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Abstract The paper derives forecasting and signal extraction estimates for contin-
uous time processes. We present explicit formulas for filters and filter kernels that
yield minimum mean square error estimates of future values of the process or an
unobserved component, based on a continuum of values in the semi-infinite past. The
class of processes considered are cumulations of moving average processes, which
includes the CARIMA class. Explicit examples are calculated, and some discussion
of applications to signal extraction is provided. We also provide an explicit algorithm
for spectral factorization of continuous-time moving averages.

Keywords CARIMA · Signal extraction · Stochastic process

1 Introduction

Data that arise from a continuous stream in time are prevalent in many engineering
and industrial applications, such as the regulation of a thermostat or the production
of chemicals. There may be some underlying physical process that is observed at any
set of sampling times, which can be made arbitrarily frequent. Analysts refer to such
data as being “continuously observed,” though of course this does not mean that an
actual continuum of information is stored—such an uncountable quantity would be
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impossible to retain. Rather, “continuous observation” means that the actual sampling
rate is quite high relative to the interesting features of the process, and sampling
can be effected whenever desired. Examples include EKG readings (heart and brain
monitoring), process control used in industrial applications, and financial records of
price movements. See Karatzas and Shreve (1998), Barndorrf-Nielsen and Shepherd
(2001), Kilian (2005), Andrei (2006), and Astrom and Murray (2008) for background.

In these situations it is very natural to model the physical process via a continuous-
time stochastic process, such as a continuous-time autoregressive moving average
(CARMA) process; see Brockwell (2000, 2001, 2004) and Brockwell et al. (2012) for
a recent treatment, although this important class of processes has been in use for many
decades. Cumulations (or integrations) of such processes may also be considered,
in order to represent nonstationary effects. Such models can be fitted using a finite
number of observations by writing down the corresponding Gaussian likelihood; see
Jones (1981) or Bergstrom (1988, 1990) for further details.

Two of the chief statistical problems of interest for any observed stochastic process
are forecasting and signal extraction. This paper presents forecasting and concurrent
signal extraction filters constructed in continuous-time, such that the resulting mean
squared error (MSE) is minimal among all linear estimators. For the forecasting results,
it is important to assume the process is causal, and the optimal forecasting filter
is typically represented as the convolution of a tempered distribution with the data
process. When combined with a smooth signal extraction filter, these forecast tempered
distributions can result in tractable concurrent filters for estimating trends and other
movements of interest. In practice, one might proceed to discretize the signal extraction
estimates in accordance with the observed data, which is typically sampled regularly
at a fixed frequency from the data process.

We begin by setting out the forecasting results for stationary causal processes
(including, but not limited to, the CARMA processes) in Sect. 2, also introducing some
basic concepts about continuous time concurrent filters. Section 3 extends these results
to integrations of causal moving averages, so that nonstationarity can be addressed.
Then Sect. 4 treats concurrent signal extraction by combining known results on sym-
metric signal extraction (McElroy and Trimbur 2006) with the preceding forecasting
results. In some applications involving unobserved components, it is necessary to per-
form spectral factorization of spectra. This concept is explained in Sect. 4, and an
algorithm to accomplish spectral factorization is described in the Appendix, along
with the proofs of all theorems. An illustration of concurrent signal extraction is also
developed in Sect. 4, with some discussion of how the method can be used on observed
data.

2 Forecasting causal filtered noise processes

Define a causal filtered noise (CFN) process Y via Y = g ∗ ε with g supported on
R

+ = [0,∞) and ε continuous time white noise (Priestley 1981, pp. 156–158), which
may or may not be Gaussian. Here ∗ denotes convolution, so that at each time t we
have Y (t) = ∫ ∞

0 g(x)ε(t − x) dx . This process consists of noise {ε(t)} filtered by g;
since Y (t) only depends upon present and past values of the noise process, it is called
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causal. These processes form the core class for this paper, and are fairly broad. They
are mean zero and covariance stationary, with autocovariance function

R(h) = E[Y (t)Y (t + h)] = σ 2 (g ∗ g)(h) (1)

for any h ∈ R, where σ is the scale of the continuous time white noise (WN (σ 2)
hereafter), and g(x) = g(−x). A simple example of a CFN process is provided by
g(x) = 1[0,c](x) for some c > 0, which produces a c-dependent covariance structure
on the resulting process Y .

A very useful class of examples is afforded by the CARMA processes. Consider
a CARMA process {Y (t)} as described in Brockwell (2004), repeated here for easy
reference. Let {ε(t)} be WN (σ 2), and let D be the mean-square differentiation operator
defined in (Priestley 1981, p. 164)—also see McElroy and Trimbur (2006). Consider
relatively prime polynomials a(z) = z p + a1z p−1 + · · · + ap and b(z) = b0 + b1z +
· · · + bq zq such that

a(D)Y (t) = b(D)ε(t) (2)

where the distinct roots λ1, . . . , λP of a(z) have negative real part and multiplicities
k1, . . . , kP , so that a(z) = �P

r=1(z − λr )
kr . The case of simple poles was expounded

in Brockwell (2004) and extended to repeated roots in Tsai and Chan (2009); also see
Brockwell and Lindner (2009).

In the definition of the CARMA, it is vital that q < p. For short the process is
referred to as a CARMA(p,q). The condition that the AR roots have negative real part
ensures a stationary process (Brockwell 2004). Then there exists a causal kernel g
such that Y = g ∗ ε, given by

g(x) =
P∑

r=1

1

(kr − 1)! · ∂
kr −1

∂ykr −1

{
b(y) exp{yx}
�� �=r (y − λ�)

k�

}

|y=λr 1[0,∞)(x). (3)

(By convention 0! = 1.) Hence the autocovariance function consists of linear combi-
nations of exponentials and sinusoids multiplied by polynomials.

Returning to the general CFN process, the h-step ahead forecasting problem is to
determine the minimum mean squared error (MMSE) forecast of Y (t + h) given data
Y = {Y (s)}s≤t . Here h > 0, and the forecast is denoted ̂Y (t + h). A limitation here is
that a semi-infinite past is assumed; the forecasting problem utilizing a finite-sample
is not treated here. (When the forecasting kernel decays to zero rapidly enough, the
distant past has no impact, and we can truncate the filter to a finite past without any
change to the estimates.) The MMSE forecast is a linear function of the data if {Y (t)} is
a Gaussian process. We focus on this case, since linear functions are easy to work with
in practice. Relaxing Gaussianity, one may instead formulate the problem as seeking
the filter with smallest MSE among all linear estimators in Y, i.e., among all causal
filters. Only under the Gaussian assumption do we know that our MMSE estimator is
optimal among all estimators, linear and non-linear. Therefore we have
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̂Y (t + h) = (ψ ∗ Y )(t),

whereψ is supported on R
+ (so that we only utilize present and past data). A solution

to this problem is given in Theorem 1 below. Although ψ depends on h, this will be
suppressed in the notation.

First, we introduce some helpful notation. The lag operator L is defined formally
via L = e−D , and acts on a process by shifting it back one time unit. Thus LsY (t) =
Y (t − s) for all s, t ∈ R. Filtering of continuous-time processes is equivalent to
convolution of the input data with a so-called kernel function. Formally this is described
as the action of a filter operator defined as follows (see McElroy and Trimbur (2006)
for more discussion). If θ is a kernel function and X is our input process, then our
output process at time t has value

(θ ∗ X)(t) =
∫
θ(u)X (t − u) du =

∫
θ(u)Lu X (t) du =

∫
θ(u)Lu du X (t).

Hence we define the filter operator (or filter for short) associated with the kernel θ
via 
(L) = ∫

θ(u)Lu du, which acts on processes via convolution of the associated
kernel. In general we use lower case for a kernel, and upper case for the corresponding
filter; in particular, G(L) = ∫

g(u)Lu du. The parallels to the discrete-time case
are obvious and deliberate. Note that the filter’s frequency response function (frf)
is 
(e−iλ) = F[θ ](λ), the fourier transform (FT) of θ . This also establishes our
normalization conventions about the FT. The spectral density of a stationary stochastic
process is the FT of the autocovariance function, and therefore is proportional to
the squared magnitude of the FT of g. Note that in the CARMA case, G(e−iλ) =
b(iλ)/a(iλ), and g in (3) equals F−1[b(i ·)/a(i ·)].

This discussion can be generalized somewhat when the kernel θ is not well-defined
as a function, even when
(L) is well-defined. For example, we may have
(L) = L0

(the identity filter), which has kernel θ given by the Dirac delta function at zero (Folland
1995); this is actually a tempered distribution, not an actual function. It is a reality of
continuous-time filtering that many filters of interest only have kernels that exist in
the sense of tempered distributions, not being proper functions; in this case it is not
useful to write down the kernels.

So the forecasting problem is therefore to determine�(L) (this depends on h, which
is fixed throughout the discussion) such that�(L)Y (t) is a MMSE linear estimator of
Y (t +h), for any t ∈ R. We present a general expression for the frf for CFN processes,
and a more particular expression for the CARMA case.

Theorem 1 The MMSE forecast filter �(L) for a Gaussian CFN process Y = g ∗ ε
has frf

�(e−iλ) =
∫ ∞

0 g(x + h)e−iλx dx
∫ ∞

0 g(x)e−iλx dx
.
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Furthermore, suppose the CFN is a CARMA process (2), and let

c(r)(z) = ∂kr −1

∂ykr −1

{
b(y) exp{yh}

(z − y)�� �=r (y − λ�)
k�

}

|y=λr (4)

be defined for any complex z �= λr , for r = 1, . . . , P. Then the filter frf is given by

�(e−iλ) =
P∑

r=1

c(r)(iλ)

(kr − 1)! · a(iλ)

b(iλ)
.

The spectral density of the error process is | ∫ h
0 g(u)e−iλu du|2σ 2, with minimal MSE

of (2π)−1 ∫ h
0 g2(x) dx σ 2.

Remark 1 If the domains of integration in the first formula for �(e−iλ) were over all
R instead of R

+, the frf would trivially reduce to eiλh corresponding to L−h . This
“perfect” forecast function corresponds to having all data available.

Remark 2 When the AR and MA roots have multiplicity one, then the frf can be
written as

�(e−iλ) =
p∑

r=1

b(λr ) exp{λr h}
(iλ− λr )�� �=r (λr − λ�)

a(iλ)

b(iλ)
.

Because ȧ(λr ) = �� �=r (λr − λ�), we can formally express the filter as

�(L) =
p∑

r=1

b(λr ) exp{λr h}
ȧ(λr )

�� �=r (D − λ�)

b(D)
.

This typically has a tempered distribution for its kernel, since the numerator has order
p − 1 in D, and the denominator has order q. The forecasted process ̂Y (t + h) (as a
function of t) is a CARMA(p,p−1). In particular,

a(D) ̂Y (t + h) = �(L)b(D)ε(t) =
( p∑

r=1

b(λr ) exp{λr h}
(D − λr ) ȧ(λr )

)

ε(t).

Real-data applications are discussed in Sect. 4. Typically, the forecasting filters have
non-integrable frfs because they involve the “whitening” transformation b(D)/a(D),
which has a kernel only in the sense of tempered distributions. When the forecasting
filters are combined with suitably smooth filters, such as trend filters, then practical
applications are possible. Below we demonstrate a few theoretical examples of forecast
filters.

Example 1 CAR(1) Let a(z) = z + a1 with λ1 = −a1 (so a1 > 0). Then �(e−iλ) =
e−a1h , i.e., a constant multiplication of the current observation at time present. In this
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case ψ is equal to e−a1h times the Dirac delta function at zero. Compare this result
with the forecast function of the discrete AR(1) with polynomial 1 − φB, namely φh .
The CAR(1) forecast MSE is (1−e−2a1h)/(2a1) times the innovation variance, which
clearly increases in h (to a limiting value of 1/(2a1)) and tends to zero as h→0, which
is intuitive.

Example 2 CAR(2) Let a(z) = z2 + a1z + a2 with roots λ1, λ2. So a1 = −(λ1 +λ2)

and a2 = λ1λ2. Then the filter is

�(L) = eλ1h(D − λ2)

λ1 − λ2
+ eλ2h(D − λ1)

λ2 − λ1

when λ �= λ2. Then the causal filter of the process is g(u) = eλ1u/(2λ1 + a1) +
eλ2u/(2λ2 + a1), which is supported on R

+, so that the MSE (with σ 2 = 1) is

e2λ1h − 1

2λ1(2λ1 + a1)
2 + 2(e(λ1+λ2)h − 1)

(λ1 + λ2)(2λ1 + a1)(2λ2 + a1)
+ e2λ2h − 1

2λ2(2λ2 + a1)
2 .

When λ1 = λ2, then �(L) = exp{λ1h} · {1 + h(D − λ1)}.

3 Forecasting integrated processes

We now consider a more general process: the integrated causal filtered noise (ICFN).
This can be written as

DdY (t) = G(L)ε(t) (5)

where G(L) is a causal filter, and {ε(t)} is WN (σ 2). Note that the presence of Dd on
the left hand side indicates a non-stationary process Y . When it exists, the kernel g
of G(L) = ∫

g(x)Lx dx is assumed to be an integrable function supported on R
+—

as in Brockwell (2004) and the CFN case above. But we also allow for G(L) to be
a constant (without loss of generality, equal to unity) when d ≥ 1, in which case
g does not exist except as a tempered distribution, being equal to the Dirac delta
function. When G(L) is a rational function in D we obtain a CARMA process for
{DdY (t)}. Now as discussed in McElroy and Trimbur (2011), the process {Y (t)} can
be represented in terms of the differentiated process W (t) = DdY (t) and certain initial
conditions. We have

Y (t) =
d−1∑

j=0

D j Y (0)
t j

j ! + [I d W ](t), (6)

where the operator I d is defined recursively via [I d W ](t) = ∫ t
0 [I d−1W ](s) ds with

[I 0W ] = W (the identity operator), and is explicitly given as
∫ t

0 W (s)(t−s)d−1ds/(d−
1)! = W ∗χd(t) for χd(t) = td−11R+(t)/(d −1)!. This representation holds for t > 0,
but can be extended to t < 0 by flipping the bounds of integration.
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A principal example of an ICFN process is a CARIMA. Here the dth derivative of
Y (t) is equal to the CARMA process of the previous section. That is,

a(D)DdY (t) = b(D)ε(t)

using the same notation as Sect. 2 (so p > q). For short this is referred to as a CARIMA
(p,d,q) process.

In forecasting problems it is common practice to assume that initial conditions are
uncorrelated with disturbances; see Bell (1984) for discussion of the discrete-time case
and related issues of signal extraction. In our context, this amounts to the following:

Assumption A {D j Y (0)}d−1
j=0 are uncorrelated with {W (s)}s∈R.

We again consider the forecasting problem, seeking a forecast filter �(L) as in
Sect. 2. As earlier, we assume the Gaussian distribution to get MMSE forecasts; relax-
ing Gaussianity, the filters can be interpreted as having MMSE among all estimators
linear in Y. We first treat the case of a ICFN, where {W (t)} may be WN (i.e., where
G(L) = 1 and g is Dirac) or is a CFN of the type discussed in Sect. 2. We also
provide some more explicit expressions when the process is a CARIMA. Because of
the integration of the processes, the forecast filters will typically have non-integrable
frfs, and their kernels can only be viewed as tempered distributions.

Theorem 2 Let Y be a Gaussian ICFN process (5) with G(L) causal, such that the
kernel g is either Dirac at zero or is a function with domain R

+. Let q( j)(x) =
[I d− j g](x) for 0 ≤ j < d and any x ≥ 0. Under Assumption A, the MMSE forecast
filter �(L) has frf

�(e−iλ) =
∫ ∞

0 g(x + h)e−iλx dx + ∑d−1
j=0 q( j)(h)(iλ)d−1− j

∫ ∞
0 g(x)e−iλx dx

.

Furthermore, suppose the CFN {W (t)} is a CARMA process (2), and let c(r)(z) of (4)
of Theorem 1 be defined. Then the filter frf is given by

q( j)(h) =
P∑

r=1

1

(kr − 1)!
∂kr −1

∂ykr −1

{
b(y) [I d− j ey·](h)
�� �=r (y − λ�)

k�

}

|y=λr

�(e−iλ) = a(iλ)

b(iλ)

⎛

⎝
P∑

r=1

c(r)(iλ)

(kr − 1)! +
d−1∑

j=0

q( j)(h)(iλ)d−1− j

⎞

⎠ .

The spectral density of the error process is | ∫ h
0 q(u)e−iλu du|2σ 2, with minimal MSE

of (2π)−1 ∫ h
0 q2(x) dx σ 2.

Remark 3 This is clearly a direct generalization of Theorem 1—essentially by setting
d = 0 and collapsing empty summation formulas, the former result is recovered. For
ease of reading we present the results separately. There are similarities to the discrete-
time forecasting formulas, which are discussed for a quite general difference-stationary
process in McElroy and Findley (2010).
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Remark 4 For a CARIMA process, one needs to compute [I d− j ey·], which using
induction is [I d− j ey·](h) = y j−d [eyh − ∑d−1− j

k=0 (yh)k/k!].
Example 3 CARIMA(2,1,1) Let a(z) = z2 + a1z + a2 = (z − λ1)(z − λ2) and
b(z) = b0 + b1z with β1 = −b0/b1. When the roots are distinct (they must be
conjugate) we obtain

q(h) = b(λ1)(eλ1h − 1)

λ1(λ1 − λ2)
− b(λ2)(eλ2h − 1)

λ2(λ1 − λ2)

c(1)(z) = b(λ1)eλ1h

(z − λ1)(λ1 − λ2)

c(2)(z) = − b(λ2)eλ2h

(z − λ2)(λ1 − λ2)

�(e−iλ) = a(iλ)

b(iλ)
(c(1)(iλ)+ c(2)(iλ)+ q(h)).

When there is a repeated root, say λ1 = λ2, we have

q(h) = ḃ(λ1)(eλ1h − 1)

λ1
− b(λ1)(eλ1h − 1)

λ2
1

+ b(λ1)heλ1h

λ1

c(1)(z) = ḃ(λ1)eλ1h

z − λ1
− b(λ1)eλ1h

(z − λ1)
2 + b(λ1)heλ1h

z − λ1

�(e−iλ) = a(iλ)

b(iλ)
(c(1)(iλ)+ q(h)).

Example 4 Integrated Brownian motions Here we have {DY (t)} is Gaussian
white noise, so {Y (t)} is a Brownian Motion. Taking higher order integration pro-
duces integrated Brownian Motions, twice integrated Brownian Motions, etc. Now
[I d�0](x) = xd−1/(d − 1)!, and

∫ ∞
h g(x) dx = 0 for h > 0, so the forecast frf is

∑d−1
j=0 (iλh)d−1− j/(d − 1 − j)!. This is a linear combination of derivatives, and is

analogous to the forecast function for cumulated discrete noise. When d = 2 the filter
can be expressed �(L) = 1 + h D, i.e., one determines velocity via applying D, and
then one projects forward h units, adding the value of the current observation. Observe
that in the repeated roots case of Example 2, we obtain this d = 2 forecast function
as the limit as the root λ1 tends to zero, which is intuitive.

4 Concurrent signal extraction

As discussed in McElroy and Trimbur (2006, 2011), it is possible to define MSE
optimal signal extraction filters based on a bi-infinite sample. In this section we now
write Y = S + N , where S and N are unobserved component stochastic processes,
which themselves may be ICFN processes. More typically, at most one of the signal
and noise components is non-stationary; see the discussion in McElroy and Trimbur
(2006), and applications to the discretely observed context in McElroy and Trimbur
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(2011). Essentially, if one component is integrated, then it may be associated with
the trend—that is to say, any trend dynamics in the process may be associated with
an integrated component process. The usual situation is that S is ICFN, while N is a
stationary CFN process.

The classical Wiener-Kolmogorov (Wiener 1949) signal extraction problem is to
compute the MMSE estimate of the unobserved signal S at time t , given a bi-infinite
sample {Y (s)}s∈R. When the process is Gaussian, this estimate is linear and can be
given as a linear filter operating on the data process. Denote this filter by�(L)—with
kernel φ(x)—so that we have by definition

Ŝ(t)|∞−∞ = �(L)Y (t).

The notation shows that the filter depends on past and future values of the data process.
A precise formulation of the optimal estimator is given in Theorem 4 of the Appen-
dix. In practical applications, it is of more interest to compute the concurrent—or
asymmetric—signal estimate, which only depends on present and past data; i.e., the
concurrent signal extraction problem restricts to the semi-infinite sample Y. Even
more generally, we may wish to compute the estimate of the signal at time t based on
data up to time t + h. This is denoted by

Ŝ(t)|t+h−∞
= 
(L)Y (t),

and θ(x) is supported on [−h,∞). When h = 0 we have the concurrent signal
extraction problem. When h > 0 we have an asymmetric signal extraction problem,
but when h < 0 we are forecasting the signal ahead −h steps. We generally refer
to these cases as the asymmetric signal extraction problem. This section sets out a
formula for the kernel θ (that depends on h). As the result below shows, the optimal
filter is obtained by applying�(L) to the forecast-extended process Y (t), utilizing the
multi-step ahead forecasting of Sects. 2 and 3.

Before stating the theorem, we must introduce a few concepts. While the signal
extraction filter�(L) can be computed even when Y is not ICFN—it is only required
that the signal be ICFN and the noise CFN (McElroy and Trimbur 2006)—in order to
forecast Y we require (in this paper) that it be ICFN. In other words, the component
processes must be defined such that their sum is an ICFN (that this need not always
be true, just consider the case that S is Brownian Motion and N is continuous time
white noise). Examples are given after Theorem 3. Furthermore, we must assume that
the conditions described in Theorem 1 of McElroy and Trimbur (2006) hold; namely,

that {D j Y (0)}d
j=0 are uncorrelated with {N (t)} and {U (t)}, where U (t) = Dd S(t)—

the noise is assumed to be stationary CFN and the signal is potentially integrated
(though d = 0 is fine too). Classically and conceptually speaking (Bell 1984), signal
and noise should be orthogonal, so we assume N and U are uncorrelated with one
another. Furthermore, the spectral densities of U and W —defined by the magnitude
squared of the Fourier Transform of the causal kernel of each process, multiplied by
the innovation variance—should have ratio that is suitably integrable and smooth. In
particular, say
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Dd S(t) = U (t) = GS(L)ξ(t) DdY (t) = W (t) = G(L)ε(t)

fU (λ) = |GS(e
−iλ)|2σ 2

ξ fW (λ) = |G(e−iλ)|2σ 2

for notation, the second line defining the spectral densities. Then define�(e−i ·) to be
fU/ fW . Under suitable conditions on this function, �(L) will be the desired MMSE
signal extraction filter for a bi-infinite sample. We summarize this as the following
condition:

Assumption S Suppose that {D j Y (0)}d
j=0 are uncorrelated with N and U , and that

N is uncorrelated with U . Also suppose that �(e−iλ) = fU (λ)/ fW (λ) is integrable
with d − 1 continuous derivatives (though if d = 0, we only require continuity).

Note that the initial value condition in Assumption S implies Assumption A, since
W (t) = U (t)+ Dd N (t). Below we express the general solution for an ICFN process,
and also specialize to the CARIMA case.

Theorem 3 Let Y be a Gaussian ICFN process (5) with G(L) causal, such that the
kernel g is either Dirac at zero or is a function with domain R

+. Let q( j)(x) =
[I d− j g](x) for 0 ≤ j < d and any x ≥ 0. Under Assumption A, the MMSE signal
extraction filter 
(L) has frf


(e−iλ) =
∫ ∞

−h
φ(x)e−iλx dx

+ eiλh

∫ ∞
0

∫ ∞
0 φ(−u − h)g(u + x) du dx + ∑d−1

j=0

∫ ∞
0 φ(−u − h)q( j)(u) du (iλ)d−1− j

∫ ∞
0 g(x)e−iλx dx

.

Furthermore, suppose the CFN {W (t)} is a CARMA process (2), and let c(r)φ (z) be
defined via

c(r)φ (z) = ∂kr −1

∂ykr −1

{
b(y)

[∫ ∞
0 φ(−x − h) exp{yx} dx

]

(z − y)�� �=r (y − λ�)
k�

}

|y=λr (7)

for any complex z �= λr , for r = 1, . . . , P. Then the signal extraction filter frf is given
by

q( j)
φ (h) =

P∑

r=1

1

(kr − 1)!
∂kr −1

∂ykr −1

{
b(y)

[∫ ∞
0 φ(−x − h)[I d− j ey·](x) dx

]

�� �=r (y − λ�)
k�

}

|y=λr


(e−iλ) =
∫ ∞

−h
φ(x)e−iλx dx + eiλh a(iλ)

b(iλ)

×
⎛

⎝
P∑

r=1

c(r)φ (iλ)

(kr − 1)! +
d−1∑

j=0

q( j)
φ (h)(iλ)d−1− j

⎞

⎠ .

Remark 5 Letting h→∞ should recover the classical Wiener–Kolmogorov filter for-
mula. By the integrability of φ and the Dominated Convergence Theorem, this is
indeed the case, i.e., limh→∞
(e−iλ) = �(e−iλ) for each λ.
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To use this result, we need to compute the various cφ and qφ quantities. Also, one
needs to have the spectra of the signal and noise processes to construct the signal
extraction filter �(L). In discrete time series signal extraction, one either assumes a
known form for the signal and noise and constructs the so-called reduced form for
the observed process (called the structural approach), or one assumes a known form
for the observed process and decomposes it as desired into signal and noise (called
the decomposition approach). These methods for discrete time series are discussed
in an abundance of references; see McElroy (2008) and the cited literature therein.
We will illustrate the application of Theorem 3 by developing two examples that
elucidate, respectively, the structural and decomposition approaches for continuous
time processes.

Example 5 Cycle extraction Let the signal be a CARMA(2,0) cycle process S(t)
satisfying

(D2 − 2 log ρD + log2 ρ + λ2
c)S(t) = κ(t),

where ρ ∈ (0, 1) and λc > 0, and {κ(t)} is WN(qσ 2). As discussed in McElroy
and Trimbur (2006), ρ measures persistence and λc is the principal frequency of the
business cycle. This differs from the CARMA(2,1) cycle described in Harvey (1989),
but we prefer the CARMA(2,0) for our example, because it has more integrability,
which in turn facilitates our calculations. Let the AR operator be denoted a(D); the
roots are log ρ + iλc and log ρ − iλc, denoted as λ1 and λ2 respectively. Suppose
that a transitory component N (t) contaminates the cycle, given by a CAR(1), namely
(D + μ)N (t) = ε(t) is WN(σ 2). Call this AR operator c(D). Here q > 0 is the
signal-to-noise ratio, being the ratio of the innovation variances of signal and noise.
We first derive the CARMA(3,2) process for Y (t) = S(t)+N (t). By summing spectral
densities, we have

fY (λ) = |c(iλ)|2qσ 2 + |a(iλ)|2σ 2

|a(iλ)|2|c(iλ)|2 .

Thus the AR polynomial for Y (t) is simply a(D)c(D), but some additional mathe-
matics is required to find the MA polynomial. Upon simplification, the numerator of
fY is found to be

λ4 + (2 log2 ρ − 2λ2
c + q)λ2 + (log2 ρ + λ2

c)
2 + μ2q, (8)

multiplied by σ 2. Suppose the MA polynomial of Y (t) is some τ(D) = D2+τ1 D+τ2.
Equating |τ(iλ)|2 to (8) yields the equations

τ 2
1 − 2τ2 = 2 log2 ρ − 2λ2

c + q

τ 2
2 = (log2 ρ + λ2

c)
2 + μ2q.

This represents a spectral decomposition calculation, which is often computed in
discrete time series analysis. Here we solve for τ2, obtaining both a positive and
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negative solution, and plug into the first equation to obtain τ1. Up to four solution
pairs are obtained (though some may be discarded if they produce non-real values
of τ1). We retain any solutions that produce zeroes ζ1, ζ2 of τ(z) that have negative
real part; for simplicity of exposition, we assume the roots have multiplicity one.
For a more general treatment of the spectral factorization of CARMA processes, see
the Appendix. Then a(D)c(D)Y (t) = τ(D)ξ(t), where ξ is WN(σ 2). The signal
extraction filter has frf and kernel

�(e−iλ) = q
|c(iλ)|2
|τ(iλ)|2 φ(x) =

2∑

j=1

c(ζ j )c(ζ j )

τ (ζ j )τ̇ (ζ j )
exp{ζ j |x |},

using complex integration (see McElroy and Trimbur (2006)). Then we can apply
Theorem 3, noting that d = 0, focusing on the case that h ≥ 0. Computing c(r)φ (z) via
(7) for the three roots λ1, λ2, λ3 = −μ yields

αr = −
2∑

j=1

c(ζ j )c(ζ j )eζ j h

(λr + ζ j )τ (ζ j )τ̇ (ζ j )
c(r)φ (z) = τ(λr )αr

(z − λr )�� �=r (λr − λ�)

for r = 1, 2, 3. This will then produce the frf for the concurrent signal extraction filter
given by

∫ ∞

−h
φ(x) e−iλx dx + eiλh a(iλ)c(iλ)

τ(iλ)

3∑

r=1

c(r)φ (iλ),

which has poles at ζ1, ζ2, λ1, λ2, λ3. This frf is integrable as a function of λ, and hence
the kernel can be calculated explicitly.

cr = τ(λr )αr

�� �=r (λr − λ�)

θ(x) = φ(x)+
2∑

j=1

eζ j (x+h) a(ζ j )c(ζ j )

τ̇ (ζ j )

3∑

r=1

c(r)φ (ζ j )+
3∑

r=1

eλr (x+h) a(λr )c(λr )

τ (λr )
cr ,

for x ≥ −h (and the kernel is zero otherwise).

Example 6 Trend extraction Suppose Y is a CARIMA(p,1,0) with AR polynomial
c(D) of degree p ≥ 0, and we wish to decompose the process in terms of an integrated
signal and a stationary noise process whose signal-to-noise ratio is a pre-determined
q > 0 (decided upon by the practitioner). Letting b(D) = √

q+D and W (t) = DY (t),
we may write

c(D)W (t) = ε(t) =
√

q√
q + D

ε(t)+ D√
q + D

ε(t),
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from which it is apparent that we can decompose Y into signal and noise processes
given as follows: c(D)b(D)DS(t) = ξ(t) which is WN(qσ 2), and c(D)b(D)N (t) =
η(t)which is WN(σ 2), and with the two white noises independent of each other. Then
the sum of these processes has the same second order structure as Y , and hence we
can write Y = S + N . The signal extraction filter is easy to calculate (McElroy and
Trimbur 2006):

�(e−iλ) = 1

1 + λ2/q
φ(x) =

√
q

2
exp{−√

q|x |},

which is the double-exponential weighting kernel. We will apply Theorem 3 for the
case that c(z) = 1 (so for Gaussian processes, Y is a Brownian Motion), and h ≥ 0:
the frf is


(e−iλ) =
∫ ∞

−h
φ(x)e−iλx dx +

∫ −h

−∞
φ(x) dx eiλh,

which has kernel (which acts upon Y (t), although the data goes up through time t +h)
given by

√
q

2
e−√

q|x |1[−h,∞)(x)+ 1

2
e−√

qh �−h(x).

Here �−h denotes the Dirac delta function at −h, which when integrated against
Y (t − x) yields Y (t + h). As h increases, the portion of the asymmetric filter due to
the forecast is increasingly obsolete. The actual estimate therefore takes the form

Ŝ(t)|t+h−∞
=

√
q

2

∫ ∞

−h
e−√

q|x |Y (t − x) dx + 1

2
e−√

qh Y (t + h).

Fig. 1 Simulated Brownian Motion (dotted) with signal extraction estimate overlaid in red (solid). The left
panel uses h = 0 (concurrent filter) and the right panel uses h = 20 (asymmetric filter)
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If the process is sampled at suitably high rate, we might discretize the integral in this
estimate accordingly, and thereby obtain a weighted sum of the data, plus a constant
times the most current data point. Our data goes up through time t + h, but we seek to
estimate the trend at time t . In Fig. 1, we have simulated a Brownian Motion of length
10000, and applied the above estimate for values of t equal to 9001 through 10000.
Note that the exponential weights decay quite swiftly, so there is no loss in practice
by taking only the past 9000 data points rather than an entire semi-infinite past (which
is unavailable). The plots were computed using q = .1 and h = 0 and h = 20 (for
left panel and right panel respectively), with a sampling frequency of 100. When h is
close to zero, the forecasting portion of the filter is dominant, which essentially gives
an attenuated present value; as h→∞, the asymmetric filter more closely resembles
the symmetric filter, yielding an unbiased smooth trend estimate.

5 Appendix

5.1 Proofs

Proof of Theorem 1 We first need to show that the associated error process is orthog-
onal to the sample Y. Let G(L) be the filter associated with the causal kernel g.
The filter is defined by its given frf, and substituting L for e−iλ produces �(L) =∫ ∞

0 g(x + h)Lx dx/G(L). Then the error is

ε(t) = ̂Y (t + h)− Y (t + h) = (�(L)− L−h)Y (t) = (�(L)− L−h)G(L)ε(t)

=
(∫ ∞

0
g(x + h)Lx dx − L−hG(L)

)

ε(t)

=
(∫ ∞

h
g(x)Lx−h dx −

∫ ∞

0
g(x)Lx−h dx

)

ε(t)

= −
(∫ h

0
g(x)Lx−h dx

)

ε(t).

Hence ε(t) is a linear combination of ε(s) for t ≤ s ≤ t+h. In particular, its covariance
with Y (s) for any s ≤ t equals

∫ h

0
g(x)g(x − h + s − t) dx = 0.

This proves optimality of the filter. Now the stated expression for�(L) in the CARMA
case is obtained as follows. Using (3) we have

∫ ∞

0
g(x + h)e−iλx dx =

P∑

r=1

1

(kr − 1)!
∂kr −1

∂ykr −1

{
b(y) exp{yh}

(iλ− y)�� �=r (y − λ�)
k�

}

|y=λr .
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Hence with the definition of c(r)(z), we obtain the given frf. The error spectral density
is identified immediately from the forecast error expression given above. 
�
Proof of Theorem 2 The strategy is similar to the stationary case. We will demonstrate
that the forecast error process only depends on future innovations, and hence together
with Assumption A and (6) must be orthogonal to the data, and hence MSE optimal.
Let q be a function that solves the ordinary differential equation (ODE) q(d)(x) = g(x)
for x ≥ 0 with boundary conditions q( j)(0) = 0 for 0 ≤ j < d, and consider the filter
defined by

L−h −
∫ h

0 q(x)Lx−h dx · Dd

G(L)
,

which has forecast error process only depending on future innovations. The frf of this
filter is

G−1(e−iλ) eiλh
[

G(e−iλ)− (iλ)d
∫ h

0
q(x) e−iλx dx

]

= G−1(e−iλ) eiλh
[∫ ∞

0
g(x)e−iλx dx + (iλ)d−1q(h)e−iλh

+ · · · + q(d−1)e−iλh −
∫ h

0
g(x)e−iλx dx

]

= G−1(e−iλ)

⎡

⎣
∫ ∞

0
g(x + h)e−iλx dx +

d−1∑

j=0

q( j)(h)(iλ)d−1− j

⎤

⎦ .

The first equality utilizes integration by parts repeatedly, which produces various
boundary terms, using the boundary conditions q( j)(0) = 0. The final expression is
a causal filter, and so it only remains to solve the ODE. Recursively integrating and
using each boundary condition allows us to write q( j)(x) = [I d− j g](x), and so we
have proved that the given�(L) is MSE optimal. When the process is also CARIMA,
we can calculate the q( j)(h) quantities by applying the I d− j operator to the expression
(3), which by linearity only affects the exponential term. Also the error spectral density
follows immediately from the above forecast error decomposition. 
�
Proof of Theorem 3 The optimal estimate is

∫ ∞

−h
φ(x)Y (t − x) dx +

∫ −h

−∞
φ(x) ̂Y (t − x)|t+h−∞

dx,

since the resulting error process is

[̂S(t)|∞−∞ − S(t)] +
∫ −h

−∞
φ(x)( ̂Y (t − x)− Y (t − x)) dx,
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which is orthogonal to the sample {Y (s), s ≤ t + h}; the first term is orthogonal to the
whole data process, while the second term is orthogonal to the sample by Theorem 1.
Now the action of this filter on Y (t) is given by

∫ ∞

−h
φ(x)Lx dx +

∫ −h

−∞
φ(x)�−(x+h)(L) dx L−h,

where we have denoted the forecast filter operating on Y (t + h) that forecasts −(x +
h) steps ahead by �−(x+h). Next, insert the filter formulas from Theorem 2, and
by linearity the integration against φ operates directly on g and the q( j) functions.
Simplifying, the result is the stated frf 
(e−iλ). In the CARIMA case, we can again
insert the corresponding expressions from Theorem 2, and by linearity obtain the
modified function c(r)φ and q( j)

φ as stated. 
�

5.2 Spectral factorization for CARMA processes

When summing two independent CARMA processes, the aggregate will also be a
CARMA process, whose spectral density can be computed as the sum of the corre-
sponding spectra. Say the processes are written informally as b( j)(D)/a( j)(D) ε( j)(t)
for j = 1, 2 and two independent WN (σ 2

( j)) sequences, and the MAs have order q j

and the ARs have order p j , each satisfying the stationarity conditions described in
Sect. 2. Summing their spectra and finding a common denominator yields

|b(1)(iλ)|2|a(2)(iλ)|2σ 2
(1) + |b(2)(iλ)|2|a(1)(iλ)|2σ 2

(2)

|a(1)(iλ)|2|a(2)(iλ)|2
.

Now the polynomial in λ2 in the denominator has order p1 + p2, whereas the poly-
nomial in λ2 in the numerator has order q = max{q1 + p2, p1 + q2}. Of course the
function is integrable. As shown below, we can find a polynomial c and constant σ 2

such that |c(iλ)|2σ 2 equals the numerator expression, with the result that the aggregate
process can be represented as c(D)/[a(1)(D)a(2)(D)] ε(t), where ε is WN(σ 2).

First, the numerator polynomial can be written as some σ 2 times γ (λ2) = 1 +
γ1λ

2 +· · ·+γqλ
2q . The coefficients γk are determined by expanding and recombining

the CARMA polynomials. The polynomial γ has q roots {ωk}, and hence γ (λ2) =
�

q
k=1(1−λ2ω−1

k ). These roots may be real or complex; either way, we can write each

factor above as (1 − λ2ω−1
k ) = (1 − λω

−1/2
k )(1 + λω

−1/2
k ). Thus the full collection

of roots of γ (λ2) is {ω1/2
k ,−ω1/2

k }.
On the other hand, we wish to construct c(z) = �

q
k=1(1 − zζ−1

k ) such that
|c(iλ)|2 = γ (λ2) and its roots ζk have negative real part. At once we have the iden-
tification ζk = iω1/2

k , by the uniqueness of factorization. That is, we consider the

entire collection {±iω1/2
k } and retain those having negative real part. Due to the plus-

and-minus structure, these quantities will always occur in pairs with non-negative and
non-positive real portions. Now the real portion is equal to zero iff the corresponding
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ωk equals a non-negative real number. This in turn happens iff γ (λ2) takes on a zero
value at λ = √

ωk . In analogy to the case of discrete-time series spectral decompo-
sitions, this is a sort of “non-invertibility,” in that the spectral density has a zero. So
long as the MA polynomials b(1) and b(2) have roots with negative real part (and the
AR polynomials always have this property by assumption), there can be no spectral
zeroes, and c is well-defined.

In summary, the algorithm involves first computing γ (λ2) andσ 2 by simple algebra;
secondly, we compute the roots {ωk} of γ ; thirdly, compute the collection {±iω1/2

k }
and retain the subset with negative real part, designating these to be the {ζk}. Finally,
construct c via multiplication.

5.3 Symmetric signal extraction

For ease of reference, we repeat the main theorem of McElroy and Trimbur (2006)
here. We take the notation and concepts of Sect. 4 as given, but can relax the assumption
that the signal and noise processes have a Wold form. Rather, we assume only that U
and N have autocovariance functions that are either integrable, or are interpreted as a
multiple of the Dirac function. This includes the case considered in Sect. 4.

Theorem 4 (McElroy and Trimbur 2006) Suppose that U and N have autocovariance
functions that are either integrable or are multiples of the Dirac function at the origin,
and suppose that Assumption B holds. Then the MMSE signal extraction filter �(L)
has frf given by �(e−iλ) = fU (λ)/ fW (λ). Because this is integrable by assumption,
the kernel φ exists. The spectral density of the error process is fU fN/ fW .

A proof of this result is given in McElroy and Trimbur (2006).
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