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Abstract Consider a linear regression model subject to an error distribution which
is symmetric about 0 and varies regularly at 0 with exponent ζ . We propose two
estimators of ζ , which characterizes the central shape of the error distribution. Both
methods are motivated by the well-known Hill estimator, which has been extensively
studied in the related problem of estimating tail indices, but substitute reciprocals of
small L p residuals for the extreme order statistics in its original definition. The first
method requires careful choices of p and the number k of smallest residuals employed
for calculating the estimator. The second method is based on subsampling and works
under less restrictive conditions on p and k. Both estimators are shown to be con-
sistent for ζ and asymptotically normal. A simulation study is conducted to compare
our proposed procedures with alternative estimates of ζ constructed using resampling
methods designed for convergence rate estimation.

Keywords Centre exponent · L p estimator · Regression · Subsampling

1 Introduction

Consider a random sample (Y1, X1), . . . , (Yn, Xn) under a typical linear regression
model Yi = XT

i β0 + Ui , i = 1, . . . , n, where (U1, . . . , Un) and (X1, . . . , Xn) denote
two independent random samples drawn from the univariate distribution function FU

and the d-variate distribution function FX , respectively, and β0 is an unknown d-variate
parameter in R

d . Assume that FU is symmetric about 0 and satisfies
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106 P. Y. Lai, S. M. S. Lee

FU (u) − FU (0) = sgn(u)|u|ζ L(|u|)/ζ, for |u| ≤ C, (1)

for some ζ, C > 0 and nonnegative function L on (0,∞) slowly varying near 0. The
parameter ζ , which we shall term the “centre exponent” following Rogers (2001),
characterizes regular variation of |FU (u) − FU (0)| at the origin and thus controls
the shape of FU near 0. The above specification of FU encompasses a rich class of
symmetric error distributions continuous at 0. They may have S- or inverse S-shapes
according to ζ < 1 or > 1, respectively, and may or may not possess densities. If FU

has a non-zero derivative at 0, then ζ = 1 necessarily. Special parametric examples
include normal and Laplace distributions, for which ζ = 1, as well as reflected gamma
and double Weibull distributions, for which ζ is given by the shape parameter. Mod-
elling of the error distribution FU has very often been engineered to accommodate
different types of tail behaviour of the response variable, without paying much regard
for the central shape of FU . By the same token, while nonparametric estimators of tail
indices abound in the literature, the problem of estimating centre exponents remains
little studied.

We contend, however, that knowledge of ζ is of such practical import that a non-
parametric method for its consistent estimation is worth developing. A consistent
estimator of ζ has, first of all, a diagnostic value in assessing the suitability of the
proposed regression model. While we incline in standard regression problems to the
assumption of a finite positive error density at 0 so that ζ = 1, an estimate of ζ sig-
nificantly different from 1 suggests inadequacy of the assumption and sheds light on
ways to refine our modelling strategy qualitatively. For example, a large value of ζ

evinces possible bimodality of FU , suggesting the existence of a mixture of clusters,
each espousing a possibly different linear relation, so that some sort of stratification
may be necessary for enhancing the interpretive value of the regression model. A small
value of ζ , on the other hand, indicates a possible mixture of two error distributions
differing in scale, thus calling into question the assumption of homoscedasticity. Such
diagnostic value becomes yet more important when the regression model consists of
more than one covariates so that standard scatter plots may fail to discern certain
meaningful patterns in the observed data.

Accurate estimation of ζ also plays an indirect yet important role in efficient esti-
mation of the regression coefficients β0. It has been shown that knowledge of ζ ,
coupled with a judicious choice of p, may yield for the resulting L p estimator of β0
a convergence rate faster than n1/2, that is the rate achieved by the conventional least
squares method L2: see Arcones (1998, 1999) and Lai and Lee (2005). Consequently,
predictions obtained from such L p estimates also enjoy a higher order of accuracy
compared to those derived from the least squares method.

If the random errors Ui were observable, the problem of estimating ζ resembles one
of estimating the tail index of the distribution of |Ui |−1, which has regularly varying
tails, based on the observed random sample |U1|−1, . . . , |Un|−1. The pioneering work
of Hill (1975) has inspired a rich literature on estimation of tail indices, which sup-
plies a good source of solutions in this case. However, adaptation of the Hill estimator
to the present context where the Ui are in fact unobserved poses two major difficul-
ties. First, although the distributions of Yi and Ui have tail indices closely related to
each other so that Hill estimators of their tail indices can be based directly on the
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Centre exponent estimation under regression 107

observable Yi , there is no trivial relationship between the distributions of |Ui |−1 and
|Yi |−1 which one can exploit to calculate an analogous Hill estimator of ζ based on the
observable |Yi |−1 alone. For practical implementation of Hill’s method, one should
therefore substitute each Ui by an appropriate computable residual Ûi = Yi − XT

i β̂,
for some estimate β̂ of β0. The second difficulty concerns the correct choice of β̂.
As we shall show in Sect. 2, consistency of the Hill estimator of ζ derived from
|Û1|−1, . . . , |Ûn|−1 requires a reasonably fast, and ζ -specific, convergence rate of β̂.
The traditional L1 or L2 estimators may not be adequate for providing the required fast
rates.

We propose in this paper two nonparametric methods for consistent estimation of ζ ,
and establish their asymptotic properties. Both of our proposed estimators apply Hill’s
procedure to reciprocals of residuals |Ûi |−1, but in two different manners. In each case
the residual is defined as Ûi = Ûi (p) = Yi − XT

i β̂(p), where β̂(p) denotes the L p

estimate of β0 for some p ∈ (0,∞). The first method calculates the Hill estimate of
ζ from the k largest |Ûi |−1, for some k = o(n). We establish consistency and asymp-
totic normality of this estimate under ζ �= 2 and some ζ -specific conditions on the two
tuning parameters p and k. The latter conditions require, for ζ < 2, p be sufficiently
small and k be sufficiently large. Our second method calculates the Hill estimate
based on the � largest values of a subset of size m taken from {|Û1|−1, . . . , |Ûn|−1},
for some m = o(n) and � = o(m). The estimate of ζ is then obtained by averaging the
above Hill estimates over the

(n
m

)
distinct subsets or over some random or nonrandom

collection, possibly with repetitions, of these subsets. This method yields consistent
estimates under much less stringent conditions on the choices of p, m and �, and is
more convenient to implement in practice. In particular, use of L p estimates β̂(p)

in the calculation of the residuals Ûi (p) can be confined to the conventional choices
p = 1 and 2.

Empirical determination of k in the Hill estimator of a tail index has been a topic
of intensive research. For example, Hall and Welsh (1985) estimate adaptively the tail
index by selecting k optimally from an initial range of possible values. Hall (1990)
and Caers and van Dyck (1999) apply the bootstrap to select k in the sense of min-
imizing the mean squared error (MSE). Beirlant et al. (1996) derive the best k by a
weighted regression in a Pareto quantile plot. De Haan and Peng (1998) suggest to
choose k that yields minimal asymptotic MSE. These methods can be adapted with-
out difficulty to our present context to determine either k or � empirically. Practical
implementation of our two estimation methods is thus complicated mainly by the
need to select an appropriate estimate β̂(p) in the calculation of residuals Ûi (p).
We suggest two simple computational algorithms to automatically select p, and
examine the performance of the resulting Hill estimates of ζ through a simulation
study.

Section 2 establishes consistency and asymptotic normality results relevant to our
two proposed estimators. Section 3 describes computational algorithms for calculating
the estimators. Section 4 reports simulation results and compares our proposed pro-
cedures with four alternative estimators obtained by resampling methods. Section 5
illustrates the applications of the methods to three real data sets. Section 6 concludes
our findings. All technical details are deferred to Appendix.
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2 Theory

Recall that the L p estimator β̂(p) of β0 is conventionally defined as the value of β

which minimizes the criterion function n−1 ∑n
i=1 |Yi − XT

i β|p. Lai and Lee (2005)
show under the general class of error distributions (1) that the precise mode of calcu-
lation of β̂(p) in fact depends on the values of ζ and p. For example, if ζ > 1 and
p < 1, β̂(p) should be found by locally maximizing, instead of globally minimizing,
the criterion function. The following lemma recapitulates the findings of Lai and Lee
(2005) which are useful for establishing the theory of our proposed estimators of ζ .

Lemma 1 Assume that E |U1|max{2p−2,0} < ∞, X1 has finite moments of all orders
and P(XT

1 β = 0) < 1 for any nonzero β ∈ R
d . Then, under the class of error distri-

butions (1), nγ (p,ζ )l(n)(β̂(p)−β0) = Op(1) for some γ (p, ζ ) > 0 and some positive
function l slowly varying at ∞ whenever

(i) p + ζ ≥ 2 and p �= 1, in which case γ = 1/2;
(ii) p + ζ < 2, 2p + ζ > 2 and ζ �= 1, in which case γ = 2−1(p + ζ − 1)−1;

(iii) 2p + ζ ≤ 2 and ζ �= 1, in which case γ = 1/ζ ;
(iv) p = 1, ζ ≥ 1, in which case γ = 1/(2ζ );

provided that

– under case (i), β̂(p) globally minimizes or locally maximizes n−1 ∑n
i=1 |Yi −

XT
i β|p according as p > 1 or p < 1, respectively;

– under cases (ii) and (iii), β̂(p) globally minimizes or locally maximizes n−1 ∑n
i=1|Yi − XT

i β|p according as ζ < 1 or ζ > 1, respectively;

– under case (iv), β̂(p) globally minimizes n−1 ∑n
i=1 |Yi − XT

i β|p.

We see from Lemma 1 that for ζ > 2, the fastest convergence rate n1/2 of β̂(p)

can be attained by any p �= 1; whilst for ζ < 2 and ζ �= 1, the conventional n1/2

rate can be improved upon by choosing p < 2 − ζ and the best rate, of order n1/ζ

up to a slowly varying factor, is attained by p ≤ 1 − ζ/2. The latter result is particu-
larly important to ensure reasonable convergence rates for β̂(p) in our first estimation
method when 1 �= ζ < 2. For in this case we require the residual Ûi (p) and the true
error Ui be equal up to an order smaller than the conventional O(n−1/2). The case
p < 1 = ζ is more intricate in that the asymptotic behaviour of β̂(p) depends further
on the second-order properties of FU in the neighbourhood of 0. Details can be found
in Lai and Lee (2005) Theorem 2 and will not be presented here.

Lai and Lee (2008) develop a computational algorithm for automating the correct
mode of calculation of β̂(p) as required by Lemma 1, without prior knowledge of
the value of ζ . Suppose now that β̂(p) has been computed from the regression data
(Y1, X1), . . . , (Yn, Xn). Define Ûi (p) = Yi − XT

i β̂(p). For each nonempty subset

M of size m in N = {1, . . . , n}, denote by Û (1)

M(p) ≤ · · · ≤ Û (m)

M (p) the ordered

sequence of the residuals {|Ûi (p)| : i ∈ M}. Define, for � ≤ m, the Hill estimator of
ζ to be

ζ̂M(p, �) = �

{
�∑

i=1

log
[
Û (�+1)

M (p)/Û (i)
M(p)

]
}−1

.
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Centre exponent estimation under regression 109

We prove in Appendix our main theorems, which establish consistency and asymp-
totic normality of ζ̂M(p, �) under two different scenarios: (a) M = N and (b) m =
o(n), respectively. In addition to regular variation of |FU (u) − FU (0)| at 0, a second-
order variation condition is required for proving asymptotic normality:

lim
t→∞{L(x/t)/L(1/t) − 1}/g(t) = K (1 − xκ )/κ, for all x > 0, (2)

for some K ∈ R, κ ≥ 0 and function g varying regularly at ∞ with exponent −κ

and satisfying limt→∞ g(t) = 0. Note that the condition (2) is equivalent to requiring
that the function x �→ F(1/x)− F(0) be second-order (−ζ,−κ) regularly varying at
∞. Second-order regular variation conditions on the tails of distributions have been
considered by, for example, Geluk and de Haan (1987); Goldie and Smith (1987),
De Haan and Stadtmüller (1996) and Cheng and Pan (1998). Asymptotic normality of
the Hill estimator of the tail index has been proved by many authors: see, for exam-
ple, Hall (1982) under a special form of second-order regular variation, and Haeusler
and Teugels (1985) under more general conditions. Cheng and Pan (1998) establish
Edgeworth expansions for the Hill estimator under second-order regular variation con-
ditions as well as under the stronger condition that the variation occurs at a rapid rate.
Translated to our present context, their latter condition has the form:

lim
t→∞{L(x/t)/L(1/t) − 1}/g(t) = 0, for all x > 0, (3)

for every function g varying regularly at ∞ with nonpositive exponent.

Theorem 1 Assume the conditions of Lemma 1, (2) and that k ∝ n� for some � > 0.
Then

k1/2
{
ζ̂N (p, k) − ζ

}
converges in distribution to N (0, ζ 2),

provided that

(i) 0 < ζ < 2, 0 < p < 2 − ζ and

� ∈
⎧
⎨

⎩

(
1 − 2−1(p + ζ − 1)−1ζ

1 − max(ζ, 1)/2
, 2κ/(ζ + 2κ)

)
if p > 1 − ζ/2;

(0, 2κ/(ζ + 2κ)) if p ≤ 1 − ζ/2;
or

(ii) ζ > 2, 0 < p �= 1 and 0 < � < 2κ/(ζ + 2κ).

In particular, if (3) holds, then the upper bound 2κ/(ζ + 2κ) for � in (i) and (ii)
above can be replaced by 1.

Theorem 1 implies consistency of ζ̂N (p, k) at a convergence rate of order k1/2

when ζ �= 2. The rate can be made as fast as nκ/(ζ+2κ)−ε , for any ε > 0, by choosing
� sufficiently close to 2κ/(ζ +2κ) and p sufficiently small. The asymptotic normality
result provides a convenient means to inference about ζ . In a different context Hall
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(1982) establishes a similar result for Hill’s estimation of tail indices when the distri-
bution function F satisfies 1 − F(x) = Cx−ζ {1 + Dx−κ + o(x−κ )} as x → ∞ for
some C > 0 and D ∈ R, and proves that the Hill estimator has an optimal convergence
rate of order nκ/(ζ+2κ) if we set k ∝ n2κ/(ζ+2κ).

The upper bound 2κ/(ζ + 2κ) on � is typically required for proving asymptotic
normality even if the Hill estimator of ζ were calculated from the true errors Ui : see,
for example, Hall (1982) and Haeusler and Teugels (1985). The other conditions are
needed to close the gaps between the residuals Ûi (p) and the Ui . When ζ = 2, β̂(p)

has convergence rates at most of order n1/2 for any choice of p, which is not adequate
to provide the order of proximity required between Ûi (p) and Ui for establishing
asymptotic normality. It is clear from Theorem 1(i) that choice of p ≤ 1 − ζ/2 broad-
ens the feasible range of � to that specified in (ii), which suggests that a small p is
recommendable in practice to permit more liberal choices of k. We describe in Sect. 3
a recursive algorithm for empirically determining valid values of p and k as stipulated
by Theorem 1.

Unavailability of asymptotic properties at an isolated case ζ = 2 and the need to
search for a valid choice of p within some ζ -specific range pose two drawbacks in the
computation of the estimate ζ̂N (p, k). Indeed, if ζ is less than and close to 2, the con-
ditions in Theorem 1(i) restrict the choice of p to a very narrow range (0, 2−ζ ) and, if
we wish to avoid an infeasible condition on k, to an even narrower range (0, 1 − ζ/2].
A simple trick to relax the constraints on p and k is to calculate an analogous estimate
ζ̂M(p, �) based on only m of the n residuals Ûi (p) so that Ûi (p) and Ui would be
sufficiently close to each other relative to a sample of size m. The loss in efficiency due
to use of only m residuals in the calculation of the estimate can be recovered to some
extent by averaging the estimates over the

(n
m

)
distinct choices of the m residuals, or

over a large number of randomly selected subsets of m residuals. Our next theorem
states conditions under which �1/2(ζ̂M(p, �) − ζ ) is asymptotically normal.

Theorem 2 Assume (2) and the conditions of Lemma 1 so that nγ (p,ζ )l(n)(β̂(p) −
β0) = Op(1) for some constant γ (p, ζ ) > 0 and some positive function l slowly
varying at infinity. Let M be a subset of size m arbitrarily selected from {1, . . . , n}.
Assume that m ∝ nρ and � ∝ mδ for some ρ, δ ∈ (0, 1). Then

�1/2
(
ζ̂M(p, �) − ζ

)
converges in distribution to N (0, ζ 2),

provided that

(i) 0 < ζ < 1, 0 < δ < 2κ/(ζ + 2κ) and ρ(1 − δ/2) < γ (p, ζ )ζ ; or
(ii) ζ ≥ 1, 0 < δ < 2κ/(ζ + 2κ) and ρ(1 − δ + δζ/2) < γ (p, ζ )ζ .

In particular, if (3) holds, then the upper bound 2κ/(ζ + 2κ) for δ in (i) and (ii)
above can be replaced by 1.

The corollary below follows immediately from Theorem 2.

Corollary 1 Under the conditions of Theorem 2 and the conditions of part (i) or (ii)
specified therein, we have that
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Centre exponent estimation under regression 111

B−1
B∑

b=1

ζ̂Mb (p, �) = ζ + Op(�
−1/2),

for any B subsets M1, . . . ,MB, each of size m, drawn either randomly or nonran-
domly from {1, . . . , n}.

We see from Theorem 2(ii) that validity of the estimate ζ̂M(p, �) for the case ζ = 2
is ensured by simply setting δ < κ/(1 + κ) and ρ < 1 if a n1/2-consistent estimator,
such as β̂(p) with p �= 1, is used to calculate the residuals. Thus, ζ̂M(p, �) does not
have the first drawback of ζ̂N (p, k). In general, we can easily find combinations of
ρ and δ which meet the conditions specified in (i) or (ii) of Theorem 2. Suppose, for
example, that we fix ρ and δ such that ρ(1 − δ/2) < 1/2 and δ < 2κ/(ζ + 2κ).
Then if ζ < 1, the conditions in (i) are satisfied trivially by taking p = 1 so that
γ (1, ζ ) = 1/(2ζ ): see Lemma 1(ii). If ζ ≥ 1, then the conditions in (ii) hold for
p = 2 so that γ (2, ζ ) = 1/2: see Lemma 1(i). One can therefore obtain a consistent
estimate of ζ by calculating only L1 or L2 residuals, depending on whether ζ < 1
or ζ ≥ 1, respectively. The convergence rate of ζ̂M(p, �) is of order nρδ/2, which is
generally slower than the best rate of ζ̂N (p, k) calculated from the full set of residuals.
For example, if we adopt the aforementioned scheme for setting p, ρ and δ, then the
rate can be made as fast as nκ/(2ζ+2κ)−ε , for any ε > 0, by choosing δ sufficiently
close to 2κ/(ζ +2κ) and ρ sufficiently close to 1/(2−δ). Higher efficiency may result
from averaging ζ̂M(p, �) over more subsets M drawn from N , although we do not
attempt to derive the optimal theoretical convergence rate in this case and are content
to give a somewhat trivial rate �1/2 in Corollary 1 which holds for averages over any
number of subsets M. We note also from the last assertions of Theorems 1 and 2 that
under the more stringent condition (3), both estimates ζ̂N (p, k) and ζ̂M(p, �) can be
constructed to yield the best convergence rates of order n1/2−ε for any ε > 0, since
limκ→∞ κ/(ζ + 2κ) = limκ→∞ κ/(2ζ + 2κ) = 1/2.

As in our first method, the choice of p in the construction of ζ̂M(p, �) still hinges
upon the unknown ζ , but the dependence is, as has been illustrated above, much less
delicate in this case and a judicious choice between L1 and L2 estimators suffices. The
second method is therefore expected to enjoy a more stable performance in practice.
An algorithm is described in Sect. 3 for implementing the method.

3 Computational algorithms

Motivated by Hill (1975) estimator of a tail index and our Theorems 1 and 2, we
propose two computational algorithms for estimating the centre exponent ζ . Method
I, described in Sect. 3.1, updates the choices of p and k recursively until the estimate
ζ̂N (p, k) satisfies conditions determined by the current values of p and k. Section 3.2
describes Method II which averages the estimates ζ̂M(p, �) over a large number of
subsamples randomly generated from the original sample, for p = 1 or 2 and for some
pre-determined values of m and �.

We do not intend to provide a construction of an optimal estimator having the fastest
convergence rate, which is outside the scope of this paper but clearly constitutes an
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important problem for further investigation. We have seen that the convergence rates
of ζ̂N (p, k) and ζ̂M(p, �) depend crucially on k and �, respectively. Many procedures
are available in the literature for optimal selection of the sample fraction in Hill esti-
mation and can be adapted to our present context, although the mutual dependence
between ζ , p and the sample fractions calls for a more sophisticated procedure. We
emphasize instead here the importance of selecting an appropriate L p estimate in the
calculation of the residuals Ûi (p). We see from Theorems 1 and 2 that the value of
p generally determines a lower bound on the valid choice of k or �. Both Methods I
and II pay due regard to the choice of p, and provide an efficient means to identify
feasible values of p and k (or �) in order to yield a valid Hill estimator of ζ . On the
other hand, the upper bounds on k and � are controlled by both ζ and κ in the form of
the conditions �, δ < 2κ/(ζ + 2κ). In special situations, the conditions can be quite
trivial. For example, under (3), we can replace 2κ/(ζ +2κ) by 1. Hall (1982) describes
common special cases, such as powers of smooth distributions and extreme value dis-
tributions, for which κ = ζ so that 2κ/(ζ + 2κ) = 2/3. In general, we can calculate
some preliminary consistent estimates of ζ and κ from the sample as suggested by, for
example, Beirlant et al. (1996), and incorporate the conditions �, δ < 2κ/(ζ + 2κ)

into the algorithms of the two methods.

3.1 Method I

We have seen from Theorem 1 that consistency and asymptotic normality of ζ̂N (p, k)

follow from a set of conditions as summarized below:

(a) if ζ ≤ 1, then we need p < 2 − ζ and

� ∈
(

max

{
2 − ζ

p + ζ − 1
, 0

}
,

2κ

ζ + 2κ

)
;

(b) if 1 < ζ < 2, then we need p < 2 − ζ and

� ∈
(

max

{
2 − ζ/(p + ζ − 1)

2 − ζ
, 0

}
,

2κ

ζ + 2κ

)
;

(c) if ζ > 2, then we need p �= 1 and � ∈ (0, 2κ/(ζ + 2κ)).

Denote by [·] the integer part function. Our Method I identifies a feasible triplet
(p,�, ζ̂N (p, [n�])) which satisfies one of the above conditions. To start the algo-
rithm, initial choices of p and � are required and determined by an initial consistent
estimate ζ̂A of ζ calculated using any valid method such as those described in Sect. 4.
Then we update the values of (p,�, ζ̂N (p, [n�])) until one of the conditions (a)–(c)
is satisfied. The algorithm goes as follows:

Step 1. Calculate an initial consistent estimate ζ̂A. Set i = 0, ζ̂0 = ζ̂A and fix some
ω1, ω2 ∈ (0, 1).

Step 2. Increment i . Update pi and �i according to the following rules:
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Centre exponent estimation under regression 113

(i) if ζ̂i−1 < 2, calculate pi = ω1(2 − ζ̂i−1) and ki = [n�i ], where

�i =

⎧
⎪⎪⎨

⎪⎪⎩

ω2 max
{

2 − ζ̂i−1/(pi + ζ̂i−1 − 1), 0
}

+ (1 − ω2), ζ̂i−1 ≤ 1,

ω2 max

{
2 − ζ̂i−1/(pi + ζ̂i−1 − 1)

2 − ζ̂i−1
, 0

}

+ (1 − ω2), ζ̂i−1 > 1;

(ii) if ζ̂i−1 > 2, fix pi = 2 and ki = [n1−ω2 ].
Step 3. Compute ζ̂i = ζ̂N (pi , ki ). Terminate and return ζ̂i as the estimate of ζ if

(p, k, ζ ) = (pi , ki , ζ̂i ) satisfies any one of the conditions (a)–(c); go to Step
2 otherwise.

Determination of pi in the above procedure differs under two different cases:
(i) ζ̂i−1 < 2, and (ii) ζ̂i−1 > 2. For case (i), we recommend that pi be restricted
to small values by taking a small ω1 < 0.5 to capitalize on the accelerated conver-
gence rate of β̂(pi ). For case (ii), we fix pi = 2 and calculate the convenient least
squares estimate β̂(2). In fact, any value of pi �= 1, which yields a convergence rate
of order n1/2, is appropriate here: see Lemma 1(i). We should, however, avoid the use
of pi = 1 due to the very slow rate n1/(2ζ ) of β̂(1): see Lemma 1(iv). The choice of
�i determines the number of small residuals used for calculating the Hill estimate,
and controls the amount of information extracted from the centre of FU relative to
that from the tails. In general, a large �i reduces variance but increases bias, in a way
depending on the values of ζ and κ . For higher efficiency we are inclined to include
more residuals in our calculations by fixing some small ω2 < 0.5, but are aware that
ω2 might need to be chosen adaptively according to the second-order behaviour of the
slowly varying function L to account for the upper bound 2κ/(ζ + 2κ) on �.

Our empirical experience finds that the algorithm converges after only a few, less
than 6 on average, iterations, although it might occasionally oscillate between different
regimes and fail to produce a stable estimate.

3.2 Method II

Our Method II essentially calculates the Hill estimator ζ̂M(p, �) based on a subset
of size m = [nρ] of the original sample, for some ρ ∈ (0, 1). Relative to the smaller
sample size m, the estimator β̂(p), which is calculated from the full sample of size
n, has a fast convergence rate. Thus the unobserved random errors are closer to the
residuals derived from β̂(p) than to the L p residuals which would have normally
been obtained from a sample of size m. This results in substantially weakened con-
ditions on the choice of p, making Method II much more convenient to implement
than Method I. That the Hill estimates are calculated from subsamples generally leads
to some loss in efficiency compared to Method I which calculates the estimate from
the full sample. However, as we shall see in a simulation study, both methods yield
quite accurate results and its practical convenience makes Method II a competitive
alternative to Method I.

We have briefly mentioned a possible procedure for Method II in Sect. 2. The
following algorithm formalizes the procedure further.
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Step 1. Fix some ρ, δ satisfying ρ(1 − δ/2) < 1/2. Set m = [nρ] and � = [mδ].
Step 2. Calculate an initial consistent estimate ζ̂A. If ζ̂A < 1, set p = 1; otherwise

set p = 2.
Step 3. Generate a large number B of subsets M1, . . . ,MB , each of size m, ran-

domly from N . For each b = 1, . . . , B, calculate ζ̂Mb (p, �).
Step 4. Calculate ζ̂ = B−1 ∑B

b=1 ζ̂Mb (p, �) and return ζ̂ as the estimate of ζ .

We note that in Step 3, if computer resources permit, we may set B = (n
m

)
and

calculate ζ̂Mb (p, �) for all the
(n

m

)
distinct subsets Mb of size m selected from N .

4 Simulation study

We conducted a simulation study under a location model Yi = β0 + Ui , where Ui has
the density function

fU (u) ∝
{ |u|ζ−11{|u| ≤ 1} with probability 0.75,

|u|−3.011{|u| > 1} with probability 0.25,

and 1{·} denotes the indicator function. The true value β0 was fixed at 0. Note that
the specification of fU above allows for a heavy-tailed component which accounts for
25 % of the complete distribution. A broad spectrum of symmetric error densities was
chosen to exemplify a variety of shapes at the origin: (a) ζ = 0.3, (b) ζ = 0.8, (c)
ζ = 1.3, (d) ζ = 1.8, (e) ζ = 2.3, and (f) ζ = 3.8. We approximated the MSE of
each estimator by averaging over 1,000 random samples of size n = 100 drawn from
each distribution considered above.

For comparison with our Methods I and II, we included in the study four other
methods, all of which are motivated by the subsampling approach, introduced by
Politis et al. (1999, Chapter 8.2), to estimating convergence rates under very general
conditions. Lemma 1(ii) and (iv) shows that the L1 estimator β̂(1) has a convergence
rate of order n1/(2ζ ), up to a slowly varying factor, for ζ > 0. We can therefore derive
a consistent estimate of ζ via consistent estimation of this rate. Lai and Lee (2005)
establish m out of n bootstrap consistency for L p regression in the present context,
which suggests an alternative, sampling-with-replacement, scheme to replace subsam-
pling in the above approach. Arguing as in Politis et al. (1999, Chapter 8.2), the above
estimates of ζ suffer from an error of order op(1/ log n), which is clearly inferior to
the error rates of our Methods I and II. We describe below the four methods briefly.

(i) Subsampling method based on estimated quantiles
Fix S subsample sizes m1 < · · · < mS . For each s = 1, . . . , S, draw B ′ with-
out-replacement subsamples, each of size ms , from (Y1, . . . , Yn) and calculate
the L1 estimate β̂

†(b)
s (1) from the bth subsample, b = 1, . . . , B ′. Fix J arbitrary

points t1, . . . , tJ . Calculate, for s = 1, . . . , S and j = 1, . . . , J ,

Vs, j = inf

⎧
⎨

⎩
x : B ′−1

B′∑

b=1

1{|β̂†(b)
s (1) − β̂(1)| ≤ ex } ≥ t j

⎫
⎬

⎭
.
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An estimate of ζ is then given by

ζ̂SQ = −
∑I

s=1

(
log ms − S−1 ∑S

s=1 log ms

)2

2
∑S

s=1

(
Vs,· − V̄

) (
log ms − S−1

∑S
s=1 log ms

) ,

where V̄ = (S J )−1 ∑S
s=1

∑J
j=1 Vs, j and Vs,· = J−1 ∑J

j=1 Vs, j . Details of
the above procedure can be found in Politis et al. (1999, Chapter 8.2).

(ii) m out of n bootstrap method based on estimated quantiles
Proceed exactly as in Method (i) except that subsamples are replaced by with-
replacement bootstrap samples of sizes m1, . . . , mS . Denote by ζ̂B Q the result-
ing estimate.

(iii) Subsampling method based on estimated MSE
The procedure is similar to Method (i) except that the estimated quantiles Vs, j

are replaced by estimated MSEs. Following the notations in (i), an estimate of
ζ is given by

ζ̂SM =
∑S

s=1(Ws − W̄ )2

∑S
s=1(Ws − W̄ ) log

{
B ′−1

∑B′
b=1(β̂

†(b)
s (1) − β̂(1))2

} ,

where Ws = log (n/ms) and W̄ = S−1 ∑S
s=1 Ws .

(iv) m out of n bootstrap method based on estimated MSE
Replace subsamples by m out of n bootstrap samples in Method (iii). This
yields an alternative estimate, denoted by ζ̂B M , of ζ . Lai and Lee (2008) have
suggested this approach to adaptively select an optimal p for L p regression.

In the study we set S = 3, B ′ = 3,000, J = 30, t j = [0.75 + 0.2 j/J ] for
j = 1, . . . , J , and the subsample sizes ms were set to be 17, 31 and 56.

In both Methods I and II, we set the initial estimate ζ̂A = ζ̂B M . For Method I, we
fixed ω1 = 0.2 and ω2 = 0.4. In cases where the algorithm did not converge to a
stable estimate, we increased ω1 and ω2 in Step 2 and repeated the algorithm until a
stable estimate resulted. Throughout the study, we found that the algorithm eventually
converged in approximately 95 % of the total number of trials. For Method II, we took
B = 3,000, ρ = 0.5113 and δ = 0.8265. The values of ρ and δ were chosen such
that ρ(1 − δ/2) ≈ 0.3, m = 10 and � = 6.

Table 1 reports the MSEs of the various estimators constructed in the study. In gen-
eral, the performances of the four resampling approaches (i)–(iv) were satisfactory
for ζ < 1 but deteriorated rapidly as ζ increased. For ζ > 2, Method (iii) performed
very poorly with extremely large MSEs. Our Methods I and II succeeded in substan-
tially reducing the estimation error for large ζ . In contrary to asymptotic predictions,
Method II outperformed Method I in all cases and was clearly the most accurate among
all the methods under study.
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Table 1 MSEs of various estimates of ζ under error densites (a)–(f)

Density ζ Method I Method II (i) ζ̂SQ (ii) ζ̂B Q (iii) ζ̂SM (iv) ζ̂B M

(a) 0.3 3.903 [1.96] 0.007 [0.37] 0.008 0.017 0.010 0.004

(b) 0.8 0.381 [1.30] 0.018 [0.88] 0.039 0.042 0.069 0.034

(c) 1.3 0.134 [1.42] 0.068 [1.31] 0.165 0.165 0.281 0.166

(d) 1.8 0.264 [1.80] 0.191 [1.85] 0.580 1.112 1.578 0.410

(e) 2.3 0.494 [2.30] 0.333 [2.36] 1.435 3.456 755.722 0.847

(f) 2.8 0.702 [2.87] 0.527 [2.84] 2.665 6.853 399.604 2.447

Estimated mean values of the estimates calculated by Methods I and II are given in brackets

5 Applications to real data

We illustrate the applications of the two estimation methods with three real data exam-
ples, all of which concern simple linear regression of Yi on a single covariate xi . The
results obtained for the examples exemplify, respectively, three distinct inferences
drawn from the estimates of ζ , highlighting at the same time the practical relevance
of centre exponents to regression problems.

We set as initial estimates for both procedures ζ̂A = ζ̂SM , which was calculated
using S = 3, m1 = [n0.5], m2 = [n0.7] and m3 = [n0.9]. The same number of subsam-
ples was used for calculating both ζ̂SM and the Method II estimate, such that B ′ = B
was set to be 50,000 in example 2 and 5,000 in examples 1 and 3. Settings of the
parameters ω1, ω2, ρ and δ followed those chosen in the simulation study of Sect. 4.

Example 1 The data set consists of n = 39 observations of two variables, the average
hourly wage in dollars (Yi ) and the average highest grade of school completed (xi ),
obtained from 39 demographic subgroups of households with a male head earning
less than $15,000 annually in 1966. The data are displayed in Example 1 of Fig. 1.
Method I estimated ζ to be 0.40, based on the choices p = 0.66 and k = 9. Drawing
on the result of Theorem 1, a p value can be calculated using normal approximation
for testing ζ = 1 against ζ < 1, and found to be 2.5 × 10−6, which implies a very
significant departure of the central shape from the standard assumption of a finite
positive error density at 0. Method II also returns a small estimate, 0.54, of ζ . It fol-
lows from Lemma 1 that L p estimation of β0 may be made more efficient than L2
by choosing a small p ≤ 1 − ζ/2. For illustration we include two regression lines,
obtained, respectively by L2 and L0.7 estimation, in Fig. 1. Our small estimates of
ζ can be explained by the cluster of data points lying close to the regression lines,
indicating a possibly infinite peak of the error distribution at 0, as would have been
the case should ζ be smaller than 1.

Example 2 The second data set contains n = 20 observations on the tool life in hours
(Yi ) and the lathe speed in revolutions per minute (xi ): see Example 2 of Fig. 1 for
a scatter plot of the data. The centre exponent ζ was estimated to be 3.83, based on
p = 0.15 and k = 6, using Method I, and 2.23 using Method II. Subjecting the first
estimate to a test of ζ = 1 against ζ > 1 results in a small p value 0.035. According to
Lemma 1, all L p estimators of β0 except L1 have the same convergence rate of order
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Fig. 1 Real data examples: scatter plots of regression data, fitted with L2 (dashed) and L p (solid) regression
lines, where p = 0.7, 0.4 and 0.1 in examples 1, 2 and 3, respectively

n1/2 if ζ > 2, as can be illustrated by the proximity of the L2 and L0.4 regression lines
shown in Fig. 1. It is evident that the regression lines classify the 20 observations into
two distinct subgroups, suggesting some sparsity of data along the regression lines, as
befits a centre exponent ζ > 1.

Example 3 The third example concerns a simple linear regression model fitted to the
amounts of fat (Yi ) and protein (xi ), both measured in grams, found in 32 foods sold
at Burger King: see Example 3 of Fig. 1. Results obtained by the two methods differ
somewhat in magnitude, with ζ estimated to be 0.91 using Method I and 1.77 using
Method II. The two-sided p value associated with the first estimate for testing ζ = 1
is found by normal approximation to be 0.80, based on the choices p = 0.23 and
k = 7. Thus, we find no strong evidence against the standard assumption of a finite
positive error density at 0. As in Example 1, the case 1 �= ζ < 2 favours the use of a
small p ≤ 1− ζ/2 in L p estimation of β0 in order to achieve the optimal convergence
rate. Figure 1 reveals a noticeable discrepancy between the L2 and L0.1 regression
lines for this example, with the latter deemed more accurate by asymptotic theory.
A comparison of the three examples in Fig. 1 shows that the relationship between
the data pattern and the fitted regression lines in Example 3 occupies a somewhat
middle ground between the two more extreme cases found for Examples 1 and 2,
an observation corroborated by the numerical estimates obtained of ζ for the three
examples.
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The regression lines drawn in Fig. 1 help exemplify the numerical difference
between the L2 fit and the less conventional L p fit based on an informed choice of
p. Lai and Lee (2008) compare the two fits in a thorough simulation study, providing
empirical evidence for the benefit of using an optimal p in L p regression.

6 Conclusion and discussion

We have established consistency and asymptotic normality of two new versions of
Hill estimators of the centre exponent ζ under a regression setup. Both estimators
require careful choices of L p estimators for calculating the residuals. Two methods
for constructing the Hill estimators in practice have been described and investigated
empirically. Method I automatically updates p and the sample fraction until they sat-
isfy some ζ -specific conditions and a valid estimate of ζ is obtained. Success of this
method hinges upon broadening of the range of p to include p < 1 on top of the
more conventional choices within the interval [1, 2]. The broadened range equips L p

estimators with sufficiently fast convergence rates for yielding a reliable Hill estimator
of ζ . Method II computes the Hill estimator from the � smallest values of a subset of
size m taken from the n absolute L p residuals. It allows us to restrict the choice of p
to either 1 or 2, and is therefore more convenient to implement in practice. Despite
the efficiency loss due to the use of a smaller sample in the derivation of the Hill
estimate, we have found from our simulation study that Method II actually gave the
best performance among all the competing methods. We remark, however, that the
number � of extreme residuals involved in Method II is of the order nρδ , for some
ρ, δ < 1, which may turn out to be very small for even a moderate sample size n.
We have found empirically that constraining � ≥ 6 in practical applications yields
quite satisfactory results in general. Three real data examples have been presented to
further illustrate the practical relevance of our proposed estimators to standard linear
regression problems.

We note lastly that the asymptotic properties of the two proposed estimators depend
crucially on the assumption (1) as well as the validity of the regression function. Mis-
specification of the latter may strip the estimates of their intended meanings, rendering
them almost irrelevant to the central shapes of the true error distribution.

7 Appendix

We first state a result which is an easy consequence of Proposition 2.1 of Resnick and
Stărică (1997a). Define F̃U (x) = P(|U1|−1 ≤ x) and b(t) = 1/F̃−1

U (1/2 + 1/(2t)),
where F̃−1

U (y) = inf{x : F̃U (x) ≥ y}. Note that b(t) is regularly varying with
exponent 1/ζ at ∞. Define the process Wk,n(y) = k1/2(k−1 ∑n

i=1 1{b(n/k)|Ui | ≤
y1/ζ } − y) for y > 0.

Lemma 2 Assume (1) and that k ∝ n� with 0 < � < 2κ/(ζ + 2κ). Then {Wk,n(y) :
y > 0} converges weakly to a standard Brownian motion {W (y) : y > 0} in D[0,∞).

Denote in what follows by ‖ · ‖ the Euclidean norm, and by C a generic positive
constant which may differ from occurrence to occurrence.
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7.1 Proof of Theorem 1

We start by proving that the process

{
Ŵk,n(y) : y > 0

}
=
{

k1/2

(

k−1
n∑

i=1

1{b(n/k)|Ûi (p)| ≤ y1/ζ } − y

)

: y > 0

}

converges weakly to the standard Brownian motion W (y), following the arguments
used by Resnick and Stărică (1997b) for proving their Proposition 3.2. First we claim
that for any interval [c, d] ⊂ (0,∞] and any ε > 0,

P

(

k−1/2 sup
x∈[c,d]

∣∣∣
∣∣

n∑

i=1

1{b(n/k)|Ûi (p)|<1/x} −
n∑

i=1

1{b(n/k)|Ui |<1/x}
∣∣∣
∣∣
>ε

)

→0.

(4)

Set εn = αk−1/2 for some sufficiently small α > 0. That I a1 → 0 in the afore-
mentioned Proposition implies that

P

(

k−1/2 sup
x∈[c,d]

n∑

i=1

1{x−1(1 + εn)
−1 ≤ b(n/k)|Ui | < 1/x} > ε

)

→ 0. (5)

Suppose that rn(β̂(p) − β0) = Op(1) and rn = nγ (p,ζ )l(n) for some γ (p, ζ ) > 0
and slowly varying function l. Then, for any M > 0,

P

(

k−1/2 sup
x∈[c,d]

n∑

i=1

1{b(n/k)|Ui | < x−1(1 + εn)−1, b(n/k)|Ûi (p)| ≥ 1/x} > ε

)

≤ P(rn‖β̂(p) − β0‖ ≥ M)

+ P

(

k−1/2
n∑

i=1

1{‖Xi‖ > rnεn(1 + εn)−1(d M)−1b(n/k)−1} > ε

)

= I + I I, say.

It follows from Markov’s inequality and existence of E‖X1‖λ for all λ > 0 that

I I ≤ ε−1nk−1/2
P(‖X1‖ > Crnk−1/2b(n/k)−1) ≤ Cnk−1/2{k1/2b(n/k)/rn}λ,

which converges to 0 provided that λ is sufficiently large and

�/2 − γ (p, ζ ) + (1 − �)/ζ < 0. (6)

Under (6), on letting n → ∞ followed by M → ∞, we have that both I and I I
converge to 0. This, together with (5), imply the claim (4). Under the further condition
that
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� < 2κ/(ζ + 2κ), (7)

Lemma 2 and (4) imply the required weak convergence of Ŵk,n .
In what follows we argue as in the proof of Resnick and Stărică (1997a) Propo-

sition 3.1 to establish asymptotic normality of ζ̂N (p, k). Write �y� for the smallest
integer ≥ y. Replacing y by Û (�ky�)

N (p)ζ b(n/k)ζ and noting weak convergence of

Ŵk,n(y), we obtain that

k1/2
(

Û (�ky�)
N (p)ζ b(n/k)ζ − y

) D−→ −W (y). (8)

Thus, for any a > 1,

−
∫ 1

a−ζ

k−1/2
n∑

i=1

1
{

Û (k)

N (p)/|Ûi (p)| ≥ x−1/ζ
}

x1/ζ dx−1/ζ − k1/2(1 − a−ζ )/ζ

= −
∫ 1

a−ζ

Ŵk,n

(
x b(n/k)ζ Û (k)

N (p)ζ
)

x1/ζ dx−1/ζ

+ k1/2ζ−1(1 − a−ζ )
[
b(n/k)ζ Û (k)

N (p)ζ − 1
]

D−→ −
∫ 1

a−ζ

W (x)x1/ζ dx−1/ζ − ζ−1(1 − a−ζ )W (1). (9)

The last convergence follows from (8) and weak convergence of Ŵk,n . Next we
claim that, for any ε > 0,

lim
a→∞ lim sup

n
P

(∫ a−ζ

0

∣∣∣Ŵk,n

(
x b(n/k)ζ Û (k)

N (p)ζ
)∣∣∣ x1/ζ dx−1/ζ > ε

)

= 0. (10)

The probability in (10) is bounded above by

P

(∫ (1+ε′)a−ζ

0

∣∣∣Ŵk,n(u)

∣∣∣ u1/ζ du−1/ζ > ε

)

+ P

(∣∣∣b(n/k)ζ Û (k)

N (p)ζ − 1
∣∣∣ > ε′)

= I I I + I V , say, for any ε′ > 0. That I V converges to 0 follows directly from (8).
The probability I I I is bounded above by

P

(

k−1/2
∫ (1+ε′)a−ζ

0

∣∣∣∣
∣

n∑

i=1

[
1{b(n/k)|Ûi (p)| ≤ u1/ζ } − 1{b(n/k)|Ui | ≤ u1/ζ }

]
∣∣∣∣
∣

× u1/ζ du−1/ζ > ε/2

)

+ P

(∫ (1+ε′)a−ζ

0

∣∣Wk,n(u)
∣∣ u1/ζ du−1/ζ > ε/2

)

= V + V I, say.
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The proof of Resnick and Stărică (1997a) Proposition 3.1 establishes immediately
that

lim
a→∞ lim sup

n
(V I ) = 0. (11)

Consider now

P

(

k−1/2
∫ ∞

(1+ε′)−1/ζ a

n∑

i=1

1{b(n/k)|Ûi (p)| > 1/x, b(n/k)|Ui | ≤ 1/x} dx/x > ε

)

≤ P

(

k−1/2
∫ ∞

(1+ε′)−1/ζ a

n∑

i=1

1{x−1(1 + εn)
−1 ≤ b(n/k)|Ui | ≤ 1/x} dx/x > ε/2

)

+ P

(

k−1/2
∫ ∞

(1+ε′)−1/ζ a

n∑

i=1

1{b(n/k)|Ui | < x−1(1 + εn)
−1,

b(n/k)|Ûi (p)| > 1/x}dx/x > ε/2

)

= V I I + V I I I say,

where εn = αk−1/2. With α sufficiently small and a sufficiently large, we can ensure
|(1 + ε′)a−ζ ζ−1k1/2{1 − (1 + εn)

−ζ }| < ε/4, so that

lim
a→∞ lim sup

n
(V I I ) ≤ lim

a→∞ lim sup
n

P

(∫ (1+ε′)a−ζ

0

∣∣Wk,n(u)

− Wk,n(u(1 + εn)−ζ )
∣∣ u1/ζ du−1/ζ > ε/4

)

= 0, (12)

using arguments similar to those establishing (11). Writing ε′′ = (1 + ε′)1/ζ a−1, we
have, by integrating over x , Markov’s inequality and for M > 0,

V I I I ≤ I + 2ε−1(J1 + J2),

where I = P(rn‖β̂(p) − β0‖ ≥ M) as before, which converges to 0 as n → ∞
followed by M → ∞,

J1 = nk−1/2
E

[
log

{ |U1| + ‖X1‖M/rn

(1 + εn)|U1|
}

;

|U1| <
‖X1‖M

rnεn
, |U1| + ‖X1‖M

rn
≤ ε′′

b(n/k)

]
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and

J2 = nk−1/2
E

[
log

{
ε′′/b(n/k)

(1 + εn)|U1|
}

;

(1 + εn)|U1| <
ε′′

b(n/k)
, |U1| + ‖X1‖M

rn
>

ε′′

b(n/k)

]
.

Using the fact that b(n/k) = o(εnrn), which follows from (6), we have, for suffi-
ciently large n and any ε′′′ > 0,

J1 ≤ Cnk−1/2
E

[∫ M‖X1‖/(rnεn)

0
log

( |u| + ‖X1‖M/rn

(1 + εn)|u|
)

dF(u)

]

≤ Cnk−1/2
E

[
(M‖X1‖/rn)ζ+ε′′′

∫ ∞

εn

log

(
1 + v

1 + εn

)
v−ζ−1−ε′′′

dv

]

≤ Cnk−1/2r−ζ−ε′′′
n ×

⎧
⎨

⎩

1, ζ + ε′′′ < 1,

log εn, ζ + ε′′′ = 1,

ε
−ζ+1−ε′′′
n , ζ + ε′′′ > 1.

It follows that J1 → 0 provided that

1 − �/2 − ζγ (p, ζ ) < 0 if ζ < 1, (13)

or that (6) holds if ζ ≥ 1. Noting that, under (6), the set {u : ε′′/b(n/k)− M‖x‖/rn <

|u| < (1 + εn)−1ε′′/b(n/k)} is empty for sufficiently large n and any fixed x ∈ R
d ,

we have J2 = 0 for sufficiently large n. Thus V I I I → 0 under conditions (6) and
(13). This, together with (11) and (12), imply that lima→∞ lim supn (V ) = 0 and that
lima→∞ lim supn (I I I ) = 0. This establishes our claim (10). It then follows from (9)
and (10) that, on letting a → ∞,

−
∫ 1

0
k−1/2

n∑

i=1

1
{

Û (k)

N (p)/|Ûi (p)| ≥ x−1/ζ
}

x1/ζ dx−1/ζ − k1/2/ζ

D−→ −
∫ 1

0
W (x)x1/ζ dx−1/ζ − ζ−1W (1)

D= N (0, ζ−2). (14)

That k1/2{ζ̂N (p, k) − ζ } D−→ N (0, ζ 2) now follows from (14), using the delta
method and the fact that

ζ̂N (p, k)−1 = −
∫ 1

0
k−1/2

n∑

i=1

1
{

Û (k)

N (p)/|Ûi (p)| ≥ x−1/ζ
}

x1/ζ dx−1/ζ .

We now examine in detail the conditions (6) and (13). For ζ > 2, we have γ (p, ζ ) =
1/2 for any p �= 1: see Lemma 1(i). Then (6) reduces to � < 1, which is trivial. For
ζ < 2, we have, using Lemma 1(ii) and (iii), that γ (p, ζ ) = 2−1(p + ζ − 1)−1 and
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1/ζ for 1 − ζ/2 < p < 2 − ζ and p ≤ 1 − ζ/2, respectively. We then deduce from
(6) and (13) the following lower bounds on �:

� >

{
0, p ≤ 1 − ζ/2,

(1 − max(ζ, 1)/2)−1
{
1 − 2−1(p + ζ − 1)−1ζ

}
, 1 − ζ/2 < p < 2 − ζ.

The above bounds and (7) give the conditions specified in Theorem 1(i) and (ii).
Under (3), the exponent κ in (2) can be made arbitrarily large, so that the upper

bound 2κ/(ζ + 2κ) can be replaced by 1. This completes the proof of Theorem 1.

7.2 Proof of Theorem 2

The proof repeats the arguments for proving Theorem 1, with n, k replaced by m, �,
respectively. The convergence rate rn of β̂(p) remains unchanged and has the form
nγ (p,ζ )l(n). Noting that m ∝ nρ and � ∝ nρδ , the bounds (6) and (13) become

ρδ/2 − γ (p, ζ ) + ρ(1 − δ)/ζ < 0 (15)

and

ρ(1 − δ/2) − ζγ (p, ζ ) < 0 if ζ < 1, (16)

respectively. Arguing as in the proof of Theorem 1, �1/2(ζ̂M(p, �) − ζ )
D→ N (0, ζ 2)

under conditions (7), (15) and (16), which implies parts (i) and (ii) of Theorem 2. The
last assertion follows using the same arguments as given for proving the last part of
Theorem 1.
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