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Abstract We establish strong large deviation results for an arbitrary sequence of
random variables under some assumptions on the normalized cumulant generating
function. In other words, we give asymptotic expansions for the tail probabilities of
the same kind as those obtained by Bahadur and Rao (Ann. Math. Stat. 31:1015–1027,
1960) for the sample mean. We consider both the case where the random variables
are absolutely continuous and the case where they are lattice-valued. Our proofs make
use of arguments of Chaganty and Sethuraman (Ann. Probab. 21:1671–1690,1993)
who also obtained strong large deviation results and local limit theorems. We illus-
trate our results with the kernel density estimator, the sample variance, the Wilcoxon
signed-rank statistic and the Kendall tau statistic.

Keywords Large deviations · Bahadur–Rao theorem · Sample variance ·
Wilcoxon signed-rank statistic · Kendall tau statistic

1 Introduction

Let X1, X2, . . . , Xn, . . . be a sequence of independent and identically distributed real
random variables with zero mean and finite variance. Denote by Xn the sample mean
given by

Xn = 1

n

n∑

k=1

Xk .
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50 C. Joutard

For a > 0, the probability P(Xn ≥ a) converges to 0. More precisely, we have

lim
n→∞

1

n
log P(Xn ≥ a) = −I (a), (1)

where I is the Fenchel–Legendre dual of the cumulant generating function (c.g.f.) of
X1 (I is usually called the rate function). This result is a consequence of the large devi-
ation principle (LDP) satisfied by Xn and gives only the limit for n−1 log P(Xn ≥ a)

[for the general definition of a large deviation principle, we refer to Dembo and
Zeitouni (1998) or Deuschel and Stroock (1989)]. In some cases, one may want to
get an asymptotic expansion for P(Xn ≥ a). Bahadur and Rao (1960) were among
the first to establish such expansions for the sample mean. In particular, under some
regularity assumptions on the Taylor expansion of the normalized c.g.f., they proved
that for any p > 0 and n large enough

P(Xn ≥ c) = exp(−nI (c))√
2πnσcτc

⎡

⎣1 +
p∑

j=1

a j

n j
+ O

(
1

n p+1

)⎤

⎦ , c > 0 (2)

and

P(Xn ≤ c) = exp(−nI (c))√
2πnσcτc

⎡

⎣1 +
p∑

j=1

a j

n j
+ O

(
1

n p+1

)⎤

⎦ , c < 0, (3)

where a j ∈ R, and τc > 0, σc > 0 are parameters depending on c. Such results are
referred to as strong large deviation results (Chaganty and Sethuraman 1993) or sharp
large deviation principles (see, for instance, Bercu et al. 2000).

In addition to the theorems of Bahadur and Rao (1960) and Chaganty and Sethu-
raman (1993) (who generalized the Bahadur–Rao Theorem on the sample mean to
an arbitrary sequence of random variables), several results pertaining to strong large
deviations in asymptotic statistics can be found in the literature. Blackwell and Hodges
(1959) treated the lattice case of the Bahadur–Rao result on the sample mean. General-
izing the Bahadur–Rao result, Book (1972) obtained a strong large deviation theorem
for weighted sums of i.i.d. random variables. Chaganty and Sethuraman (1996) proved
a multidimensional version of their earlier result. Cho and Jeon (1994) established a
strong large deviation theorem for the ratio of independent random variables. Bercu
et al. (2000) gave a sharp large deviation principle for Gaussian quadratic forms.
Florens-Landais et al. (1998) derived strong large deviation results (i.e., (2) and (3)
with p = 0) for the maximum likelihood estimator in an Ornstein–Uhlenbeck model.
Later, Bercu and Rouault (2002) extended the strong result to an arbitrary order.
Joutard (2006, 2008) obtained strong large deviation results for nonparametric kernel
estimators. Daouia and Joutard (2009) studied strong large deviation properties of the
quantile-based frontier estimators.

This paper provides strong large deviation results (i.e., (2) with p = 0) for an
arbitrary sequence of random variables Zn . Some assumptions on the normalized
c.g.f. are assumed. We consider both the case where Zn is absolutely continuous or
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Strong large deviations for arbitrary sequences of random variables 51

its distribution has an absolutely continuous component, and the case where Zn is
lattice-valued. Our results require, in particular, an asymptotic expansion of the nor-
malized c.g.f. The proofs use techniques from Bahadur and Rao (1960) who derived
(2) and (3), and Chaganty and Sethuraman (1993) who also obtained strong large
deviation theorems for an arbitrary sequence of random variables Tn . Note, however,
that their large deviation expressions cannot generally be computed explicitly in a
general frame. That is, one cannot generally derive an explicit asymptotic expression
for the tail probability P(Tn ≥ c) that is a function of n. Here, we establish first-order
expansions similar to (2) with p = 0, where the constant c and the parameter τc, used
to make an exponential change of measure, do not necessarily depend on n. We illus-
trate our theorems with several statistical applications. We provide new strong large
deviation results for the sample variance, the Wilcoxon signed-rank statistic and the
Kendall tau statistic. We also give a new proof of a result obtained in Joutard (2006)
for the kernel density estimator. The paper is organized as follows. In Sect. 2, we intro-
duce the framework and assumptions, before giving the main results and discussing
the statistical applications. Section 3 deals with the lemmas needed for the proofs of
the main results which are deferred to Sect. 4.

Note that these strong large deviation results may be of interest, in particular in
some nonparametric tests, to obtain estimates of p-values when the exact values are
not available or when their computation is time-consuming.

2 Main results

2.1 Notation and assumptions

Let (Zn) be a sequence of random variables and let (bn) be a sequence of real positive
numbers such that limn→∞ bn = ∞. Let φn be the moment generating function
(m.g.f.) of bn Zn ,

φn(t) = E{exp(tbn Zn)}, t ∈ R,

and let ϕn be the normalized c.g.f. of bn Zn ,

ϕn(t) = b−1
n log E{exp(tbn Zn)}.

Assume that there exists a differentiable function ϕ defined on an interval (−α, α),
α > 0, such that limn→∞ ϕn(t) = ϕ(t) for all t ∈ (−α, α). Let a be a real such that
|a − ϕ′(0)| > 0 and assume that there exists τa ∈ {t ∈ R : 0 < |t | < α}, such
that ϕ′(τa) = a. The parameter τa is used to make an exponential change of measure
which allows to sharpen the large deviation result (see the proofs in Sect. 4).

This paper deals with strong large deviation results for the sequence (Zn), that
is, asymptotic expansions for the tail probability P(Zn ≥ a), where a > ϕ′(0) (the
real a does not necessarily depend on n). We distinguish the cases where Zn is abso-
lutely continuous or its distribution has an absolutely continuous component, and Zn

is lattice-valued. Note that we only give the results for the right tail probabilities, the
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ones for the left tail probabilities can be obtained in a similar way. The proofs, given
in Sect. 4, make use of some techniques that can be found in Bahadur and Rao (1960),
who obtained strong large deviation results for the sample mean and in Chaganty and
Sethuraman (1993), who generalized the Bahadur and Rao theorem (for the first order).
To establish the strong large deviation results, we need to assume several assumptions,
in particular on the normalized c.g.f. ϕn and on the m.g.f. φn , as follows.

(A.1) ϕn is an analytic function in DC := {z ∈ C : |z| < α}, and there exists M > 0
such that |ϕn(z)| < M for all z ∈ DC and n large enough.

(A.2) There exist α0 ∈ (0, α − τa) and a function H such that for each t ∈ (τa −
α0, τa + α0) and for n large enough,

ϕn(t) = ϕ(t) + b−1
n H(t) + o

(
b−1

n

)
, (4)

where the function ϕ is three times continuously differentiable in (τa −α0, τa +
α0), ϕ′′(τa) > 0, and H is continuously differentiable in (τa − α0, τa + α0).

(A.3) There exists δ0 > 0 such that

sup
δ<|t |≤λ|τa |

∣∣∣∣
φn(τa + i t)

φn(τa)

∣∣∣∣ = o

(
1√
bn

)

for any given δ and λ such that 0 < δ < δ0 < λ.

Assumption (A.1) is needed in the proof of Lemma 2, where we make use of Cauchy’s
inequality to bound the remaining term of a Taylor expansion. Assumption (A.2) guar-
antees the existence of an asymptotic expansion for the normalized c.g.f. This assump-
tion is necessary to establish the strong large deviation results with rate functions that
do not depend on n. It is also used to prove Lemmas 1 and 2. Assumption (A.3) is a
version of Condition 3.16 of Chaganty and Sethuraman (1993). It implies a necessary
condition which is required to apply Theorem 2.3 in Chaganty and Sethuraman (1993)
(see the proof of Theorem 1 in Sect. 4). It plays a similar role to that of the Cramer
condition (see, for instance, Hall 1992).

2.2 First-order expansions

In what follows, we give the main results. The first theorem deals with the case of
absolutely continuous variables.

Theorem 1 Assume that (Zn) is a sequence of absolutely continuous random vari-
ables or its distribution has an absolutely continuous component. Let a be a real such
that a > ϕ′(0) and let assumptions (A.1)–(A.3) hold. Then, for n large enough,

P(Zn ≥ a) = exp(−bn I (a) + H(τa))

σaτa
√

2πbn
[1 + o(1)], (5)

where τa > 0 is such that ϕ′(τa) = a. Further, I (a) = τaa −ϕ(τa) and σ 2
a = ϕ′′(τa).
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Strong large deviations for arbitrary sequences of random variables 53

Now, let us consider the case where (Zn) is a sequence of lattice-valued random
variables. Recall that a random variable Y is said to be lattice if it takes values in a
subset of the lattice set {d0 + ks, k ∈ Z}. The real 0 ≤ d0 < s is called the displace-
ment and the positive real s is the span of Y . Denote by dn and sn the displacement
and the span of the statistic bn Zn , respectively. The following assumption is required
(see Chaganty and Sethuraman 1993).

(A′.3) There exists δ1 > 0 such that for 0 < δ < δ1

sup
δ<|t |≤π/sn

∣∣∣∣
φn(τa + i t)

φn(τa)

∣∣∣∣ = o

(
1√
bn

)
.

The next theorem assumes that the span sn goes to zero as n → ∞. As noted in
Chaganty and Sethuraman (1993, Remark 3.4), in this case, Assumption (A′.3) implies
Assumption (A.3). Thus we obtain the same result as the one of Theorem 1.

Theorem 2 Let assumptions (A.1)–(A.2) and (A′.3) hold. Assume that (Zn) is a
sequence of lattice-valued random variables. Furthermore, the span sn of bn Zn goes
to zero as n tends to infinity. Then, for a > ϕ′(0) and n large enough, (5) remains
valid.

One can also establish a first-order expansion similar to expression (3.20) of Cha-
ganty and Sethuraman (1993) in the case where the span sn of bn Zn does not go to
zero as n tends to infinity.

2.3 Examples

We present four examples to illustrate the theorems of the preceding section.

Example 1. The kernel density estimator. A large deviations result for the kernel den-
sity estimator was obtained by Louani (1998). Later, Joutard (2006) proved a pointwise
strong large deviation theorem, in particular by using an Edgeworth expansion. We
will show that this result can also be obtained from the application of Theorem 1. Let
X1, . . . , Xn, . . . be i.i.d. real random variables with density function f . We recall that
the kernel density estimator of f is defined by

f̂n(y) = 1

nhn

n∑

j=1

K

(
y − X j

hn

)
, y ∈ R,

where the kernel K ≥ 0 is such that
∫
R

K (y)dy = 1, and hn > 0 is the bandwidth
such that limn→∞ hn = 0 and limn→∞ nhn = ∞. Assume that there exists c ≥ 0
such that limn→∞ nh2

n = c. We also assume the following conditions (see Joutard
2006).

1. f is bounded, continuously differentiable with bounded derivative on R.
2. κ0(t) = ∫

R
K (y) exp(t K (y))dy is defined on the open interval (−∞, α), α > 0.

3. κ1(t) = ∫
R

|y|K (y) exp(t K (y))dy is defined on the open interval (−∞, α).
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4. The kernel K has unbounded support.
5. For all u ∈ (−∞, α) and all p ∈ N,

∫

R

K 1/p(y) exp(uK (y))dy < ∞.

6. For n0 sufficiently large,

sup
n≥n0

sup
t>0

∣∣∣∣
∫

R

sin(t K (y)) f (x − hn y)dy

∣∣∣∣ < ∞. (6)

Under these conditions, we have the following result (identical to the one in Joutard
2006; but the proof was different).

Corollary 1 Let x be a fixed value in R such that f (x) > 0. Let f̂n(x) and hn be
defined as above and assume that conditions 1-6 hold and there exists c ≥ 0 such that
limn→∞ nh2

n = c. Then for a real a > 0 and n large enough,

P( f̂n(x) − f (x) ≥ a) = exp(−nhn IK D(a) + HK D(τa))

τa

√
2πnhn f (x)I ′′

0 (τa)

[1 + o(1)], (7)

where τa > 0 is such that a + f (x) = f (x)I ′
0(τa), HK D(t) = −c( f 2(x)I 2

0 (t)/2 +
f ′(x)J0(t)) and IK D(a) = τa(a + f (x)) − f (x)I0(τa). Further, I0(t) =∫
R
(exp(t K (y)) − 1)dy and J0(t) = ∫

R
y(exp(t K (y)) − 1)dy.

Proof Let us check that the assumptions of Theorem 1 hold with Zn = f̂n(x) − f (x)

and bn = nhn . For Assumption (A.1), we observe that, for z = t1 + i t2 ∈ C, the
normalized c.g.f. of bn Zn is :

ϕn(z) = 1

nhn
log E {exp(znhn Zn)}

= 1

hn
log E

{
exp

(
zK

(
x − X1

hn

))}
− z f (x)

= 1

hn
log

[
1 + E

{
exp

(
t1 K

(
x − X1

hn

))
− 1

}

+ E

{(
exp

(
i t2 K

(
x − X1

hn

))
− 1

)
exp

(
t1 K

(
x − X1

hn

))}]
− z f (x).

Assumption (A.1) will then follow from conditions 1-2. As in Joutard (2006), using
conditions 1-3 and the fact that nh2

n = c + o(1), we can show that for t < α,

ϕn(t) = ϕ(t) + 1

nhn
H(t) + o

(
1

nhn

)
,

where ϕ(t) = f (x)I0(t) − t f (x), H(t) = −c( f 2(x)I 2
0 (t)/2 + f ′(x)J0(t)), I0(t) =∫

R
(exp(t K (y)) − 1)dy and J0(t) = ∫

R
y(exp(t K (y)) − 1)dy. The function I0 is
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infinitely differentiable in (−∞, α) since, by condition 2, the function κ0 is infinitely
differentiable in (−∞, α) [see Joutard (2006, page 296)]. Likewise, the function J0
is infinitely differentiable in (−∞, α) since, by condition 3, the function κ1 is also
infinitely differentiable in (−∞, α). Given that ϕ′′(τa) = f (x)I ′′

0 (τa) > 0, Assump-
tion (A.2) with bn = nhn is therefore satisfied. Besides, for a > ϕ′(0) = 0, there
exists τa ∈ (0, α) such that ϕ′(τa) = a, that is, f (x) + a = f (x)I ′

0(τa). Finally, let
us check Assumption (A.3). Let δ and λ be such that 0 < δ < δ0 < λ. Then, for all
t ∈ {t ∈ R : δ < |t | < λτa}, there exists q ∈ N such that

√
nhn

∣∣∣∣
φn(τa + i t)

φn(τa)

∣∣∣∣ = √
nhn

∣∣∣∣
φ(τa + i t)

φ(τa)

∣∣∣∣
n

≤ √
nhn sup

δ≤|t |≤nq

∣∣∣∣
φ(τa + i t)

φ(τa)

∣∣∣∣
n

,

where φ is the m.g.f. of K
(

x−X1
hn

)
. Now using conditions 4-6, we can deduce from

Lemma 2.2 of Joutard (2006) that, for any q ∈ N and n large enough,

sup
δ≤|t |≤nq

∣∣∣∣
φ(τa + i t)

φ(τa)

∣∣∣∣ ≤ 1 − C(δ)hn,

where C(δ) > 0. Consequently,

√
nhn sup

δ≤|t |≤nq

∣∣∣∣
φn(τa + i t)

φn(τa)

∣∣∣∣ ≤ √
nhn(1 − C(δ)hn)

n

and the right-hand side goes to zero as n tends to infinity. This ends the verification of
Assumption (A.3) and so we can apply Theorem 1 to prove (7). 	


Example 2. The sample variance. We consider the sample variance

Zn = 1

n − 1

n∑

i=1

(Xi − X)2.

Assuming that the Xi ’s have a normal distribution N (μ; σ 2), σ 2 > 0, we know that
σ−2 ∑n

i=1(Xi − X)2 follows a chi-square distribution with n − 1 degrees of freedom.
A probability of large deviations for the sample variance was studied by Sievers (1969).
Here, we give a strong large deviation result by applying Theorem 1 with bn = n.

Corollary 2 Let Zn be defined as above. Then for a real a such that a > σ 2 and n
large enough,

P(Zn ≥ a) = exp(−(n − 1)ISV (a))

2
√

πnaτa
[1 + o(1)], (8)

where ISV (a) = 1
2

(
a
σ 2 − log

(
a
σ 2

)
− 1

)
> 0 and τa = a−σ 2

2aσ 2 .
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Proof Since σ−2 ∑n
i=1(Xi − X)2 ∼ χ2(n − 1), we have the following expansion for

the normalized c.g.f. of nZn . For t < n−1
2nσ 2 ,

ϕn(t) = 1

n
log E

{
exp

(
t

nσ 2

n − 1

n∑

i=1

(Xi − X)2

σ 2

)}

= −n − 1

2n
log

(
1 − 2σ 2t

(
1 + 1

n − 1

))

= −1

2
log(1 − 2σ 2t) − 1

2
log

(
1 − 2σ 2t

(1 − 2σ 2t)(n − 1)

)
+ 1

2n
log(1 − 2σ 2t)

+ 1

2n
log

(
1 − 2σ 2t

(1 − 2σ 2t)(n − 1)

)

= −1

2
log(1 − 2σ 2t) + 1

n

(
1

2
log(1 − 2σ 2t) + σ 2t

1 − 2σ 2t

)
+ o

(
1

n

)
.

The function z ∈ C �→ ϕn(z) is analytic in DC = {z ∈ C : |z| < α}, α < n−1
2nσ 2 , and

one can find M > 0 such that for all z ∈ DC , |ϕn(z)| ≤ M (this implies Assumption
(A.1)). Next, the expansion (4) holds for every t ∈ (−∞, α) with bn = n,

ϕ(t) = −1

2
log(1 − 2σ 2t) and H(t) = −ϕ(t) + σ 2t

1 − 2σ 2t
.

For a real a such that ϕ′(0) = σ 2 < a < ϕ′(α), there exists τa ∈ (0, α) such that
ϕ′(τa) = a. Actually, we have τa = a−σ 2

2aσ 2 . Assumption (A.2) is fulfilled since the

functions ϕ and H are infinitely differentiable on (−∞, 1/2σ 2), and we have

ϕ′(t) = σ 2

1 − 2σ 2t
, ϕ′′(t) = 2σ 4

(1 − 2σ 2t)2 , ϕ′′(τa) = 2a2 > 0.

Now, we check Assumption (A.3). We have

∣∣∣∣
φn(τa + i t)

φn(τa)

∣∣∣∣ =
∣∣∣∣∣∣

E

{
exp

(
(τa + i t) n

n−1

∑n
i=1(Xi − X)2

)}

E

{
exp

(
τa

n
n−1

∑n
i=1(Xi − X)2

)}

∣∣∣∣∣∣

=
∣∣∣∣∣∣

(1 − 2σ 2(τa + i t) n
n−1 )−

(n−1)
2

(1 − 2σ 2τa
n

n−1 )−
(n−1)

2

∣∣∣∣∣∣

=
(

(1 − 2σ 2τa
n

n−1 )2 + 4σ 4t2( n
n−1 )2

(1 − 2σ 2τa
n

n−1 )2

)− n−1
4

=
(

1 + 4σ 4t2( n
n−1 )2

(1 − 2σ 2τa
n

n−1 )2

)− n−1
4
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= exp

[
−n − 1

4
log

(
1 + 4σ 4t2(1 + 1

n−1 )2

(a−1σ 2 − 1
n−1 (1 − a−1σ 2))2

)]
,

where we have used the fact that τa = a−σ 2

2aσ 2 . Assumption (A.3) with bn = n then
follows from the above expression. By applying Theorem 1, we eventually obtain the
asymptotic result (8), where we have used the following expressions for I (a) and
H(τa)

I (a) = τaa − ϕ(τa) = 1

2

( a

σ 2 − log
( a

σ 2

)
− 1

)
,

H(τa) = −ϕ(τa) + σ 2τa

1 − 2σ 2τa
= I (a).

	


Example 3. The Wilcoxon signed-rank statistic. A large deviations result for the
Wilcoxon signed-rank statistic was obtained by Klotz (1965). Later, Chaganty and
Sethuraman (1993) provided a strong large deviation result by applying their theo-
rem, but as noted in the introduction, their result is intractable in a general frame (in
particular, one cannot derive an explicit asymptotic expression for the tail probability
that depends on n). The asymptotic expansion (9) will follow from Theorem 2 with
bn = n.

Let {X1, . . . , Xn} be a sequence of i.i.d. continuous random variables having dis-
tribution function F and let Ri be the rank of |Xi |, i = 1, . . . , n. In other words, if
one arranges |X1|, |X2|, . . . , |Xn| in increasing order of magnitude, Ri denotes the
rank of |Xi |. Assume that the random variables Xi are symmetric about their median
m. The Wilcoxon signed-rank statistic Wn is defined as the sum of the quantities Ri

corresponding to the positive X ′
i s, that is,

Wn =
n∑

i=1

I{Xi >0} Ri .

The statistic Wn is used to test the null hypothesis H0 : m = 0. Letting Zn = Wn
n2 ,

under the null hypothesis, we have the following result.

Corollary 3 Let Zn be defined as above. Then for a real a > 1/4 and n large enough,

P(Zn ≥ a) = exp(−nIW (a) + HW (τa))

σaτa
√

2πn
[1 + o(1)], (9)

where τa > 0 is such that
∫ 1

0
x

1+exp(−τa x)
dx = a, HW (t) = 1

2 log
(

exp(t)+1
2

)
and

σ 2
a = ∫ 1

0
x2 exp(τa x)

(1+exp(τa x))2 dx. Further, IW (a) = τaa − ϕW (τa) where

ϕW (t) =
∫ 1

0
log

(
et x + 1

2

)
dx .
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Proof The random variable nZn (bn = n) is a lattice random variable with displace-
ment 0 and span sn = 1/n, which tends to zero as n → ∞. The m.g.f. of nZn under
the null hypothesis H0 (that is, the median is equal to zero) is given by

φn(t) =
n∏

k=1

[(exp(tk/n) + 1)/2], t ∈ R.

Define

gt (x) = log

(
exp(t x) + 1

2

)
.

The normalized c.g.f. of nZn is then

ϕn(t) = 1

n
log φn(t)

= 1

n

n∑

k=1

gt (k/n), t ∈ R. (10)

The function z ∈ C �→ ϕn(z) is analytic in DC = {z ∈ C : |z| < π/2} and for all
z ∈ DC , |ϕn(z)| ≤ M , M > 0 (Assumption (A.1) is fulfilled). On the other hand,
ϕn (as a function of t ∈ R) is a right Riemann sum and we know that its limit is

ϕ(t) = ∫ 1
0 log

(
et x +1

2

)
dx for every t ∈ R. Now, let us find the function H such that

(4) holds.
Consider a function g : D �→ R defined on D ⊂ R such that (0, 1) ⊂ D. Denot-

ing the trapezoidal sum, the right Riemann sum and the left Riemann sum by S, Sr

and Sl , respectively, we have S = (Sr + Sl)/2, where Sr = 1
n

∑n
k=1 g(k/n) and

Sl = 1
n

∑n−1
k=0 g(k/n). Furthermore,

∣∣∣∣S −
∫ 1

0
g(x)dx

∣∣∣∣ ≤ M2

12n2 , (11)

where M2 = supx∈(0,1) |g′′(x)| < ∞. The right Riemann sum can be written as:

Sr = S + 1

n

(
g(1) − g(0)

2

)
. (12)

Now, we apply this to the right Riemann sum ϕn . Noticing that gt (0) = 0, by (11) and
(12), (10) becomes

ϕn(t) =
∫ 1

0
gt (x)dx + gt (1)

2n
+ O(1/n2).

Then, (4), with bn = n, follows from the above expression with

123



Strong large deviations for arbitrary sequences of random variables 59

ϕ(t) =
∫ 1

0
log

(
et x + 1

2

)
dx and H(t) = 1

2
log

(
exp(t) + 1

2

)
. (13)

Since ϕ′(0) = 1/4, for a real a ∈ (1/4, ϕ′(π/2)), there exists τa ∈ (0, π/2) such that
ϕ′(τa) = a. The functions ϕ and H are infinitely differentiable on R and we have

ϕ′(t) =
∫ 1

0

x

1 + exp(−t x)
dx, ϕ′′(t) =

∫ 1

0

x2 exp(t x)

(1 + exp(t x))2 dx . (14)

Besides, ϕ′′(τa) > 0 and Assumption (A.2) is then satisfied. According to Chaganty
and Sethuraman (1993), Assumption (A′.3) holds with bn = n and sn = 1/n since
there exist n0 ∈ N, δ1 > 0 and c0 > 0 such that

sup
δ<|t |≤πn

∣∣∣∣
φn(τa + i t)

φn(τa)

∣∣∣∣ ≤ exp(−nc0δ
2)

for n ≥ n0 and 0 < δ < δ1. The asymptotic expansion (9) therefore follows from
Theorem 2 with ϕ, ϕ′, ϕ′′ and H given by (13) and (14). 	


Example 4. The Kendall tau statistic. Sievers (1969) gave a large deviation result for
this nonparametric test of independence. An application of Theorem 2 with bn = n
will yield the strong large deviation result (15). Let {(X1, Y1), . . . , (Xn, Yn)} be a
sequence of i.i.d. continuous random couples having distribution function F(x, y)

and let FX and FY be the marginal distributions. The Kendall tau statistic Zn can be
defined by

Zn = 2
∑

1≤i< j≤n

(I{Xi ≥X j } − I{Xi ≤X j })(I{Yi ≥Y j } − I{Yi ≤Y j })
n(n − 1)

.

It was first used by Kendall (see Kendall and Stuart 1979) to test the null hypothesis
H0 : F(x, y) = FX (x)FY (y) for all x, y. Under the null hypothesis, we have the
following corollary.

Corollary 4 Let Zn be defined as above. Then for a real a ∈ (0, 1) and n large
enough,

P(Zn ≥ a) = exp(−nIK (a) + HK (τa))

σaτa
√

2πn
[1 + o(1)], (15)

where τa > 0 is such that 1 − 1
τa

+ 4
∫ 1

0
x

exp(4τa x)−1 dx = a,

HK (t) = 2t − 1 + 3

2
log(1 − e−4t ) − 1

2
log(4t) −

∫ 1

0
log(1 − e−4t x )dx,

and
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σ 2
a = 1

τ 2
a

− 16
∫ 1

0

x2 exp(4τa x)

(exp(4τa x) − 1)2 dx .

Further, IK (a) = τaa − ϕK (τa), where

ϕK (t) = t + 1 − log(4t) +
∫ 1

0
log(1 − e−4t x )dx .

Proof The statistic nZn (bn = n) is a lattice random variable with displacement n and
span sn = 4/(n − 1), which tends to zero as n → ∞. The m.g.f. of nZn under the
null hypothesis is given by (see Kendall and Stuart 1979)

φn(t) = ent

n!
n∏

k=1

e−4kt/(n−1) − 1

e−4t/(n−1) − 1
.

For t > 0, define

ht (x) = log(1 − exp(−4t x)) − log(x), x ∈ R+.

Then, for t > 0, the normalized c.g.f. of nZn is

ϕn(t) = t − 1

n
log(n!) + 1

n

n∑

k=1

log

(
e−4kt/(n−1) − 1

e−4t/(n−1) − 1

)

= t − 1

n

n∑

k=1

log(k/(n − 1)) − log(n − 1) + 1

n

n∑

k=1

{log(1 − e−4kt/(n−1))

− log(1 − e−4t/(n−1))}

= t + 1

n

n∑

k=1

ht

(
k

n − 1

)
− log(n − 1) − log(1 − e−4t/(n−1)). (16)

One can find α > 0 and M > 0 such that the function z ∈ C �→ ϕn(z) is analytic
in DC = {z ∈ C : |z| < α} and |ϕn(z)| ≤ M for all z ∈ DC (Assumption (A.1) is
verified). Now, for t > 0, we have

log(1 − e−4t/(n−1)) = − log(n − 1) + log(4t) − 2t

n − 1
+ o(1/n). (17)

For the Riemann sum, we use the same arguments as in the previous example. Define

ϕ̃n(t) = 1

n

n∑

k=1

ht (k/n).

Notice that
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h′′
t (x) = 1

x2 − 16t2e−4t x

(1 − e−4t x )2 ,

and limx→0 h′′
t (x) = 4

3 t2. Thus, for t �= 0, M2(t) = supx∈(0,1) |h′′
t (x)| < ∞. This

implies that

ϕ̃n(t) =
∫ 1

0
ht (x)dx + 1

n

(
ht (1) − ht (0)

2

)
+ o

(
1

n

)
.

It is easy to see that ht (1) = log(1 − e−4t ) and ht (0) = limx→0 ht (x) = log(4t).
Then,

ϕ̃n(t) =
∫ 1

0
ht (x)dx + 1

2n

[
log(1 − e−4t ) − log(4t)

]
+ o

(
1

n

)
, (18)

where
∫ 1

0 ht (x)dx = ∫ 1
0 log(1 − e−4t x )dx + 1. Finally, we can write (16) as

ϕn(t) = t +
(

1 − 1

n

)
ϕ̃n−1(t) +

ht

(
n

n−1

)

n

− log(1 − e−4t/(n−1)) − log(n − 1). (19)

The expansion (4), with bn = n, therefore follows from (19), (17) and (18) with

ϕ(t) = t + 1 − log(4t) +
∫ 1

0
log(1 − e−4t x )dx (20)

and

H(t) = 2t − 1 + 3

2
log(1 − e−4t ) − 1

2
log(4t) −

∫ 1

0
log(1 − e−4t x )dx . (21)

We have ϕ′(0) = 0. Then, for a real a ∈ (0, ϕ′(α)), ϕ′(α) < 1, there exists τa ∈ (0, α)

such that ϕ′(τa) = a. The functions ϕ and H are infinitely differentiable on R, and
ϕ′′(τa) > 0. Hence, Assumption (A.2) holds and we have

ϕ′(t) = 1 − 1

t
+ 4

∫ 1

0

x

exp(4t x) − 1
dx,

ϕ′′(t) = 1

t2 − 16
∫ 1

0

x2 exp(4t x)

(exp(4t x) − 1)2 dx . (22)

Now, in order to check Assumption (A′.3), we use the same approach as in Chaganty
and Sethuraman (1985). We only give a sketch of the proof. We define

Gn(t) = Real {ϕn(τa) − ϕn(τa + i t)} = −1

n
log

(∣∣∣∣
φn(τa + i t)

φn(τa)

∣∣∣∣

)
.

123



62 C. Joutard

One can then show that there exists μ ∈ (2/3, 1) such that

inf
δ≤|t |≤δ(n−1)1−μ

Gn(t) ≥ 2δ2

9
n3(μ−1)[1 + o(1)] (23)

and

lim
n→∞ inf

δ(n−1)1−μ≤|t |≤(n−1)π/4
Gn(t) = ∞, (24)

where 0 < δ < δ1 and δ1 < π/4. Combining (23) and (24), for n large enough we get

Gn(t) ≥ 2δ2

9
n3(μ−1)[1 + o(1)]

for all t ∈ {t : δ ≤ |t | ≤ (n − 1)π/4}. This implies Assumption (A′.3) with bn = n
and sn = 4/(n − 1). Hence, we can apply Theorem 2 with ϕ, ϕ′, ϕ′′ and H given by
(20), (21) and (22), and obtain (15). 	


3 Lemmas

In this section, we establish two preliminary lemmas needed for the proofs of Theo-
rems 1 and 2. To do so we first introduce some notation. Denote the distribution func-
tion of bn Zn by Kn . Let a be a real such that a > ϕ′(0) and there exists τa ∈ (0, α)

satisfying ϕ′(τa) = a. Using an exponential change of measure, let

Hn(u) =
∫

−∞<y<u
exp(yτa − bnϕn(τa))dKn(y)

be the distribution function of bn Z∗
n . Define the random variable

Vn =
√

bn(Z∗
n − a)

σa
, (25)

where we recall that σ 2
a = ϕ′′(τa) > 0 (Assumption (A.2)). The following lemma

shows the asymptotic normality of Vn .

Lemma 1 Let Assumption (A.2) hold. Then, the statistic Vn converges in distribution
to a standard normal random variable.

Proof Let MVn be the m.g.f. of Vn . For t ∈ (−α0, α0), we have

MVn (t) = E{exp(tVn)}
= e−ta

√
bn/σa E{exp(tbn Z∗

n/(
√

bnσa))}

= e−ta
√

bn/σa
φn(τa + t√

bnσa
)

φn(τa)
.
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By Assumption (A.2), we get, for n large enough,

log MVn (t) = − ta
√

bn

σa
+ bn

[
ϕn

(
τa + t√

bnσa

)
− ϕn(τa)

]

= − ta
√

bn

σa
+ bn

[
ϕ

(
τa + t√

bnσa

)
− ϕ(τa)

+ b−1
n

(
H

(
τa + t√

bnσa

)
− H(τa)

)
+ o(b−1

n )

]
.

Using Taylor expansions for the functions ϕ and H , and the fact that ϕ′(τa) = a and
σ 2

a = ϕ′′(τa), the following result holds for any t ∈ (−α0, α0) and n large enough,

log MVn (t) = − ta
√

bn

σa
+ tϕ′(τa)

√
bn

σa
+ t2ϕ′′(τa)

2σ 2
a

+ o(1)

= t2

2
+ o(1).

As a consequence, log MVn (t) → t2/2 as n → ∞ and the lemma is proved. 	


The proof of the next lemma is similar to that of Chaganty and Sethuraman
(1993, Lemma 3.1) (in particular, we make use of Chaganty and Sethuraman (1993,
Theorem 2.6)).

Lemma 2 Let fn be the characteristic function of Vn and assume that assumptions
(A.1)–(A.2) are satisfied. Then, there exist δ > 0, γ > 0 and n0 ∈ N such that

sup
n≥n0

| fn(t)|I (|t | ≤ δ
√

bnσa) ≤ exp(−γ t2). (26)

Proof Denote

gn(t) = 1

bnσ 2
a

log | fn(
√

bnσat)|.

To prove the lemma, it is sufficient to check that Condition (2.29) of Chaganty and
Sethuraman (1993, Theorem 2.6) is satisfied for all n ≥ n0 where n0 ∈ N. It is
straightforward to see that

gn(t) = 1

σ 2
a

[Real(ϕn(τa + i t) − ϕn(τa))] .

123



64 C. Joutard

We know from Assumption (A.1) that gn is infinitely differentiable in (−α0, α0),
0 < α0 < α − τa . Then, using a Taylor expansion, we have for t ∈ (−α0, α0),

g′′
n (t) = −Real(ϕ′′

n (τa + i t))

σ 2
a

= −Real(ϕ′′
n (τa) + rn(τa + i t))

σ 2
a

,

where the remainder term rn depends on the third derivative of ϕn . Now, let us show
that

ϕ′′
n (τa) = σ 2

a + o(1). (27)

Noting that

ϕ′′
n (τa) = bn

(
E{Z2

n exp(τabn Zn)}
E{exp(τabn Zn)} −

(
E{Zn exp(τabn Zn)}

E{exp(τabn Zn)}
)2

)
,

and in view of the fact that bn Z∗
n is distributed according to Hn , it can be easily seen

that ϕ′′
n (τa) = bnVar(Z∗

n). From Lemma 1, we have Var(Vn) = bn
σ 2

a
Var(Z∗

n) → 1 as

n → ∞. Then, (27) holds and we have

g′′
n (t) ≤ −1 + |rn(τa + i t)|

σ 2
a

+ o(1).

Furthermore, by Assumption (A.1) (ϕn is analytic) and Cauchy’s inequality, the
remainder term rn can be bounded. That is, there exists δ > 0 small enough (δ < α0)
such that for all |t | ≤ δ,

|rn(τa + i t)| ≤ 3!M |t |
α3

0

.

Therefore, there exist γ > 0 and n0 ∈ N large enough such that for all |t | ≤ δ and all
n ≥ n0,

g′′
n (t) ≤ −γ.

Condition (2.29) of Chaganty and Sethuraman (1993, Theorem 2.6) is thus verified.
This completes the proof. 	
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4 Proofs

We give the proofs of the theorems of Sect. 2.

Proof of Theorem 1. The beginning of the proof of (5) follows the same lines as in
Bahadur and Rao (1960) and more recently Bercu et al. (2000) or Joutard (2006). Let
a > ϕ′(0). We can write the Fenchel-Legendre transform of ϕ as

I (a) := sup
t∈R

{ta − ϕ(t)} = τaa − ϕ(τa),

where τa ∈ (0, α) is such that ϕ′(τa) = a. Recall that bn Z∗
n is a random variable with

distribution function

Hn(u) =
∫

−∞<y<u
exp(yτa − bnϕn(τa))dKn(y).

Using Assumption (A.2), the right tail probability may now be written as

P(Zn ≥ a) = E{exp(−τabn Z∗
n + bnϕn(τa))I{Z∗

n≥a}}
= exp(bnϕn(τa) − bnτaa)E{exp(−τabn(Z∗

n − a))I{Z∗
n≥a}}

= exp(bnϕn(τa) − bnτaa)E{exp(−τaσa

√
bn Vn)I{Vn≥0}}

= ebn(ϕ(τa)−τaa)+H(τa)+o(1)
E{exp(−τaσa

√
bn Vn)I{Vn≥0}}

= e−bn I (a)+H(τa)
E{exp(−τaσa

√
bn Vn)I{Vn≥0}}(1 + o(1)), (28)

where

Vn =
√

bn(Z∗
n − a)

σa
and σa = √

ϕ′′(τa) > 0. (29)

It remains to prove that

lim
n→∞ τaσa

√
bnE{exp(−τaσa

√
bn Vn)I{Vn≥0}} = 1√

2π
. (30)

To do this, we will apply Chaganty and Sethuraman (1993, Theorem 2.7) to the
sequence of random variables Vn . Lemma 1 and Lemma 2 show that Vn converges in
distribution to a standard normal variable and that (26) holds, respectively. Besides, it
is easy to see that

sup
δ
√

bnσa<|t |≤λτaσa
√

bn

| fn(t)| = sup
δ<|t |≤λτa

∣∣∣∣
φn(τa + i t)

φn(τa)

∣∣∣∣ ,
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where fn is the characteristic function of Vn and φn the m.g.f. of bn Zn . Hence, by
Assumption (A.3), we have for n large enough,

sup
δ
√

bnσa<t≤λτaσa
√

bn

| fn(t)| = o(b−1/2
n ). (31)

The convergence in distribution of Zn , (26) and (31) allow us to verify the condi-
tions of Chaganty and Sethuraman (1993, Theorem 2.3). Denote the density of Vn (or
pseudo density if Vn does not possess a proper density function) by qn . By Chaganty
and Sethuraman (1993, Theorem 2.3), there exists a constant M0 > 0 such that

sup
y

qn(y) ≤ M0, (32)

and if zn → z, then

qn(zn) → (
√

2π)−1e−z2/2. (33)

Chaganty and Sethuraman (1993, Theorem 2.7) follows directly from (32) and (33).
Consequently, we have

lim
n→∞ τaσa

√
bnE{exp(−τaσa

√
bn Vn)I{Vn≥0}} =

[
(
√

2π)−1e−z2/2
]

z=0
= 1√

2π
,

and (30) holds. Combining (30) and (28), we obtain (5). This ends the proof. 	


Proof of Theorem 2. Theorem 2 follows from Theorem 1, since Assumption (A′.3)
implies Assumption (A.3) (in view of the fact that sn → 0 as n → ∞). 	
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