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Abstract We derive the asymptotic distributions of degenerate U - and V -statistics
of stationary and ergodic random variables. Statistics of these types naturally appear as
approximations of test statistics. Since the limit variables are of complicated structure,
typically depending on unknown parameters, quantiles can hardly be obtained directly.
Therefore, we prove a general result on the consistency of model-based bootstrap
methods for U - and V -statistics under easily verifiable conditions. Three applications
to hypothesis testing are presented. Finally, the finite sample behavior of the bootstrap-
based tests is illustrated by a simulation study.

Keywords Bootstrap · Ergodicity · U -statistic · V -statistic · Cramér-von Mises-type
test

1 Introduction

Many important test statistics can be rewritten as or approximated by degenerate U - or
V -statistics. Well-known examples are the Cramér-von Mises statistic, the Anderson–
Darling statistic or the χ2 statistic. In this paper we derive the limit distributions of
U - and V -statistics based on random variables from a strictly stationary and ergodic
process. While the asymptotics of these statistics have been already derived in the case
of mixing random variables, there is no such result under the weaker assumption of
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350 A. Leucht, M. H. Neumann

ergodicity. The latter condition is partly motivated by processes of interest in statistics
which are known to be ergodic but do not satisfy any of the usual mixing conditions. As
an example, an L2-test for the intensity function of a Poisson count model is discussed
in Sect. 5.3 below. According to Neumann (2011), the underlying process is ergodic
but not mixing in general. As in the majority of papers in the literature, we employ a
spectral decomposition of the kernel to obtain an additive structure such that we can use
a central limit theorem to proceed to the limit. Most of the existing results have been
derived under prerequisites that can hardly be checked in many applications; cf. Sect. 2
for details. Here, we avoid any of these high-level assumptions. This is achieved by
a restriction to positive semidefinite kernels and by a condition slightly stronger than
the usual degeneracy property. It can be seen from the examples presented in Sect. 5
that these conditions are often fulfilled in statistical applications. When composite
hypotheses have to be tested, then an estimator of the parameter enters the statistic.
It turns out that the effect of estimating the unknown parameter is asymptotically not
negligible. We also derive the limit distribution in this case.

Although the limit variables have a simple structure as weighted sums of inde-
pendent χ2 variates, we cannot use these results to determine asymptotically correct
critical values for tests of hypotheses. This is because the weights in the limiting vari-
ables are in most cases only implicitly given as eigenvalues of some integral equation
which in turn depends on the distribution of the underlying random variables in a
complicated way. Therefore, problems arise as soon as critical values for test statis-
tics of U - and V -type have to be determined. The bootstrap offers a convenient way
to circumvent these problems, see Arcones and Giné (1992), Dehling and Mikosch
(1994) or Leucht and Neumann (2009) for the i.i.d. case. To the best of our knowledge,
with the exception of Leucht (2012), bootstrap validity has not been studied when the
observations are dependent. While Leucht made non-standard assumptions on the
dependence structure of the underlying process, we assume ergodicity here and prove
consistency of general bootstrap methods. Moreover, we use techniques of proof that
are completely different from those employed by Leucht (2012) which results from
the fact that we do not have covariance inequalities at hand under our weaker assump-
tions regarding the dependence structure of the underlying process. Furthermore, our
Lemma 2 is of interest on its own. There we extend well-known results on the conver-
gence of Hilbert–Schmidt operators and the associated eigenvalues.

The paper is organized as follows. In the subsequent Sect. 2, the limit distributions
of degenerate U - and V -statistics are established. Section 3 is dedicated to statistics
with estimated parameters. We provide a general result on the consistency of boot-
strap methods in Sect. 4 while three possible applications are presented in Sect. 5.
Afterwards, in Sect. 6, we report the results of a small simulation study. All proofs are
deferred to the concluding Sect. 7.

2 Asymptotic distributions of U- and V -statistics

Assume that we have observations X1, . . . , Xn from a stationary and ergodic process
(Xt )t∈T with values in R

d . For convenience of presentation, we assume to have a
two-sided sequence, i.e., T = Z. In this section we are concerned with the asymptotic
behavior of the U - and V -statistics
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Un = 1

n

∑

1≤s,t≤n,s �=t

h(Xs, Xt ) and Vn = 1

n

n∑

s,t=1

h(Xs, Xt ).

We make the following assumption.

(A1) (i) (Xt )t∈Z is a strictly stationary and ergodic process with values in R
d .

(ii) h : R
d × R

d → R is a symmetric, continuous and positive semidefi-
nite function, i.e., ∀ c1, . . . , cm ∈ R, x1, . . . , xm ∈ R

d and m ∈ N,∑m
i, j=1 ci c j h(xi , x j ) ≥ 0.

(iii) Eh(X0, X0) < ∞.
(iv) E(h(x, Xt ) | X1, . . . , Xt−1) = 0 a.s. for all x ∈ supp(P X0).

Remark 1 (i) Concerning the dependence structure we do not assume anything
beyond ergodicity of the underlying process. It is well known that strong mixing
implies ergodicity; see e.g. Remark 2.6 on page 50 in combination with Proposi-
tion 2.8 on page 51 in Bradley (2007). On the other hand, there exist interesting
processes which are ergodic but not mixing. Andrews (1984) has shown that a
stationary AR(1) process (Xt )t∈Z obeying Xt = θ Xt−1 + εt with i.i.d. Bernoulli
distributed innovations is not strongly mixing. However, ergodicity is preserved
under taking functions of an ergodic process. If (εt )t∈Z is a strictly stationary
and ergodic process, Yt = g((. . . , εt−1, εt ), (εt+1, εt+2, . . .)) for some Borel-
measurable function g, then (Yt )t∈Z is also ergodic; see Proposition 2.10 on page
54 in Bradley (2007). Since the above autoregressive process can be represented
as a linear process in the εt ’s, it follows that it is also ergodic. Another example
of an ergodic and non-mixing process is considered in Sect. 5.3 below.

(ii) For certain classes of processes, it can be much easier to prove ergodicity
rather than mixing. While a verification of mixing properties often requires
advanced coupling techniques, the above example shows that one can some-
times get ergodicity almost for free. It is known that any sequence (εt )t∈Z of
i.i.d. random variables is ergodic. Hence, it is immediately clear that (Yt )t∈Z with
Yt = g((. . . , εt−1, εt ), (εt+1, εt+2, . . .)) is also ergodic.

Remark 2 (i) Within the proofs of the subsequent results, we require Eh2(X0, X̃0) <

∞, where X̃0 denotes an independent copy of X0. Note that it follows from positive
semidefiniteness of h that

h(x, x)h(y, y) − h2(x, y) = det

((
h(x, x) h(x, y)

h(x, y) h(y, y)

))
≥ 0.

Therefore, we obtain under (A1) that Eh2(X0, X̃0) ≤ (Eh(X0, X0))
2 < ∞.

(ii) Condition (A1)(iv) implies degeneracy of the kernel, i.e., Eh(x, X0) = 0 ∀ x ∈
supp(P X0). We show in Sect. 5 that typical test statistics in time series analysis can
be approximated by V -statistics with a kernel satisfying our condition (A1)(iv).
Note, however, that this condition is not fulfilled in general when the classical
Cramér-von Mises statistic is applied to dependent data.

There are two approaches in the literature to derive the limit distributions of Un

and Vn . If the Xt , t ∈ Z, are i.i.d. real-valued random variables, one can express
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Vn in terms of the empirical process, that is, Vn = ∫∫
h(x, y) Gn(dx) Gn(dy), where

Gn(x) = √
n(Fn(x) − F(x)), Fn(x) = n−1∑n

t=1 1(Xt ≤ x) and F(x) = P(Xt ≤
x). Then one can employ empirical process technology to derive the limit distribution
that is in this case described as a multiple stochastic integral of the kernel under
consideration, with respect to increments of a centered Gaussian process; see e.g.
Babbel (1989) and Borisov and Bystrov (2006). Similar techniques have been invoked
by Dehling and Taqqu (1991) to obtain the asymptotics of U -statistics under long-
range dependence. We do not pursue this approach here since it can get quite difficult
to prove the required tightness property of the empirical process if nothing beyond
ergodicity is assumed; see Remark 1 in Fokianos and Neumann (2012).

The other approach consists of first approximating the U - and V -statistics by
weighted sums of squares of partial sums and then applying a central limit theo-
rem (CLT) to these sums. The classical method is based on the spectral theorem for
self-adjoint Hilbert–Schmidt operators; see Dunford and Schwartz (1963, p. 1087,
Exercise 56). If Eh2(X0, X̃0) < ∞, we can represent the kernel h as

h(x, y) =
∑

k

λk �k(x) �k(y). (1)

Here, (λk)k is a possibly finite enumeration of the nonzero eigenvalues of the equation

E[h(x, X0)�(X0)] = λ �(x), (2)

repeated according to their multiplicity, and (�k)k are associated orthonormal eigen-
functions, i.e., E[� j (X0)�k(X0)] = δ j,k . In the case of an infinite number of nonzero
eigenvalues, convergence of the infinite series (1) has to be understood in the L2-sense,
i.e.,

E

(
h(X0, X̃0) −

K∑

k=1

λk�k(X0)�(X̃0)

)2

−→
K→∞ 0.

This approach works perfectly well in the case of independent random variables since
it is easy to show that Un can be approximated by U (K )

n , which denotes the U -statistic
based on the underlying sample and the kernel

h(K )(x, y) =
K∑

k=1

λk�k(x)�k(y).

The latter statistic can be written as

U (K )
n =

K∑

k=1

λk

⎡

⎣
(

1√
n

n∑

t=1

�k(Xt )

)2

− 1

n

n∑

t=1

�2(Xt )

⎤

⎦
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U - and V -statistics under ergodicity 353

and the limit can be obtained by an application of a CLT and a law of large numbers
to the inner sums; see, e.g., Gregory (1977) and Serfling (1980).

This method has been adopted for mixing random variables by Eagleson (1979),
Carlstein (1988) and Borisov and Volodko (2008), as well as for associated random
variables by Dewan and Prakasa Rao (2001) and Huang and Zhang (2006). In the
case of dependent random variables, however, this approach requires some care. As
pointed out by Borisov and Volodko (2008), approximation (1) is valid for almost all
(x ′, y′)′ ∈ supp(P X0 ⊗ P X0). However, it is not guaranteed that the joint distribution
of Xt and Xt+h is absolutely continuous with respect to P X0 ⊗ P X0 , that is, (1) might
fail on a set with nonzero measure. Borisov and Volodko (2008) have shown that this
problem does not appear if an additional smoothness assumption on the kernel h is
imposed, what we, therefore, also do here. Furthermore, while a proof of the fact that

lim sup
n→∞

{
E
(

Un − U (K )
n

)2
}

−→
K→∞ 0

is very simple in the independent case, it can be much more cumbersome in the case of
dependent random variables, particularly if only ergodicity is at our disposal. Mainly
for this reason, the authors of the above-mentioned papers imposed conditions on the
eigenvalues and eigenfunctions whose validity is quite difficult or even impossible
to verify for many concrete examples in statistical hypothesis testing. To avoid these
problems, Babbel (1989) and Leucht (2012) used a wavelet expansion of the kernel
function. They obtained representations of the limit variables different from those
appearing from a spectral decomposition and which are not suitable for our purposes.
Moreover, we cannot adapt the corresponding approximations because of the lack of
the respective covariance inequalities under ergodicity.

It turns out that under assumption (A1) the spectral decomposition of the kernel
can be invoked successfully in the stationary and ergodic setting. Indeed, it follows
from a version of Mercer’s theorem given in Theorem 2 in Sun (2005) that (1) holds
for all x, y ∈ supp(P X0). Although we have now pointwise convergence in (1), we
still have to show that Un and Vn can actually be approximated by U (K )

n and V (K )
n =

n−1∑n
s,t=1 h(K )(Xs, Xt ), respectively. Deviating from the above mentioned papers,

we do not prove convergence in L2 since this would require covariance estimates
that are not available under ergodicity alone. At this point our assumption of h being
positive semidefinite, together with the degeneracy condition (A1)(iv), proves to be
of help. We will need in fact only a few monotonicity arguments and (A1)(iv) to show
that

sup
n

{
E
∣∣∣Vn − V (K )

n

∣∣∣
}

−→
K→∞ 0.

This approximation together with a CLT for sums of martingale differences allows
us to derive the limit distribution of Vn . The limit of the corresponding U -statistic

is then obtained by the ergodic theorem since Vn − Un = n−1∑n
t=1 h(Xt , Xt )

a.s.−→
Eh(X0, X0). The following theorem contains the asymptotic results on the U - and
V -statistics.
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Theorem 1 Under the assumption (A1),

Vn
d−→ Z :=

∑

k

λk Z2
k and Un

d−→ Z − Eh(X0, X0),

as n tends to infinity. Here, (Zk)k is a sequence of independent standard normal
random variables and (λk)k denotes the sequence of nonzero eigenvalues of the Eq. (2),
enumerated according to their multiplicity.

Remark 3 (i) It can be seen from Theorem 1 that the limit distributions of Vn and Un

are the same as if X1, . . . , Xn were independent and identically distributed. This
is due to assumption (A1)(iv) which implies that (�k(Xt ))t∈N is a martingale
difference sequence. In the case of i.i.d. random variables, it is well-known that
these limits can be described by multiple stochastic integrals; see e.g. Section 1.4
in Dynkin and Mandelbaum (1983). Therefore, we could alternatively represent
our limits by such integrals.

(ii) Suppose that P(h(X0, X̃0) �= 0) > 0, where X̃0 denotes an independent copy of
X0. This leads to λ1 > 0 which in turn yields that the distribution function of Z is
continuous. In conjunction with Theorem 1, Lemma 2.11 of van der Vaart (1998)
implies the stronger result that the distribution functions of Vn and Un converge
in uniform norm to those of Z and Z − Eh(X0, X0), respectively.

3 Approximation of test statistics of Cramér-von Mises type

Statistics of Cramér-von Mises type are an important tool for testing statistical hypothe-
ses. While such a statistic has exactly the form of a V -statistic in the case of a simple
null hypothesis, it can often be approximated by a V -statistic in the more relevant
case of a composite null hypothesis. In Proposition 1 below we state a quite general
approximation result for L2-type statistics with estimated parameters. We consider
kernels of the form

h(x, y, θ) =
∫

�

[h1(x, z, θ)]′h1(y, z, θ)Q(dz), (3)

for some vector-valued function h1 : R
d × � × 	 → R

m , � ⊆ R
q , 	 ⊆ R

p, and
a probability measure Q. (Throughout this paper prime denotes the transposed of a
vector.) The corresponding U - and V -statistics based on random variables X1, . . . , Xn

and an estimator θ̂n of θ0 are

Un(θ̂n) = 1

n

∑

1≤s,t≤n,s �=t

h(Xs, Xt , θ̂n) and Vn(θ̂n) = 1

n

n∑

s,t=1

h(Xs, Xt , θ̂n).

Statistics of this type were considered by de Wet and Randles (1987) in the case of i.i.d.
random variables. We present three specific applications in the context of stationary
and ergodic processes in Sect. 5 below. We make the following assumption.
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U - and V -statistics under ergodicity 355

(A2) (i) (Xt )t∈Z is a strictly stationary and ergodic process with values in R
d .

(ii) The parameter estimator admits the expansion

θ̂n − θ0 = 1

n

n∑

t=1

lt + oP (n−1/2),

where lt = L(Xt , Xt−1, . . .) for some measurable function L , Eθ0(lt |Xt−1,

Xt−2, . . .) = 0p a.s. with 0p denoting the p-dimensional vector of zeros,
and Eθ0‖lt‖2

2 < ∞.
(iii) The function h1 satisfies

∫
�

‖h1(x, z, θ0)‖2
2 Q(dz) < ∞ for all x ∈

R
d and it holds

∫
�

‖h1(x, z, θ0) − h1(x̄, z, θ0)‖2
2 Q(dz)−→x̄→x 0. More-

over, Eθ0(h1(Xt , z, θ0)|Xt , Xt−1, . . .) = 0m a.s. ∀z ∈ � and
∫
�

Eθ0

‖h1(X0, z, θ0)‖2
2 Q(dz) < ∞.

(iv) The function h1 is continuously differentiable w.r.t. θ in a neighborhood
U = {θ ∈ 	 : ‖θ − θ0‖2 < δ}, δ > 0, of θ0 for all (x ′, z′)′ ∈ supp(P X0) ×
�. Additionally Eθ0

∫
�

‖ḣ1(X0, z, θ0)‖2
F Q(dz) < ∞,

∫
�

‖ḣ1(x, z, θ0) −
ḣ1(x̄, z, θ0)‖2

2 Q(dz)−→x̄→x 0, and

Eθ0

[∫

�

sup
θ : ‖θ−θ0‖2<δ

{∥∥ḣ1(X0, z, θ) − ḣ1(X0, z, θ0)
∥∥2

F

}
Q(dz)

]
−→
δ→0

0,

where ‖A‖F := (
∑m

i=1
∑p

j=1 |ai, j |2)1/2 denotes the Frobenius norm of a
matrix A = (ai, j )i=1,...,m; j=1,...,p.

The following proposition states that U - and V -statistics with kernels involving a
parameter estimator can be approximated by statistics with appropriate fixed kernels.

Proposition 1 Suppose that (A2) is fulfilled. Then

Un(θ̂n) = Ûn + oP (1) with Ûn = 1

n

∑

1≤s,t≤n, s �=t

ĥ(X̄s, X̄t )

and

Vn(θ̂n) = V̂n + oP (1) with V̂n = 1

n

n∑

s,t=1

ĥ(X̄s, X̄t ),

where X̄t = (X ′
t , l ′t )′ and

ĥ(x, y) =
∫

�

(h1(x1, z, θ0) + Eθ0 [ḣ1(X1, z, θ0)]x2)
′

×(h1(y1, z, θ0) + Eθ0 [ḣ1(X1, z, θ0)]y2)Q(dz).
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Remark 4 Due to the latter proposition, the asymptotic distributions of Un(θ̂n) and
Vn(θ̂n) coincide with those of Ûn and V̂n . Their limits in turn can be deduced imme-
diately from Theorem 1.

4 Bootstrap consistency

To determine the critical value for a test with a prescribed size, we need knowledge of
the null distribution, or at least of its asymptotic limit, of the underlying test statistic.
As it can be seen from Theorem 1 and Proposition 1, for tests of Cramér-von Mises
type, this limit distribution depends on the eigenvalues of Eq. (2). de Wet and Venter
(1973) studied the eigenvalues and eigenfunctions of

Sn =
∫ ∞

−∞
(Fn(z) − F0(z))

2w(F0(z))dF0(z),

where Fn denotes the empirical distribution function of an i.i.d. sample of size n, F0
the distribution function under the null, and w some weight function. de Wet (1987)
quotes these eigenvalues for some specific choices of the weight function. In the well-
known special cases of the usual Cramér-von Mises statistic with w(u) ≡ 1 and the
Anderson–Darling statistic with w(u) = 1/(u(1 − u)), these eigenvalues are given
by λk = 1/(πk)2 and λk = 1/(k(k + 1)), k ∈ N, respectively. The rapid decay of
these eigenvalues indicates that approximations by finite sums as used within the proof
of Theorem 1 should be reasonably exact. de Wet (1987) mentions also two cases of
less popular weight functions w that lead to eigenvalues λk = 1/k as well as the
chi-square statistic with k cells that leads to k − 1 nonzero eigenvalues each equal to
1. All of these statistics are suitable for testing a completely specified null hypothesis.
We think, however, that the case of testing composite null hypotheses is much more
relevant in applications and we are not aware of any particular problem in this context
with a limiting V -statistic where the corresponding eigenvalues are known. Moreover,
although the kernels of the statistics mentioned above are degenerate in the usual sense
under the corresponding null hypotheses, they do not fulfill our stronger degeneracy
condition (A1)(iv), that is actually essential for deriving the limit distribution without
any weak dependence assumption beyond ergodicity. We strongly believe that an
explicit computation of the eigenvalues λk in the cases studied in Sect. 5 is very difficult
or even impossible. Moreover, they depend on an unknown parameter θ0 in the setting
of Sect. 3. Thus, quantiles of the (asymptotic) distributions of degenerate U - and V -
statistics can hardly be determined directly.

The bootstrap offers a suitable tool to circumvent these difficulties. Denote
by (X∗

t )t∈Z a bootstrap process which is constructed on the basis of the sample
X1, . . . , Xn and introduced to mimic the unknown stochastic properties of (Xt )t∈Z.
As usual, starred symbols such as P∗ and E∗ refer to the distribution associated with
X∗

t , conditioned on X1, . . . , Xn . In order to verify that quantiles of U - and V -statistics
can be approximated by quantiles of the corresponding bootstrap statistics, we have to
show that the respective distribution functions converge uniformly. This in turn follows
from from Remark 3(ii) if we can show distributional convergence of the bootstrap
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U - and V -statistics under ergodicity 357

versions of the U - and V -statistics to the limiting variables given in Theorem 1. To
this end, we assume:

(B1) (i) The bootstrap process (X∗
t )t∈Z is strictly stationary with probability tending

to one and takes its values in R
d . Additionally,

P∗
(

sup
ω : ‖ω‖2≤K

∣∣∣∣∣
1

n

n∑

t=1

eiω′ X∗
t − Eθ0 eiω′ X0

∣∣∣∣∣ > ε

)
P−→ 0 ∀K < ∞, ε > 0,

(4)

i.e., the empirical bootstrap measure converges weakly to P X0 in probability.
(ii) The kernels of the bootstrap statistics h∗ : R

d × R
d → R are symmetric,

positive semidefinite, and equicontinuous on compacta in probability, i.e.,
∀ K < ∞, ε > 0, x0, y0 ∈ R

d , ∃ δ > 0 such that

P

(
sup

x0,y0 : ‖x0‖2,‖y0‖2≤K
sup

x,y : ‖x−x0‖2,‖y−y0‖2≤δ

|h∗(x, y) − h∗(x0, y0)| > ε

)

−→
n→∞ 0.

(iii) h∗(x, y)
P−→ h(x, y) ∀x, y ∈ supp(P X0).

(iv) E∗h∗(X∗
0, X∗

0)
P−→ Eh(X0, X0).

(v) E∗(h∗(x, X∗
t ) | X∗

t−1, . . . , X∗
1) = 0 a.s. ∀ x ∈ supp(P∗X∗

0 ).

Remark 5 A verification of (4) might seem to be difficult at first glance. However, sup-
pose that, based on the underlying sample Xn = (X ′

1, . . . , X ′
n)′, we can construct on

an appropriate probability space (,A, Q) versions (X̃ (n)
t )t=1,...,n and (X̃∗(n)

t )t=1,...,n

of the processes (Xt )t=1,...,n and (X∗
t )t=1,...,n such that Q(X̃t )t = P(Xt )t , Q(X̃∗

t )t =
P∗(X∗

t )t and

Q

(
1

n

n∑

t=1

min
{‖X̃∗

t − X̃t‖2, 1
}

> ε

)
P−→ 0 ∀ ε > 0 as n → ∞. (5)

Then (4) is an immediate consequence. In Sect. 5.3, we show for the example of Poisson
count processes how such a coupling can actually be constructed. We think that this
can also be done for other model-based bootstrap schemes when the processes satisfy

a certain contractive condition. Furthermore, it might be expected that X∗
t

d−→ Xt

in probability is some sort of minimal requirement for bootstrap consistency. It can
be seen that this also follows from (5). The following lemma clarifies the connection
between (4), (5), and the latter convergence result.

Lemma 1 Suppose that (Xt )t∈Z is a strictly stationary and ergodic process on a
probability space (,A, P).
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358 A. Leucht, M. H. Neumann

(i) If (X (n)
t )t=1,...,n, n ∈ N, are processes on (,A, P) with

1

n

n∑

t=1

min
{
‖X (n)

t − Xt‖2, 1
}

P−→ 0,

then

P

(
sup

ω : ‖ω‖2≤K

∣∣∣∣∣
1

n

n∑

t=1

eiω′ X (n)
t − Eeiω′ X0

∣∣∣∣∣ > ε

)
−→
n→∞ 0 ∀K < ∞, ε > 0. (6)

(ii) If X (n)
1 , . . . , X (n)

n are identically distributed, then relation (6) implies X (n)
0

d−→
X0.

We introduce the bootstrap counterparts of the statistics Un and Vn :

U∗
n = 1

n

n∑

1≤s,t≤n, s �=t

h∗(X∗
s , X∗

t ) and V ∗
n = 1

n

n∑

s,t=1

h∗(X∗
s , X∗

t ).

To derive the limit distributions of U∗
n and V ∗

n we will again use a spectral decom-
position of the corresponding kernel function h∗. We denote by (λ∗

k)k the sequence
of nonzero eigenvalues of the equation E∗[h∗(x, X∗

0)�(X∗
0)] = λ �(x), arranged

in non-increasing order and according to multiplicity. Moreover, let the eigenvalues
(λk)k of the equation E[h(x, X0)�(X0)] = λ�(x) also be arranged in non-increasing
order and according to multiplicity. It is well-known from functional analysis that
the eigenvalues of two Hilbert–Schmidt operators converge if the corresponding ker-
nels converge in L2(,A, τ ). However, according to our knowledge, there is no such
result if additionally the underlying Hilbert spaces vary, i.e., if we have L2(,A, τ (n))

instead of L2(,A, τ ). The following result turns out to be crucial for proving boot-
strap consistency.

Lemma 2 Suppose that (A1) and (B1) are fulfilled. Then

sup
k

|λ∗
k − λk | P−→ 0.

Distributional convergence of the bootstrap statistics towards the limits of Vn and Un

implies bootstrap consistency if the limit distribution function is continuous. The latter
property is ensured if P(h(X0, X̃0) �= 0) > 0. The following theorem summarizes
the results concerning bootstrap consistency.

Theorem 2 Under the assumptions (A1) and (B1),

V ∗
n

d−→ Z and U∗
n

d−→ Z − Eh(X0, X0) in probability.
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If additionally P(h(X0, X̃0) �= 0) > 0, then

sup
x∈R

|P∗(U∗
n ≤ x) − P(Un ≤ x)| P−→ 0 and

sup
x∈R

|P∗(V ∗
n ≤ x) − P(Vn ≤ x)| P−→ 0.

As a last result in this section, we derive consistency for the bootstrap counterparts
of the statistics with estimated parameters that have been investigated in Proposition 1

and Remark 4. We write R∗
n = oP∗(an) if P∗(‖R∗

n‖2/|an| > ε)
P−→ 0, ∀ ε > 0, and

assume:

(B2) (i) The parameter estimator θ̂∗
n ∈ 	 ⊆ R

p admits the expansion

θ̂∗
n − θ̂n = 1

n

n∑

t=1

l∗t + oP∗(n−1/2),

where l∗t = L θ̂n
(X∗

t , X∗
t−1, . . . ) for some measurable function L θ̂n

, E∗(l∗t |
X∗

t−1, X∗
t−2, . . . ) = 0p a.s. and E∗‖l∗t ‖2

2
P−→ E‖lt‖2

2.
(ii) (B1)(i) holds true for (X̃∗

t )t with X̃∗
t = ((X∗

t )′, (l∗t )′)′.
(iii) The function h1 satisfies supθ∈U

∫
�

‖h1(x, z, θ)‖2
2 Q(dz) < ∞ ∀ x ∈ R

d

and U = {θ ∈ 	 : ‖θ − θ0‖2 < δ}, δ > 0. It holds
∫
�

‖h1(x, z, θ) −
h1(x̄, z, θ̄ )‖2

2 Q(dz) −→ 0 as x̄ → x and θ̄ → θ ∈ U . Moreover,
E∗(h1(X∗

t , z, θ̂n) | X∗
t−1, . . . , X∗

1) = 0m, a.s.∀z ∈ � and

∫

�

E∗‖h1(X∗
1, z, θ̂n)‖2

2 Q(dz)
P−→
∫

�

Eθ0‖h1(X1, z, θ0)‖2
2 Q(dz).

(iv) The function h1 is continuously differentiable w.r.t. θ in U and for a suitably
chosen null sequence (δn)n∈N

E∗
[∫

�

sup
θ : ‖θ−θ̂n‖2<δn

{∥∥ḣ1(X∗
1, z, θ) − ḣ1(X∗

1, z, θ̂n)
∥∥2

F

}
Q(dz)

]
P−→ 0,

∫

�

E∗‖ḣ1(X∗
0, z, θ̂n)‖2

F Q(dz)
P−→
∫

�

Eθ0‖ḣ1(X0, z, θ0)‖2
F Q(dz).

The function ḣ1 satisfies supθ∈U
∫
�

‖ḣ1(x, z, θ)‖2
F Q(dz) < ∞, ∀ x ∈ R

d .
It holds

∫
�

‖ḣ1(x, z, θ) − ḣ1(x̄, z, θ̄ )‖2
F Q(dz) −→ 0 as x̄ → x and θ̄ →

θ ∈ U .

Defining the bootstrap counterparts of Un(θ̂n) and Vn(θ̂n) as

U∗
n (θ̂∗

n ) = 1

n

∑

1≤s,t≤n,s �=t

h(X∗
s , X∗

t , θ̂n) and V ∗
n (θ̂∗

n ) = 1

n

n∑

s,t=1

h(X∗
s , X∗

t , θ̂n)

we obtain the following result.
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Proposition 2 Under the assumptions (A2) and (B2),

V ∗
n (θ̂∗

n )
d−→ Ẑ :=

∑

k

λ̂k Z2
k and U∗

n (θ̂∗
n )

d−→ Ẑ − Eθ0 ĥ(X0, X0) in probability,

where ĥ is defined as in Proposition1, (Zk)k is a sequence of independent standard
normal random variables and (̂λk)k denotes the sequence of nonzero eigenvalues of the
equation Eθ0 [̂h(x, X0)�(X0)] = λ�(x), enumerated according to their multiplicity.

If additionally Pθ0 (̂h(X0, X̃0) �= 0) > 0, then

sup
x∈R

∣∣P∗ (U∗
n (θ̂∗

n ) ≤ x
)− Pθ0

(
Un(θ̂n

) ≤ x)
∣∣ P−→ 0

and

sup
x∈R

|P∗(V ∗
n (θ̂∗

n ) ≤ x) − Pθ0(Vn(θ̂n) ≤ x)| P−→ 0.

5 Applications

In this section we present three different goodness-of-fit tests with test statistics that
can be approximated by V -statistics.

5.1 A goodness-of-fit test for the conditional mean function of a time series

Let (Xt )t∈Z with Xt = (Y ′
t , I ′

t−1)
′ be a strictly stationary and ergodic process with

values in R
d ×R

m . In this part we are concerned with a test for the following problem:

H0 : E(Yt |It−1) = f (It−1, θ0) a.s. for some θ0 ∈ 	 ⊆ R
p vs.

H1 : P(E(Yt |It−1) �= f (It−1, θ)) > 0 ∀ θ ∈ 	.

There is already a great variety of specification tests regarding the conditional mean
in the literature. For a comprehensive overview of approaches in the i.i.d. as well as
in the time series case, we refer the reader to Escanciano (2007). Here, we consider
the test statistic

T̂ (1)
n =

∫

�

∥∥∥∥∥
1√
n

n∑

t=1

[
Yt − f (It−1, θ̂n)

]
w(It−1, z)

∥∥∥∥∥

2

2

Q(dz),

where w denotes a certain weight function and θ̂n is an estimator for the unknown
parameter θ0. This type of statistic has also been investigated by Escanciano (2007)
in the case of real-valued response variables Yt . However, since he invoked empirical
process theory in order to establish the asymptotic null distribution, he had to impose
a condition on the conditional distributions which is not fulfilled e.g. by Poisson
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count processes considered in Sect. 5.3 below. We avoid such a condition with our
V -statistics approach which does not require a tightness proof for the underlying
process. Fan and Li (1999) proposed a test based on a similar statistic. While their
test statistic is based on a non-parametric estimator of the conditional mean function
with vanishing bandwidth, we use the corresponding fixed-kernel estimator instead.
In comparison to our proposal, the method of Fan and Li (1999) is more suitable to
detect local alternatives with sharp peaks while it suffers from a loss of power against
so-called Pitman alternatives, see also Fan and Li (2000) for a comparative overview.
We impose the following condition.

(G1) (i) (Xt )t∈Z with Xt = (Y ′
t , I ′

t−1)
′ is a strictly stationary and ergodic process.

(ii) The sequence of parameter estimators (θ̂n)n∈N satisfies (A2)(ii) with lt =
L(Xt , θ0).

(iii) The function f is continuous and continuously differentiable w.r.t. its sec-
ond argument in a neighborhood U(θ0) of θ0 and Eθ0‖ ḟ (I0, θ0)‖2

F < ∞.
Moreover, ḟ (·, θ0) is continuous and

Eθ0

[
sup

θ : ‖θ−θ0‖2<δ

∥∥ ḟ (I0, θ) − ḟ (I0, θ0)
∥∥2

F

]
−→
δ→0

0.

(iv) Eθ0(Yt − f (It−1, θ0) | It−1, Xt−1, Xt−2, . . .) = 0 a.s.andEθ0‖Yt −
f (It−1, θ0)‖2

2 < ∞.
(v) The weight function w : R

m ×R
q → R is bounded and

∫
�

w(x, z)w(y, z)Q
(dz) is continuous in x and y.

Note that the first moment assumption of (G1)(iv) implies (A1)(iv). It is equivalent
to H0 if Eθ0(Yt−1|It−1, Xt−1, Xt−2, . . .) = Eθ0(Yt−1|It−1). The subsequent result
follows immediately from Remark 4.

Corollary 1 Under (G1),

T̂ (1)
n

d−→
∑

k

λ
(1)
k Z2

k ,

where (Zk)k is a sequence of i.i.d. standard normal random variables and (λ
(1)
k )k is

the sequence of nonzero eigenvalues of the equation Eθ0 [h(1)(x, X0)�(X0)] = λ�(x)

with x = (x ′
1, x ′

2)
′, y = (y′

1, y′
2)

′ ∈ R
d × R

m and kernel

h(1)(x, y) =
∫

�

{
(x1 − f (x2, θ0)) w(x2, z) − Eθ0 [ ḟ (I0, θ0)w(I0, z)] l(x, θ0)

}′

× {
(y1 − f (y2, θ0))w(y2, z) − Eθ0 [ ḟ (I0, θ0)w(I0, z)]l(y, θ0)

}
Q(dz).

It can be seen easily that under the alternative H1

1

n
T̂ (1)

n =
∫

�

‖E[(Y1 − f (I0, θ0)) w(I0, z)]‖2
2 Q(dz) + oP (1),
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362 A. Leucht, M. H. Neumann

if E‖Y1‖2
2 < ∞. Under additional conditions concerning the weight function, the

leading term is strictly positive; see e.g. Bierens and Ploberger (1997) or Stinchcombe
and White (1998). Thus under H1, we get

P
(

T̂ (1)
n > K

)
−→
n→∞ 1 ∀ K < ∞.

While Escanciano (2007) proposed a wild bootstrap method to determine critical
values of the test, one can alternatively employ certain model-based procedures in
view of our Proposition 2. The latter approach may perform better since the bootstrap
counterparts of the observed process converge to the original ones which does not hold
true for the wild bootstrap. For instance, the algorithm proposed by Leucht (2010) is
applicable for some special cases of the present framework. In particular, she verified

X∗
1

d−→ X1 in probability. In conjunction with a weak law of large numbers (Lemma
5.1 in Leucht 2012), this implies the validity of (B1)(i).

5.2 A goodness-of-fit test for the conditional distribution of Markovian time series

It might happen that the conditional mean functions of two models coincide whereas
their conditional distribution functions are essentially different. In what follows, we
are concerned with the question whether the conditional distribution of a time series
belongs to a certain parametric class. A review of the literature on this topic is given by
Bierens and Wang (2012). Inspired by Neumann and Paparoditis (2008), who estab-
lished a Kolmogorov–Smirnov-type test for the conditional distributions of AR(p)
and ARCH(p) processes, we consider a test of Cramér-von Mises-type for the validity
of certain Markovian time series models of order m. More precisely, based on

M :=
{

P(Xt )t | P (Xt ∈ B | σ(Xs, s < t)) = P (Xt ∈ B | σ(Xs, t − m ≤ s < t))

∀ B ∈ B, t ∈ Z

}

and

M0 :=
{

P(Xt )t | Xt = G(Xt−1, εt , θ) ⇐⇒ εt = H(Xt−1, Xt , θ) ∼ Fε i.i.d.,

θ ∈ 	 ⊆ R
p, Xt−1 := (X ′

t−1, . . . , X ′
t−m)′

}

with known measurable functions G and H , G monotonically increasing in its second
argument, the following problem is illuminated:

H0 : P(Xt )t ∈ M0 versus H1 : P(Xt )t ∈ M\M0.

123



U - and V -statistics under ergodicity 363

Here, we suggest a test statistic of L2-type based on the empirical cumulative distrib-
ution function:

T̂ (2)
n :=

∫

Rd×�

{
1√
n

n∑

t=1

[
1(Xt � z1)−Fε(H(Xt−1, z1, θ̂n))

]
w(Xt−1, z2)

}2

Q(dz),

where z = (z′
1, z′

2)
′ ∈ R

d × �, � ⊆ R
dm . θ̂n is an estimator for the unknown

parameter θ0 and Q is a probability measure on R
d × �. (x � y means that xi ≤ yi

∀i .) In order to derive the asymptotics of the test statistic under the null, we assume:

(G2) (i) (Xt )t∈Z is a strictly stationary, ergodic process in M with values in R
d .

(ii) The sequence of parameter estimators satisfies (A2)(ii) with lt = L(Xt , Xt−1,

θ0).
(iii) Fε is continuously differentiable.
(iv) H is continuous and partially continuously differentiable w.r.t. its third

component in some neighborhood U(θ0) of θ0. Additionally, Ḣ(·, ·, θ0) is
continuous,

∫
Rd×�

Eθ0‖Ḟε(H(X0, z1, θ0))Ḣ(X0, z1, θ0) w(X0, z2)‖2
F

Q(dz) < ∞ and

Eθ0

[∫

Rd×�

sup
θ : ‖θ−θ0‖2<δ

{|Ḟε(H(X0, z1, θ))Ḣ(X0, z1, θ)

− Ḟε(H(X0, z1, θ0))Ḣ(X0, z1, θ0)‖2
F |w(X0, z2)|} Q(dz)

]
−→
δ→0

0.

(v) The weight function w : R
dm × � → R is continuous and bounded. The

probability measure Q is absolutely continuous w.r.t. the Lebesgue measure.

Again by Remark 4, we obtain the limit distribution of T̂ (2)
n .

Corollary 2 Suppose that (G2) holds. Then, under H0,

T̂ (2)
n

d−→
∑

k

λ
(2)
k Z2

k ,

where (Zk)k is a sequence of i.i.d. standard normal random variables and (λ
(2)
k )k is

the sequence of nonzero eigenvalues of the equation Eθ0 [h(2)(x, X0)�(X0)] = λ�(x)

for x = (x ′
1, x ′

2)
′, y = (y′

1, y′
2)

′ ∈ R
d × R

dm and with kernel

h(2)(x, y) :=
∫

Rd×�

{[1(x1 � z1) − Fε(H(x2, z1, θ0))] w(x2, z2)

−Eθ0 [Ḟε(H(X0, z1, θ0))Ḣ(X0, z1, θ0) w(X0, z2)] l(x, θ0)}
×{[1(y1 � z1) − Fε(H(y2, z1, θ0))] w(y2, z2)

−Eθ0 [Ḟε(H(X0, z1, θ0))Ḣ(X0, z1, θ0) w(X0, z2)]l(y, θ0)}Q(dz).
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Concerning the behavior of the test statistic under the alternative hypothesis, we
have

1

n
T̂ (2)

n =
∫

Rd×�

{E[(1(Xt � z1)−Fε(H(Xt−1, z1, θ0))w(Xt−1, z2)]}2 Q(dz)+oP (1).

Thus for suitably chosen weight functions w and probability measures Q, we obtain

P(T̂ (2)
n > K ) −→

n→∞ 1 ∀K < ∞.

To approximate critical values of the test, model-based bootstrap methods can be
employed. Naturally, one would draw bootstrap innovations (ε∗

t )t=1,...,n according to
an estimator of Fε. After choosing an initial value X

∗
0, the bootstrap sample can be gen-

erated iteratively, X∗
t = G(X∗

t−1, ε
∗
t , θ̂n). Then quantiles of the empirical distribution

of

T̂ (2)∗
n =

∫

Rd×�

{
1√
n

n∑

t=1

[1(X∗
t � z1) − Fε(H(X∗

t−1, z1, θ̂
∗
n ))]w(X∗

t−1, z2)

}2

Q(dz)

are used to estimate critical values, where θ̂∗
n denotes the bootstrap parameter estimator.

Again Proposition 2 can be invoked to verify the validity of this algorithm under certain
regularity conditions on the function G and the innovation distribution function Fε.
As two concrete examples we mention AR(p) and ARCH(p) bootstrap methods and
refer the reader to Neumann and Paparoditis (2008) for details.

5.3 A goodness-of-fit test for Poisson count processes

Assume that observations Y0, . . . , Yn are available, where ((Yt , λt )
′)t∈Z is a strictly

stationary process with

Yt |Ft−1 ∼ Poisson(λt ),

Ft = σ(Yt , λt , Yt−1, λt−1, . . .). We assume that

λt = f (λt−1, Yt−1),

with a function f : [0,∞) × N0 → (0,∞), N0 = N ∪ {0}. Models of this type have
been considered before e.g. by Rydberg and Shephard (2000), Streett (2000), Davis et
al. (2003), Ferland et al. (2006), Fokianos et al. (2009), Gao et al. (2009), Fokianos and
Tjøstheim (2011), Neumann (2011), and Fokianos and Neumann (2012). According
to Theorem 2.1(i) and Theorem 3.1(iii) in Neumann (2011), the contractive condition
(G3)(i) below ensures the existence of a unique strictly stationary and ergodic solution
((Yt , λt )

′)t∈Z to the system of model equations above. However, these processes are
not mixing in general; see Remark 3 of Neumann (2011) for a counterexample.
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A first goodness-of-fit test for the problem

H0 : f ∈ { fθ | θ ∈ 	} versus H1 : f /∈ { fθ | θ ∈ 	}

with	 ⊆ R
p based on the statistic Gn = n−1/2 ∑n

t=1[(Yt −̂λt )
2−Yt ]was discussed by

Neumann (2011). Here, θ̂n was any
√

n-consistent estimator of θ , λ̂1 an arbitrary initial
value, and, for t = 2, . . . , n, λ̂t = fθ̂n

(̂λt−1, Yt−1). Fokianos and Neumann (2012)
proposed a Kolmogorov–Smirnov-type test based on the statistic supz ‖∑n

t=1((Yt −
λ̂t )/

√
λ̂t )w(z − Ît−1) ‖, where Îs = (Ys, λ̂s)

′. They investigated the asymptotics
of their test statistic employing empirical process theory and assumed the involved
weight function w to be Lipschitz continuous in order to be able to prove tightness
of the corresponding process. In particular, they failed to include the natural case of
indicator weight functions; see Remark 1 in their paper.

Below we derive the limit distribution of an L2-type statistic by means of our
results on V -statistics, where we allow for a more general class of weight functions.
We consider the following test statistic:

T̂ (3)
n =

∫

�

{
1√
n

n∑

t=1

(Yt − λ̂t )w(z − Ît−1)

}2

Q(dz),

where Q is a probability measure on � = N0 × [0,∞).
Proposition 1 and Theorem 1 cannot be used directly for deriving the limit distri-

bution of T̂ (3)
n since this statistic has not the structure required in Proposition 1. The

estimated intensities λ̂t do not form a stationary process and since we do not want to
assume that w is differentiable, we cannot simply treat the effect of estimating θ0 by θ̂n

in w(z− Ît−1) by a direct Taylor expansion. It can be shown by backward iterations that,
for given (Yt )t∈Z and θ ∈ 	, the system of equations λt = fθ (λt−1, Yt−1) (t ∈ Z) has
a unique stationary solution (λt (θ))t∈Z, where λt (θ) = gθ (Yt−1, Yt−2, . . .) for some
measurable function gθ ; see also the proof of Theorem 3.1 in Neumann (2011). As
done there, in the technical part below we will use λt (θ̂n) as an approximation for λ̂t .
Of course, we have that λt = λt (θ0).

In order to show that the test statistic behaves asymptotically as a degenerate V -
statistic and to derive its limit distribution on the basis of Theorem 1, we assume:

(G3) (i) | fθ (λ, y)− fθ (λ̄, ȳ)| ≤ κ1|λ−λ̄|+κ2|y− ȳ|, ∀ λ, λ̄ ≥ 0, y, ȳ ∈ N0, θ ∈ 	

with ‖θ − θ0‖2 ≤ δ for some δ > 0, κ1, κ2 ≥ 0 and κ := κ1 + κ2 < 1.
(ii) | fθ (λ, y) − fθ0(λ, y)| ≤ C‖θ − θ0‖2(λ + y + 1), ∀ λ ≥ 0, y ∈ N0, θ ∈ 	

with ‖θ − θ0‖2 ≤ δ for some δ > 0.
(iii) λt (θ) is continuously differentiable w.r.t.θ in some neighborhood of θ0 such

that Eθ0 λ̇
2
1(θ0) < ∞ and Eθ0 [supθ : ‖θ−θ0‖2≤δ |λ̇1(θ) − λ̇1(θ0)|2] −→ 0 as

δ → 0.
(iv) The weight function w is non-negative, bounded, and satisfies

sup
y∈N0

∫

�

|w(z − (y, λ1)
′) − w(z − (y, λ2)

′)|2 Q(dz) = O(|λ1 − λ2|).
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(v) The parameter estimator admits the expansion

θ̂n − θ0 = 1

n

n∑

t=1

lt + oP (n−1/2),

where lt = Lθ0(Yt , Yt−1, . . .) with some measurable function Lθ0 . More-
over, Eθ0(lt |Ft−1) = 0p a.s. and Eθ0‖lt‖2

2 < ∞.

Remark 6 (i) Assumptions (G3)(i) to (iii) are satisfied for instance in the case of
linear Poisson autoregressions; see Fokianos and Neumann (2012).

(ii) (G3)(iv) is obviously satisfied if w is Lipschitz continuous. It is also satisfied if
w is of bounded squared variation in its second argument, that is,

sup
y∈N0

sup
−∞<λ0<λ1<···<λM <∞, M∈N

M∑

j=1

|w(y, λ j−1) − w(y, λ j )|2 < ∞.

This includes the case where w(z − It−1) = 1(It−1 � z).
(iii) (G3)(v) is satisfied for the conditional maximum likelihood estimator in the case

of linear Poisson autoregressions; see e.g., Fokianos et al. (2009). It is also fulfilled
for the least squares estimator in the model λt = θ1 + θ2Yt−1; for more details
see below.

The following lemma shows that the test statistic can be approximated by a statistic
as required in Theorem 1.

Lemma 3 Suppose that (G3) is satisfied. Then

T̂ (3)
n = 1

n

n∑

s,t=1

h(3)(Xs, Xt ) + oP (1),

where Xt = (Yt , λt , I ′
t−1, l ′t )′, t ∈ N, and

h(3)(x, y) =
∫

�

{(x1 − x2)w(z − x3) − [Eθ0(λ̇1(θ0)w(z − I0))]′x4}
×{(y1 − y2) w(z − y3) − [Eθ0(λ̇1(θ0)w(z − I0))]′y4} Q(dz).

The proof of this lemma can be found in an extended version of this paper, Leucht
and Neumann (2011).

Corollary 3 Suppose that (G3) is satisfied. Then, under H0,

T̂ (3)
n

d−→
∑

k

λ
(3)
k Z2

k ,

where (Zk)k is a sequence of i.i.d. standard normal variables and (λ
(3)
k )k is the

sequence of nonzero eigenvalues of the equation Eθ0 [h(3)(x, X1)�(X1)] = λ�(x).
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Under H1, we obtain

1

n
T̂ (3)

n =
∫

�

[E(Yt − λt (θ0))w(z − It−1(θ0))]2 Q(dz) + oP (1)

which in turn implies

P(T̂ (3)
n > K ) −→

n→∞ 1 ∀K < ∞

under suitable assumptions on w and Q.
Finally, we suggest a parametric bootstrap method to determine critical values of

the test:

(1) Determine θ̂n .
(2) Choose an initial intensity λ∗

0 and generate Y ∗
0 ∼ Poisson(λ∗

0). Then, for t =
1, . . . , n, define λ∗

t = fθ̂n
(λ∗

t−1, Y ∗
t−1) and generate counts Y ∗

t ∼ Poisson(λ∗
t ).

(3) Determine θ̂∗
n such that θ̂∗

n − θ̂n = n−1∑n
t=1 l∗t + oP∗(1).

(4) Generate λ̂∗
t = fθ̂∗

n
(̂λ∗

t−1, Y ∗
t−1), t ∈ N, with an arbitrary λ̂∗

0.
(5) Compute the bootstrap test statistic

T̂ (3)∗
n =

∫

�

[
1√
n

n∑

t=1

(Y ∗
t − λ̂∗

t )w(z − Î ∗
t−1)

]2

Q(dz).

We can again approximate the bootstrap version of the test statistic by a bootstrap
V -statistic. Consistency will then follow from Theorem 2. In our simulations presented
in the next section, we restricted our attention to a null hypothesis with

λt = θ1 + θ2Yt−1,

where θ ∈ 	 := {(θ1, θ2)
′ : θ1 > 0, 0 ≤ θ2 < 1}. The model equation can be rewritten

in form of a linear autoregressive model as

Yt = θ1 + θ2Yt−1 + εt ,

where εt = Yt − λt satisfies E(εt | Ft−1) = 0 and E(ε2
t | Ft−1) = λt . Here, the

unknown parameter θ = (θ1, θ2)
′ can be most easily estimated by least squares, i.e.,

θ̂n = arg min
θ∈	

n∑

t=1

(Yt − θ1 − θ2Yt−1)
2.

It will be shown in the course of the proof of Lemma 4 below that

θ̂∗
n − θ̂n = 1

n

n∑

t=1

l∗t + oP∗(n−1/2),
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where l∗t = M−1(Y ∗
t − λ∗

t , Y ∗
t−1(Y

∗
t − λ∗

t ))
′, M =

(
1 EY ∗

0
EY ∗

0 E(Y ∗
0 )2

)
. Among the

conditions summarized in (B1), (4) seems to be the most difficult one to check. We
therefore conclude this section with an assertion that allows us to apply Lemma 1
which yields that (4) holds true.

Lemma 4 Suppose that the conditions imposed above hold true. Then there exists a
coupling of X1, . . . , Xn and X∗

1, . . . , X∗
n on a probability space (̃, Ã, P̃) such that

1

n

n∑

t=1

min{‖Xt − X∗
t ‖2, 1} P̃−→ 0.

Hence, we obtain bootstrap consistency as indicated above.

6 Simulations

We explored the finite sample behavior of our bootstrap-based tests by a few numer-
ical examples. We considered the goodness-of-fit test for Poisson count models of
Sect. 5.3 and we assumed that observations Y0, . . . , Yn from a strictly stationary
process ((Yt , λt ))t∈Z are available, where

Yt | Ft−1 ∼ Poisson(λt ),

Ft = σ(Yt , λt , Yt−1, λt−1, . . .). To keep the computational effort at a reasonable size,
we restricted our attention to the simple case of λt = f (Yt−1). The null model was a
linear specification for f , that is,

H0 : f ∈ {g : g(y) = θ1 + θ2 y for (θ1, θ2)
′ ∈ 	},

where 	 = {(θ1, θ2)
′ : θ1 > 0, 0 ≤ θ2 < 1}. The parameter θ = (θ1, θ2)

′ was
estimated by least squares and we used the test statistic

T̂ (3)
n =

∫

N0×[0,∞)

{ 1√
n

n∑

t=1

(Yt − λ̂t )w(z − (Yt−1, λ̂t−1)
′)}2 Q(dz).

Our choice of w(x1, x2) = 1(−1,1)(x1)1(−1,1)(x2) and Q = Q1 ⊗ Q2 with Q1 =
Poisson(1) and Q2 = Exp(1) led to

T̂ (3)
n = 1

n

n∑

s,t=1

(Ys − λ̂s)(Yt − λ̂t )

∞∑

k=0

1(−1,1)(k − Ys−1)1(−1,1)(k − Yt−1)
e−1

k!

×
∫ ∞

0
1(−1,1)(λ − λs−1)1(−1,1)(λ − λt−1)e

−λdλ
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Fig. 1 Intensity functions under H0 (solid), H (1)
1 (dashed), H (2)

1 (dotted), and H (3)
1 (dot-dashed)

Table 1 Rejection frequencies

n α = 0.05 α = 0.1

H0 H (1)
1 H (2)

1 H (3)
1 H0 H (1)

1 H (2)
1 H (3)

1

100 0.080 0.212 0.274 0.700 0.121 0.310 0.414 0.798
200 0.070 0.438 0.480 0.922 0.126 0.572 0.608 0.964
300 0.056 0.600 0.566 0.992 0.102 0.708 0.678 0.996

= 1

n

n∑

s,t=1

(Ys − λ̂s)(Yt − λ̂t )
1(Ys−1 = Yt−1)

e Ys−1!
× max

{
0, e− max{̂λs−1−1,̂λt−1−1,0} − e− min{̂λs−1+1,̂λt−1+1}} .

To get some impression about the power, we considered three different alternatives,

H (1)
1 : f (y) = θ1 + θ2 ye−y2

,

H (2)
1 : f (y) = θ1 + θ2(1 − e−y),

H (3)
1 : f (y) = θ1 + θ2e−y;

see Fig. 1.
In all four cases, we have chosen θ1 = 0.5 and θ2 = 0.7. To obtain critical values,

we generated 500 bootstrap samples according to the model-based method described
in Sect. 5.3. Size and power were estimated on the basis of 500 simulation runs. The
implementations were carried out with the aid of the statistical software package R;
see R Development Core Team (2007). The results for nominal significance levels
α = 0.05 and 0.1 and sample sizes n = 100, 200 and 300 are shown in Table 1.

It can be seen that the prescribed size is kept fairly well. The power behavior is very
satisfactory for all of our alternatives. Having a particular alternative in mind, the power
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can even be increased by a tailor-made choice of the weights w and Q; cf. Anderson
and Darling (1954) in the case of generalized Cramér-von Mises statistics.

7 Proofs

Proof of Theorem 1 We denote by (λk)k an enumeration of the positive eigenval-
ues of (1) in decreasing order and according to their multiplicity and by (�k)k the
corresponding eigenfunctions with E[� j (X0)�k(X0)] = δ jk . To avoid an explicit
distinction of the cases whether the number of nonzero eigenvalues of (1) is finite or
not, we set λk := 0 and �k ≡ 0 ∀k > L if the number L of nonzero eigenvalues is
finite. It follows from a version of Mercer’s theorem (see Theorem 2 of Sun 2005 with
X = supp(P X0)) that

h(K )(x, y) =
K∑

k=1

λk�k(x)�k(y) −→
K→∞ h(x, y) ∀x, y ∈ supp(P X0). (7)

The convergence of the series in (7) is absolute and uniform on compact subsets of
supp(P X0) := {x ∈ R

d | ∀ open O : x ∈ O ⇒ P X0(O) > 0}. The prerequisites
of this result can be checked fairly easily here. Of course, P X0 is nondegenerate
on supp(P X0) and there are compact sets A1 ⊆ A2 ⊆ . . . such that supp(P X0) =⋃∞

n=1 An . Assumption 1 of Sun (2005) is a consequence of E |h(X0, X0)| < ∞.
Moreover, (A1) implies his Assumptions 2 and 3 in view of the Propositions 1–3 in
that paper.

We define

V (K )
n = 1

n

n∑

s,t=1

h(K )(Xs, Xt ).

It follows from the non-negativity of the eigenvalues λk that

Vn − V (K )
n = 1

n

∞∑

k=K+1

λk

(
n∑

s=1

�k(Xs)

)2

≥ 0.

Therefore, from EVn = Eh(X0, X0) < ∞ and (7) we obtain by majorized conver-
gence that

E |Vn − V (K )
n | = E[h(X0, X0) − h(K )(X0, X0)] −→

K→∞ 0. (8)

This means that we can actually approximate Vn by V (K )
n . We rewrite this quantity as

V (K )
n =

K∑

k=1

λk Z2
n,k,
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where Zn,k = n−1/2 ∑n
t=1 �k(Xt ). Next we will show that

⎛

⎜⎝
Zn,1

...

Zn,K

⎞

⎟⎠
d−→
⎛

⎜⎝
Z1
...

ZK

⎞

⎟⎠ ∼ N (0K , IK ), (9)

where IK denotes the K × K identity matrix and K ≤ L . By the Cramér–Wold device
it suffices to show that, for arbitrary real c1, . . . , cK ,

K∑

k=1

ck Zn,k
d−→

K∑

k=1

ck Zk ∼ N
(

0,

K∑

k=1

c2
k

)
. (10)

Let Yt = ∑K
k=1 ck �k(Xt ). We will show that the Yt ’s satisfy the conditions of a CLT

from McLeish (1974). It is clear that the process (Yt )t∈Z inherits the properties of
stationarity and ergodicity from (Xt )t∈Z. Let Ft = σ(Xt , . . . , X1). It follows from
(iv) of assumption (A1) that

λk E(�k(Xt ) | Ft−1) =
∫

E(h(x, Xt ) | Ft−1)�k(x)P X0(dx) = 0,

which implies that

E(Yt | Ft−1) = 0. (11)

Furthermore, we have that EY 2
t = ∑K

j,k=1 c j ck E[� j (Xt )�k(Xt )] = ∑K
k=1 c2

k .
Since (Yt )t∈Z is stationary and ergodic, we obtain by the ergodic theorem (see e.g.
Theorem 2.3 on page 48 in Bradley 2007) that

1

n

n∑

t=1

Y 2
t

a.s.−→
K∑

k=1

c2
k . (12)

Finally, since EY 2
t < ∞, we conclude that the Lindeberg condition is fulfilled, that

is,

1

n

n∑

t=1

E[Y 2
t 1(|Yt | > ε

√
n)] −→

n→∞ 0 ∀ε > 0. (13)

From (11) to (13) we see that the conditions of the CLT of McLeish (1974, Theorem
2.3) are fulfilled, see also his comments after this theorem. Therefore, (10) and also
(9) hold true which implies by the continuous mapping theorem that

V (K )
n

d−→ Z (K ) =
K∑

k=1

λk Z2
k . (14)

123



372 A. Leucht, M. H. Neumann

Finally, since
∑∞

k=1 λk = Eh(X0, X0) < ∞, we obtain

E |Z − Z (K )| =
∞∑

k=K

λk −→
K→∞ 0. (15)

Applying Theorem 3.2 from Billingsley (1999), we see that (8), (14) and (15) imply

Vn
d−→ Z .

Using once more the ergodic theorem, we obtain

1

n

n∑

t=1

h(Xt , Xt )
a.s.−→ Eh(X0, X0),

which proves that

Un
d−→ Z − Eh(X0, X0). ��

Proof of Proposition 1 We consider the V -statistic first and decompose the term in
the integrand of Vn(θ̂n) = ∫

�
‖n−1/2 ∑n

t=1 h1(Xt , z, θ̂n)‖2
2 Q(dz) as follows:

1√
n

n∑

t=1

h1(Xt , z, θ̂n)

= 1√
n

n∑

t=1

{h1(Xt , z, θ0) + Eθ0 [ḣ1(X1, z, θ0)]lt }

+ 1√
n

n∑

t=1

(ḣ1(Xt , z, θ0) − Eθ0 [ḣ1(X1, z, θ0)])1

n

n∑

s=1

ls

+ 1√
n

n∑

t=1

(h1(Xt , z, θ̂n) − h1(Xt , z, θ0) − ḣ1(Xt , z, θ0)(θ̂n − θ0))

+ 1√
n

n∑

t=1

ḣ1(Xt , z, θ0)(θ̂n − θ0 − 1

n

n∑

s=1

ls)

=: Sn(z) + Rn,1(z) + Rn,2(z) + Rn,3(z). (16)

Since

Eθ0

[∫
‖Sn(z)‖2

2 Q(dz)

]

= Eθ0

[∫
‖h1(X1, z, θ0) + Eθ0 [ḣ1(X1, z, θ0)]l1‖2

2 Q(dz)

]
< ∞,
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it suffices to show that

Tn,i :=
∫

‖Rn,i (z)‖2
2 Q(dz) = oP (1) for i = 1, 2, 3.

To prove negligibility of Tn,1, we will first show that

1

n2

n∑

s,t=1

h̃(Xs, Xt )
P−→ 0p×p, (17)

where 0p×p denotes the (p × p) null matrix and

h̃(x, y) =
∫

(ḣ1(x, z, θ0) − Eθ0 [ḣ1(X1, z, θ0)])′(ḣ1(y, z, θ0)

−Eθ0 [ḣ1(X1, z, θ0)])Q(dz).

Denote by h̃(i, j)(x, y) the (i, j)th entry of h̃(x, y) and let h̃(i, j)
M (x, y) = (̃h(i, j)(x, y)∧

M) ∨ (−M). It follows from the ergodic theorem that

Pn := n−1
n∑

t=1

δXt �⇒ P X0 a.s.,

which implies that Pn ⊗ Pn �⇒ P X0 ⊗ P X0 holds almost surely. Therefore, and since
h̃(i, j)

M is a bounded and continuous function we obtain that

1

n2

n∑

s,t=1

h̃(i, j)
M (Xs, Xt ) =

∫
h̃(i, j)

M dPn ⊗ Pn
a.s.−→

∫
h̃(i, j)

M dP X0 ⊗ P X0

= Eθ0 h̃(i, j)
M (X0, X̃0) (18)

holds for all M < ∞. Furthermore, it follows from the Cauchy–Schwarz inequality
that

|̃h(i, j)(x, y)| ≤
√

h̃(i,i)(x, x)

√
h̃( j, j)(y, y) ≤ h̃(i,i)(x, x) ∨ h̃( j, j)(y, y),

which implies by (A2)(iv) that

sup
n

⎧
⎨

⎩Eθ0

∣∣∣∣∣∣
1

n2

n∑

s,t=1

h̃(i, j)
M (Xs, Xt ) − h̃(i, j)(Xs, Xt )

∣∣∣∣∣∣

⎫
⎬

⎭

≤ sup
n

⎧
⎨

⎩
1

n2

n∑

s,t=1

Eθ0

[∣∣̃h(i, j)(Xs, Xt )
∣∣1(|̃h(i, j)(Xs, Xt )| > M)

]
⎫
⎬

⎭
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≤ Eθ0

[
h̃(i,i)(X1, X1)1(̃h(i,i)(X1, X1) > M)

]

+Eθ0

[
h̃( j, j)(X1, X1)1(̃h( j, j)(X1, X1) > M)

]

−→
M→∞ 0.

This yields

Eθ0 h̃(i, j)
M (X0, X̃0) −→

M→∞ Eθ0 h̃(i, j)(X0, X̃0) = 0,

which implies in conjunction with (18) that (17) holds true. Since n−1/2 ∑n
s=1 ls =

OP (1) we obtain from (17) that

Tn,1 = oP (1). (19)

From (A2)(iv) and θ̂n − θ0 = OP (n−1/2) we conclude

Tn,2 = ‖θ̂n − θ0‖2
2

n

∫ ( n∑

t=1

sup
θ : ‖θ−θ0‖2≤‖θ̂n−θ0‖2

‖ḣ1(Xt , z, θ)−ḣ1(Xt , z, θ0)‖F

)2

Q(dz)

= oP (1). (20)

Moreover, we get from (A2)(ii) and (iv)

Tn,3 ≤ 1

n

∫ ∥∥∥∥∥

n∑

t=1

ḣ1(Xt , z, θ0)‖2
F Q( dz) × ‖θ̂n − θ0 − 1

n

n∑

s=1

ls

∥∥∥∥∥

2

2

= oP (1). (21)

Finally, (16) and (19) to (21) yield the approximation result for the V -statistic. The
result for the U -statistic can be obtained in a similar manner. ��
Proof of Lemma 1 Since |eix − eiy | ≤ min{|x − y|, 2} ∀x, y ∈ R, we obtain

sup
ω : ‖ω‖2≤K

∣∣∣∣∣
1

n

n∑

t=1

eiω′ X (n)
t − 1

n

n∑

t=1

eiω′ Xt

∣∣∣∣∣ ≤ 1

n

n∑

t=1

min{K‖X (n)
t − Xt‖2, 2} P−→ 0.

Furthermore, since (Xt )t∈Z is strictly stationary and ergodic, we obtain by Corollary
11.3.4 in Dudley (1989) that

sup
ω : ‖ω‖2≤K

∣∣∣∣∣
1

n

n∑

t=1

eiω′ Xt − Eeiω′ Xt

∣∣∣∣∣
a.s.−→ 0,

which completes the proof of (i).
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It follows from (6) that we can choose for arbitrary ε > 0 a sequence (Kn)n∈N with
Kn → ∞ as n → ∞ such that

P

(
sup

ω : ‖ω‖2≤Kn

∣∣∣∣∣
1

n

n∑

t=1

eiω′ X (n)
t − Eeiω′ X0

∣∣∣∣∣ > ε

)
=: δn −→

n→∞ 0

holds. Therefore, we obtain by Jensen’s inequality, for fixed ω ∈ R
d ,

∣∣∣Eeiω′ X (n)
0 − Eeiω′ X0

∣∣∣ ≤ E

∣∣∣∣∣
1

n

n∑

t=1

eiω′ X (n)
t − Eeiω′ X0

∣∣∣∣∣

≤ ε + 2δn ∀ nwith‖ω‖2 ≤ Kn .

This implies that Eeiω′ X (n)
0 −→n→∞ Eeiω′ X0 ∀ω and hence P X (n)

0 �⇒ P X0 ��
Proof of Lemma 2 We intend to invoke Corollary XI.9.4(a) from Dunford and
Schwartz (1963, page 1090) to derive the desired estimate for the eigenvalues. In
the case of two eigenvalue problems,

∫
g(x, y)�(x)τ (dy) = λ�(x) and

∫
g∗(x, y)�(x)τ (dy) = λ�(x),

with symmetric, positive semi-definite functions g and g∗, denote by (μk)k∈N and
(μ∗

k)k∈N the corresponding eigenvalues, arranged in decreasing order and repeated
according to multiplicity. According to symmetry of the functions g and g∗, the associ-
ated Hilbert–Schmidt operators T and T ∗ are self-adjoint. Moreover, they are positive
in view of the positive semi-definiteness of the kernels g and g∗. This implies that
(TadjT )1/2 = |T | = T and (T ∗

adjT
∗)1/2 = T ∗. Therefore, (μk)k∈N and (μ∗

k)k∈N coin-

cide with the so-called characteristic numbers, i.e., the eigenvalues of (TadjT )1/2 and
(T ∗

adjT
∗)1/2. Now it follows from the corollary mentioned above and Lemma XI.6.2

of Dunford and Schwartz (1963, page 1010) that

sup
k

|μ∗
k − μk | ≤ ‖T ∗ − T ‖,

where ‖ · ‖ denotes the Hilbert–Schmidt norm satisfying

‖T ∗ − T ‖ =
√∫∫

(g∗(x, y) − g(x, y))2τ(dx)τ (dy);

see Exercise XI.8.44 in Dunford and Schwartz (1963, page 1083).
To prove the assertion of the lemma, we have to compare the eigenvalues of the

equations

∫
h(x, y)�(y)P X0(dy) = λ�(x) (22)
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and
∫

h∗(x, y)�(y) P∗X∗
0 (dy) = λ�(x). (23)

Unfortunately, the integrating measures, P X0 and P∗X∗
0 , are not the same and the

above corollary cannot be applied directly. In what follows we replace the eigenvalue
problems (22) and (23) by equivalent ones with one and the same integrating measure.

It follows from (B1)(i) that X∗
0

d−→ X0, which implies (X∗
0, X̃∗

0)
d−→ (X0, X̃0)

in probability. Given the underlying sample Xn = (X ′
1, . . . , X ′

n)′, we can construct
appropriate probability spaces (,A, Q) with random elements (X, X̃) and (X∗, X̃∗)
such that

Q(X,X̃) = P(X0,X̃0), Q(X∗,X̃∗) = P∗(X∗
0 ,X̃∗

0 )

and, because of (X∗
0, X̃∗

0)
d−→ (X0, X̃0) in probability,

(X∗, X̃∗) Q−→ (X, X̃) inP-probability (24)

according to the Skorohod representation theorem (Theorem 6.7 in Billingsley (1999,
p. 70)). Here we can choose the canonical space, i.e.  = supp{P X0}× supp{P X0}×
supp{P∗X∗

0 }×supp{P∗X∗
0 } and A = B4d . The convergence in (24) means in particular

that the distributions (Q(X∗,X̃∗)) are tight in probability. Therefore, we conclude from
(B1)(ii) that

Q(|h∗(X∗, X̃∗) − h∗(X, X̃)| > ε)
P−→ 0 ∀ε > 0.

Furthermore, from (B1)(ii) and (iii),

Q(|h∗(X, X̃) − h(X, X̃)| > ε)
P−→ 0 ∀ε > 0,

which yields

h∗(X∗, X̃∗) Q−→ h(X, X̃) inP-probability. (25)

In view of (i) of Remark 2 and (B1)(iv), ([h∗(X∗, X̃∗)]2) is uniformly integrable in
probability. This implies in conjunction with (25) that

EQ(h∗(X∗, X̃∗) − h(X, X̃))2 P−→ 0. (26)

Instead of (22) and (23), we consider the eigenvalue problems

∫
hQ(ω, ν)�(ν)Q(dν) = λ�(ω) (27)
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and

∫
h∗

Q(ω, ν)�(ν)Q(dν) = λ�(ω), (28)

where hQ(ω, ν) = h(X (ω), X̃(ν)) and h∗
Q(ω, ν) = h∗(X∗(ω), X̃∗(ν)). It can be

easily verified that (27) and (28) have the same eigenvalues with the same multiplicities
as (22) and (23), respectively. To see this, suppose first that � is an eigenfunction of
(22) to the eigenvalue λ, that is,

∫
h(x, y)�(y)P X0(dy) = λ�(x).

Define �(ω) = �(X (ω)). Then

∫
hQ(ω, ν)�(ν) Q(dν) =

∫
h(X (ω), X̃(ν))�(X̃(ν))Q(dν)

=
∫

h(X (ω), y)�(y)P X0(dy) = λ�(X (ω)) = λ�(ω),

that is, λ is also an eigenvalue of (27) and � is a corresponding eigenfunction. Vice
versa, suppose that � is an eigenfunction of (27) to the eigenvalue λ, that is,

∫
hQ(ω, ν)�(ν) Q(dν) = λ�(ω).

Since hQ(ω, ν) = hQ(ω′, ν) if X (ω) = X (ω′), we obtain from the eigenvalue equa-
tion that �(ω) = �(ω′) if X (ω) = X (ω′). Therefore, we can define � on the range
of X as

�(x) = �(ω) if x = X (ω).

Now it follows, for x = X (ω), that

∫
h(x, y)�(y)P X0(dy) =

∫
hQ(ω, ν)�(ν)Q(dν)

= λ�(ω) = λ�(x),

that is, λ is also an eigenvalue of (22) and � is a corresponding eigenfunction. Hence,
we obtain from Corollary XI.9.4(a) and Exercise XI.8.44 in Dunford and Schwartz
(1963) that
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sup
k

|λ∗
k − λk | ≤ ‖T ∗ − T ‖

=
√∫∫

(hQ(ω, ν) − h∗
Q(ω, ν))2 Q(dω)Q(dν)

=
√

EQ(h∗(X∗, X̃∗) − h(X, X̃))2,

which yields in conjunction with (26) the assertion. ��
Proof of Theorem 2 We denote by (λ∗

k)k an enumeration of the positive eigenvalues
of E∗[h∗(x, X∗

1)�(X∗
1)] = λ�(x) in nonincreasing order and according to their

multiplicity and by (�∗
k)k the corresponding orthonormal eigenfunctions. For sake of

notational simplicity, we set λ∗
k := 0 and �∗

k ≡ 0, ∀ k > L∗ if the number L∗ of
nonzero eigenvalues is finite. Again Mercer’s theorem (see Theorem 2 of Sun 2005,
this time with X = supp(P∗X∗

0 ), yields

h∗(x, y) =
∞∑

k=1

λ∗
k�

∗
k(x)�∗

k(y), ∀x, y ∈ supp(P∗X∗
0 ).

We approximate this infinite series again by a finite one,

h∗(K )(x, y) =
K∑

k=1

λ∗
k�

∗
k(x)�∗

k(y).

As an appropriate approximation to V ∗
n we use

V ∗(K )
n = 1

n

n∑

s,t=1

h∗(K )(X∗
s , X∗

t ).

First we show that the error of this approximation can be made arbitrarily small if K
is sufficiently large. It follows from Lemma 2 that

E∗V ∗(K )
n =

K∑

k=1

λ∗
k E∗(�∗

k(X∗
0))2

=
K∑

k=1

λ∗
k

P−→
K∑

k=1

λk = EV (K )
n .

Furthermore, we obtain from assumption (B1)(iv) that

E∗V ∗
n = E∗h∗(X∗

0, X∗
0)

P−→ Eh(X0, X0) = EVn,
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which implies in conjunction with V ∗
n ≥ V ∗(K )

n that

E∗|V ∗
n − V ∗(K )

n | = E∗[V ∗
n − V ∗(K )

n ] P−→ δK , (29)

where δK := E |Vn −V (K )
n | −→K→∞ 0; see the proof of Theorem 1. Hence, it suffices

to study the asymptotics of V ∗(K )
n . We will prove that

V ∗(K )
n

d−→
K∑

k=1

λk Z2
k in probability, (30)

where Z1, . . . , ZK are independent standard normal variables and K ≤ L . By Lemma
2, the continuous mapping theorem and the Cramér–Wold device, (30) will follow from

1√
n

K∑

k=1

Y ∗
t

d−→ N
(

0,

K∑

k=1

c2
k

)
in probability, (31)

where Y ∗
t = ∑K

k=1 ck�
∗
k(X∗

t ) and c1, . . . , cK are arbitrary real numbers. In order to
prove this, we verify that the conditions of the CLT of McLeish (1974) are fulfilled in
probability.

Let F∗
t = σ(X∗

t , . . . , X∗
1). Since,

λ∗
k E∗(�∗

k(X∗
t ) | F∗

t−1) =
∫

E∗[h∗(x, X∗
t ) | F∗

t−1]�∗
k(x)P X∗

0 (dx) = 0 a.s.,

we get

E(Y ∗
t | F∗

t−1) = 0 a.s.. (32)

Next,

1

n

n∑

t=1

(Y ∗
t )2 − EY 2

0 = oP∗(1) (33)

has to be verified, which is equivalent to n−1∑n
t=1(Y

∗
t )2 − E∗[Y ∗

0 ]2 = oP∗(1) since
EY 2

0 = E∗[Y ∗
0 ]2 = ∑K

k=1 c2
k . Using the representation h∗(x, x) = ∑

k λ∗
k(�

∗
k(x))2

we conclude from the uniform integrability of h∗(X∗
0, X∗

0) that ((�∗
k(X∗

0))2)n is also
uniformly integrable. Since additionally the bootstrap distributions and the empirical
bootstrap distributions are tight with probability tending to one, it suffices to prove

1

n

n∑

t=1

�∗
k,l,M (X∗

t ) − E∗�∗
k,l,M (X∗

0) = oP∗(1) ∀ k, l = 1, . . . , K , M ∈ N, (34)
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where �∗
k,l,M (x) = [(�∗

k(x)�∗
l (x) ∧ M) ∨ (−M)]1(x ∈ [−M, M]d). The basic idea

of the proof is to establish a coupling between variables that obey the bootstrap and
the empirical bootstrap law, respectively, such that their difference tends to zero. In
order to verify (34), we then employ the equicontinuity (with probability tending to
one) of (�∗

k,l,M ) on supp(P∗X∗
0 ) ∩ [−M, M]d . The latter property can be concluded

from (B1)(ii) and the inequality

λ∗
k(�

∗
k(x) − �∗

k(y))2 ≤
∞∑

j=1

λ∗
j (�

∗
j (x) − �∗

j (y))2

= h∗(x, x) − h∗(x, y) − h∗(y, x) − h∗(y, y),

∀x, y ∈ supp(P∗X∗
0 ).

Before constructing our coupling, we point out that the bootstrap distribution is a
random measure depending on Xn = (X ′

1, . . . , X ′
n)′ and the empirical bootstrap dis-

tribution is random as well, depending on X
∗
n(Xn) = ((X∗

1(Xn))′, . . . , (X∗
n(Xn))′)′.

For sake of clarity, we therefore introduce sequences of “favorable events” as fol-
lows: We choose a sequence of sets (Xn)n∈N such that (h∗) is equicontinuous on
[−M, M]2d ∩ supp(P X∗

0 |Xn=xn ) × supp(P X∗
0 |Xn=xn ) and P X∗

0 |Xn=xn �⇒ P X0 uni-
formly for any sequence (xn)n with xn ∈ Xn, n ∈ N. Similarly, (X∗

n)n are defined

such that P X̄∗
n,0|X∗

n(Xn)=x∗
n (xn) �⇒ P X0 uniformly for all sequences (x∗

n (xn))n and
(xn)n with x∗

n ∈ X∗
n and xn ∈ Xn . Here X̄∗

n,0 is distributed according to the empir-
ical bootstrap distribution conditionally on X

∗
n(Xn). According to (B1)(i),(ii) the

sequences of sets (Xn)n and (X∗
n)n can be chosen such that P(Xn ∈ Xn) −→ 1

and P(X∗
n ∈ X∗

n | Xn = xn)−→1 as n → ∞ uniformly for all (xn)n with xn ∈ Xn .
Now we consider arbitrary but fixed sequences (xn)n and (x∗

n (xn))n as above. The
coupling can be established following the lines of the proof of the Skorohod represen-
tation theorem. However, this result can not be applied directly since it is dedicated to
derive a.s. convergence from weak convergence in the case of a fixed limit measure.
In contrast we intend to construct a probability space (,A, Q) such that there exist

processes (Yn)n and (Ȳn)n with QYn = P X∗
0 |Xn=xn , QȲn = P X̄∗

n,0|X∗
n(Xn)=x∗

n (xn) and
Ȳn(ω) − Yn(ω)−→0, ∀ω ∈ . Proceeding as in the proof of Skorohod’s represen-
tation theorem (see e.g. Theorem 6.7 in Billingsley 1999), one can define (,A, Q)

as well as (Yn)n and (Ȳn)n with the desired marginals such that Yn(ω)−→Y (ω) and
Ȳn(ω)−→Y (ω), ∀ω ∈ , where QY = P X1 . This in turn yields the aforementioned
convergence of (Ȳn − Yn)n . The latter relation finally implies

EQ[�(xn)
k,l,M (Ȳn) − �

(xn)
k,l,M (Yn)] ≤ ε Q(‖Ȳn − Yn‖2 ≤ δ)

+2M Q(‖Ȳn − Yn‖2 > δ) −→
n→∞ ε

for any ε > 0 and suitably chosen δ = δ(ε) > 0. Here, �
(xn)
k,l,M denotes the version of

�∗
k,l,M given Xn = xn . Summing up, (34) and thus (33) can be deduced.
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Again from uniform integrability of ((�∗
k(X∗

0))2)n , we obtain that

1

n

n∑

t=1

E∗[(Y ∗
t )21(|Y ∗

t | > ε
√

n)] P−→ 0 ∀ε > 0, (35)

that is, the Lindeberg condition is fulfilled in probability. From (32), (33) and (35) we
conclude that we can apply Theorem 2.4 from McLeish (1974), which proves (31) and
therefore also (30). From (29), (30) and (15) we obtain by Theorem 3.2 in Billingsley
(1999) the first assertion,

V ∗
n

d−→ Z in probability.

The latter relation also implies

U∗
n

d−→ Z − Eh(X0, X0) in probability. (36)

if additionally n−1∑n
t=1 h∗(X∗

t , X∗
t )− Eh(X0, X0) = oP∗(1). Assumptions (B1)(i),

(iv) yield that (h∗(X∗
1, X∗

1)) is uniformly integrable in probability. In view of (B1)(ii),
we obtain n−1∑n

t=1[h∗(X∗
t , X∗

t ) ∧ M] ∨ (−M) − E[(h(X0, X0) ∧ M) ∨ (−M)] =
oP∗(1) by invoking Corollary 11.3.4 of Dudley (1989). Combining both results, we
get n−1∑n

t=1 h∗(X∗
t , X∗

t ) − Eh(X0, X0) = oP∗(1) and eventually (36).
Finally, if additionally P(h(X0, X̃0) �= 0) > 0, it follows from var(Z) =

2
∑

k λ2
k > 0 that the random variable Z has a continuous distribution. In this case,

the last assertion of Theorem 2 is an immediate consequence of the first one and of
Theorem 1. ��
Proof of Proposition 2 We consider the V -type statistics only since the corresponding
results on U -statistics can be established in a similar manner. To show that

V ∗
n (θ̂∗

n ) =
∫ ∥∥∥∥∥

1√
n

n∑

t=1

{h1(X∗
t , z, θ̂n) + E∗[ḣ1(X∗

0, z, θ̂n)]l∗t }
∥∥∥∥∥

2

2

Q(dz) + oP∗(1),

we invoke the bootstrap counterpart of the decomposition (16). Denote the bootstrap
counterpart of Sn by S∗

n . Then, E∗ ∫ ‖S∗
n (z)‖2

2 Q(dz) is bounded with probability
tending to one due to our moment assumptions. In view of the continuity assumption
in (B2)(iv), we obtain the counterpart of (18) by Corollary 11.3.4 from Dudley (1989).
(Note that instead of a.s. convergence, we have stochastic convergence here.) Now the
verification of the analogs to (19), (20) and (21) is straightforward under (B2).

Therefore, we obtain the limits of U∗
n (θ̂n) and V ∗

n (θ̂n) by Theorem 2 if

h∗(x, y) =
∫

{h1(x1, z, θ̂n) + E∗[ḣ1(X∗
0, z, θ̂n)]x2}′

×{h1(y1, z, θ̂n) + E∗[ḣ1(X∗
0, z, θ̂n)]y2} Q(dz)
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satisfies (B1)(ii) to (v). Invoking the Cauchy–Schwarz inequality, (B1)(ii) results from

(B2)(iii),(iv). Next, we have to show that h∗(x, y)
P−→ ĥ(x, y), where ĥ is defined as

in Proposition 1. It follows from (B2)(iii) and θ̂n
P−→ θ0, that

∫
{h1(x1, z, θ̂n)}′{h1(y1, z, θ̂n)}Q(dz)

P−→
∫

{h1(x1, z, θ0)}′{h1(y1, z, θ0)}Q(dz).

The desired convergence of
∫ {E∗[ḣ1(X∗

0, z, θ̂n)]x2}′{E∗[ḣ1(X∗
0, z, θ̂n)]y2}Q(dz) fol-

lows from (X∗
1, θ̂n)

d−→ (X1, θ0) and (B2)(iv). To this end, note that∫ {ḣ1(x1, z, θ)}′{ḣ1(x2, z, θ)}Q(dz) is continuous in (x ′
1, x ′

2, θ
′)′ under (B2)(iv). It

remains to verify

∫
{h1(x1, z, θ̂n)}′{E∗[ḣ1(X∗

0, z, θ̂n)]y2} Q(dz)

P−→
∫

{h1(x1, z, θ0)}′{Eθ0 [ḣ1(X0, z, θ0)]y2}Q(dz)

On the one hand,

∫
{h1(x1, z, θ̂n) − h1(x1, z, θ0)}′{E∗[ḣ1(X∗

0, z, θ̂n)]y2}Q(dz) = oP (1).

On the other hand,
∫ {h1(x1, z, θ0)}′{[E∗[ḣ1(X∗

0, z, θ̂n)] − Eθ0 [ḣ1(X0, z, θ0)]]y2}Q
(dz) is asymptotically negligible under the moment assumptions of (B2)(iv) since

(X∗
1, θ̂n)

d−→ (X1, θ0) and because of the continuity of
∫ {h1(x1, z, θ0)}′{ḣ1(y1, z, θ)}

Q(dz) in (y′
1, θ

′)′. Similarly we obtain (B1)(iv) from (B2)(iii),(iv) and the relation

(X∗
1, θ̂n)

d−→ (X1, θ0). The validity of (B1)(v) is obvious, which finally allows for
the application of Theorem 2. ��
Proof of Lemma 3 It suffices to construct a coupling such that, for arbitrary ε > 0,

P

(
n−1

n∑

t=1

min{‖X∗
t − Xt‖2, 1} > ε

)
−→
n→∞ 0. (37)

The main difficulty arises from the fact that the parameter controlling the process
((Y ∗

t , λ∗
t )

′)t∈Z, θ̂n , is random. In this sense, we have to deal with a triangular scheme of
processes and we cannot use, for example, the ergodic theorem here. To circumvent this
problem, we construct a coupling of ((Yt , λt )

′)t∈Z with a whole family of processes,
with parameters θ in a neighborhood of θ0.

As in Fokianos et al. (2009), we draw all Poisson random variables from a fam-
ily of independent Poisson processes (Nt (λ))λ∈[0,∞), t ∈ Z, with intensity func-
tions equal to 1. For any parameter θ ∈ 	, we contruct the corresponding process
as follows. For any fixed K ∈ Z, we begin the construction by setting λ

(K )
K = 0

and Y (K )
K = NK (λ

(K )
K ) = 0. Provided λ

(K )
K , Y (K )

K , . . . , λ
(K )
t−1, Y (K )

t−1 are defined, we
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define the next intensity according to the model equation, λ
(K )
t = θ1 + θ2Y (K )

t−1 and

we set Y (K )
t = Nt (λ

(K )
t ). Finally, we define, for all t ∈ Z, λt = limK→−∞ λ

(K )
t

and Yt = limK→−∞ Y (K )
t . Since the contractive property is fulfilled for θ ∈ 	,

these limits exist and ((Yt , λt )
′)t∈Z is a stationary and ergodic version of the bivari-

ate process with parameter θ . Since θ̂n is a consistent estimator of θ0, the boot-
strap process ((Y ∗

t , λ∗
t )

′)t∈Z can be sandwiched by two processes ((Y +
t , λ+

t )′)t∈Z and
((Y −

t , λ−
t )′)t∈Z that are sufficiently close to the original process. For some δ > 0, we

set θ+
1 = θ0,1+δ, θ+

2 = θ0,2+δ and θ−
1 = max{θ0,1−δ, 0}, θ−

2 = max{θ0,2−δ, 0}. We
denote by ((Y +

t , λ+
t )′)t∈Z and ((Y −

t , λ−
t )′)t∈Z those processes generated as decribed

above, with parameters (θ+
1 , θ+

2 )′ and (θ−
1 , θ−

2 )′, respectively.
Let K (δ) = max{E |λ+

t − λt |, E |λ−
t − λt |}. We can show that

K (δ)−→
δ→0

0. (38)

Now we obtain by the ergodic theorem that

P

(
n−1

n∑

t=1

|λo
t − λt | > 2K (δ)

)
+ P

(
n−1

n∑

t=0

|Y o
t − Yt | > 2K (δ)

)
−→
n→∞ 0, (39)

where the index o stands for + or −.
Now we can make use of the fact that the random variables λt = λt (θ) and Yt =

Yt (θ) are monotone in both components of θ . If θ−
1 ≤ θ̂n,1 ≤ θ+

1 and θ−
2 ≤ θ̂n,2 ≤ θ+

2 ,
then we obtain from the above construction that λ−

t ≤ λ∗
t ≤ λ+

t and Y −
t ≤ Y ∗

t ≤ Y +
t

for all t ∈ Z. Since the least squares estimator is consistent, we have

P(θ−
1 ≤ θ̂n,1 ≤ θ+

1 and θ−
2 ≤ θ̂n,2 ≤ θ+

2 ) −→
n→∞ 1,

which yields that

P

(
n−1

n∑

t=1

|λ∗
t − λt | > 2K (δ)

)
+ P

(
n−1

n∑

t=0

|Y ∗
t − Yt | > 2K (δ)

)
−→
n→∞ 0 (40)

As for the l∗t , note first that it follows from the above calculations that M∗ =(
1 n−1∑n

t=1 Y ∗
t−1

n−1∑n
t=1 Y ∗

t−1 n−1∑n
t=1(Y

∗
t−1)

2

)
converges in probability to the matrix M .

Therefore, with a probability tending to 1, θ̂∗
n has an explicit representation as

θ̂∗
n = (M∗)−1 1

n

n∑

t=1

(
Y ∗

t
Y ∗

t−1Y ∗
t

)
,
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which implies that

θ̂∗
n − θ̂n = (M∗)−1 1

n

n∑

t=1

(
Y ∗

t − λ∗
t

Y ∗
t−1(Y

∗
t − λ∗

t )

)
.

It follows from Proposition 6 of Ferland et al. (2006) that all moments of Y ∗
t are

bounded in probability. Therefore, we obtain that E∗(n−1/2 ∑n
t=1(Y

∗
t − λ∗

t ))
2 =

E∗(Y ∗
1 − λ∗

1)
2 = OP (1) and E∗(n−1/2 ∑n

t=1 Y ∗
t−1(Y

∗
t − λ∗

t ))
2 = E∗[(Y ∗

0 )2(Y ∗
1 −

λ∗
1)

2] = OP (1). Hence, we can replace the random matrix M∗ by its nonrandom limit
and obtain

θ̂∗
n − θ̂n = 1

n

n∑

t=1

l∗t + oP∗(n−1/2),

with l∗t = M−1
(

Y ∗
t − λ∗

t
Y ∗

t−1(Y
∗
t − λ∗

t )

)
. Now we can deduce from (40) that

P(n−1
n∑

t=1

min{‖l∗t − lt‖2, 1} > K̃ (δ)) −→
n→∞ 0, (41)

for some K̃ (δ)−→δ→∞ 0. (40) and (41) imply (37), which completes the proof. ��
Acknowledgments This research was funded by the German Research Foundation DFG, projects NE
606/2-1 and NE 606/2-2.
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