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Abstract In the present paper, we propose a Palm likelihood approach as a general
estimating principle for stationary point processes in Rd for which the density of the
second-order factorial moment measure is available in closed form or in an integral
representation. Examples of such point processes include the Neyman–Scott processes
and the log Gaussian Cox processes. The computations involved in determining the
Palm likelihood estimator are simple. Conditions are provided under which the Palm
likelihood estimator is strongly consistent and asymptotically normally distributed.

Keywords Asymptotic normality · Cluster processes · Consistency ·
Neyman–Scott processes · Log Gaussian Cox processes · Palm likelihood ·
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1 Introduction

Estimation of parametric models for spatial point processes has been a very active
research area in the last few years. Motivated by the need of analyzing always
larger and more complicated data sets in a reasonably short time, several simulation-
free estimation methods based on composite likelihood and/or estimating equations
have been developed as alternatives to the computationally more demanding max-
imum likelihood and Bayesian methods; see Møller and Waagepetersen (2007) for
a recent overview. Besides composite likelihood and estimating equations, there are
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388 M. Prokešová, E. B. V. Jensen

approximate Bayesian methods for latent Gaussian models including the log Gaussian
Cox process (Rue et al. 2009).

In the present paper, we will focus on point process models for which the densities of
the first- and second-order moment measures (and/or quantities derived from them—
like the pair-correlation function g or the K -function) are available—either in closed
form or in an integral representation. In particular, we will consider stationary cluster
processes, Cox processes and related models.

One of the estimation methods that was first suggested for such processes is the
minimum contrast method based either on the K -function or the g-function; see Diggle
(2003); Møller et al. (1998); Møller and Waagepetersen (2003) and references therein.
In addition to stationarity, this method requires that the point process X is isotropic.
A parameter θ is estimated by minimizing the discrepancy measure

∫ R

0
[K̂ c(u) − K c(u; θ)]2du or

∫ R

0
[ĝc(u) − gc(u; θ)]2du

between the estimate K̂ or ĝ and its theoretical value K (·; θ) or g(·; θ), respectively.
Note that ĝ involves nonparametric density estimation. The user-specified constants c
and R are used to control the sampling fluctuations in the estimates of K and g. These
constants are usually chosen in some ad hoc manner. Asymptotic properties of these
estimates have been derived in Guan and Sherman (2007) and Heinrich (1992).

An alternative estimation method based on maximization of the so-called Palm
likelihood is suggested in Tanaka et al. (2008) for stationary cluster processes, includ-
ing Neyman–Scott processes and related models. The Palm likelihood makes use of
the process of differences

{x − y : x �= y ∈ X ∩ W },

where W is the observation window. This likelihood depends on the so-called Palm
intensity function λ0 which is the density of the second-order reduced factorial moment
measure of the process X . In the original paper Tanaka et al. (2008), it was assumed
that the point process X is an isotropic point process in R2, but Palm likelihood can
actually be applied to any simple stationary point process in Rd with Palm intensity
λ0. Palm likelihood estimation has thereby a much wider applicability than originally
anticipated in Tanaka et al. (2008).

The Palm likelihood estimation method belongs to the second-order moment esti-
mation methods, since

λ(2)(x, y) = λλ0(y − x), x, y ∈ Rd ,

where λ(2) is the density of the second-order factorial moment measure of the point
process X . A number of related second-order methods based on a composite likelihood
approach are available in the literature (Baddeley and Turner 2000; Guan 2006; Møller
and Waagepetersen 2007; Waagepetersen 2007); see Lindsay (1988) for an introduc-
tion to composite likelihood. The Palm likelihood estimation method is closely related
to the composite likelihood method suggested in Waagepetersen (2007); see Sect. 3
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Asymptotic Palm likelihood theory for stationary point processes 389

below. The Palm likelihood method is numerically simpler than the composite likeli-
hood method in Guan (2006) because of a simpler form of the normalization term.

Concerning the asymptotic properties of Palm likelihood estimators, it was argued
in Tanaka et al. (2008) that, for the considered cluster point processes, the process
of differences is well approximated by a nonstationary Poisson point process with
intensity |X ∩ W | λ0, because the process of differences can be regarded as a super-
position of |X ∩ W | realizations of a point process with the distribution equal to the
Palm distribution of the original process X—that means with the intensity λ0. By a
superposition theorem for |X ∩ W | → ∞, a convergence of the suitably normalized
difference process to a Poisson process can be obtained (see Ogata and Katsura 1991
for the argument), which would imply the consistency of the obtained Palm likelihood
estimates. A formal proof of consistency was, however, not provided.

The present paper fills this gap. We provide a proof of strong consistency and asymp-
totic normality of the maximum Palm likelihood estimator. Consistency is proved
under the assumption of ergodicity of the point process X . The proof of asymptotic
normality is provided under the additional assumptions that the process X is strongly
mixing and the strong mixing coefficient decays sufficiently fast. Moreover for cluster
processes, we derive some simple methods of checking sufficient conditions for the
desired fast decay of the strong mixing coefficients.

The paper is organized as follows. We give the necessary notation and background
information in Sect. 2 and introduce the Palm likelihood estimation procedure in detail
in Sect. 3. This section contains the extension of the Palm likelihood from isotropic
point processes to general stationary processes and a discussion of computational
issues relating to the anisotropic case. In Sects. 4 and 5, the main results of the paper
are presented— the strong consistency and the asymptotic normality of the Palm
likelihood estimator. The obtained results are further exemplified in Sect. 6. Proofs
are deferred to an Appendix.

2 Background

Let X denote a simple strictly stationary point process on Rd . In the sequel, Bd is the
Borel σ -algebra on Rd , |A| is the volume of the set A ∈ Bd , ∂ A its boundary and |∂ A|
the (d − 1)-dimensional surface measure of ∂ A, when it exists. Generally, we use | · |
for the appropriate Hausdorff measure. The origin in Rd is denoted by o, B(x, R) is
the ball centered at x ∈ Rd with radius R > 0 and ⊕, � denotes Minkowski addition
and substraction, respectively, with the convention that A ⊕ R = A ⊕ B(o, R) and
A � R = A � B(o, R) for R > 0. The Euclidean norm of the vector x is denoted by

|x |, for matrices we use also the Euclidean norm |M | = (trace (MT M))
1
2 and I is the

indicator function.
The k-th order factorial moment measure α(k) of the point process X is defined by

the following equation

∫
(Rd )k

f (u1, . . . , uk) α(k)(d(u1, . . . , uk)) = E

⎛
⎝

�=∑
u1,...,uk∈X

f (u1, . . . , uk)

⎞
⎠ (1)
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390 M. Prokešová, E. B. V. Jensen

for any non-negative, Borel measurable function f on (Rd)k , where the summation
runs over k-tuples of distinct points of X . The kth-order factorial cumulant measure
γ (k) of X is a locally finite signed measure on [(Rd )k,Bdk]which is formally connected
with the measures α(1), . . . , α(k) by

γ (k)(×k
i=1 Ai ) =

k∑
j=1

(−1) j−1( j − 1)!
∑

K1∪···∪K j ={1,...,k}

j∏
i=1

α(#Ki )
(×ki ∈Ki Aki

)

for bounded A1, . . . , Ak ∈ Bd , where the inner sum is taken over all partitions of
the set {1, . . . , k} in disjoint non-empty subsets K1, . . . , K j . In particular, α(1)(A) =
γ (1)(A) = λ |A| = E |X ∩ A| for A ∈ Bd where λ is called the intensity of X . For
k ≥ 2, we will assume in the sequel that the factorial moment measures have densities
λ(k) with respect to the Lebesgue measure on Rdk . These densities are called the k-th
order product densities of X (or sometimes k-th order intensity functions of X ).

Since, for any k ≥ 2 , α(k) is invariant under diagonal shifts, there exists a cor-
responding reduced kth-order factorial moment measure α

(k)
red on [(Rd)k−1,Bd(k−1)]

which is uniquely determined by the disintegration formula

∫
(Rd )k

f (u1, . . . , uk)α
(k)(d(u1, . . . , uk))

= λ

∫
Rd

∫
(Rd )k−1

f (u1, u2 + u1, . . . , uk + u1) α
(k)
red(d(u2, . . . , uk)) du1, (2)

where f is as in (1). Similarly we may define the reduced kth-order factorial cumulant
measure γ

(k)
red , which turns out to be a signed measure on [(Rd)k−1,Bd(k−1)].

For k = 2, the disintegration (2) implies that

λ(2)(x, y) = λλ0(y − x), x, y ∈ Rd ,

where the function λ0 is the density of α
(2)
red. The function λ0 is also called the con-

ditional intensity or Palm intensity in the literature, since λ0 is in fact the intensity
function of the Palm distribution P0 of the original point process X . For a detailed
introduction to these notions and their properties, we refer the reader to Daley and
Vere-Jones (2003).

Two popular point process characteristics can be defined from λ0, viz. the pair
correlation function

g(x, y) = g(y − x) = λ0(y − x)/λ, x, y ∈ Rd ,

and the K -function defined by

λ K (R) =
∫

B(o,R)

λ0(u)du = E [|X ∩ B(o, R)\{o}| | X ∩ {o} �= ∅ ].
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Asymptotic Palm likelihood theory for stationary point processes 391

Note that λ K (R) can be interpreted as the mean number of further points from X in
B(x, R) centered at a typical point x of the point process X .

The Neyman–Scott process considered in Tanaka et al. (2008) can be constructed
as follows. Let C be a stationary Poisson point process of intensity μ. This process
is called the mother process. Each mother point c ∈ C produces a random number
M of daughter points with mean ν. The daughters around c are i.i.d. with density
k(c, ·) = h(·−c). The set of daughters associated with the mother c is denoted by Xc.
The Neyman–Scott process is then the union of the daughter clusters X = ∪c∈C Xc.
The intensity of X is μν. The Palm intensity of the Neyman–Scott process becomes

λ0(z) = μν + ν

∫
Rd

h(u)h(z + u)du, z ∈ Rd ; (3)

see [Møller and Waagepetersen 2003, (5.8)]. If h is a Gaussian density, then (3) is in
closed form. For other examples of usable kernels like the spherical or Matérn, see
e.g. Jonsdottir et al. (2011). Further examples of Neyman–Scott processes are given
in Tanaka et al. (2008).

Another class of point processes for which the Palm intensity can be obtained in
closed form is the log Gaussian Cox processes (Møller et al. 1998). Here,

λ0(z) = exp(m + c(0)/2 + c(z)), z ∈ Rd ,

where m and c are the mean and covariance function of the underlying stationary
Gaussian random field, respectively.

3 Palm likelihood for stationary point processes

Let us assume that the parameter of interest of our point process model is the (vector)
parameter θ and that the Palm intensity λ0(·; θ) is parametrized by θ . In the following,
we will suppress θ in the notation if the dependence on θ is not important in the
respective context.

In this section, we will discuss the Palm likelihood method that was introduced
in Tanaka et al. (2008) for stationary isotropic Neyman–Scott processes and related
models. The Palm log-likelihood function is for an arbitrary simple stationary point
process in Rd defined by

log L P (θ)=
�=∑

x,y∈X∩W
|x−y|<R

log λ0(x−y; θ)−|X ∩ W |
∫

Rd
I (|u|< R)λ0(u; θ)du, (4)

where R is a chosen positive constant. The maximum Palm likelihood (MPL) estimator
is obtained by maximizing L P (θ).

123



392 M. Prokešová, E. B. V. Jensen

Under the assumption that L P (θ) is differentiable with respect to θ , the MPL-
estimate is the solution to the following estimation equation

d log L P (θ)

dθ
= 0. (5)

The idea behind this estimation procedure is to use, instead of the original process X
observed in the window W , the process of differences Y = {x − y : x �= y ∈ X ∩ W }.
Note that the data used in the Palm likelihood are really only the difference process Y
and the number of observed points |X ∩ W |. For any fixed x ∈ X let

Yx = {y − x : x �= y ∈ X}, (6)

then the Palm log-likelihood in (4) is a sum (over x ∈ X∩W ) of Poisson log-likelihoods
for the processes Yx ∩ B(o, R), all assumed to have intensity function λ0. Using the
Poisson log-likelihoods implies that the higher-order interactions in the processes of
differences are ignored. Furthermore, since the Poisson log-likelihoods are summed,
the dependence among Yx , x ∈ X ∩ W are ignored by treating them as independent
replications.

An alternative way of arriving at the Palm log-likelihood (4) is as follows. Consider
Y (R) = Y ∩ B(o, R), a point process contained in B(o, R). The intensity function of
this point process can be derived as follows. Let A be a Borel subset of B(o, R). Then,

E(|Y (R) ∩ A|) =
∫

W

∫
W

I (y − x ∈ A)λλ0(y − x)dxdy =
∫

A
γW (u)λλ0(u)du,

where γW (u) = |W ∩ (W + u)| is the set covariance of the window W ; see Stoyan
et al. (1995, p. 126) for further details. The point process Y (R) has thus an intensity
function concentrated on B(o, R) of the form

λR(u) = γW (u)λλ0(u), u ∈ B(o, R). (7)

The Palm log-likelihood (4) can now be obtained by treating Y (R) as an inhomoge-
neous Poisson process, replacing the intensity λ of the original point process X by
the observed intensity |X ∩ W |/|W | and approximating γW (u), u ∈ B(o, R), by |W |.
This is a reasonable approximation for R, substantially smaller than the size of the
observation window W .

As mentioned in the introduction, the Palm likelihood estimation method is closely
related to the composite likelihood method suggested in Waagepetersen (2007). In fact,
if we, in the last equation on p. 256 in Waagepetersen (2007), replace λ by |X ∩W |/|W |
and approximate γW (u), u ∈ B(o, R), by |W |, then the resulting estimating equation
is equal to (4).

We can define a modified version of the Palm likelihood in which we consider only
those points x ∈ X for which B(x, R) ⊆ W , thus employing the inner region edge
correction (minus sampling)
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log L PU (θ) =
�=∑

x∈X∩(W�R)
y∈X,(y−x)∈B(o,R)

log λ0(y − x; θ) − |X ∩ (W � R)|
∫

B(o,R)

λ0(u; θ)du.

(8)

Then, the estimating (vector) equation d log L PU
dθ

= 0 is an unbiased estimating equa-

tion, since for Ỹ = ⋃x∈W�R Yx Eq. (7) becomes λ̃R(u) = |W � R|λλ0(u), and

consequently Eθ0

(
d log L PU (θ)

dθ

∣∣∣
θ=θ0

)
= 0, where Eθ0 denotes the mean value with

respect to the distribution with the correct parameter value θ0.
Since the difference between (4) and (8) is only in the employed edge correction

(inner region or none edge correction), i.e. only in the way the points x ∈ W\(W � R)

are handled, for windows W large enough with respect to R the difference in the
two estimates will be negligible. Under the assumptions on the sequences of observa-
tion windows that will be introduced in Sect. 4, the correctly normalized estimating
equation 1

|W |
d log L P (θ)

dθ
= 0 will be an asymptotically unbiased estimating equation.

Sometimes, in the literature another type of edge correction is used—namely the
periodic boundary correction; see e.g. Illian et al. (2008, Sect. 4.2.2). It is applicable to
rectangular observation windows only and also leads to a biased estimating equation
in general.

From a practical point of view, it is important to have some guidelines for the
choice of R. For a point process with interaction radius ρ, we have λ0(u) = λ for
|u| > ρ. Consequently, the estimates of the interaction parameters we obtain by using
R > ρ cannot be better than those obtained by using ρ, since we gain no information
by increasing R beyond ρ. For instance, for the Palm log-likelihood log L P using
R > ρ, we have

log L P (θ) =

⎡
⎢⎢⎣

�=∑
x,y∈X∩W
|x−y|<ρ

log λ0(y − x; θ) − |X ∩ W |
∫

Rd
I (|u| < ρ)λ0(u; θ)du

⎤
⎥⎥⎦

+ f (λ, ρ, R),

where the first term is the Palm log-likelihood using R = ρ and the last term depends on
the parameters θ only through the intensity λ of the process. We therefore recommend
that R should not be larger than an estimate of the range of interaction we get from
the data (e.g. by an empirical pair-correlation function). It should also be noticed that
the mean number of points in the difference process Ỹ ,

E |Ỹ | = |W � R| λ
∫

B(o,R)

λ0(u)du,

is not necessarily a monotone function of R. For instance, for d = 2, W = [0, 1]2

and λ0(u) = λ[1 + τ I (|u| < ρ)], we get for R ≤ min(ρ, 1
2 )
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E |Ỹ | = (1 − 2R)2π R2λ2(1 + τ).

This function increases to its maximum at R = 1
4 and then decreases. A rule of thumb

could therefore be to choose R no larger than one quarter of the minimal side length
of the observation window W .

We would like to end this section by stressing that the assumption of isotropy, made
in the original paper Tanaka et al. (2008) for computational reasons, is not necessary
for the formulation or validity of the MPL estimation method. The Palm likelihood (8)
is formulated for the Palm intensity λ0(u) as a function of the whole vector u, not just
as a function of its length |u|.

Palm likelihood estimation is computationally tractable for Neyman–Scott pro-
cesses with an anisotropic daughter distribution density h(u). The simple and yet
flexible example of a Gaussian density h in R2 with a general covariance matrix Σ is
discussed in Sect. 6. The advantage of the Gaussian density is that the Palm intensity
λ0 computed by (3) has a closed form. Nevertheless, even if λ0 is not available in
closed form (the density h may, for instance, be the indicator of an ellipse), λ0 can be
computed numerically by (3) for any u. The maximization of the Palm likelihood (8)
can then be implemented by e.g. the Nelder–Mead maximization algorithm (Nelder
and Mead 1965).

Furthermore, the method is not restricted to Neyman–Scott processes and the other
cluster processes discussed in Tanaka et al. (2008). The method can be used for esti-
mation in any parametric model with an accessible form of the Palm intensity λ0(·; θ).
One very important class of such processes not considered in Tanaka et al. (2008) is
the log Gaussian Cox processes; see Møller et al. (1998). Palm likelihood estimation
in log Gaussian Cox processes with exponential covariance is discussed in Sect. 6.

4 Strong consistency of MPLE

We will assume in the sequel that the point process model is parametrized by θ ∈ Θ ,
where Θ is a compact subset of Rq with non-empty interior. The true vector parameter
θ0 is assumed to be an interior point of Θ .

The asymptotics will be studied under an increasing domain setting assuming that
we have a convex averaging sequence of windows {Wn}n∈N—i.e. that all the windows
Wn are bounded convex sets, Wn ⊆ Wn+1 for all n and the inradii

ρ(Wn) = sup{ρ : Wn contains a ball of radius ρ}

converge to ∞ as n → ∞; see Daley and Vere-Jones (2003, Chapter 10) for further
details. We will assume that |Wn| = O(ρ(Wn)d). This implies for the convex sets
{Wn} that |∂Wn| = O(ρ(Wn)d−1) since according to Wills (1970) we have

|∂W |
|W | ≤ d

ρ (W )
,

if W ⊂ Rd is a convex set.
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We will start by showing the consistency of the unbiased version of the log Palm like-
lihood L PU . Let us write here in detail the score function U (θ) = 1

|W�R|
d log L PU (θ)

dθ
of the Palm likelihood

U (θ) = 1

|W � R|
�=∑

x∈X∩(W�R)
y∈X,(y−x)∈B(o,R)

d λ0(y − x; θ)

dθ

1

λ0(y − x; θ)

−|X ∩ (W � R)|
|W � R|

d
∫

B(o,R)
λ0(u; θ)du

dθ
. (9)

(the score function computed from observations in the window Wn will be denoted by
Un(θ)). We obtain

Eθ0

⎛
⎜⎜⎝

�=∑
x∈X∩(W�R)

y∈X,(y−x)∈B(o,R)

d λ0(y − x; θ)

dθ

1

λ0(y − x; θ)

⎞
⎟⎟⎠

=
∫

W�R
λ

∫
B(o,R)

d λ0(u; θ)

dθ

1

λ0(u; θ)
λ0(u; θ0)dudx,

where Eθ0 denotes the mean value with respect to the distribution of the point process
with θ = θ0. We see that Eθ0U (θ0) = 0 for the true parameter value θ0. Thus, the
estimating equation Un(θ) = 0 is indeed unbiased. The Palm likelihood estimate
obtained from this equation will be denoted by θ̂n .

In the following theorem, the strong consistency of θ̂n is formulated. The proof of
the theorem may be found in the Appendix.

Theorem 1 Let X be a stationary ergodic point process observed in a convex aver-
aging sequence {Wn}n∈N of windows for which |Wn| = O(ρ(Wn)

d) holds. Assume

that Eθ0Un(θ) = 0 only when θ = θ0 and that d λ0(u;θ)
dθ

1
λ0(u;θ)

and
d (
∫

B(o,R) λ0(u;θ)du)

dθ

are bounded and continuous (with respect to u and θ , and θ respectively). Then, θ̂n is
a strongly consistent estimate of θ0, i.e. θ̂n → θ0 Pθ0 -a.s.

Remark 1 The boundedness and continuity conditions of Theorem 1 are satisfied if
λ0(u; θ) and d λ0(u;θ)

dθ
1

λ0(u;θ)
are bounded and continuous with respect to u and θ ,

and λ0(u; θ) is bounded from 0 uniformly in u and θ . These conditions are easy to
check and satisfied for a wide range of processes, including the Thomas process, all
the generalizations of the Thomas process from Tanaka et al. (2008, Section 2.1),
the anisotropic Thomas process from Sect. 6 and the Neyman–Scott processes with

spherical or Matérn kernels. The assumption of boundedness of dλ0(u;θ)

dθ
in u (even of

λ0(u; θ)) is not fulfilled for the so-called inverse power type model from Tanaka et al.
(2008) and Theorem 1 cannot be applied in this special case.
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Let us now discuss the original Palm log-likelihood (4) without any included edge
correction. The associated score function Ũ (θ) = 1

|W |
d log L P (θ)

dθ
takes the form

Ũ (θ) = 1

|W |
�=∑

x,y∈X∩W
|x−y|<R

d λ0(y − x; θ)

dθ

1

λ0(y − x; θ)
− |X ∩ W |

|W |
d
∫

B(o,R)
λ0(u; θ)du

dθ
.

Let θ̃n denote the estimate obtained from the estimating equation Ũn(θ) = 0. For
θ = θ0, we have

Eθ0

⎛
⎜⎜⎝

�=∑
x,y∈X∩W
|x−y|<R

dλ0(y − x; θ)

dθ

1

λ0(y − x; θ)

⎞
⎟⎟⎠ = λ

∫
B(o,R)

γW (u)
d λ0(u; θ)

dθ

∣∣∣∣
θ=θ0

du.

As a consequence, we do not have Eθ0Ũn(θ0) = 0. Nevertheless since

sup
z∈B(o,R)

∣∣∣∣γWn (z)

|Wn| − 1

∣∣∣∣ ≤ R|∂Wn|
|Wn| ≤ dR

ρ(Wn)
, (10)

γWn (u)

|Wn | converges uniformly to 1 on the compact set B(o, R) and therefore Eθ0Ũn(θ0)

→ Eθ0Un(θ0) = 0 as n → ∞. Therefore, the proof of the consistency of θ̃n is
analogous to that of θ̂n .

Theorem 2 Under the same assumptions as in Theorem 1, θ̃n is a strongly consistent
estimate of θ0.

The proof of Theorem 2 may be found in the Appendix.

5 Asymptotic normality of MPLE

We will now show the asymptotic normality of the MPLE under the assumption that
the point process X is strongly mixing (cf. Heinrich 2012). Recall that for two σ -
algebras F1, F2 defined on the same probability space the strong mixing coefficient
is defined by

α(F1,F2) = sup{|P(A1 ∩ A2) − P(A1)P(A2)| : A1 ∈ F1, A2 ∈ F2}.

For a stationary point process X, the strong mixing coefficient α(p; k) quantifies the
dependence between the behavior of the point process on sets of volume at most p
separated by a distance larger than or equal to k. Thus for a point process X and
p, k ≥ 0, we define

α(p; k) = sup{α(F X (A),F X (B)) : d(A, B) ≥ k, |A| ≤ p, |B| ≤ p}, (11)
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Asymptotic Palm likelihood theory for stationary point processes 397

where F X (A) denotes the σ -algebra generated by X ∩ A and the supremum is taken
over all measurable subsets A, B in Bd .

We will assume that

sup
p≥0

α(p; k)

max(p, 1)
= O(k−ε) for some ε > d. (12)

For the class of log Gaussian Cox processes (Møller et al. 1998), this mixing condition
is implied by the mixing condition for the driving field, which have been treated in
the literature; see Doukhan (1994). For instance, the condition (12) is satisfied if
the correlation function of the underlying Gaussian field decays at a polynomial rate
faster then d + ε and has a spectral density which is bounded below. This follows
from Doukhan (1994, Corollary 2). A concrete example of such correlation functions
often used in practice is the class of Matérn correlation functions (including also the
exponential correlation function), see e.g. Stein (1999, Section 2.7).

Concerning the Neyman–Scott processes, (12) is obviously satisfied for Neyman–
Scott processes with a kernel density k(c, ·) with bounded support (e.g. the Matérn
cluster process with the spherical kernel k). In the following lemma, we show that
(12) is also satisfied if the density has polynomially decaying tails of order d + ε.
This condition is satisfied for all the processes considered in Tanaka et al. (2008), the
anisotropic Thomas process from Sect. 6 as well as Neyman–Scott processes with
Matérn kernels. The proof of the lemma can be found in the Appendix.

Lemma 1 Let X be a Neyman–Scott process with mother intensityμand mean number
ν of daughter points in a cluster. Let the daughter points around a mother point at
the location c be distributed according to the kernel density k(c, ·). If there exists a
function h such that k(c, x) = h(x − c) and h(v) = O(|v|−ε−d) as |v| → ∞, then

α(p;k)
max(p,1)

≤ O(k−ε).

Remark 2 In the literature on point processes, see e.g. Guan (2006); Heagerty and
Lumley (2000); Politis and Sherman (2001), an alternative weaker version of the
strong mixing coefficient is sometimes used

α(p; k) = sup{α(F X (A),F X (B)) : A = B + x, d(A, B) ≥ k, |A| = |B| ≤ p},

p > 0, where the supremum is taken over all compact, convex sets A and all x ∈ Rd .
This version of the strong mixing coefficient has been inspired by the strong mixing
coefficient used in the classical paper Rosenblatt (1956). In the proof of the asymptotic
normality below, we follow the methods of Guan (2006) (described in detail in Guan
et al. 2007), based on the blocking technique presented in Ibragimov and Linnik
(1971). In our proof, we need to use the mixing coefficient for two sets A,B where
A is a union of disjoint cubes (see the proof in the Appendix) and as such definitely
not convex. Furthermore, it is not possible to find an x such that B ⊆ A + x and the
distance between the sets A and A + x is larger than the desired value. Thus, the more
general version (11) of the strong mixing coefficient must be used. This problem was
not fully acknowledged in the papers Guan (2006) and Guan et al. (2007).
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The Neyman–Scott and log Gaussian Cox processes with suitably mixing driving
field (as described above) satisfy (12) for either definition of the mixing coefficient
α(p; k). Thus, from a practical point of view, the definition (11) is not restrictive.

For the asymptotic normality of the MPL estimate, we will further assume a mild
moment condition on Un(θ0):

sup
n∈N

Eθ0(|
√|Wn � R||Un(θ0)|q) < Cq < ∞ for some q > 2. (13)

This condition is slightly stronger than the existence of the standardized asymptotic
variances of Un(θ); see also Guan (2006, p. 1505). It is satisfied for example for
the processes which have the first six reduced cumulant moment measures of finite
total variation provided d λ0(x;θ)

dθ
1

λ0(x;θ)
is bounded for x ∈ B(o, R) and θ ∈ Θ . In

particular, the class of Brillinger-mixing processes (i.e. processes for which the reduced
cumulant moment measures of all orders have finite total variation) obviously fulfill
this condition. The Brillinger-mixing processes include among others Neyman–Scott
processes for which the distribution of the size (i.e. number of points) of the cluster has
finite moments of all orders, as it is the case for all examples in Tanaka et al. (2008).
For further examples and discussions of Brillinger-mixing, see Heinrich (1988).

Below, we present the theorem concerning asymptotic normality of the Palm like-
lihood estimator. The proof of the theorem can be found in the Appendix.

Theorem 3 Assume that the conditions of Theorem 1 are satisfied and moreover that
(12) and (13) hold. Then the reduced factorial cumulant measures of X up to fourth
order have finite total variation and

sup
u∈B(o,R)
|θ1−θ2|<δ

∣∣∣∣∣
d

dθ

(
d λ0(u; θ)

dθ

1

λ0(u; θ)

)∣∣∣∣
θ=θ1

− d

dθ

(
dλ0(u; θ)

dθ

1

λ0(u; θ)

)∣∣∣∣
θ=θ2

∣∣∣∣∣
→ 0 as δ → 0 (14)

and

sup
|θ1−θ2|<δ

∣∣∣∣∣
d2

dθ2

(∫
B(o,R)

λ0(u; θ)du

)∣∣∣∣
θ=θ1

− d2

dθ2

(∫
B(o,R)

λ0(u; θ)du

)∣∣∣∣
θ=θ2

∣∣∣∣∣
→ 0 as δ → 0. (15)

Then, limn→∞ |Wn � R|Varθ0(Un(θ)) = Σ(θ) exists and does not depend on
the convex averaging sequence Wn and

√|Wn � R|(θ̂n − θ0) converges to a normal
distribution with zero mean vector and covariance matrix M−1Σ(θ0)M−1 where

M = λ

∫
B(o,R)

d

dθ

(
dλ0(u; θ)

dθ

1

λ0(u; θ)

)∣∣∣∣
θ=θ0

λ0(u; θ0)du

− λ
d2

dθ2

(∫
B(o,R)

λ0(u; θ)du

)∣∣∣∣
θ=θ0

. (16)
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Remark 3 By similar reasoning as in Remark 1, we get that if d2
λ0(u;θ)

d θ2 is bounded
and continuous in both u and θ, then (14) and (15) are fulfilled. This simplified
boundedness and continuity condition is satisfied in particular by all the processes
from Remark 1.

Remark 4 The matrix Σ(θ) can be expressed as a sum of mixed integrals of
dλ0(u;θ)

dθ
1

λ0(u;θ)
and IB(o,R)(u) with respect to the reduced factorial cumulant measures

γ
(k)
red , k = 2, 3, 4 and the Lebesgue measure. The higher-order moment measures

γ
(3)
red and γ

(4)
red are typically not available in a feasible form and thus the theoretical

expression for the variance matrix Σ(θ0) seems to be of limited practical use. For
evaluating the efficiency of the estimator θ̂n , an estimate of the variance matrix Σ(θ0)

can be determined by means of simulation. We can produce independent realizations
Xl , l ∈ {1, . . . , N } from the fitted model and approximate Σ(θ0) by the sample vari-
ance matrix of the score functions Un(θ̂n) computed for each of the replications Xl . If
the original data are large enough, we can use subsampling methods for the estimation
of Σ(θ0) (see e.g. Heagerty and Lumley 2000; Politis and Sherman 2001 for further
information).

Remark 5 An alternative proof of asymptotic normality could be based on the central
limit theorem from Bolthausen (1982) for stationary α-mixing random fields. The
required mixing assumptions would be more restrictive in this case.

Let us finish this section with a discussion of the original log Palm likelihood (4)
without any included edge correction. The estimate θ̃n is derived from the estimating
equation Ũ (θ) = 1

|W |
d log L P (θ)

dθ
= 0. It follows from the proof of Theorem 3 that

if
√|Wn| Ũn(θ0) converges in distribution to N (a(θ0), Q(θ0)), then

√|Wn|(θ̃n − θ0)

converges to N (M−1a(θ0), M−1 Q(θ0)M−1) with the same M as in Theorem 3. By
repeating the proof of Theorem 3 step by step, it moreover follows that Q(θ0) = Σ(θ0),
i.e. the asymptotic variance of

√|Wn � R| Un(θ0) and
√|Wn| Ũn(θ0) is the same and

that
√|Wn|(Ũn(θ̃n) − Eθ0Ũn(θ̃n)) converges in distribution to N (0,Σ(θ0)).

However, it follows from the discussion at the end of Sect. 4 that the bias of Ũn(θ0) is
of order O( ∂Wn|Wn | ) = O(ρ−1

n ), which is too large for convergence to 0 when multiplied

by the normalization term
√|Wn| = O(ρ

d/2
n ). Thus, for θ̃n, we cannot establish a

result of the type presented in Theorem 3.

6 Examples

This section discusses in detail the Palm likelihood estimation procedure for two
examples not considered in Tanaka et al. (2008).

6.1 Example 1: anisotropic Thomas process

The (isotropic) modified Thomas process (Thomas 1949) belongs to the class of
Neyman–Scott processes introduced at the end of Sect. 2. The daughter points are

123



400 M. Prokešová, E. B. V. Jensen

distributed according to the bivariate zero mean Gaussian density hσ 2 for indepen-

dent components with the same variance σ 2, i.e. hσ 2(u) = 1
2πσ 2 exp(−|u|2

2σ 2 ), u ∈ R2.
Thus, the Palm intensity is given by

λ0(u; θ) = μν + ν

4πσ 2 exp

(
−|u|2

4σ 2

)
.

We can obtain the anisotropic version of the modified Thomas process by using a
general bivariate zero mean Gaussian density hΣ with covariance matrix Σ for the

distribution of the daughter points, i.e. hΣ(u) = 1
2π

√
detΣ

exp(− uT Σ−1u
2 ). The Palm

intensity has still a closed form

λ0(u; θ) = μν + ν

4π
√

detΣ
exp

(
−uT Σ−1u

4

)
,

and the corresponding Palm log likelihood function can be expressed as

log L PU (θ) =
�=∑

x∈X∩(W�R)
y∈X

(y−x)∈B(o,R)

log

(
μν + ν

4π
√

detΣ
exp

(
− (y − x)T Σ−1(y − x)

4

))

−|X ∩ (W � R)|ν
(

μπ R2+
∫

B(o,R)

1

4π
√

detΣ
exp

(
−uT Σ−1u

4

)
du

)
. (17)

If we let Σ =
(

σ 2
1 σ1σ2ρ

σ1σ2ρ σ 2
2

)
, the anisotropic Thomas process can be parametrized

by θ = (ν, μ, σ1, σ2, ρ). If we choose the parameter space Θ = ∏4
i=1[ai , bi ] ×

[−a5, a5] with 0 < ai < bi < ∞, i = 1, 2, 3, 4, 0 < a5 < 1, then the continuity and
boundedness assumptions of Theorems 1 and 3 are satisfied. From a practical point
of view, the restriction of the parameter space to the compact set Θ is not a problem
since we can always choose ai and bi appropriately so that Θ covers all values of the
parameters which are reasonable for a particular application. Further, the process is
Brillinger mixing and satisfies the assumptions of Lemma 1 for any ε > 2—thus also
the assumptions (12) and (13) from Theorem 3 are satisfied.

By differentiation of log L PU (θ) with respect to ν, we get the estimate

ν̂ = N(
μπ R2 + ∫B(o,R)

1
4π

√
detΣ

exp
(
− uT Σ−1u

4

)
du
)

|X ∩ (W � R)|
,

where N is the number of pairs of points (x, y) satisfying x ∈ X ∩ (W � R), y ∈
X, 0 < |x − y| < R, and R is the chosen positive constant used as upper limit of
the distance between pairs of points in the Palm likelihood. Thus, we only need to
maximize L PU over (μ, σ1, σ2, ρ).
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The integral in (17) is not in general available in a closed form. In such a case, the
numerical approximation of the integral together with the Nelder–Mead maximization
algorithm (Nelder and Mead 1965) provides a computationally feasible procedure for
finding the estimates. If instead the composite likelihood method in Guan (2006) is
used, the parameter ν cannot be identified and it has to be estimated separately, e.g.

from the intensity λ of the point process by ν̂ = λ̂
μ

= |X∩W |
μ|W | with μ replaced by an

estimate obtained from the composite likelihood.

6.2 Example 2: log Gaussian Cox process

Let us consider the stationary log Gaussian Cox process in R2 (as described at the end
of Sect. 2) driven by a stationary Gaussian field with the mean value m ∈ R and the
exponential covariance function c(u, v) = σ 2 exp(−β|u − v|) with σ 2, β > 0. The
model is parametrized by θ = (m, σ 2, β) ∈ Θ and the corresponding Palm intensity
is given by

λ0(u; θ) = exp
(

m + σ 2/2 + σ 2 exp(−β|u|)
)

.

If we choose Θ = ∏3
i=1[ai , bi ] with −∞ < a1 < b1 < ∞, 0 < ai < bi < ∞, i =

2, 3, then all the boundedness and continuity assumptions of Theorems 1 and 3 are
satisfied as well as conditions (12) and (13) from Theorem 3. By differentiation of the
log Palm likelihood, we get the following estimate for m

m̂ = log

(
N

|X ∩ (W � R)| ∫B(o,R)
exp(σ 2e−β|u|)du

)
− σ 2

2

where N is the number of pairs of points (x, y) satisfying x ∈ X ∩ (W � R), y ∈
X, 0 < |x − y| < R. The estimate of the parameters (σ 2, β) has to be found again
by numerical maximization of log L PU using, e.g. the Nelder–Mead method.

7 Appendix

This Appendix contains a proof of Theorem 1, Theorem 2, Lemma 1 and Theorem 3.
First, we need to prove two lemmas.

For ε > 0, let Rε = {|θ − θ0| < ε} and

ωn(δ) = sup
|θ1−θ2|<δ

{|Un(θ1) − Eθ0Un(θ1) − Un(θ2) + Eθ0Un(θ2)|}

be the modulus of continuity of Un(θ) − Eθ0Un(θ).
For the proof of Theorem 1, we will use the ideas about consistency of estimating

equations introduced in Crowder (1986). However, since all the results in that paper
apply to weak convergence only, we have to prove modified versions of the relevant
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lemmas which can be used for proving the Pθ0 -a.s. convergence. Lemma 2 is a stronger
version of Crowder (1986, Theorem 3.1).

Lemma 2 Let Θ be compact. Suppose that the following conditions are satisfied for
any ε > 0

inf
Θ\Rε

|Eθ0Un(θ)| ≥ Cε for some Cε > 0 and all n > N f or some f i xed N > 0,

(18)

sup
Θ

|Un(θ) − Eθ0Un(θ)| → 0 Pθ0 − a.s., (19)

then θ̂n → θ0 Pθ0 -a.s.

Proof It suffices to show that for all ε > 0

Pθ0 (∃n0 ∀n ≥ n0 : {θ ∈ Θ : Un(θ) = 0} ⊆ Rε) = 1.

Let

Smn = {θ ∈ Θ : |Eθ0Un(θ)| ≤ m},

where m > 0. From (18) we find for m < Cε and n > N that Smn ⊆ Rε . Let us
choose such an m < Cε . It therefore suffices to show that for all ε > 0

Pθ0 (∃n0 ∀n ≥ n0 : {θ ∈ Θ : Un(θ) = 0} ⊆ Smn) = 1. (20)

For θ with Un(θ) = 0, we have

|Eθ0Un(θ)| ≤ |Eθ0Un(θ) − Un(θ)| + Un(θ) ≤ sup
Θ

|Un(θ) − Eθ0Un(θ)|.

Using (19), (20) follows. ��
Moreover for checking the assumption (19), we derive a stronger version of Crowder

(1986, Lemma 3.2).

Lemma 3 Let Θ be compact and assume that

|Un(θ) − Eθ0Un(θ)| → 0 Pθ0 − a.s. for any θ ∈ Θ, (21)

then there exists a sequence {εk}k∈N, εk −→[k→∞]0, such that

Pθ0

(
lim sup

n→∞
ωn

(
1

k

)
≥ εk

)
= 0 for each k ∈ N. (22)

Then supΘ |Un(θ) − Eθ0Un(θ)| → 0 Pθ0 -a.s.

123



Asymptotic Palm likelihood theory for stationary point processes 403

Proof We want to show that for all δ > 0

Pθ0

(
∃n0 ∀n ≥ n0 : sup

Θ

|Un(θ) − Eθ0Un(θ)| < δ
)

= 1.

The proof is by a standard covering argument (see e.g. Guyon 1995). For a fixed
δ > 0, we choose k such that δ > 2εk and cover the compact space Θ with N
balls B(θi ,

1
k ), i = 1, . . . , N . Let D = {lim supn→∞ ωn( 1

k ) < εk}. Then, by (22),
Pθ0(D) = 1. In other words, Pθ0 -a.s. there exists an n01 such that for n ≥ n01,

ωn

(
1

k

)
< εk <

δ

2
.

Furthermore for θ ∈ B(θi ,
1
k ), we have

|Un(θ) − Eθ0Un(θ)| ≤ |Un(θ) − Eθ0Un(θ) − Un(θi ) + Eθ0Un(θi )|
+ |Un(θi ) − Eθ0Un(θi )|

≤ ωn

(
1

k

)
+ max

i=1,...,N
{|Un(θi ) − Eθ0Un(θi )|}.

It follows that

sup
Θ

|Un(θ) − Eθ0Un(θ)| ≤ ωn

(
1

k

)
+ max

i=1,...,N
{|Un(θi ) − Eθ0Un(θi )|}.

Using (21), Pθ0 -a.s. there exists an n02 such that for n ≥ n02

max
i=1,...,N

{|Un(θi ) − Eθ0Un(θi )|} <
δ

2
.

The result of the lemma now follows by choosing n0 = max{n01, n02}. ��
Proof (Proof of Theorem 1) It suffices to show that the conditions of Lemma 2 are
satisfied. First notice that

Eθ0Un(θ) = λ

(∫
B(o,R)

dλ0(u; θ)

dθ

1

λ0(u; θ)
λ0(u; θ0)du − d

∫
B(o,R)

λ0(u; θ)du

dθ

)

is bounded and continuous (even uniformly continuous on the compact set Θ) with
respect to θ from the assumptions and it does not depend on the observation win-
dow Wn . Thus from the assumptions that Θ is compact and |Eθ0Un(θ)| = 0 only for
θ0, we get that (18) holds, in fact for all n.

To show (19), we will use Lemma 3. From the ergodicity of the point process X
and the form of Un(θ) (being just a sum over pairs of points closer than R of some
continuous, bounded function over the convex averaging sequence of {Wn}), it follows
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that Un(θ) → Eθ0Un(θ) almost surely for any fixed θ (see e.g. Daley and Vere-Jones
2003, pp. 335–338). Thus, (21) holds true.

For (22), we observe that for any ε > 0 there exists δ > 0 such that

sup
u∈B(o,R)
|θ1−θ2|<δ

∣∣∣∣dλ0(u; θ1)

dθ

1

λ0(u; θ1)
− dλ0(u; θ2)

dθ

1

λ0(u; θ2)

∣∣∣∣ < ε

6λ2 K (R; θ0)
, (23)

where K (R; θ0) = 1
λ

∫
B(o,R)

λ0(u; θ0)du is the K -function of X , and

sup
|θ1−θ2|<δ

∣∣∣∣∣
d
∫

B(o,R)
λ0(u; θ1)du

dθ
− d
∫

B(o,R)
λ0(u; θ2)du

dθ

∣∣∣∣∣ <
ε

6λ
, (24)

due to the continuity assumptions on dλ0(u;θ)
dθ

1
λ0(u;θ)

and
d(
∫

B(o,R) λ0(u;θ)du)

dθ
. It follows

that we can construct a sequence {εk} such that (23) and (24) hold for every k ∈ N
when we take δ = 1

k and ε = εk . Moreover since Eθ0Un(θ) is uniformly continuous
on Θ, we can modify the sequence {εk} in such a way that

sup
|θ1−θ2|< 1

k

∣∣Eθ0Un(θ1) − Eθ0Un(θ2)
∣∣ < εk

3
, (25)

holds true for all k (and any n).
Let

An = 1

|Wn � R|
�=∑

x∈X∩(Wn�R)
y∈X,(y−x)∈B(o,R)

1.

Then, for every k and n holds

sup
|θ1−θ2|< 1

k

∣∣Un(θ1) − Eθ0Un(θ1) − Un(θ2) + Eθ0Un(θ2)
∣∣

<
εk

6λ2 K (R; θ0)
An + εk

6λ

|X ∩ (Wn � R)|
|Wn � R|

+ sup
|θ1−θ2|< 1

k

∣∣Eθ0Un(θ1) − Eθ0Un(θ2)
∣∣.

Thus, for any k, we have

Pθ0 lim sup
n→∞

(
ωn(

1

k
) ≥ εk

)

≤ Pθ0

(
lim sup

n→∞
An > 2λ2 K (R, θ0)

)
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+Pθ0

(
lim sup

n→∞
|X ∩ (Wn � R)|

|Wn � R| > 2λ

)

+Pθ0

⎛
⎝lim sup

n→∞
sup

|θ1−θ2|< 1
k

|Eθ0Un(θ1) − Eθ0Un(θ2)| >
εk

3

⎞
⎠ = 0.

The first two terms are equal to 0 because |X∩(W�R)|
|W�R| converges to λ and An converges

to λ2 K (R; θ0) almost surely from the ergodicity of the process X . The third term is
equal to 0 from (25). Thus, (22) holds true and from Lemma 3 we obtain (19), which
completes the proof. ��

Proof (Proof of Theorem 2) The proof is analogous to the proof of Theorem 1. We
need to show that the conditions (18) and (19) are fulfilled for Ũn(θ) instead of Un(θ).

First, observe that

∣∣Eθ0Un(θ) − Eθ0Ũn(θ)
∣∣

≤ λ

∫
B(o,R)

∣∣∣∣γWn (u)

|Wn| − 1

∣∣∣∣
∣∣∣∣dλ0(u; θ)

dθ

1

λ0(u; θ)

∣∣∣∣ λ0(u; θ0)du

≤ λK (R; θ0) max
u∈B(o,R),θ∈Θ

∣∣∣∣dλ0(u; θ)

dθ

1

λ0(u; θ)

∣∣∣∣ sup
z∈B(o,R)

∣∣∣∣γWn (z)

|Wn| − 1

∣∣∣∣
< Cε/2, (26)

for all n larger than some N > 0 from the continuity assumptions and from (10),
where Cε is the constant from (18) in proof of Theorem 1. Now combining (18) in the
proof of Theorem 1 with (26), we get that (18) holds also for Ũn(θ) for C̃ε = Cε/2.

The validity of (19) follows in exactly the same way as the validity of (19) in the
proof in Theorem 1. ��

Proof (Proof of Lemma 1) Let us consider two sets A and B with d(A, B) ≥ k and
|A|, |B| ≤ p. Let us rewrite the cluster process X as X =⋃c∈C Xc, where Xc is the
cluster centered around a mother point located at c and C is the stationary Poisson
process of mothers.

We denote X1 =⋃c∈A⊕ k
2

Xc and X2 = X\X1. Then, X1 and X2 are independent
processes and X = X1 ∪ X2. Let G1, G2 be measurable subsets of the locally finite
subsets of Rd and C1 = {X ∩ A ∈ G1}, C2 = {X ∩ B ∈ G2} be arbitrary fixed events
from F X (A),F X (B), respectively. Moreover, we let D1 = {X1 ∩ B = ∅}, D2 =
{X2 ∩ A = ∅} and D = D1 ∩ D2.

Then, P(C1 ∩C2) = P(C1 ∩C2 ∩ D)+ P(C1 ∩C2 ∩ DC ) and P(C1 ∩C2 ∩ D) =
P(X1 ∩ A ∈ G1, X1 ∩ B = ∅)P(X2 ∩ B ∈ G2, X2 ∩ A = ∅). Similarly,

P(C1)P(C2) = P(X1 ∩ A ∈ G1, X1 ∩ B = ∅)P(X2 ∩ B ∈ G2, X2 ∩ A = ∅)P(D)

+P(C1 ∩ D)P(C2 ∩ DC ) + P(C1 ∩ DC )P(C2 ∩ D)

+P(C1 ∩ DC )P(C2 ∩ DC ).
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Thus,

|P(C1 ∩ C2) − P(C1)P(C2)| ≤ 4P(DC ) ≤ 4P(DC
1 ) + 4P(DC

2 ),

and

P(DC
1 ) ≤ E |X1 ∩ B| = μν

∫
A⊕ k

2

∫
B

k(c, u)dudc ≤ μν|B|
∫

Rd\B(o, k
2 )

h(v)dv,

since the distance of c ∈ A ⊕ k
2 and x ∈ B is always larger or equal to k

2 . Similarly,

P(DC
2 ) ≤ μν|A|

∫
Rd\B(o, k

2 )

h(v)dv.

Thus,

α(p; k)

max(p, 1)
≤ μν

(
p

p
+ p

p

)∫
Rd\B(o, k

2 )

h(v)dv = O
(∫ ∞

k
2

vd−1−d−εdv

)
= O(k−ε),

where we at the second equality changed into polar coordinates. This concludes the
proof. ��

Proof (Proof of Theorem 3) To show the existence of

lim
n→∞ |Wn � R|Varθ0Un(θ),

let us write in detail that

|Wn � R|Varθ0Un(θ)

= 1

|Wn � R|Varθ0

⎛
⎝

�=∑
x,y∈X

IWn�R(x)IB(o,R)(x − y)
dλ0(y − x; θ)

dθ

1

λ0(y − x; θ)

⎞
⎠

− (2
∫

B(o,R)
dλ0(u;θ)

dθ
du)T

|Wn � R|

×Covθ0

⎛
⎝

�=∑
x,y∈X

IWn�R(x)IB(o,R)(x−y)
dλ0(y−x; θ)

dθ

1

λ0(y−x; θ)
,
∑
z∈X

IWn�R(z)

⎞
⎠

+ Varθ0(X ∩ |Wn � R|)
|Wn � R|

(∫
B(o,R)

dλ0(u; θ)

dθ
du

)T (∫
B(o,R)

dλ0(u; θ)

dθ
du

)
.

The last term converges to

λ(1 + γ
(2)
red (Rd))

(∫
B(o,R)

dλ0(u; θ)

dθ
du

)T (∫
B(o,R)

dλ0(u; θ)

dθ
du

)
.
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The variance and covariance in the first and second term can be expressed as integrals
with respect to the factorial moment measures. Using the relations between the moment
and cumulant measures and disintegration of γ (k) for stationary processes, the terms
can be further reexpressed as a combination of mixed integrals with respect to the
reduced factorial cumulant measures up to the fourth order. Examining them one
by one, it can be shown that under the assumptions of boundedness and continuity
of dλ0(x;θ)

dθ
1

λ0(x;θ)
and the finiteness of the total variation of γ

(k)
red , k = 2, 3, 4, the

normalization by 1/|Wn � R| is the correct one to make them all converge.
To prove the asymptotic normality of the MPL estimator, denote by U ′

n(θ) the
derivative dUn(θ)

dθ
. The mean value theorem yields

Un(θ̂n) = Un(θ0) + U ′
n(θ∗

n )(θ̂n − θ0) = 0,

for some θ∗
n = θ0 + Q(θ̂n − θ0), where Q is a diagonal matrix with diagonal elements

between 0 and 1. Thus for proving the asymptotic normality of θ̂n, it is enough to
prove by Slutsky’s lemma that:

U ′
n(θ∗

n ) → M in probability, (27)√|Wn � R| Un(θ0) converges in distribution to N (0,Σ(θ0)). (28)

To show (27), we observe that

|U ′
n(θ∗

n ) − M | ≤ |U ′
n(θ

∗
n ) − U ′

n(θ0)| + |U ′
n(θ0) − M |.

Now, |U ′
n(θ0) − M | converges to 0 almost surely from the ergodicity of X since

M = Eθ0U ′
n(θ0).

To show that |U ′
n(θ

∗
n ) − U ′

n(θ0)| converges to 0 in probability, let us denote by
m f (δ) the supremum from the formula (14) taken over |θ1 − θ2| < δ and by mh(δ)

the supremum from the formula (15) taken again over |θ1 − θ2| < δ. Since both the
m f (δ) and mh(δ) converge to 0 as δ → 0, we can find for a given ε > 0 a � > 0 so
that

m f (δ) <
ε

4

1

λ2 K (R; θ0)
and mh(δ) <

ε

4

1

λ

holds for all δ < �. Then similarly as at the end of the proof of Theorem 1, we have
that

sup
|θ1−θ0|<�

|U ′
n(θ1) − U ′

n(θ0)| <
ε

4

1

λ2 K (R; θ0)
An + ε

4

1

λ

|X ∩ (Wn � R)|
|Wn � R| ,

and, thus from the ergodicity of X for a given η > 0, we can find an N1 large enough
so that

Pθ0

(|U ′
n(θ1) − U ′

n(θ0)| > ε
)

<
η

2
, (29)
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for all n > N1 and θ1 closer than � to θ0.
Now, we have to remember that since θ̂n converges to θ0 almost surely and thus

also in probability from Theorem 1, so does θ∗
n . Thus for a given η > 0, we can find

an N2 such that

Pθ0(|θ∗
n − θ0| > �) <

η

2
for all n > N2,

which together with (29) gives that for a given ε > 0 and η > 0

Pθ0

(|U ′
n(θ∗

n ) − U ′
n(θ0)| > ε

)
< η for all n > max(N1, N2).

Thus |U ′
n(θ

∗
n ) − U ′

n(θ0)| converges in probability to 0, which completes the proof
of (27).

To prove (28), we will use a blocking method similar to the one used in Guan et al.
(2007).

Let α and η be positive constants such that 2d/(d + ε) < η < α < 1, and let
ρn = ρ(Wn), ln = ρα

n and mn = ρα
n − ρ

η
n .

For a fixed n, let us cover Rd by the union of disjoint d-dimensional cubes {K j
n } of

sidelength ln . Let C j
n ⊂ K j

n be the closed cube with the same center as K j
n , but with

sidelength mn . In the sequel, we will consider the collection {C j
n , j ∈ Jn} of all cubes

contained in Wn . Note that the distance between any two distinct cubes C j
n , C j ′

n is at
least ρ

η
n , which goes to infinity as n increases. Thus by the strong mixing, X ∩C j

n and

X ∩ C j ′
n become asymptotically independent and furthermore the volume (and thus

the observed information available in these sets) of Wn and
⋃

j∈Jn
C j

n are of the same
order. This is the main idea of the blocking method. For the formal development of
the argument, we need some more notation.

Let Un(θ0)i denote the i-th component of the score function Un(θ0) and let

Sn = √|Wn � R| Un(θ0)i ,

s j
n =
√

|C j
n � R| U (θ0; C j

n )i ,

sn =
⎛
⎝∑

j∈Jn

s j
n

⎞
⎠/√kn,

s′
n =
⎛
⎝∑

j∈Jn

s′ j
n

⎞
⎠/√kn

where U (θ0; C j
n )i is the i-th component of the score function Un(θ0) with Wn replaced

by C j
n , kn is the number of elements in Jn and {s′ j

n , j ∈ Jn} is a collection of inde-
pendent identically distributed random variables with the same distribution as s j

n .
To prove that

√|Wn � R| Un(θ0)i converges in distribution to N (0, σi (θ0)), where
σi (θ0) = (Σ(θ0))i,i , it is enough to show the following three facts:
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(Sn − sn) → 0 in probability, (30)

(φn(t) − φ′
n(t)) → 0 for all t ∈ R, (31)

s′
n → N (0, σi (θ0)) in distribution, (32)

where φn denotes the characteristic function of sn and φ′
n of s′

n , respectively.
Since Eθ0 Sn = Eθ0 sn = 0, it is enough to show that Varθ0(Sn − sn) → 0 to prove

(30). Obviously

|Wn � R| ≥ kn|C j
n � R|,

and Wn � R ⊆ Wn ⊆ (∂Wn ⊕ √
dln) ∪ (∪ j∈Jn K j

n ), thus

|Wn � R| ≤ |∂Wn ⊕ (
√

d ln)| + kn|K j
n |.

Since |∂Wn ⊕ (
√

d ln))| = O((ρn)(d−1)+α) and kn ≤ |Wn ⊕ (
√

d ln))|/ ld
n =

O(ρ
d(1−α)
n ), we have

lim
n→∞

|∂Wn ⊕ (
√

d ln))|
kn|C j

n � R|
≤ lim

n→∞
O(ρd−1+α

n )

O(ρ
d(1−α)
n md

n)
= lim

n→∞ O(ρα−1
n ) = 0,

and

lim
n→∞

kn|K j
n |

kn|C j
n � R|

= lim
n→∞

ld
n

md
n

= 1.

Thus,

lim
n→∞

|Wn � R|
kn|C j

n � R|
= 1. (33)

Thus, in order to show that Varθ0(Sn − sn) → 0, it is enough to show that

Varθ0

⎛
⎜⎜⎜⎝

�=∑
x∈X∩(Wn�R)

y∈X,(y−x)∈B(o,R)

(
dλ0(y−x;θ)

dθ
1

λ0(y−x;θ)

∣∣∣
θ=θ0

)
i√|Wn � R|

−
kn∑

j=1

�=∑
x∈X∩(C j

n �R)
y∈X,(y−x)∈B(o,R)

(
dλ0(y−x;θ)

dθ
1

λ0(y−x;θ)

∣∣∣
θ=θ0

)
i√|Wn � R|

⎞
⎟⎟⎟⎠→ 0, (34)
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and

Varθ0

⎛
⎝ |X ∩ (Wn � R)| −∑kn

j=1 |X ∩ (C j
n � R)|√|Wn � R|

(
d
∫

B(o,R)
λ0(r; θ)dr

dθ

∣∣∣∣∣
θ=θ0

)

i

⎞
⎠→ 0.

(35)

Let us denote by Vn the set (Wn �R)\(⋃kn
j=1(C

j
n �R)). Then from the boundedness

assumptions of Theorem 1, the variance from (35) is bounded from above by

const
λ|Vn|

|Wn � R| (1 + γ
(2)
red (Vn)) ≤ const′ λ|Vn|

|Wn � R| ,

when γ
(2)
red has finite total variation. Similarly, but with a substantialy larger amount

of algebra, it is possible to derive an upper bound for the variance from (34) of the
same form const λ|An |

|Wn�R| where the constant is a combination of the total variations of

γ
(2)
red , γ

(3)
red and γ

(4)
red .

The proof of (30) is complete by observing that

|Vn|
|Wn � R| = |Wn � R| − kn|C j

n � R|
|Wn � R| → 0, as n → ∞,

according to (33).
To show (31), we will use the mixing assumptions. Let us define

Vj = exp

(
ιt

s j
n√
kn

)
,

where ι denotes the imaginary unit. Then,

φn(t) = E

⎛
⎝∏

j∈Jn

Vj

⎞
⎠ , φ′

n(t) =
∏
j∈Jn

EVj ,

and

|φn(t) − φ′
n(t)| ≤

kn−1∑
j=1

∣∣∣∣E
( j+1∏

s=1

Vs

)
− E

( j∏
s=1

Vs

)
EVj+1

∣∣∣∣. (36)

If we denote Z j = ∏ j
s=1 Vs and Y j = Vj , then obviously Z j ∈ F X (∪ j

s=1Cs
n), Y j ∈

F X (C j+1
n ), |∪ j

s=1 Cs
n| = j (mn)

d , |C j+1
n | = (mn)

d . Recall that d(∪ j
s=1Cs

n, C j+1
n ) ≥

(ρn)η. Since both random variables Z j and Y j are bounded in absolute value by 1,
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we obtain the following bound on their covariance by means of the strong mixing
coefficient (see e.g. Lemma 1.2.1 in Zhengyan and Chuanrong 1996)

Cov(Z j , Y j ) ≤ 4α( j (mn)d , (ρn)η) ≤ O( j (ρα
n − ρη

n )d(ρn)−ηε) = O( j (ρn)αd−ηε).

Finally from the obvious observation kn ≤ |Wn|/(ρn)αd = O((ρn)d−αd) and from
(36), we find

|φn(t) − φ′
n(t)| ≤ knO(kn(ρn)αd−ηε) ≤ O((ρn)2d−αd−ηε),

which under the assumptions we made about α and η goes to 0 as ρn → ∞ and (31)
is proved.

(32) is just an application of the Lyapunov central limit theorem.
Finally, since the convergence of

√|Wn � R| c · Un(θ0) → N (0, c Σ(θ0)cT ) in
distribution for any c ∈ Rq follows the same type of derivations as above, the proof of
the asymptotic normality of the vector

√|Wn � R| Un(θ0) follows directly from the
Cramér–Wold device. ��
Acknowledgments This work was supported by projects GAČR 201/08/P100 and 201/10/0472 from the
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