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Abstract We derive the Edgeworth expansion for the studentized version of the
kernel quantile estimator. Inverting the expansion allows us to get very accurate confi-
dence intervals for the pth quantile under general conditions. The results are applicable
in practice to improve inference for quantiles when sample sizes are moderate.

Keywords Edgeworth expansion · Quantile · Kernel quantile estimator ·
Confidence interval

1 Introduction

Although it is a central activity in financial and insurance applications, risk assessment
is equally important in environmental regulation, in wildlife management, climate sci-
ence and also in medicine. The demand for more precise methods of risk evaluation
during the last decade has lead to renewed interest in some well established meth-
ods of inference. Undoubtedly, nonparametric inference for quantiles is among these
methods. The risk measure VaR, widely used in the financial industry, is a tantamount
quantile. The coherent risk measures (like conditional value at risk (e.g., Uryasev and
Rockafellar 2001) also represent suitable transformations of quantiles. The Lorenz
curve (Lorenz 1905), widely used is both economy and ecology, also represents trans-
formation of quantiles. The papers Ogryczak and Ruszczyński (1999, 2002) give an
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168 Y. Maesono, S. Penev

applied focus on how transformations of quantiles can be used efficiently in the theory
of dual stochastic dominance and related mean-risk models.

Although quantile estimation is a very old and well established area of inference
and its asymptotic theory is well developed, a new insight is necessary to improve
the inferential techniques for small to moderate samples. Very often, banks are using
loss data in risk analysis. Even for a 20-year period (which is a large period given the
dynamics in the financial industry), the accumulated data would amount to only 240
observations. The number of trading days on the stock market within a year is about
250. Applying first order asymptotic methods for estimation and confidence interval
construction for sample sizes such as these may lead to non-precise coverage and any
improvement is worth pursuing.

For a continuous random variable X with a cumulative distribution function F(x),
having density function f (x) and satisfying E |X | < ∞, the p-th quantile is defined
as Q(p) = in f {x : F(x) ≥ p}.Given a sample X1, X2, . . . , Xn from F, the simplest
estimator of Q(p) is the sample quantilêξpn; that is, the p-th quantile of the empirical
distribution function Fn(x) = 1

n

∑n
i=1 I (Xi ≤ x). Under mild conditions, n1/2{̂ξpn −

Q(p)} is asymptotically normal, with an asymptotic variance σ 2 = p(1−p)
f 2(Q(p))

(see e.g.,
Serfling 1980). This asymptotic variance happens to be large in the tails where the
density f (x) has small values, thus indicating difficulties in estimating extreme quan-
tiles. Very often in practice, to overcome the difficulties one puts more structure in the
model (for example, via extreme value distribution modeling) to improve inference
in the tails. If one does not have enough evidence of such a structure and prefers to
stay within the nonparametric modeling framework then a way to improve inference
would be to consider alternative estimators and, for the purpose of confidence interval
construction, to take into account the effect of higher order terms in the Edgeworth
expansion. The inversion of such an Edgeworth expansion is supposed to give more
precise confidence intervals for the quantile, thus improving the coverage accuracy
for small to moderate samples.

One obvious choice of alternative estimator is the kernel quantile estimator

Q̂ p,hn = 1

hn

∫ 1

0
F−1

n (x)K

(

x − p

hn

)

dx (1)

where F−1
n (.) denotes the inverse of the empirical distribution function, K (.) is a suit-

ably chosen kernel, and hn is a bandwidth. Using (1), we are weighting up different
sampling quantiles by using weights that are determined by the kernel instead of just
using only one empirical sample quantile. The choice of bandwidth is a judicious one
and serves the purpose to ensure consistency, asymptotic normality, asymptotic bias
elimination, and higher order accuracy of the estimator Q̂ p,hn . The estimator (1) has
been studied by many researchers in the past (for a non-exclusive list, see Falk 1984,
1985; Sheather and Marron 1990; Xiang 1995a,b and the references therein).

Obviously (1) is an L-estimator since it can be written as a weighted sum of the
order statistics X(i), i = 1, 2, . . . , n:
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Q̂ p,hn =
n
∑

i=1

vi,n X(i), vi,n = 1

hn

∫ i
n

i−1
n

K

(

x − p

hn

)

dx . (2)

The Edgeworth expansion for the asymptotic distribution of the standardized ver-
sion of (1) was recently obtained in Maesono and Penev (2011). In the same paper,
the validity of the expansion is demonstrated. In addition, many numerical examples
show the superior performance of the Edgeworth approximation in comparison to the
simple normal approximation of the distribution of the kernel quantile estimator when
sample sizes are small. As a partial case from the above expansion it is seen that, up
to first order convergence, the kernel smoothed estimator does not improve upon the
sample quantile. This finding coincides with earlier research presented originally in
Falk (1985). The improvement with respect to the sample quantile can only show up
in higher order terms of the MSE approximation (this phenomenon has been called
deficiency). Much of the works of Falk (1984), Xiang (1995a,b) and Xiang and Vos
(1997) and others has been directed towards showing advantages of the kernel quantile
estimator with respect to the deficiency criterion.

In this paper, we consider the Edgeworth expansion of the studentized version of
the kernel quantile estimator. Since the standard deviation of the estimator itself is
typically unknown, it has to be estimated for confidence interval construction. Hence
the Edgeworth expansion for the studentized version is necessary and is derived in this
paper. Our result is used then to construct improved confidence intervals for quantiles.

2 The difficulties when using sample quantiles

Our approach is opposed to the use of sample quantile estimators and the inversion
of their Edgeworth expansion for the same purpose. First, it is well known that due to
the discreteness of the distribution of the sample quantile, obtaining a standard Edge-
worth expansion for its distribution of an order O(n−1/2) is the best one can get. Some
modifications of the Edgeworth expansion have been proposed for the discrete case
(Reiss 1990) which allow us to define the Edgeworth expansion of order o(n−1/2) and
beyond also for the discrete case. These expansions depend heavily on the left and
right derivatives of F at the true quantile. Yet the resulting Edgeworth expansion for
the empirical quantile is virtually impossible to use in practical settings. For example,
the paper Janas (1993) gives theoretical derivation for the Edgeworth expansion of the
sample quantile by treating both the standardized and the studentized version. It can
be seen from the obtained expansions on page 320 that the O(n−1/2) term contains a
very complicated expression involving unknown characteristics of the density f.

Alternative expansions have been suggested in Hall and Sheather (1988) whereby
the density f (Q(p)) in σ 2 has been estimated by a simple estimator based on the spac-
ing of two order statistics with indices that are some distance apart. A finer version of
the estimator has also been suggested in Hall (1991). The purpose in these cases has
been to avoid the difficulty caused by the fact that there is no natural estimator of the
variance of the sample quantile (e.g., Hall and Martin 1988).

Now we can spell out our agenda in this paper. The point we are making is that if we
use the kernel quantile estimator (with a judicious choice of bandwidth and a suitable
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kernel) then we can get an estimator whose first order performance is equivalent to the
sample quantile but with the additional advantage that it can be easily studentized; the
Edgeworth expansion up to order o(n−1/2) for the studentized version can be derived
and the theoretical quantities involved in the expansion can easily be estimated in a
coherent strategy via jackknife type estimators. In addition, a Cornish–Fisher inversion
can be used to construct confidence intervals for the quantile. The resulting confidence
intervals are more precise than the ones obtained via inversion of the normal approx-
imation and can be utilized to improve the coverage accuracy for moderate sample
sizes.

3 Notation and main results

A standard approach in the study of asymptotic properties of L-statistics is to first
decompose them into an U-statistic plus a small-order remainder term and to apply
asymptotic theory for the main term, that is, the U-statistic.

We stress on the new moments and theoretical difficulties in relation to the deriva-
tion of the Edgeworth expansion of order o(n−1/2) for the kernel quantile estimator.
They are common in both the standardized and studentized case and are related to
the fact that the specific requirement on the bandwidth hn for the sake of eliminat-
ing the asymptotic bias triggers the need to include further contributions from the
terms of order O(n−1) of the appropriately resulting U-statistic. These contributions
have to be considered to achieve the desired Edgeworth expansion with remainder of
order o(n−1/2). The general result is involved, but its application in the most typi-
cal and practically relevant case of a symmetric compactly supported kernel K (·) is
significantly simplified.

We will be using a compactly supported kernel K (x) on (−1, 1). The kernel is said
to be of order m if

K ∈ L2(−∞,∞), K (m) ∈ Lip(α) for some α > 0,
∫ 1

−1
K (x) dx = 1,

∫ 1

−1
xi K (x) dx = 0, i = 1, 2, . . . ,m − 1,

∫ 1

−1
xm K (x) dx �= 0.

The basic assumption on the bandwidth is

hn = o(n−1/4) and lim
n→∞(n

1/4hn)
−kn−β = 0 (3)

for any β > 0 and any integer k. The default bandwidth hn in our theoretical treatment
will be hn = n−1/4(log n)−1.

Let {Yi }i=1,...,n be independent random variables uniformly distributed on (0, 1)
and define
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Q̄(p) = 1

hn

∫ 1

0
F−1(x)K

(

x − p

hn

)

dx,

Îx (Y1) = I (Y1 ≤ p + hn x)− (p + hn x),

g1n(Y1) = −
∫ 1

−1
Q′(p + hn x)K (x) Îx (Y1) dx,

σ 2
n = V ar(g1n(Y1)),

d1n = σ−1
n n−1/2, d2n = σ−1

n n−3/2h−1
n , d3n = σ−1

n n−5/2h−2
n ,

g2n(Y1,Y2) = −
∫ 1

−1
Q′(p + hn x)K ′(x) Îx (Y1) Îx (Y2) dx,

g3n(Y1,Y2,Y3) = −
∫ 1

−1
Q′(p + hn x)K (2)(x) Îx (Y1) Îx (Y2) Îx (Y3) dx,

ĝ1n(Y1) = −1

2

∫ 1

−1
Q′(p + hn x)K (2)(x)E[ Î 2

x (Y2)] Îx (Y1) dx,

A1n =
n
∑

i=1

g1n(Yi ), A2n =
∑

Cn,2

g2n(Yi ,Y j ), A3n =
∑

Cn,3

g3n(Yi ,Y j ,Yk)

and Â1n = ∑n
i=1 ĝ1n(Yi ).

We will use the notation oL(n−1/2) to indicate that

P(|oL(n
−1/2)| ≥ n−1/2γn) = o(n−1/2)

for someγn → 0, as n → ∞. In particular, we will single out the case whereγn = 1
log n

via the notation o�(n−1/2), i.e., to indicate that

P(|o�(n−1/2)| ≥ n−1/2(log n)−1) = o(n−1/2)

as n → ∞.
Under additional assumption on the tails (

∫ [F(x)(1 − F(x))]1/5dx < ∞) and
some further smoothness assumptions on the fourth order kernel K (x) (i.e. m = 4)
we obtained in Maesono and Penev (2011) the following stochastic expansion:

σ−1
n

√
n(Q̂ p,hn − Q̄(p))

= d1n A1n + d2n A2n + d3n A3n + d3n(n − 1) Â1n + δ

σn
√

n
+ oL(n

−1/2). (4)

Hereby δ = Q′(p)( 1
2 − p) + 1

2 p(1 − p)Q′′(p). This expansion was further used to
obtain the Edgeworth expansion for

P(
√

n(Q̂ p,hn − Q(p)) ≤ xσn)

in terms of
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e1n = E[g3
1n(Y1)], e2n = E[g1n(Y1)g1n(Y2)g2n(Y1,Y2)],

e3n = E[g1n(Y2)g1n(Y3)g2n(Y1,Y2)g2n(Y1,Y3)],
e4n = E[g1n(Y1)g1n(Y2)g1n(Y3)g3n(Y1,Y2,Y3)],
e5n = E[g1n(Y1)ĝ1n(Y1)] and e6n = E[g2

2n(Y1,Y2)]

(5)

(see Maesono and Penev 2011, Theorem 2). Under the additional conditions
∫ 1
−1 K ′(x) dx = 0 and

∫ 1
−1 K ′′(x) dx = 0 the expansion simplifies. For the pur-

pose of later comparison with the results for the studentized case, we quote this final
expansion (see Remark 3, Equation (17) in Maesono and Penev 2011):

P(
√

n(Q̂ p,hn − Q(p)) ≤ xσn)

= 	(x)− φ(x)
x2 − 1

6n1/2σ 3
n

(

e1n + 3e2n

hn

)

− δ

σn
√

n
φ(x)+ o(n−1/2). (6)

Now we move over to the new results concerning the studentized case. We will
derive an asymptotic representation of the studentized quantile estimator with resid-
ual oL(n−1/2).

To be able to studentize the statistic Q̂ p,hn , we need a consistent estimator of σ 2
n .

We propose the following jackknife type variance estimator

σ̂ 2
n = (n − 1)

n
∑

i=1

{Q̂(i)
p,hn

− Q̂ p,hn }2. (7)

Here Q̂(i)
p,hn

is based on the resulting (n − 1) observations from the original sample
after the observation Xi is left out. For the sake of simplicity, we use same bandwidth
hn for Q̂(i)

p,hn
and Q̂ p,hn .

Lemmas 1 and 2 given below for the studentized case relate to the stochastic expan-
sions of orders oL(n−1/2) (or in particular o�(n−1/2)).

Lemma 1 Assume
∫ [F(x)(1 − F(x))]1/5 dx < ∞. Let K be a fourth order kernel

(i.e. m = 4) and in addition K (5) ∈ Lip(α), α > 0 holds. Let Q(5) be uniformly
bounded in a neighbourhood of p (0 < p < 1) and f (Q(p)) > 0. Further, choose
hn satisfying (3). Then we have

σ̂ 2
n = σ 2

n + n−1h−2
n (2e5n + e6n)+ n−1 B1n + 2n−1h−1

n B̂1n + 2n−2h−2
n B2n

+o�(n
−1/2)

where

ζ1n(x) = g2
1n(x)− σ 2

n , ζ̂1n(x) = E[g2n(x,Y )g1n(Y )],
ζ2n(x, y) = E[g3n(x, y,Y )g1n(Y )] + E[g2n(x,Y )g2n(y,Y )],

B1n =
n
∑

i=1

ζ1n(Yi ), B̂1n =
n
∑

i=1

ζ̂1n(Yi ), B2n =
∑

Cn,2

ζ2n(Yi ,Y j )

and Y is an independent copy of Yi .
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Using this asymptotic representation of the variance estimator, we have the follow-
ing representation of the studentized kernel quantile estimator.

Lemma 2 Under the assumptions of Lemma 1 we have

(i)

σn σ̂
−1
n = 1 + n−1h−2

n σ−2
n

(

3

2
σ−2

n e3n − e5n − 1

2
e6n

)

− 1

2
n−1σ−2

n B1n

−n−1h−1
n σ−2

n B̂1n − n−2h−2
n σ−2

n D2n + o�(n
−1/2) (8)

where

η2n(x, y) = E[g3n(x, y,Y )g1n(Y )+ g2n(x,Y )g2n(y,Y )]
−3σ−2

n E[g2n(x,Y )g1n(Y )]E[g2n(y,Y )g1n(Y )],
D2n =

∑

Cn,2

η2n(Yi ,Y j ).

(ii)

√
nσ̂−1

n {Q̂ p,hn − Q̄(p)}
= νn + d1n A1n + d2n�2n + d3n�3n + d3nn�̂1n + oL(n

−1/2) (9)

where

νn = −1

2
σ−3

n n−1/2e1n − σ−3
n n−1/2h−1

n e2n + δ

σn
√

n
,

λ2n(x, y) = g2n(x, y)− σ−2
n

{

E[g2n(x,Y )g1n(Y )]g1n(y)

+E[g2n(y,Y )g1n(Y )]g1n(x)
}

−1

2
hnσ

−2
n

[

{g2
1n(x)− σ 2

n }g1n(y)+ {g2
1n(y)− σ 2

n }g1n(x)
]

,

λ3n(x, y, z) = g3n(x, y, z)

−σ−2
n

{

g1n(x)η2n(y, z)+ g1n(y)η2n(x, z)+ g1n(z)η2n(x, y)

+ζ̂1n(x)g2n(y, z)+ ζ̂1n(y)g2n(x, z)+ ζ̂1n(z)g2n(x, y)
}

,

λ̂1n(x) = ĝ1n(x)+ σ−2
n

{(

3

2
σ−2

n e3n − e5n − 1

2
e6n

)

g1n(x)

+E[η2n(x,Y )g1n(Y )] + E
[

g2n(x,Y )ζ̂1n(Y )
]

}

,

�2n =
∑

Cn,2

λ2n(Yi ,Y j ), �3n =
∑

Cn,3

λ3n(Yi ,Y j ,Yk), �̂1n =
n
∑

i=1

λ̂1n(Yi )
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and Y is an independent copy of Yi .

We are now ready to state the theorem.

Theorem 1 Under same regularity conditions as in Lemma 1 we have

P(
√

nσ̂−1
n (Q̂ p,hn − Q̄(p)) ≤ x) = Sn(x − νn)+ o(n−1/2). (10)

Here

Sn(x) = 	(x)− φ(x)

{

x2 − 1

6n1/2σ 3
n

(

e1n + 3e∗
2n

hn

)

+ 1

nh2
n

×
(

x

4σ 2
n

{4e∗
5n + e∗

6n} + x3 − 3x

6σ 4
n

{3e∗
3n + e∗

4n} + x5 − 10x3 + 15x

8σ 6
n

e∗
2n

2

)}

where

e∗
2n = E[g1n(Y1)g1n(Y2)λ2n(Y1,Y2)],

e∗
3n = E[g1n(Y2)g1n(Y3)λ2n(Y1,Y2)λ2n(Y1,Y3)],

e∗
4n = E[g1n(Y1)g1n(Y2)g1n(Y3)λ3n(Y1,Y2,Y3)],

e∗
5n = E[g1n(Y1)λ̂1n(Y1)] and e∗

6n = E[λ2
2n(Y1,Y2)].

We note that e∗
2n, e∗

3n, . . . , e∗
6n can be expressed by e1n, e2n, . . . , e6n via

e∗
2n = −e2n − hne1n,

e∗
3n = σ−2

n e2
2n + o(n−1/4),

e∗
4n = −2e4n − 3e3n + 6σ−2

n e2
2n, (11)

e∗
5n = 7

2
σ−2

n e3n + σ−2
n e4n + 1

2
e5n − 1

2
e6n − 3σ−4

n e2
2n,

e∗
6n = e6n − 2σ−2

n e3n + 2σ−4
n e2

2n + o(n−1/4).

The next theorem shows that the chosen bandwidth hn = n−1/4(log n)−1 allows us
to eliminate the asymptotic bias when a kernel of order m = 4 is used.

Theorem 2 Under the same regularity conditions as in Lemma 1 we have

P(
√

nσ̂−1
n (Q̂ p,hn − Q(p)) ≤ x) = Sn(x − νn)+ o(n−1/2). (12)
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Expanding the function Sn(x − νn) around x and keeping the O( 1√
n
) terms only

we can also write (12) as follows:

P(
√

nσ̂−1
n (Q̂ p,hn − Q(p)) ≤ x) = 	(x)− φ(x)

{

δ

σn
√

n
+ −2x2 − 1

6n1/2σ 3
n

e1n

+ −x2 − 1

2n1/2σ 3
n hn

e2n + 1

nh2
n

[

x

4σ 2
n
(2e5n − e6n)+ −x3 + 3x

2σ 4
n

e3n

− x3

3σ 4
n

e4n + x5 + 2x3 − 41x

8σ 6
n

e2
2n

]}

+ o(n−1/2). (13)

The derivations that lead from (12) to (13) are omitted to save space.

Remark 1 If we use a kernel satisfying the conditions
∫ 1
−1 K ′(x) dx = 0 and

∫ 1
−1 K ′′(x)

dx = 0, we can show that e3n, e4n, e5n, e6n and e2
2n are all O(hn). For instance, it is

easy to see that

E[ Îx1(Y2) Îx2(Y3) Îx3(Y1) Îx3(Y2) Îx4(Y1) Îx4(Y3)]
= p3(1 − p)3 + hnbn(x1, x2, x3, x4)

where bn is a bounded function of x1, x2, x3 and x4. Using the Taylor expansion of
Q′(.), we can show that e3n = O(hn). Then a simplification occurs in (13) and we get
just

P(
√

nσ̂−1
n (Q̂ p,hn − Q(p)) ≤ x)

= 	(x)− φ(x)

{

δ

σn
√

n
+ −2x2 − 1

6n1/2σ 3
n

e1n + −x2 − 1

2n1/2σ 3
n hn

e2n

}

+ o(n−1/2). (14)

The two expressions (14) and (6) can be compared now to appreciate the difference
in the expansions in the standardized and in the studentized case.

4 Numerical comparisons

In the paper Maesono and Penev (2011), we have demonstrated on a range of examples
the great accuracy of the Edgeworth expansion and the sensible improvement effect
in the approximation of the distribution of the standardized kernel quantile estima-
tor when we move over from the normal to the Edgeworth approximation of order
o(n−1/2). This effect could be seen even for sample sizes such as n = 15, 30, 40, 50.
For larger n the two approximations become closer to each other with the Edgeworth
expansion dominating the normal virtually uniformly in the whole range of values of
the argument.

The most significant application of the observed phenomenon is in constructing
accurate confidence interval for the quantile Q(p) when the sample size is small
to moderate. For a given level α, instead of constructing it in a symmetric way as
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176 Y. Maesono, S. Penev

Q̂ p,hn ± zα/2σ̂n/
√

n, one can improve the coverage accuracy by using (Q̂ p,hn +
c1−α/2σ̂n/

√
n, Q̂ p,hn +cα/2σ̂n/

√
n)with the quantile values c1−α/2 and cα/2 obtained

by inverting numerically the Edgeworth approximation. Similar approach can be used
for constructing one-sided confidence intervals. We did not pursue these avenues in
Maesono and Penev (2011) since, for the approach to be really practicable, we need
the Edgeworth expansion for the studentized kernel quantile estimator. The results of
this paper can help us to develop the relevant methodology.

We should note however that in the studentized case, we can not expect such precise
results to hold for sample sizes as small as the ones that were suitable in the stand-
ardised case. Indeed, estimating the inversion of the Edgeworth approximation in the
studentized case involves estimating quantities such as δ, σn and e1n, e2n . Looking at
their definition we see that their estimators are bound to have large variability since
their estimators involve high order statistics. The variability will be increased when the
quantile is to be estimated is at the more extreme end. Our numerical experimentation
shows that sample sizes less than 200 may give misleading results especially for the
Edgeworth-based method.

We could choose different compactly supported fourth order kernels satisfying the
requirements of our theorems but the effect of the kernel is not that crucial as long as
it satisfies the requirement that the sign of the quantity ψ in (15) is positive:

ψ =
∫ 1

−1
yK (y)M(y) dy,M(y) =

∫ y

−1
K (x) dx > 0. (15)

The latter requirement implies that under regularity conditions the kernel quantile esti-
mator is better than the sample quantile in terms of deficiency (see, e.g. Falk 1984).

Here, we only present results obtained with the following symmetric fourth order
kernel first suggested by Müller (1984):

K (x) = 315

512
(11x8 − 36x6 + 42x4 − 20x2 + 3)I (|x | ≤ 1). (16)

Using the kernel (16) brings about significant simplification due to the fact that the
integral of its first and second derivatives is equal to zero. See Remark 1. As a result,
the simple form of the Edgeworth expansion (14) can be used in our numerical work.

We need consistent estimators of e1n, e2n/hn, δ and σ 2
n in order to implement (14).

Based on a popular idea of Hinkley and Wei (1984) the following jackknife estimators
can be used:

Denoting ĥ1(i) = Q̂ p,hn − Q̂(i)
p,hn

, a consistent estimator of e1n is given by

ê1n = (n − 1)3

n

n
∑

i=1

ĥ3
1(i).

Next we define
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Improved confidence intervals for quantiles 177

ĥ2(i, j) = nQ̂ p,hn − (n − 1){Q̂(i)
p,hn

+ Q̂( j)
p,hn

} + (n − 2)Q̂(i, j)
p,hn

whereby Q̂(i, j)
p,hn

denotes the kernel quantile estimator calculated by using the original
sample from which the i th and j th observation have been deleted. As noted earlier,
we use the same bandwidth also in the definition of Q̂(i)

p,hn
and of Q̂(i, j)

p,hn
. Then the

consistent jackknife estimator of e2n/hn is given by

ê2n

hn
= (n − 1)2

n

n
∑

i=1

n
∑

i �= j

ĥ1(i)ĥ1( j)ĥ2(i, j).

A consistent estimator δ̂ of the second order bias δ is given by

δ̂ = (n − 1)
n
∑

i=1

(Q̂(i)
p,hn

− Q̂ p,hn ).

The consistent variance estimator σ̂ 2
n is given in (7).

Regarding the choice of the bandwidth, we emphasize that our approach avoids (at
least in asymptotic terms) the choice of the bandwidth and any hn = cn−1/4(log n)−1

with c > 0 should be fine. Of course finite sample performance can be influenced by the
choice of c and some tuning might be needed for the range of sample sizes of primary
interest. In our simulations, we have used the same value hn = n−1/4(log10 n)−1 for
all scenarios and all sample sizes with which we have experimented.

Tables 1 and 2 illustrate the resulting coverage probabilities in comparison to
the nominal coverage probabilities when calculating the lower confidence interval
(Table 1) and a symmetric confidence interval (Table 2). The probabilities have been
approximated in a simulation study where 50,000 replications have been performed
and the empirical ratio of coverages of the true quantile has been adopted as the “true”.
We have found out that at the above number of replications a stabilization occurs and
increasing the replications to, say, 100,000, only changes the last digit. Both tables
represent the result of confidence interval construction for the 90th quantile point, i.e.,
p = .90, for three scenarios. We have simulated with other ranges of values of p, too
but for the purpose of brevity we do not include other results in this paper.

We simulate data to three different scenarios. These are: a particular gamma dis-
tribution (Chi-square with 4 degrees of freedom), the standard exponential and the
standard normal distribution. We assume that the shape of the distribution is unknown
and apply the methods for estimation and confidence interval construction from the
current paper. We point out that although the true parameter values for δ, for example,
as well as of other relevant parameter values do involve information from higher order
derivatives of the density of the data, none of these has been used in the estimation,
all quantities of interest have been estimated via the relevant jackknife estimator.

Examination of Tables 1 and 2 shows that the “true” coverage probabilities approach
the nominal probabilities when the sample size increases. Since the confidence inter-
vals are asymptotic in spirit, this fact demonstrates the consistency of the procedure.
It is also seen in both Tables 1 and 2 that for the range of sample sizes considered
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Table 1 Lower confidence intervals

Distribution n Nominal coverage

90 % 95 % 99 %

Normal Edge Normal Edge Normal Edge

Gamma 200 0.85426 0.87672 0.90574 0.93016 0.96218 0.97692

Gamma 250 0.85404 0.87820 0.90876 0.92986 0.96350 0.97824

Gamma 350 0.86680 0.88640 0.91866 0.93838 0.96982 0.98110

Gamma 500 0.87478 0.89156 0.92754 0.94362 0.97588 0.98538

Exp(1) 200 0.84748 0.87310 0.90184 0.92850 0.95990 0.97674

Exp(1) 250 0.84974 0.87462 0.90576 0.93066 0.96274 0.97810

Exp(1) 350 0.86520 0.88640 0.91772 0.93894 0.96984 0.98308

Exp(1) 500 0.87294 0.89144 0.92418 0.94270 0.97392 0.98484

Normal 200 0.86684 0.88604 0.91726 0.93580 0.96976 0.98100

Normal 250 0.86436 0.88372 0.91780 0.93584 0.97076 0.98072

Normal 350 0.87338 0.88992 0.92334 0.94000 0.97388 0.98228

Normal 500 0.88168 0.89626 0.93078 0.94322 0.97646 0.98434

Table 2 Symmetric confidence intervals

Distribution n Nominal coverage

90 % 95 % 99 %

Normal Edge Normal Edge Normal Edge

Gamma 200 0.86710 0.88094 0.91796 0.93136 0.96758 0.97612

Gamma 250 0.87210 0.88294 0.92150 0.93460 0.96972 0.97738

Gamma 350 0.87702 0.88812 0.92698 0.93838 0.97422 0.98114

Gamma 500 0.88524 0.89436 0.93460 0.94316 0.97952 0.98406

Exp(1) 200 0.86638 0.88114 0.91662 0.93080 0.96634 0.97542

Exp(1) 250 0.86884 0.88364 0.91986 0.93352 0.96902 0.97786

Exp(1) 350 0.87860 0.88962 0.92900 0.94044 0.97524 0.98158

Exp(1) 500 0.88262 0.89324 0.93246 0.94136 0.97830 0.98336

Normal 200 0.87446 0.88686 0.92392 0.93510 0.97316 0.97894

Normal 250 0.87516 0.88678 0.92698 0.93704 0.97456 0.97892

Normal 350 0.87918 0.89040 0.92918 0.93950 0.97690 0.98224

Normal 500 0.88406 0.89166 0.93322 0.94148 0.97862 0.983100

(n = 200–500), the confidence intervals based on inverting the Edgeworth approx-
imation always outperform the ones based on inverting the normal approximation.
Comparison within each of the table also demonstrates that for the normal distribution
scenario, both constructions give slightly better coverages. We do not have a rational
explanation for this phenomenon, however.
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When doing a cross-comparison between Tables 1 and 2, we observe that the sym-
metric confidence intervals have slightly better coverage (closer to the nominal) in
comparison to the lower confidence intervals. This effect is also observed uniformly
across all corresponding cells in the tables.

Remark 2 There is an interesting modification of the estimator for the case where a
wavelet-based kernel of two arguments could be used instead. If ϕ(x) is certain father
wavelet and ϕ js(x) = 2s/2ϕ(2s x − j) denotes its dilation and translation, then the
kernel of two arguments K ∗

s (x, y) = ∑∞
j=−∞ ϕs j (x)ϕs j (y) can be defined and could

be used for alternative kernel quantile estimator construction. The estimator itself can
be defined as

Q̂∗
p,s = 1

n

n
∑

i=1

X(i)K
∗
s

(

i − 1

n
, p

)

whereby now s replaces the role of the bandwidth. The coiflet-type wavelets satisfy
the moment conditions required from a higher order kernel and could be used as alter-
natives to the kernel (16). However, although being almost symmetric they are not
strictly symmetric. Besides, we expect the numerical effects by using this approach
to be comparable to the effects of using the kernel (16) and we have not pursued the
approach numerically in the current paper.

5 Proofs

We believe that the following two remarks will allow the reader to follow easier the
main steps in the derivations in the paper.

Remark 3 If for a random variable R it holds that E |R|c = O(n−1/2−c/2−δ) for some
c > 0 and δ > 0, then we have

P{|R| > n−1/2log n−1} = o(n−1/2),

i.e., R = o�(n−1/2). Thus we can ignore R when discussing asymptotic expansion up
to order n−1/2. See, e.g., Maesono (1997), p. 64.

Remark 4 Our proofs are derived in two steps. In the first step, using moment evalua-
tion technique (20) for the Hoeffding decomposition (H-decomposition) (18) described
below, a stochastic expansion of statistic of interest is shown to be decomposed into
main term and a remainder of order oL(n−1/2). This fact allows us to ignore the effect
of the remainder when the asymptotic distribution up to order o(n−1/2) of the sta-
tistic is derived in the second step. The justification when to ignore the remainder
R is discussed in Remark 3. Regarding the asymptotic distributions of the products
involved in the definition of the studentized statistic, we use a standard technique of
evaluating the terms in such a product. A comprehensive illustration of this technique
with detailed proofs can be found, e.g., in Maesono (1997).
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We use some general moment evaluations related to the H-decomposition. For
independent identically distributed random variables X1, . . . , Xn and a function
ν(x1, . . . , xr ), centered (E[ν(X1, . . . , Xr )] = 0), and symmetric in its arguments,
we define

ρ1(x1) = E[ν(x1, X2, . . . , Xr )],
ρ2(x1, x2) = E[ν(x1, x2, . . . , Xr )] − ρ1(x1)− ρ1(x2), . . . ,

and

ρr (x1, x2, . . . , xr ) = ν(x1, x2, . . . , xr )−
r−1
∑

k=1

∑

Cr,k

ρk(xi1 , xi2 , . . . , xik )

where
∑

Cr,k
indicates that the summation is taken over all integers i1, . . . , ik satisfying

1 ≤ i1 < · · · < ik ≤ r . Then it holds

E[ρk(X1, . . . , Xk)|X1, . . . , Xk−1] = 0 a.s. (17)

and

∑

Cn,r

ν(Xi1 , . . . , Xir ) =
r
∑

k=1

(

n − k

r − k

)

Ak (18)

where

Ak =
∑

Cn,k

ρk(Xi1 , . . . , Xik ). (19)

Equation (18) represents the H-decomposition of U -statistic with a sum of forward
martingales {Ak}n≥k, for k = 1, 2, . . . , r. Using Eq. (17) and the moment evaluations
of martingales (Dharmadhikari et al. 1968), we have upper bounds of the absolute
moments of Ak . For q ≥ 2, if E |ν(X1, . . . , Xr )|q < ∞, there exists a positive con-
stant C , which may depend on ν and F but not on n, such that

E |Ak |q ≤ Cnqk/2 E |ρk(Xi1 , . . . , Xik )|q . (20)

Since a product of U -statistics with different kernels is a linear function of U−statis-
tics, we can use (20) to continue the evaluation.

Proof of Lemma 1 From the definition, we have

Q̂(i)
p,hn

− Q̂ p,hn = −
∫ ∞

−∞

{

∫ [F (i)n (x)−p]/hn

[Fn(x)−p]/hn

K (s)ds

}

dx
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where F (i)n (x) = ∑n
j �=i I (X j ≤ x)/(n − 1). We now take Taylor expansion of the

inner integral around the point (Fn(x)− p)/hn . Further, we define for j = 1, . . . , 6

L(i)jn = − 1

j !
∫ ∞

−∞
K ( j−1)

( Fn(x)− p

hn

)( F (i)n (x)− Fn(x)

hn

) j
dx

and denote the remainder term by

R(i)n = −
∫ ∞

−∞

(∫ [F (i)n (x)−p]/hn

[Fn(x)−p]/hn

K (u)du

)

dx −
6
∑

j=1

L(i)jn .

Then we have

(n − 1)
n
∑

i=1

{Q̂(i)
p,hn

− Q̂ p,hn }2 = (n − 1)
n
∑

i=1

⎧

⎨

⎩

6
∑

j=1

L(i)jn + R(i)n

⎫

⎬

⎭

2

. (21)

We see directly that

F (i)n (x)− Fn(x) = − 1

n − 1
I ∗
x (Xi )+ 1

n(n − 1)

n
∑

j=1

I ∗
x (X j )

holds where I ∗
x (Xi ) = I (Xi ≤ x)− F(x).

We start evaluating the right hand side of (21). Our first step is to approximate the
expression (n − 1)

∑n
i=1{L(i)1n }2.

To this end, we first expand in Taylor series each of the expressions L(i)1n around the
point (F(x)− p)/hn . Let us define for k = 1, . . . , 6

M (i)
kn = − 1

(k − 1)!
∫ ∞

−∞
K (k−1)

( F(x)− p

hn

)

×
( Fn(x)− F(x)

hn

)k−1( F (i)n (x)− Fn(x)

hn

)

dx

and

r (i)n = L(i)1n −
6
∑

k=1

M (i)
kn .
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From the definition, we have

(M (i)
1n )

2 =
{

∫ ∞

−∞
K
( F(x)− p

hn

)( F (i)n (x)− Fn(x)

hn

)

dx

}2

=
∫ ∞

−∞

∫ ∞

−∞
h−2

n K
( F(x)− p

hn

)

K
( F(y)− p

hn

){

− 1

n − 1
I ∗
x (Xi )

+ 1

n(n − 1)

n
∑

j=1

I ∗
x (X j )

}{

− 1

n − 1
I ∗

y (Xi )+ 1

n(n − 1)

n
∑

j=1

I ∗
y (X j )

}

dx dy.

Using Shorack and Wellner (1986), we have

(n − 1)
n
∑

i=1

∫ ∞

−∞

∫ ∞

−∞
h−2

n K
( F(x)− p

hn

)

K
( F(y)− p

hn

) 1

(n − 1)2

×I ∗
x (Xi )I

∗
y (Xi ) dx dy

= 1

n − 1

n
∑

i=1

∫ 1

−1

∫ 1

−1
Q′(p + hn x)Q′(p + hn y)K (x)K (y) Îx (Yi ) Îy(Yi ) dx dy

= σ 2
n + 1

n

n
∑

i=1

{g2
1n(Yi )− σ 2

n } + o�(n
−1/2).

We can show that all other terms in the expansion of (n −1)
∑n

i=1(M
(i)
1n )

2 are of order
o�(n−1/2), as in Remark 3, by noting that

∣

∣

∣

∣

∣

E

[

4
∏

�=1

n
∑

i=1

Îx� (Yi )

]∣

∣

∣

∣

∣

≤
⎧

⎨

⎩

4
∏

�=1

E

∣

∣

∣

∣

∣

n
∑

i=1

Îx� (Yi )

∣

∣

∣

∣

∣

4
⎫

⎬

⎭

1/4

= O(n2)

4
∏

�=1

{

F(x�)(1 − F(x�))
}

.

Thus we have

(n − 1)
n
∑

i=1

(M (i)
1n )

2 = σ 2
n + 1

n

n
∑

i=1

{g2
1n(Yi )− σ 2

n } + o�(n
−1/2). (22)

Similarly as for (M (i)
1n )

2, we can show that

2(n − 1)
n
∑

i=1

M (i)
1n M (i)

2n

= 2n−2h−1
n

∑

Cn,2

g2n(Yi ,Y j ){g1n(Yi )+ g1n(Y j )} + o�(n
−1/2). (23)
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From direct computation, we have

2(n − 1)
n
∑

i=1

M (i)
1n M (i)

3n

= 2n−3h−2
n

∑

Cn,3

g3n(Yi ,Y j ,Yk){g1n(Yi )+ g1n(Y j )+ g1n(Yk)}

+2n−1h−2
n e5n + o�(n

−1/2). (24)

Using the same method, we can show that

(n − 1)
n
∑

i=1

{M (i)
2n }2 = 2n−3h−2

n

∑

Cn,3

{g2n(Yi ,Y j )g2n(Yi ,Yk)+ g2n(Yi ,Y j )g2n(Y j ,Yk)

+g2n(Yi ,Yk)g2n(Y j ,Yk)} + n−1h−2
n e6n + o�(n

−1/2). (25)

We can also show that the remaining terms

2(n − 1)
n
∑

i=1

M (i)
jn M (i)

kn = o�(n
−1/2) for j + k ≥ 5,

and

2(n − 1)
n
∑

i=1

r (i)n M (i)
jn = o�(n

−1/2)( j = 1, . . . , 6).

Details are omitted to save space. However, we note that the Lipschitz continuity con-
dition K (5) ∈ Lip(α) is required when evaluating the term E |r (i)n |, as a part of the
evaluation of 2(n − 1)

∑n
i=1 r (i)n M (i)

jn .

Our next step in the evaluation of the right hand side in (21) is to show that the
terms (n − 1)

∑n
i=1 L(i)jn L(i)kn ( j + k ≥ 3) and (n − 1)

∑n
i=1 L(i)jn R(i)n ( j ≥ 1) are all

o�(n−1/2). The details of these evaluations are omitted to save space.
Combining the above all evaluations from the contributions in the right hand side

of (21), we can show that

(n − 1)
n
∑

i=1

{Q̂(i)
p,hn

− Q̂ p,hn }2

= σ 2
n + n−1h−2

n (2e5n + e6n)+ 1

n

n
∑

i=1

{g2
1n(Yi )− σ 2

n }

+2n−2h−1
n

∑

Cn,2

g2n(Yi ,Y j ){g1n(Yi )+ g1n(Y j )}
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+2n−3h−2
n

∑

Cn,3

g3n(Yi ,Y j ,Yk){g1n(Yi )

+g1n(Y j )+ g1n(Yk)} + 2n−3h−2
n

×
∑

Cn,3

{g2n(Yi ,Y j )g2n(Yi ,Yk)+ g2n(Yi ,Y j )g2n(Y j ,Yk)

+g2n(Yi ,Yk)g2n(Y j ,Yk)} + o�(n
−1/2).

Using the H-decomposition, we will obtain the form of the asymptotic U -statistic.
Let us introduce the statistics H1 and H2 via the decomposition

2n−2h−1
n

∑

Cn,2

g2n(Yi ,Y j ){g1n(Yi )+ g1n(Y j )}

= 2n−2(n − 1)h−1
n H1 + 2n−2h−1

n H2.

Using moment evaluation again, we can show that

E
∣

∣

∣2n−2h−1
n H2

∣

∣

∣

4 = O(n−4h−4
n ) = O(n−1/2−2−1/2(n1/4hn)

−4).

Thus we have 2n−2h−1
n H2 = o�(n−1/2). Therefore we have

2n−2h−1
n

∑

Cn,2

g2n(Yi ,Y j ){g1n(Yi )+ g1n(Y j )}

= 2n−1h−1
n

n
∑

i=1

E[g2n(Yi ,Y )g1n(Y )|Yi ] + o�(n
−1/2)

whereby Y denotes an independent copy of Yi . Similarly, using the H-decomposition,
we can show that

2n−3h−2
n

∑

Cn,3

g3n(Yi ,Y j ,Yk){g1n(Yi )+ g1n(Y j )+ g1n(Yk)}

= 2n−2h−2
n

∑

Cn,2

E[g3n(Yi ,Y j ,Y )g1n(Y )|Yi ,Y j ] + o�(n
−1/2)

and

2n−3h−2
n

∑

Cn,3

{g2n(Yi ,Y j )g2n(Yi ,Yk)+ g2n(Yi ,Y j )g2n(Y j ,Yk)

+g2n(Yi ,Yk)g2n(Y j ,Yk)}
= 2n−2h−2

n

∑

Cn,2

E[g2n(Yi ,Y )g2n(Y j ,Y )|Yi ,Y j ] + o�(n
−1/2).

Thus we have the desired result. ��
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Proof of Lemma 2 Part (i) Using the Taylor expansion of

σn σ̂
−1
n =

(

1 + σ̂ 2
n − σ 2

n

σ 2
n

)−1/2

we have

(

1 + σ̂ 2
n − σ 2

n

σ 2
n

)−1/2 = 1 − σ̂ 2
n − σ 2

n

2σ 2
n

+ 3

8

( σ̂ 2
n − σ 2

n

σ 2
n

)2 + R∗
n (26)

where

R∗
n = −15

48

(

1 +�
)−7/2( σ̂ 2

n − σ 2
n

σ 2
n

)3

and 0 ≤ |�| ≤
∣

∣

∣

σ̂ 2
n −σ 2

n
σ 2

n

∣

∣

∣ a.s. First, we will obtain an approximation of 3
8

(

σ̂ 2
n −σ 2

n
σ 2

n

)2
.

From the definition, we have

4n−2h−2
n B̂2

1n = 4n−2h−2
n

n
∑

i=1

ζ̂ 2
1n(Yi )+ 8n−2h−2

n

∑

Cn,2

ζ̂1n(Yi )ζ̂1n(Y j ).

Using the moment evaluation, it is easy to see that

4n−2h−2
n

n
∑

i=1

ζ̂ 2
1n(Yi ) = 4n−1h−2

n E[ζ̂ 2
1n(Yi )] + o�(n

−1/2).

Thus we have

4n−2h−2
n B̂2

1n = 4n−1h−2
n E[ζ̂ 2

1n(Yi )] + 8n−2h−2
n

∑

Cn,2

ζ̂1n(Yi )ζ̂1n(Y j )+ o�(n
−1/2)

= 4n−1h−2
n e3n + 8n−2h−2

n

∑

Cn,2

ζ̂1n(Yi )ζ̂1n(Y j )+ o�(n
−1/2). (27)

Along the same lines we can show that

n−2 B2
1n = o�(n

−1/2). (28)

Furthermore, we have that

4n−2h−1
n B1n B̂1n = 4n−2h−1

n

n
∑

i=1

{g2
1n(Yi )− σ 2

n }E[g2n(Yi ,Y )g1n(Y )|Yi ]

+4n−2h−1
n

∑

Cn,2

[

{g2
1n(Yi )− σ 2

n }E[g2n(Y j ,Y )g1n(Y )|Y j ]
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+{g2
1n(Y j )− σ 2

n }E[g2n(Yi ,Y )g1n(Y )|Yi ]
]

= o�(n
−1/2).

Proceeding along the same lines, we can evaluate the remaining terms in 3
8 (
σ̂ 2

n −σ 2
n

σ 2
n
)2.

The final result is

3

8

( σ̂ 2
n − σ 2

n

σ 2
n

)2 = 3

2
n−1h−2

n σ−4
n e3n + 3n−2h−2

n σ−4
n

∑

Cn,2

ζ̂1n(Yi )ζ̂1n(Y j )+ o�(n
−1/2).

Finally, we will show that R∗
n = o�(n−1/2) holds. Similarly to the proof of Lemma 3

of Maesono (1997, p.78), it is sufficient to prove that ( σ̂
2
n −σ 2

n
σ 2

n
)3 = o�(n−1/2). Using

the H-decomposition, we can show that

n−3h−3
n B̂3

1n

= n−1h−1
n B̂1n{n−1h−2

n e3n + 2n−2h−2
n

∑

Cn,2

ζ̂1n(Yi )ζ̂1n(Y j )+ o�(n
−1/2)}

= o�(n
−1/2).

Also, we can show that the remaining terms in ( σ̂
2
n −σ 2

n
σ 2

n
)3 are all o�(n−1/2). Putting

everything together in the right hand side of (26) we get (8).
Part (ii) Next we will obtain the asymptotic representation of the studentized quan-

tile estimator. Observing that

√
nσ̂−1

n {Q̂ p,hn − Q̄(p)} = √
nσ−1

n {Q̂ p,hn − Q̄(p)} × σn

σ̂n
,

we will examine the product of the two terms on the right hand side. This means to
multiply the stochastic expansions (4) and (8).

We note that
√

nσ−1
n {Q̂ p,hn − Q̄(p)} is approximated by a standardized U -statistic

plus a reminder of order oL(n−1/2).We start by examing the products of d1n A1n with
the main terms in (8):

1

2
d1nn−1σ−2

n A1n B1n = 1

2
d1nσ

−2
n n−1

n
∑

i=1

ζ1n(Yi )g1n(Yi )

+1

2
d1nn−1σ−2

n

∑

Cn,2

{ζ1n(Yi )g1n(Y j )+ ζ1n(Y j )g1n(Yi )}

= 1

2
d1nσ

−2
n e1n + 1

2
d1nn−1σ−2

n

∑

Cn,2

{ζ1n(Yi )g1n(Y j )

+ζ1n(Y j )g1n(Yi )} + o�(n
−1/2).
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In a similar way

d1nn−1h−1
n σ−2

n A1n B̂1n = d1nh−1
n σ−2

n e2n + d2nσ
−2
n

∑

Cn,2

{ζ̂1n(Yi )g1n(Y j )

+ζ̂1n(Y j )g1n(Yi )} + o�(n
−1/2).

From the definition of the terms A1n and D2n we have

d1nn−2h−2
n σ−2

n A1n D2n

= d3nσ
−2
n

∑

Cn,3

{g1n(Yi )η2n(Y j ,Yk)+ g1n(Y j )η2n(Yi ,Yk)+ g1n(Yk)η2n(Yi ,Y j )}

+d3nσ
−2
n

∑

Cn,2

η2n(Yi ,Y j ){g1n(Yi )+ g1n(Y j )}.

Using the moment evaluations for the H -decomposition, we can show that

d3nσ
−2
n

∑

Cn,2

η2n(Yi ,Y j ){g1n(Yi )+ g1n(Y j )}

= d3nnσ−2
n

n
∑

i=1

E[η2n(Yi ,Y )g1n(Y )|Yi ] + o�(n
−1/2).

We next examine the products of d2n A2n with two terms in (8). It is easy to see that

1

2
d2nn−1σ−2

n A2n B̂1n = o�(n
−1/2)

holds. Again using the moment evaluations for the H -decomposition, we have

d2nn−1h−1
n σ−2

n A2n B̂1n

= d3nσ
−2
n

∑

Cn,3

{ζ̂1n(Yi )g2n(Y j ,Yk)+ ζ̂1n(Y j )g2n(Yi ,Yk)+ ζ̂1n(Yk)g2n(Yi ,Y j )}

= d3nσ
−2
n

∑

Cn,3

{ζ̂1n(Yi )g2n(Y j ,Yk)+ ζ̂1n(Y j )g2n(Yi ,Yk)+ ζ̂1n(Yk)g2n(Yi ,Y j )}

+d3nnσ−2
n

n
∑

i=1

E[g2n(Yi ,Y )ζ̂1n(Y )|Yi ] + o�(n
−1/2).

Finally, we use a large deviation theorem for U -statistic (cf. Malevich and Abdal-
imov 1979) to show that the order of its product with the remainder is oL(n−1/2) (for
the argument we refer to Maesono 1997, p. 81). All other terms in the cross product of
(4) and (8) can be shown to be of smaller order by using the same moment evaluation
technique. Hence we have the desired result. ��
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Proof of Theorem 1 Before beginning the proof of Theorem 1, we will formulate a
Lemma that establishes a link between the terms e∗

in(i = 2, . . . , 6) as shown in the
statement of the Theorem and the terms ein(i = 2, . . . , 6) in (5). The latter have
already been used by us when proving the Edgeworth expansion of the standardized
kernel quantile estimator (Theorem 1 in Maesono and Penev 2011).

Lemma 3 The relationships (11) hold.

The proof of this Lemma is omitted since it follows from a simple moment computa-
tion.

Having established the relationships between the terms e∗
in(i = 2, . . . , 6) and the

terms ein(i = 2, . . . , 6)we can now finish the proof of Theorem 1, following the same
steps in the derivation of the Edgeworth expansion for the studentized statistic as in
the proof of Theorem 1 in Maesono and Penev (2011). The detailed argumentation of
all steps is presented in Maesono and Penev (2011). Therefore we get (10). ��
Proof of Theorem 2 Note that

√
n(Q̂ p,hn − Q(p)) = √

n(Q̂ p,hn − Q̄(p))+ dn

with dn = √
n(Q̄(p)−Q(p)) = √

n( 1
hn

∫ 1
0 F−1(x)K ( x−p

hn
) dx −Q(p)). Substituting

x − p = yhn and applying Taylor expansion we get

dn = O(
√

nhm
n )

∫ 1

−1
K (y)ym dy.

Note that
√

nhm
n = o(n−1/2) is ensured by the condition m = 4 and by the choice of

hn . Noticing that

√
n(Q̂ p,hn − Q(p))

σ̂n
=

√
n(Q̂ p,hn − Q̄(p))

σn
σn σ̂

−1
n +

√
ndn

σn
σn σ̂

−1
n

and using Part (i) of Lemma 2 we see that for the chosen bandwidth we have√
ndn
σn

σn σ̂
−1
n = o�(n−1/2). Hence the statement of the Theorem follows directly from

Theorem 1. ��
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