method is that once F(τ ∗| y) is computed, it can be used to find the coverage
probabilities for any α.

Theorem 2 Assume that the prior (15) is used. If τ is a function of ρ, then the fre-
quentist coverage probabilities in (20) depends only on ρ∗ and is independent of
(δ1,β).
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Proof Let π(τ | y) be the posterior density of τ given y. Note that

π(τ | y) =
∫
τ=τ(ρ)

L∗∗a(ρ)π(ρ) dρ

∫ λ−1
n

λ−1
1

L∗∗a(ρ)π(ρ) dρ

=
∫
τ=τ(ρ)

π(ρ)

|�ρ |1/2|X′�−1
ρ X|1/2(S2)(n−p)/2+a−1 dρ

∫ λ−1
n

λ−1
1

π(ρ)

|�ρ |1/2|X′�−1
ρ X|1/2(S2)(n−p)/2+a−1 dρ

.

(21)

Clearly, π(τ | y) depends on y only through S2. Since X′R� = 0, we have

S2 = yR�y = (y − Xβ∗)′R�(y − Xβ∗).

Note that ε̃ = (y − Xβ∗)/
√

δ∗
1 ∼ Nn(0,�∗

ρ), where �∗
ρ = (In − ρ∗C)−1. Then

S2 = δ∗
1 ε̃′R�ε̃ and

π(τ | y) =
∫
τ=τ(ρ)

π(ρ)

|�ρ |1/2|X′�−1
ρ X|1/2(ε̃′R�ε̃)(n−p)/2+a−1 dρ

∫ λ−1
n

λ−1
1

π(ρ)

|�ρ |1/2|X′�−1
ρ X|1/2(ε̃′R�ε̃)

(n−p)/2+a−1 dρ

. (22)

ε̃ depends only on ρ∗, so does the frequentist distribution of π(τ | y). �
Theorem 2 shows that the frequentist coverage probabilities of Bayesian credible

intervals for many functions of parameters under a large class of priors will depend
only on true parameter ρ. Therefore, in the simulation study we could fix (δ1,β)

at any value. For simplicity, we choose (δ∗
1 ,β∗) = (1, 0). Since one does not need

considering choices of nuisance parameters, it can tremendously simplify and speed
up computation.

We see that finding the marginal posterior cumulative distribution of η requires
only an integration. In fact, define

g(ρ) = π(ρ)

|�ρ |1/2|X′�−1
ρ X|1/2(S2)(n−p)/2+a−1

.

We have

F(ρ∗ | y) ≡ P(ρ <ρ∗ | y) =
∫ ρ∗
λ−1

1
g(ρ) dρ

∫ λ−1
n

λ−1
1

g(ρ)ρ

. (23)

Thus, if, for example, we take a random sample of size m, (y1, y2, . . . , ym), from the
model (4) with the parameter ξ∗ = (ρ∗, 1, 0), then the frequentist coverage probability
Pξ∗(ρ∗ < ρα(y)) can be estimated by

#{yi , i = 1, . . . , m : F(ρ∗ | yi ) < α}
m

.
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Table 1 Frequentist coverage of Bayesian equal-tailed 95 % credible intervals for ρ

p = 1 p = 6

ρ = 0.05 ρ = 0.12 ρ = 0.25 ρ = 0.05 ρ = 0.12 ρ = 0.25

Reference (π R1∗ ) 0.960 0.957 0.981 0.976 0.957 0.976

Reference (π R2∗ ) 0.962 0.958 0.977 0.967 0.956 0.978

Independence Jeffreys 0.954 0.954 0.976 0.927 0.851 0.990

Jeffreys-rule 0.961 0.957 0.961 0.880 0.856 0.758

The method we develop only involves evaluating an integration and specifying the
values of nuisance parameters. It does not require MCMC simulations in finding the
posterior distributions.

3.2 Simulation study

This section presents the results of a small simulation experiment to investigate the
frequentist coverage of equal-tailed credible intervals for one parameter of interest, ρ,
by the above method, when one of four priors is used. These priors are the Jeffreys-rule,
independence Jeffreys, and two “exact” reference priors.

Consider a setup similar to De Oliveira (2012). The models are defined on a 10×10
regular lattice with first order neighborhood system and C the adjacency matrix. Thus
ρ must belong to the interval (−0.260554, 0.260554). We consider two different mean
functions IE{y(s)}, namely the constant (p = 1) or 10 + si1 + si2 + si1si2 + s2

i1 + s2
i2

(p = 6), and three different values of ρ: 0.05, 0.12, or 0.25 (negative estimates of
the spatial parameter are rare cases in practice, if they appear at all, so only positive
values of ρ are considered). While De Oliveira (2012) considered different value of
δ1, from Theorem 2, the coverage for ρ does not depend on the choice of δ1. One can
find the simulated results in Tables 1 and 2 of De Oliveira (2012) are almost same for
different choices of δ1. Therefore, we choose δ1 = 1. 3,000 replications are generated
for each choice of ρ and compute the equal-tailed 95 % credible intervals for ρ.

Table 1 shows frequentist coverage of equal-tailed credible intervals for ρ corre-
sponding to four default priors, and large sample 95 % confidence intervals for ρ.
When p = 1, the performance for two reference, Jeffreys-rule, independence Jeffreys
priors is reasonable, and the coverage of confidence intervals are close to the nominal
0.95. When p = 6, the performance for two reference priors is reasonable and the
coverage of confidence intervals are close to the nominal 0.95, while the coverage of
the credible intervals based on Jeffreys-rule prior are below nominal. The coverage
of the credible intervals based on independence Jeffreys are below nominal in some
cases when ρ is small.

3.3 Real data analysis

In practice, we may have the following form of CAR models:

y ∼ Nn(Xβ, δ1(I − ρC)−1D), (24)

123



Objective Bayesian analysis for CAR models 467

where D = diag(d1, . . . , dn) and di , i = 1, . . . , n, are known positive values. With
an appropriate transformation, (24) becomes (3). For example, if we make the trans-
formation ỹ = D−1/2y, then we will obtain that ỹ ∼ Nn(X̃β, δ1(In − ρC̃)−1), which
is the form of (3). Here X̃ = D−1/2X and C̃ = D1/2CD−1/2.

The data in our example are from the paper by Cressie and Chan (1989), where they
used CAR models to analyze sudden infant death syndrome (SIDS). They considered
CAR models for two sets of data: the number of SIDS from 1 July 1974 to 30 June
1978 and from 1 July 1979 to 30 June 1984. As an illustration, we only consider the
1974–1978 data here.

Let {Si : i = 1, . . . , n} and {mi : i = 1, . . . , n} denote the number of SIDS and the
number of live births in the n counties of North Carolina, 1974–1987, respectively.
In this example, n = 99. Originally, there are 100 counties, that is, we have 100
observations. Since the standardized residual of Anson County is unacceptably high,
they deleted this county from the data analysis. They modeled the Freeman–Tukey
(square-root) transformation

yi =
(

1000Si

mi

)1/2

+
(

1000(Si + 1)

mi

)1/2

. (25)

Denote the location of the i th county seat by (ui , vi ). Thus the distance for the i th and
j th counties, denoted by di j , is defined by

di j = {(ui − u j )
2 + (vi − v j )

2}1/2.

Define {Ni : i = 1, . . . , n} as the set of neighborhoods. j ∈ Ni if di j ≤ 30 miles.
They considered the following model:

y = Xβ + e, (26)

where y = (y1, . . . , yn)′, many different forms of large-scale variation Xβ and

e ∼ N (0, δ1(I − ρC)−1D).

Here δ1 is the variance, D = diag(m−1
1 , . . . , m−1

n ) and C = (ci j ) where if di j ≤ 30
miles, ci j = C(k)d−k

i j (m j/mi )
1/2 and ci j = 0 otherwise. Here k is specified to be

0, 1 or 2 according to how fast ci j will decrease with distance di j . For comparability
across different values of k, the constant of proportionality C(k) is used and defined
as (min{di j : j ∈ Ni , i = 1, . . . , n})k .

Based on the appropriate statistics for model selection, they found the expected
value Xβ with the following form is preferred:

X =

⎛
⎜⎜⎝

1 X5,1
1 X5,2
. . . . . .

1 X5,n

⎞
⎟⎟⎠ , β =

(
β0
β1

)
,
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Table 2 Summaries of the marginal posterior distributions (2.5 % quantile, median, 97.5 % quantile) for
small-scale-variation parameters (ρ̂, δ̂1): 1974–1978. Data by the reference prior and MLE

k = 0 k = 1 k = 2

ρ

Reference 0.021 0.118 0.011

CI [−0.249, 0.173] [−0.872, 0.855] [−0.952, 0.945]
MLE 0.113 0.640 0.336

CI [−0.01, 0.18] [−0.24, 0.90] [−0.98, 0.99]
δ1

Reference 1,232.7 1,238.3 1,252.2

MLE 1,138.7 1,169.2 1,214.6

β1

Reference 1.611 1.601 1.595

MLE 1.644 1.644 1.644

β2

Reference 0.036 0.036 0.036

MLE 0.035 0.035 0.035

where X5,i is the (Freeman–Tukey transformed) nonwhite live-birth rate, defined by:

X5,i =
(

1000ω̄i

mi

)1/2

+
(

1000(ω̄i + 1)

mi

)1/2

,

and ω̄i is the number of nonwhite live births in the i th county of North Carolina.
We make a transformation for the model (26), so the new model will be given in

the following:

ỹ = X̃β + ẽ,

where ỹ = D−1/2y, X̃ = D−1/2X and ẽ = D−1/2e. Thus, ẽ ∼ Nn(0, δ1(I − ρC̃)−1)

where C̃ = (c̃i j ) with c̃i j = C(k)dk
i j if j ∈ Ni and c̃i j = 0 otherwise.

In this example, a ratio-of-uniforms method, which can be found in Wakefield et al.
(1991), for sampling ρ from its marginal posterior distribution is used for simulation.
This method is quite efficient in computation. Because the expected value of para-
meters could not exist when the reference prior is applied, we report these estimates
by quantiles in Table 2. Based on the simulation results, two reference priors’ per-
formance is almost same, so π R1 is used in this example. For comparison, we also
present the estimate results by MLE in Cressie and Chan (1989).

We conclude that ρ is not significantly different from 0 based on the confidence
intervals for three cases, which are same as the conclusions obtained by Cressie and
Chan (1989). Our estimates for ρ are close to zero and much smaller than what they
got by MLE. The confidence interval based on the reference prior is wider than MLE’s
when k = 0 and 1, but is narrower than MLE’s when k = 2. Finally, the estimates for
the error variance δ1 and the coefficients β are close for both methods.

123



Objective Bayesian analysis for CAR models 469

3.4 Comments

Based on the simulation results from this section, together with the results from De
Oliveira (2012), we could summarize as follows:

(a) The frequentist properties of credible intervals computed using the independence
Jeffreys and a reference priors are comparable.

(b) The computation of independence Jeffreys prior is simpler than the computation
of reference priors. The latter guarantees posterior propriety in all cases, while
this is not the case for the former.

(c) Neither the marginal independence Jeffreys prior nor the reference priors of the
spatial parameter are integrable.

4 Appendix A: Proof of Proposition 1

We only prove the result for the ordering {β, ρ, δ1} in Part (a). For model (4), it is not
difficult to obtain the Fisher information matrix as follows:

�(ρ, δ1,β) = 1

2

(
�2(ρ, δ1) O

O 2
δ1

X′�−1
ρ X

)
,

where

�2(ρ, δ1) =
(

tr((In − ρC)−1C)2 1
δ1

tr((In − ρC)−1C)
1
δ1

tr((In − ρC)−1C) n
δ2

1

)
.

Let [ρL
k , ρU

k ], [δL
1k, δ

U
1k], and [βL

k ,βU
k ] be the compact sets so that as k → ∞,

[ρL
k , ρU

k ] → (λ−1
1 , λ−1

n ), [δL
1k, δ

U
1k],→ (0,∞), and [βL

k ,βU
k ] → R

p. In the following
steps, we use the results in Lemma 2.1 in Datta and Ghosh (1996) and follow Berger
and Bernardo’s (1992) reference prior algorithm. First, we construct the conditional
prior δ1 given (ρ,β) on [δL

1k, δ
U
1k],

πk(δ1 | ρ,β) ∝
√

n

2δ2
1

∝ 1

δ1
.

Next, we can construct the conditional prior for ρ given β on [ρL
k , ρU

k ],

πk(ρ | β) ∝ exp

⎧⎨
⎩

1

2

∫ δU
1k

δL
1k

log
1
4 |�2(ρ, δ1)|

n
2δ2

1

πk(δ1 | ρ,β) dδ1

⎫⎬
⎭ ∝ |�2(ρ, 1)|1/2,

where we use the fact |�2(ρ, δ1)| = |�2(ρ, 1)|/δ2
1 .
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Last, we can construct the prior of β within each compact set:

πk(β) ∝ exp

⎧⎨
⎩

1

2

∫ ρU
k

ρL
k

∫ δU
1k

δL
1k

log

1
4δ

p
1
|�2(ρ, δ1)| |X′�−1

ρ X|
1
4 |�2(ρ, δ1)|

× πk(β | ρ, δ1)πk(δ1 | ρ) dρ dδ1} ∝ 1.

Finally, for some interior point of (ρ0, δ10,β0) of (ρ, δ1,β), the joint reference prior
is:

π R(ρ, δ1,β) = lim
k→∞

πk(β)πk(ρ | β)πk(δ1 | ρ,β)

πk(β0)πk(ρ0 | β0)πk(δ10 | ρ0,β0)
∝ 1

δ1
|�2(ρ, 1)|1/2.

5 Appendix B: Proof of Proposition 3

Here we only verify π R2∗ because

tr(�ρR��ρC)2 − 1

n − p
{tr(�ρR��ρC)}2 ≤ tr(�ρR��ρC)2.

Let U = (u1, u2, . . . , un), where ui are the eigenvectors of C. Denoting diag(λ1, λ2,

. . . , λn) by � where λi , i = 1, . . . , n are the eigenvalues of C, we have C = U�U′.
Thus,

U′R�U = (In − ρ�) − (In − ρ�)U′X{X′U(In − ρ�)U′X}−1X′U(In − ρ�).

For X, since X = QR (so-called Q R decomposition) and X is a full-column rank
matrix from the assumption, where Q is an n × p column orthonormal matrix and R
is a p × p upper triangular matrix, so R is nonsingular. With some algebra, we have

U′R�U = (In − ρ�) − (In − ρ�)U′Q{Q′U(In − ρ�)U′Q}−1Q′U(In − ρ�).

If u1 ∈ C(X), that is, u1 ∈ C(Q), one can find t2, . . . , t p in C(Q) such that u1, t2, . . . , t p

are orthonormal. Thus, denoting (u1 t2 . . . t p) by Q∗, one can find a nonsingular p × p
matrix T such that Q = Q∗T. With some algebra, one can obtain

Q∗′U =
(

1 0′
0 Q̃

)
,

so if we denote In−1 − ρdiag(λ2, . . . , λn) by �̃2, we obtain

U′R�U =
(

0 0′
0 R

�̃2

)
,
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where

R
�̃2

= �̃2 − �̃2Q̃(Q̃
′
�̃2Q̃)−1Q̃

′
�̃2.

Thus, we obtain

π R2∗ (ρ) ∝ {tr(�̃−1
2 R

�̃2
�̃

−1
2 �2)

2}1/2,

where �2 = diag(λ2, . . . , λn). Note that Q̃ and �2 both do not depend on λ1, so one
can obtain the result for π R2∗ (ρ) as ρ → λ−1

1 .
Now, assume that u1 /∈ C(X). Note that

C = 1

ρ
(In − �−1

ρ ),

and R��ρ is an idempotent matrix. With some algebra, one can obtain

tr(�ρR��ρC)2 = 1

ρ2 {tr(�ρR��ρ)2 − 2tr(�ρR��ρ) + tr(�ρR�)}.

By idempotency, we have tr(�ρR�) ≤ n. Therefore, π R2∗ (ρ) is at most proportional
to tr(�ρR��ρ)2 as ρ → λ−1

1 .
R� ≤ �−1

ρ and �ρ is positive definite, so we have

tr(�ρR��ρ)2 ≤ tr(�ρ�−1
ρ �ρ)2 = tr(�ρ)2.

Since tr(�ρ)2 = ∑n
i=1

1
(1−ρλi )

2 . tr(�ρ)2 is proportional to 1/(1−ρλ1)
2 as ρ → λ−1

1 .
The result then follows.
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