Nonparametric quantile regression with heavy-tailed and strongly dependent errors

Toshio Honda

Received: 17 December 2010 / Revised: 11 July 2011 / Published online: 17 April 2012 © The Institute of Statistical Mathematics, Tokyo 2012

Abstract We consider nonparametric estimation of the conditional qth quantile for stationary time series. We deal with stationary time series with strong time dependence and heavy tails under the setting of random design. We estimate the conditional qth quantile by local linear regression and investigate the asymptotic properties. It is shown that the asymptotic properties are affected by both the time dependence and the tail index of the errors. The results of a small simulation study are also given.

Keywords Conditional quantile \cdot Random design \cdot Check function \cdot Local linear regression \cdot Stable distribution \cdot Linear process \cdot Long-range dependence \cdot Martingale central limit theorem

1 Introduction

Let $\{(X_i, Y_i)\}$ be a bivariate stationary process generated by

$$Y_i = u(X_i) + V_i, \quad i = 1, 2, \dots,$$
 (1)

where $V_i = V(X_i, Z_i)$, $X_i = J(..., \epsilon_{i-1}, \epsilon_i)$, $Z_i = \sum_{j=0}^{\infty} c_j \zeta_{i-j}$, and $\{\epsilon_i\}$ and $\{\zeta_i\}$ are mutually independent i.i.d. processes. Then, we estimate the *q*th conditional quantile of Y_i given $X_i = x_0$ from *n* observations by appealing to local linear regression and investigate the asymptotic properties of the estimator.

Assuming that $\{Z_i\}$ is a heavy-tailed linear process and that c_j does not decay so fast, we examine how the heavy tail and the time dependence through $\{c_j\}$ affect the asymptotic properties of the local linear estimator in the setting of (1). We need the

T. Honda (🖂)

Graduate School of Economics, Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo 186-8601, Japan e-mail: honda@econ.hit-u.ac.jp

assumption of linear process as in (1) to derive the asymptotic distribution of the estimator. We adopt the data generating process and the dependence measure of Wu et al. (2010) for $\{X_i\}$, which allows us to consider nonlinearity and long-range dependence (LRD) of $\{X_i\}$. See Wu et al. (2010) for the details.

We state a few assumptions on u(x) and V(x, z) here. Let u(x) be twice continuously differentiable in a neighborhood of x_0 . We denote the *q*th quantile of Z_1 by m_q and assume that V(x, z) is monotone increasing in *z* and $V(x, m_q) = 0$ for any *x*. Then $u(x_0)$ is the conditional *q*th quantile given $X_i = x_0$. An example of V(x, z) is $\sigma(x)(z - m_q)$. Some more technical assumptions on V(x, z) will be given in Sect. 2.

There have been a lot of studies on quantile regression for linear models since Koenker and Basset (1978). It is because quantile regression gives us more information about data than mean regression and is robust to outliers. Pollard (1991) devised a simple proof of the asymptotic normality of regression coefficient estimators. See Koenker (2005) for recent developments of quantile regression.

We often employ nonparametric regression when no parametric regression function is available or when we want to check the parametric regression function. Chaudhuri (1991) considered nonparametric estimation of conditional quantiles for i.i.d observations by using local polynomial regression. Fan et al. (1994) applied the method of Pollard (1991) to nonparametric robust estimation including nonparametric estimation of conditional quantiles. We examine the estimator of Chaudhuri (1991) in our setting by exploiting the method of Pollard (1991). See Fan and Gijbels (1996) for nonparametric regression and local linear estimators.

Many authors have considered cases of weakly dependent observations and studied the asymptotic properties of the nonparametric quantile estimators since Chaudhuri (1991). For example, Truong and Stone (1992) considered local medians for α -mixing processes. Honda (2000a) and Hall et al. (2002) examined the asymptotic properties of the estimator of Chaudhuri (1991). Härdle and Song (2010) constructed uniform confidence intervals. Zhao and Wu (2006) considered another setting from α -mixing processes. The above authors considered nonparametric quantile estimation under random design. Zhou (2010) is a recent paper for nonparametric regression for time series.

Some authors investigated robust or nonparametric estimation of regression functions for LRD time series with finite variance after the developments of theoretical results on time series with LRD, especially, the results on linear processes by Ho and Hsing (1996, 1997). Giraitis (1996) deals with robust linear regression under LRD. See Robinson (1997); Hidalgo (1997); Csörgő and Mielniczuk (2000); Mielniczuk and Wu (2004), and Guo and Koul (2007) for nonparametric estimation of conditional mean functions. Wu and Mielniczuk (2002) fully examined the asymptotic properties of kernel density estimators. Wu et al. (2010) also deals with kernel density estimation and nonparametric regression and the results are useful to the present paper. Honda (2000b) and Honda (2010a) considered nonparametric estimation of conditional quantiles when { X_i } and { Z_i } are LRD linear processes with finite variance in (1). It is now known that the asymptotic distributions of nonparametric estimators drastically change depending on the strength of dependence and the bandwidths in the cases of density estimation and nonparametric regression under random design. The time dependence

25

Case 1	Case 2	Case 3
$1 < \alpha < 2$	$0 < \alpha < 2$	$0 < \alpha < 2$
$1/\alpha < \beta < 1$	$1 < \beta < 2/lpha$	2/lpha < eta
Koul and Surgailis (2001)	Surgailis (2002)	Hsing (1999)
	Honda (2009b)	Pipiras and Taqqu (2003)

Table 1 Three Cases for α and β in Assumptions Z1–Z2

of covariates has almost no effect on the asymptotics except for technical conditions in the setting similar to (1). See Beran (1994), Robinson (2003), and Doukhan et al. (2003) for surveys on time series with LRD.

Here we state Assumptions Z1–Z2 on $\{Z_i\}$ and describe some relevant results on the limiting distributions of partial sums of bounded functionals of $\{Z_i\}$. Those results of Hsing (1999), Koul and Surgailis (2001), Surgailis (2002), Pipiras and Taqqu (2003), and Honda (2009b) are summarized in Table 1. They are based on the methods of Ho and Hsing (1996, 1997). Let $a_n \sim a'_n$ mean $a_n/a'_n \to 1$ as $n \to \infty$.

Assumption Z1 $c_j \sim c_z j^{-\beta}$ and $c_0 = 1$.

Assumption Z2 Write $G_0(z)$ for the distribution function of ζ_1 . Then there exists $0 < \alpha < 2$ s.t.

$$\lim_{z \to -\infty} |z|^{\alpha} G_0(z) = c_{-} \text{ and } \lim_{z \to \infty} |z|^{\alpha} (1 - G_0(z)) = c_{+},$$

where $c_{-} + c_{+} > 0$. In addition, $E\{\zeta_1\} = 0$ when $\alpha > 1$.

Hereafter we assume that Assumptions Z1–Z2 hold. Then there are three Cases as in Table 1. Some authors say that the linear process has LRD in Cases 1–2. Note that ζ_1 belongs to the domain of attraction of the α -stable distribution $S_{\alpha}(\sigma, \eta, \mu)$, whose characteristic function is given by

$$\begin{cases} \exp\{-\sigma^{\alpha}|\theta|^{\alpha}(1-i\eta \operatorname{sign}(\theta)\tan(\pi\alpha/2))+i\mu\theta\} \text{ for } \alpha \neq 1, \\ \exp\{-\sigma|\theta|(1+\frac{2}{\pi}i\eta \operatorname{sign}(\theta)\log|\theta|)+i\mu\theta\} \text{ for } \alpha = 1, \end{cases}$$

where $0 < \sigma$, $-1 \le \eta \le 1$, $-\infty < \mu < \infty$, and i stands for the imaginary unit. See Samorodnitsky and Taqqu (1994) for more details about stable distributions.

In Case 3, we have

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(H(Z_i) - \mathbb{E}\{H(Z_i)\}) \xrightarrow{d} \mathbb{N}(0,\sigma^2),$$

where $\stackrel{d}{\rightarrow}$ denotes convergence in distribution and H(z) is a bounded function. In Cases 1 and 2, the limiting distribution is an α - and $\alpha\beta$ -stable distribution with $n^{-1+\beta-1/\alpha}$ and $n^{-1/(\alpha\beta)}$ as the normalization constant, respectively.

Some authors have considered robust parametric or nonparametric estimation under dependent errors with infinite variance, i.e. in Case 1, Case 2 with $\alpha > 1$, and Case 3. Peng and Yao (2004) and Chan and Zhang (2009) considered robust nonparametric regression under fixed design. Honda (2009a) considered kernel density estimation by following Wu and Mielniczuk (2002) and found that the asymptotic distributions depend on α and β in Assumptions Z1–Z2. Koul and Surgailis (2001) and Zhou and Wu (2010) deals with linear regression in Case 1.

In this paper, we consider nonparametric estimation of the conditional qth quantile in (1) in Cases 1–3 by following Honda (2010a). Theorems 1–3 are concerned with Cases 1–3, respectively. We can say that this paper is a random-design version of Peng and Yao (2004) and Chan and Zhang (2009).

We find that α and β affect the asymptotics in Cases 1–2 and that we have the same asymptotics as for i.i.d. observations in Case 3. As for the effects of $\{X_i\}$, only minor technical assumptions are imposed in Theorem 3 of Case 3. In Theorem 1 of Case 1, we derive the asymptotic distributions under additional Assumption X3 or X4 on $\{X_i\}$. However, almost all linear processes with the $(2 + \delta)$ th moment for some positive δ meet these assumptions. See comments below Assumption X3 and above Assumption X4 in Sect. 2. The treatment of this paper also allows for nonlinearity of $\{X_i\}$. Thus we can conclude that the time dependence of $\{X_i\}$ has almost no effect on the asymptotics in Cases 1 and 3. The Case 2 is the most challenging and we have not resolved the effects of the LRD of $\{X_i\}$ completely. See Theorem 2 below for more details. We conjecture that the strong LRD of $\{X_i\}$ affects the asymptotics of the estimator in Case 2. However, this is a topic of future research.

This paper is organized as follows. In Sect. 2, we describe assumptions, define the local linear estimator, and present the asymptotic properties in Theorems 1–3. We carried out a small simulation study and the results are reported in Sect. 3. We state Propositions 1–5 and prove Theorems 1–3 in Sect. 4. The proofs of propositions are confined to Sect. 5. Some of the technical details are given in Sect. 6. The rest of the technical details are omitted here and relegated to the full version of this paper Honda (2010b). It is available on the website or upon request from the author.

Finally in this section, we introduce some notation. We write |w| and A^T for the Euclidean norm of a vector w and the transpose of a matrix A. We denote the L_p norm of a random variable W by $||W||_p$ and p is omitted when p = 2. Let $\stackrel{p}{\rightarrow}$ denote convergence in probability and we omit a.s. (almost surely) when it is clear from the context.

We write $a \wedge b$ and $a \vee b$ for min{a, b} and max{a, b}, respectively. Let \mathbb{R} and \mathbb{Z} denote the set of real numbers and integers, respectively. Throughout this paper, *C* and δ are positive generic constants and the values vary from place to place. The range of integration is also omitted when it is \mathbb{R} .

2 Local linear estimator and asymptotic properties

We state assumptions, define the local linear estimator, and present the asymptotic properties of the estimator in Theorems 1-3.

First we state Assumption V on V(x, z). Recall that m_q is the qth quantile of Z_1

Assumption V V(x, z) is monotone increasing in z and $V(x, m_q) = 0$ for any x. Besides, V(x, z) is continuously differentiable in a neighborhood of (x_0, m_q) and $\partial V(x_0, m_q)/\partial z > 0$.

We need a kernel function $K(\xi)$ and a bandwidth *h* to define the local linear estimator.

Assumption K The kernel function $K(\xi)$ is a symmetric and bounded density function with compact support $[-C_K, C_K]$. We write κ_j and ν_j for $\int \xi^j K(\xi) d\xi$ and $\int \xi^j K^2(\xi) d\xi$, respectively.

Assumption H $h = c_h n^{-1/5}$ for some positive c_h .

We impose Assumption H for simplicity of presentation. However, other choices of *h* do not improve the rate of convergence of the estimator. We give a brief comment about the bandwidth here. In Case 1, the convergence rate is determined by $(h^2 + (nh)^{-1/2}) \vee n^{1/\alpha - \beta}$ for general *h*. The former is the same as for i.i.d. observations and the latter is due to $\{Z_i\}$. We can optimize the convergence rate by Assumption H since $n^{1/\alpha - \beta}$ is independent of *h*. We see no effect of α and β in the asymptotics under Assumption H when $(nh)^{-1/2}/n^{1/\alpha - \beta} \rightarrow \infty$. The effects appear when $(nh)^{-1/2}/n^{1/\alpha - \beta} \rightarrow 0$. This comment is also true in Case 2 with $n^{1/\alpha - \beta}$ replaced by $n^{1/(\alpha\beta)-1}$. In Case 3, $n^{1/\alpha - \beta}$ is replaced by $n^{-1/2}$. This is smaller than $(h^2 + (nh)^{-1/2})$ and we see no effect of α and β in the asymptotics. There is no theoretical difficulty in dealing with the case where $X_i \in \mathbb{R}^d$. Then we should take $h = c_h n^{-1/(d+4)}$.

Now we introduce the check function $\rho_q(u)$ and the derivative $\rho'_q(u)$ in (2) to define the local linear estimator of $u(x_0)$.

$$\rho_q(u) = u(q - I(u < 0)) \text{ and } \rho_q'(u) = q - I(u < 0).$$
(2)

Then we estimate $(u(x_0), hu'(x_0))^T$ by

$$\hat{\beta} = (\hat{\beta}_1, \hat{\beta}_2)^T = \operatorname{argmin}_{\beta \in \mathbb{R}^2} \sum_{i=1}^n K_i \rho_q (Y_i - \eta_i^T \beta),$$

where $K_i = K((X_i - x_0)/h)$ and $\eta_i = (1, (X_i - x_0)/h)^T$.

We normalize $\hat{\beta} - (u(x_0), hu'(x_0))^T$ by τ_n and define $\hat{\theta}$ by

$$\hat{\theta} = \tau_n (\hat{\beta}_1 - u(x_0), \hat{\beta}_2 - h u'(x_0))^T.$$
(3)

We specify τ_n later in this section. It is easy to see that $\hat{\theta}$ is also defined by

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \mathbb{R}^2} \sum_{i=1}^n K_i \rho_q (V_i^* - \tau_n^{-1} \eta_i^T \theta),$$
(4)

where

$$V_i^* = V(X_i, Z_i) + \frac{h^2}{2} \left(\frac{X_i - x_0}{h}\right)^2 u''(\bar{X}_i)$$

and \bar{X}_i is between x_0 and X_i and independent of θ .

Deringer

Before stating assumptions on $\{X_i\}$ and $\{Z_i\}$, we define σ -fields \mathcal{F}_i , \mathcal{G}_i , and \mathcal{S}_i by

$$\mathcal{F}_i = \sigma(\ldots, \epsilon_{i-1}, \epsilon_i), \ \mathcal{G}_i = \sigma(\ldots, \zeta_{i-1}, \zeta_i), \ \mathcal{S}_i = \sigma(\ldots, \epsilon_{i-1}, \zeta_{i-1}, \epsilon_i, \zeta_i)$$

We adopt the setup and the notation of Wu et al. (2010), especially that of Section 2.1, for $\{X_i\}$ and Assumption X1 below is necessary to define the dependence measure. Set

$$F_l(x|\mathcal{F}_i) = \mathbf{P}(X_{i+l} \le x|\mathcal{F}_i).$$
(5)

Assumption X1 With probability 1, $F_1(x|\mathcal{F}_0)$ is differentiable on \mathbb{R} and the derivative $f_1(x|\mathcal{F}_0)$ satisfies $\sup_{\mathbb{R}} f_1(x|\mathcal{F}_0) \le C$ and $\lim_{x \to x_0} \mathbb{E}\{|f_1(x|\mathcal{F}_0) - f_1(x_0|\mathcal{F}_0)|\} = 0$.

We write f(x) for the density function of X_1 and assume that $f(x_0) > 0$ throughout the paper. Here notice that $f(x) = E\{f_1(x|\mathcal{F}_0)\}$.

Another σ -field \mathcal{F}_i^* below is necessary to define the dependence measure of $\{X_i\}$ as in Wu et al. (2010).

$$\mathcal{F}_i^* = \begin{cases} \sigma(\dots, \epsilon_{-1}, \epsilon_0^*, \epsilon_1, \dots, \epsilon_i) & \text{for } i \ge 0, \\ \mathcal{F}_i & \text{for } i < 0, \end{cases}$$

where ϵ_0^* is an independent copy of ϵ_0 . Then we define the dependence measure $\theta_{j,p}(x)$ by

$$\theta_{j,p}(x) = \|f_{1+j}(x|\mathcal{F}_0) - f_{1+j}(x|\mathcal{F}_0^*)\|_p$$

for p > 1 and $j \ge 0$. When j < 0, set $\theta_{j,p}(x) = 0$. We also have

$$\|\mathbb{E}\{f_1(x|\mathcal{F}_i)|\mathcal{F}_{i-j}\} - \mathbb{E}\{f_1(x|\mathcal{F}_i)|\mathcal{F}_{i-j-1}\}\|_p \le \theta_{j,p}(x).$$
(6)

We also define p', $\theta_p(j)$, and Θ_p by $p' = 2 \wedge p$,

$$\theta_p(j) = \sup_{x \in \mathbb{R}} \theta_{j,p}(x), \quad \text{and} \quad \Theta_p(n) = \sum_{i \in \mathbb{Z}} \left(\sum_{j=1-i}^{n-i} \theta_p(j) \right)^{p'}.$$
(7)

We find in Section 4.1 of Wu et al. (2010) that $\theta_p(j) \le C|b_j|$ for $1 when <math>E\{|\epsilon_i|^2\} < \infty$ and X_i is given by

$$X_i = \sum_{j=0}^{\infty} b_j \epsilon_{i-j}.$$
(8)

Assumption X2 $(\Theta_p(n))^{1/p'}/n \to 0$ for some 1 < p.

🖉 Springer

Assumption X2 will be employed to deal with $\sum_{i=1}^{n} (f_1(x_0 + \xi h | \mathcal{F}_{i-1}) - f(x_0 + \xi h))$. In fact, Lemma 3 of Wu et al. (2010) implies that

$$\sup_{x \in \mathbb{R}} \| \sum_{i=1}^{n} (f_1(x | \mathcal{F}_{i-1}) - f(x)) \|_p \le C(\Theta_p(n))^{1/p'}$$
(9)

and that almost every linear process with finite variance satisfies Assumption X2. We assume that Assumptions X1-X2 hold throughout the paper.

Assumptions X3–X5 below will be used to derive the asymptotic distribution when the effects of α and β appear in the asymptotics.

Assumption X3
$$\sum_{j=1}^{\infty} \theta_p(j) < \infty.$$

It is easy to see that Assumption X3 implies Assumption X2. We take $p = \alpha$ and $\alpha\beta in Cases 1 and 2, respectively. Since <math>\theta_p(j) \le C|b_j|$ for 1 , we see that short-range dependent linear processes satisfy Assumption X3.

Hereafter we write $A_{\xi}(i)$ for $f_1(x_0 + \xi h | \mathcal{F}_{i-1})$ for notational convenience. Notice that $E\{A_{\xi}(i)\} = f(x_0 + \xi h)$. Assumption X4 below holds under (8) with $b_j \sim c_X j^{-(1+\delta_1)/2}$ and $E\{|\epsilon_1|^{2+\delta_2}\} < \infty$ for some positive δ_1 and δ_2 . Thus it is just a mild assumption and will be used in Case 1B.

Assumption X4 There exists a positive γ_x s.t.

$$|\operatorname{Cov}(A_{\xi}(i), A_{\xi}(j))| \le C|i-j|^{-\gamma_x} \text{ for } i \ne j.$$

Assumption X5 There exist r_x and δ_x s.t. $\alpha\beta < r_x$, $\delta_x > 0$, and $\theta_{r_x}(j) \le Cj^{-\delta_x - 1/(\alpha\beta)}$.

Assumption X5 will be used in Case 2. The assumption is rather restrictive because it depends on $\alpha\beta$. However, it seems very difficult to derive the asymptotic distribution without this kind of assumption when we see the effects of α and β . See a comment on this difficulty around (11) and (12) below.

We introduce some more notation to state another assumption on $\{Z_i\}$. We define $Z_{i,j}$ and $\tilde{Z}_{i,j}$ by

$$Z_{i,j} = \sum_{l=0}^{j} c_l \zeta_{i-l}$$
 and $\tilde{Z}_{i,j} = Z_i - Z_{i,j} = \sum_{l=j+1}^{\infty} c_l \zeta_{i-l}$

and let $G_j(z)$ denote the distribution function of $Z_{1,j}$. Then $G_{\infty}(z)$ is that of Z_1 and we write $g_j(z)$ for $G'_j(z)$.

Assumption Z3 There exists a positive γ_z s.t. for any *j*,

$$|G''_{j}(z)| \le C(1+|z|)^{-(1+\gamma_{z})}$$
 and $|G''_{j}(z_{1}) - G''_{j}(z_{2})| \le \frac{C|z_{1}-z_{2}|}{(1+|z_{1}|)^{(1+\gamma_{z})}}$ (10)

for $|z_1 - z_2| \le 1$. In addition, $g_{\infty}(m_q) > 0$.

Deringer

Assumption Z3 is a technical one and Lemma 4.2 of Koul and Surgailis (2001) implies that Assumption Z3 can be relaxed for $\alpha > 1$. When ζ_1 has a stable distribution, Assumption Z3 follows from the argument based on integration by parts in Hsing (1999).

We divide Case 1 into Cases 1A and 1B and Case 2 into Cases 2A–C, respectively to present Theorems 1–3. We also specify the normalization constant τ_n for each case here. Note that -2/5 in Case 1 below comes from $(nh)^{-1/2} = n^{1/\alpha - \beta}$ and that 3/5 in Case 2 below comes from $(nh)^{-1/2} = n^{1/(\alpha\beta)-1}$.

Case 1: $1 < \alpha < 2$, $1 < \alpha\beta < 2$, and $\beta < 1$ **Case 1A:** $1/\alpha - \beta < -2/5$ and $\tau_n = \sqrt{nh}$ **Case 1B:** $1/\alpha - \beta > -2/5$ and $\tau_n = n^{\beta - 1/\alpha}$. In addition, Assumption X3 with $p = \alpha$ or X4 holds. **Case 2:** $0 < \alpha < 2$, $1 < \alpha\beta < 2$, and $\beta > 1$ **Case 2A:** $1/(\alpha\beta) < 3/5$ and $\tau_n = \sqrt{nh}$. **Case 2B:** $1/(\alpha\beta) > 3/5$ and $\tau_n = n^{\nu}$, where $\nu < 1 - 1/(\alpha\beta)$. **Case 2C:** $1/(\alpha\beta) > 3/5$ and $\tau_n = n^{1 - 1/(\alpha\beta)}$. In addition, Assumption X3 with $\alpha\beta < p$ or X5 holds. **Case 3:** $\alpha\beta > 2$ and $\tau_n = \sqrt{nh}$.

In Cases 1A, 2A, and 3, we have the same asymptotic distribution as for i.i.d. observations. On the other hand, we see the effects of α and β in Cases 1B, 2B, and 2C and have worse convergence rates. We have to impose additional assumptions on $\{X_i\}$ to investigate the asymptotic distribution of the nonparametric quantile estimator in those cases. Especially in Case 2, we have to show

$$n^{-1/(\alpha\beta)} \sum_{i=1}^{n} (A_{\xi}(i) - \mathbb{E}\{A_{\xi}(i)\}) B_1(\tilde{Z}_{i,0}) = o_p(1)$$
(11)

or deal with

$$n^{-1/(\alpha\beta)} \sum_{i=1}^{n} \sum_{j=1}^{\infty} A_{\xi}(i+j) (B_j(c_j\zeta_i) - \mathbb{E}\{B_j(c_j\zeta_i)\}),$$
(12)

where $B_j(z)$ is specified later in Proposition 2. We will prove (11) and derive the asymptotic distribution in Case 2C. When (11) does not seem to hold, we have to deal with (12). However, $A_{\xi}(i + j)$ in (12), not $A_{\xi}(i)$, will extremely complicate the theoretical treatment and we do not pursue the problem in this paper.

Theorems 1–3 below deals with Cases 1–3, respectively. We denote the density of $V(x_0, Z_1)$ at 0 by $f_V(0|x_0)$, which is written as

$$f_V(0|x_0) = g_{\infty}(m_q) \left(\frac{\partial V}{\partial z}(x_0, m_q)\right)^{-1}.$$

Theorem 1 Suppose that Assumptions V, K, H, Z1–Z3, and X1–X2 hold in Case 1. In Case 1B, Assumption X3 with $p = \alpha$ or X4 is also assumed. Then we have as $n \to \infty$,

Case 1A:

$$\hat{\theta} \xrightarrow{d} N\left(\left(\frac{c_h^{5/2} u''(x_0) \kappa_2}{2} \right), \frac{q(1-q)}{f_V^2(0|x_0) f(x_0)} \left(\begin{matrix} \nu_0 & 0 \\ 0 & \kappa_2^{-2} \nu_2 \end{matrix} \right) \right),$$

Case 1B:

$$\begin{split} \hat{\theta} &= -\frac{1}{f_V(0|x_0)} \begin{pmatrix} 1\\0 \end{pmatrix} \int \rho'_q(V(x_0, z)) g'_{\infty}(z) dz \cdot \frac{\tau_n}{n} \sum_{i=1}^n \tilde{Z}_{i,0} + o_p(1) \\ & \stackrel{d}{\to} -\frac{1}{f_V(0|x_0)} \begin{pmatrix} 1\\0 \end{pmatrix} \int \rho'_q(V(x_0, z)) g'_{\infty}(z) dz \cdot c_d L, \end{split}$$

where $\int \rho'_q(V(x_0, z))g'_{\infty}(z)dz = -g_{\infty}(m_q), \ L \sim S_{\alpha}(1, (c_+ - c_-)/(c_+ + c_-), 0),$ and

$$c_d = c_z \Big((c_+ + c_-) \frac{\Gamma(2 - \alpha) \cos(\alpha \pi/2)}{1 - \alpha} \int_{-\infty}^{1} \Big\{ \int_{0}^{1} (t - s)_{+}^{-\beta} dt \Big\} ds \Big)^{1/\alpha}$$

Theorem 2 Suppose that Assumptions V, K, H, Z1–Z3, and X1–X2 hold in Case 2. In Case 2C, Assumption X3 with $\alpha\beta < p$ or X5 is also assumed. Then we have as $n \rightarrow \infty$,

Case 2A: we have the same result as in Case 1A, **Case 2B:** $\hat{\theta} = o_p(1)$, **Case 2C:**

$$\hat{\theta} \xrightarrow{d} \frac{\sigma_{\alpha\beta}}{f_V(0|x_0)} \begin{pmatrix} 1\\ 0 \end{pmatrix} (c_+^{1/(\alpha\beta)} C_q^+ L^+ + c_-^{1/(\alpha\beta)} C_q^- L^-),$$

where $L^+ \sim S_{\alpha\beta}(1, 1, 0)$, $L^- \sim S_{\alpha\beta}(1, 1, 0)$, L^+ and L^- are mutually independent,

$$\sigma_{\alpha\beta} = \left\{ \frac{c_z^{\alpha} \Gamma(2 - \alpha\beta) |\cos(\pi\alpha\beta/2)|}{(\alpha\beta - 1)\beta^{\alpha\beta}} \right\}^{1/(\alpha\beta)}$$
$$C_q^{\pm} = \int_0^\infty \{q - G_\infty(m_q \mp v)\} v^{-(1 + 1/\beta)} \mathrm{d}v.$$

In Case 2B, we have only proved that $\hat{\beta} - (u(x_0), hu'(x_0))^T = o_p(n^{-\nu})$ for any $\nu < 1 - 1/(\alpha\beta)$.

Theorem 3 Suppose that Assumptions V, K, H, Z1–Z3, and X1–X2 hold in Case 3. Then we have the same result as in Case 1A.

Springer

Theorems 1–2 shows that the asymptotic properties may be badly affected by α and β in Cases 1B, 2B, and 2C. Generally speaking, the convergence rates of mean regression are worse than those of quantile regression when $\alpha < 2$. However, the convergence rate is the same as that of the sample mean of $\{Z_i\}$ in Case 1B. In Case 2, the rates are improved and better than $n^{-1+1/\alpha}$.

In Sect. 3, we report the results of our simulation study to show how α and β affect the properties of the local linear estimator.

In Cases 1A, 2A, and 3, our choice of h in Assumption H gives the optimal rate of convergence to the local linear estimator. In Cases 1B and 2C, the rate of convergence is independent of h and any other choices of h does not improve the rate. Only the boundaries between subcases may vary with h. Therefore we recommend that we should choose the bandwidth as if we had i.i.d. observations.

The asymptotic distribution depends on α and β in a complicated way in Cases 1B and 2C. It might be very difficult to estimate the parameters and statistical inference is a topic of future research.

3 Simulation study

We carried out a small simulation study using R. In the simulation study, we set $\epsilon_i \sim N(0, 1), \ \eta_i \sim S_{\alpha}(1, 0, 0),$

$$Y_i = 2(X_i^2 + X_i^4) + Z_i, \ X_i = \sum_{j=0}^{999} \frac{c_x}{(1+j)^{\gamma}} \epsilon_{i-j}, \ Z_i = \sum_{j=0}^{999} \frac{c_z}{(1+j)^{\beta}} \eta_{i-j}$$

where c_x and c_z are chosen so that $X_i \sim N(0, 1)$ and $Z_i \sim S_\alpha(1, 0, 0)$.

We took $\gamma = 0.75$, $x_0 = 0.0$, 0.6, and h = 0.2, 0.4. We examined 20 pairs of (α, β) , $\alpha = 1.1$, 1.2, 1.3, 1.4, 1.5 and $\beta = 0.9$, 1.3, 1.7, ∞ . The sample size is 400 and the results are based on 10,000 repetitions.

We estimate the conditional median $u(x_0) = 2(x_0^2 + x_0^4)$ by employing the rq function of the quantreg package (Koenker 2009) with the Epanechnikov kernel and use the rstable function of the fBasics package (Wuertz et al. 2009) to generate $S_{\alpha}(1, 0, 0)$ random numbers. When there are less than four observations available to estimate $u(x_0)$, just the sample median is used here. However, there are less than 10 sample median cases among the repetitions for each entry of Tables 2, 3, 4, 5 and 6 below and there will be almost no influence on the results.

Tables 2, 3, 4, 5 and 6 are for the cases of $\alpha = 1.1, 1.2, 1.3, 1.4, 1.5$, respectively. The results for $\gamma = 1.25$ are also reported in Honda (2010b). There is no significant difference between $\gamma = 0.75$ and $\gamma = 1.25$.

Note that all of (*, 0.9) belong to Case 1B. Pairs (1.1, 1.3) and (1.2, 1.3) belong to Cases 2C. The other pairs have the same asymptotic distribution as for i.i.d. observations. In the tables, every entry is estimated by the sample mean. "mean" is the mean of $\hat{\beta}_1$ and "bias" is the mean minus the true value. "mse" is the mean squared error and N/A means that the MSE does exist from a theoretical point of view. Actually, we had unstable and extremely large values. Values with * in the tables were unstable

Tab	le 2	$\alpha =$	1.1
-----	------	------------	-----

β		0.9		1.3	1.3		1.7		∞	
h		0.2	0.4	0.2	0.4	0.2	0.4	0.2	0.4	
0.0	Mean	0.072	0.163	0.032	0.078	0.017	0.067	0.018	0.066	
	Bias	0.072	0.163	0.032	0.078	0.017	0.067	0.018	0.066	
	mse	N/A	N/A	N/A	N/A	0.362*	0.333*	0.059	0.032	
	madv	1.927	1.923	0.683	0.661	0.317	0.286	0.191	0.141	
0.6	Mean	1.183	1.332	1.018	1.179	1.028	1.169	1.028	1.170	
	Bias	0.204	0.353	0.039	0.200	0.048	0.190	0.049	0.190	
	mse	N/A	N/A	N/A	N/A	0.677*	0.466*	0.090	0.078	
	madv	1.928	1.912	0.764	0.736	0.362	0.355	0.224	0.229	

Table 3 $\alpha = 1.2$

β		0.9		1.3	1.3		1.7		∞	
h		0.2	0.4	0.2	0.4	0.2	0.4	0.2	0.4	
0.0	Mean	0.013	0.015	0.055	0.105	0.002	0.051	0.016	0.066	
	Bias	0.013	0.015	0.055	0.105	0.002	0.051	0.016	0.066	
	mse	N/A	N/A	N/A	N/A	0.644*	1.139*	0.060	0.033	
	madv	1.505	1.460	0.534	0.509	0.285	0.255	0.192	0.145	
0.6	Mean	0.971	1.172	1.074	1.217	1.003	1.154	1.031	1.173	
	Bias	-0.008	0.193	0.094	0.238	0.024	0.175	0.052	0.194	
	mse	N/A	N/A	N/A	N/A	2.299*	1.651*	0.092	0.081	
	madv	1.496	1.603	0.582	0.571	0.334	0.328	0.228	0.232	

Table 4 $\alpha = 1.3$

β		0.9		1.3	1.3		1.7		∞	
h		0.2	0.4	0.2	0.4	0.2	0.4	0.2	0.4	
0.0	Mean	0.050	0.098	0.027	0.074	0.012	0.066	0.013	0.063	
	Bias	0.050	0.098	0.027	0.074	0.012	0.066	0.013	0.063	
	mse	N/A	N/A	2.580*	2.778*	0.116	0.086	0.061	0.034	
	madv	0.921	0.908	0.423	0.396	0.260	0.223	0.195	0.147	
0.6	Mean	1.065	1.214	1.035	1.157	1.026	1.175	1.028	1.170	
	Bias	0.086	0.235	0.056	0.177	0.047	0.196	0.049	0.191	
	mse	N/A	N/A	2.094*	4.499*	0.163	0.145	0.087	0.081	
	madv	0.956	0.946	0.450	0.458	0.296	0.295	0.227	0.232	

and the true values may not exist. "madv" stands for the mean absolute deviation, $E\{|\hat{\beta}_1 - u(x_0)|\}.$

We have the following observations from Tables 2, 3, 4, 5 and 6.

β		0.9		1.3	1.3		1.7		∞	
h		0.2	0.4	0.2	0.4	0.2	0.4	0.2	0.4	
0.0	Mean	0.025	0.073	0.009	0.059	0.013	0.064	0.014	0.065	
	Bias	0.025	0.073	0.009	0.059	0.013	0.064	0.014	0.065	
	mse	N/A	N/A	1.199*	1.333*	0.096	0.068	0.063	0.035	
	madv	0.751	0.737	0.357	0.33	0.244	0.206	0.199	0.149	
0.6	Mean	1.030	1.174	1.022	1.165	1.028	1.170	1.024	1.172	
	Bias	0.051	0.194	0.043	0.186	0.049	0.191	0.045	0.193	
	mse	N/A	N/A	1.049*	1.116*	0.131	0.120	0.090	0.082	
	madv	0.779	0.779	0.389	0.387	0.279	0.275	0.229	0.233	

Table 5 $\alpha = 1.4$

Table 6 $\alpha = 1.5$

β		0.9		1.3		1.7		∞	
h		0.2	0.4	0.2	0.4	0.2	0.4	0.2	0.4
0.0	Mean	0.034	0.085	0.007	0.060	0.016	0.066	0.012	0.064
	Bias	0.034	0.085	0.007	0.060	0.016	0.066	0.012	0.064
	mse	N/A	N/A	0.238	0.213	0.091	0.064	0.063	0.035
	madv	0.613	0.597	0.316	0.288	0.237	0.199	0.198	0.149
0.6	Mean	1.049	1.194	1.023	1.167	1.033	1.178	1.031	1.176
	Bias	0.070	0.215	0.043	0.188	0.054	0.199	0.052	0.197
	mse	N/A	N/A	0.280	0.275	0.129	0.120	0.088	0.083
	madv	0.636	0.638	0.347	0.344	0.275	0.275	0.230	0.236

- 1. In the cases of $\beta = 0.9$, the values of madv are very large for small α . This implies that the effects of small β and small α are very serious and that nonparametric estimation may be very difficult.
- 2. In the cases of $\beta = 1.3$, the values of mse are large for $\alpha = 1.3 1.5$. We should have the same asymptotic distribution as for i.i.d. observations in those cases. The values of madv are still larger than those for $\beta = \infty$.
- 3. In the cases of $\beta = 1.7$, the effects of small α on mse are serious up to $\alpha = 1.3$ and the madv values are also affected up to $\alpha = 1.2$.
- 4. Larger bandwidths yield better results for the MSE. But there is almost no difference in the mean absolute deviation between h = 0.2 and h = 0.4.

The effects of α and β are serious and there seem to be considerable differences between the asymptotics and the finite sample properties.

4 Proofs of Theorems 1–3

We verify Theorems 1-3 in a similar way to Theorem 1 of Honda (2010a). Honda (2010a) deals with linear process with finite variance. First we state Propositions 1-5, which are essential tools to the proofs. Propositions 1-3 deal with the stochastic term

of the estimator and they correspond to Lemma 1 of Honda (2010a). Propositions 4 and 5 correspond to Lemmas 2 and 3, respectively and deal with all the cases simultaneously. Proposition 4 is about a quadratic form in θ and Proposition 5 is related to the bias term.

Proposition 1 Suppose that the same assumptions hold as in Theorem 1. Then we have as $n \to \infty$,

Case 1A:

$$\frac{\tau_n}{nh}\sum_{i=1}^n K_i\eta_i\rho_q'(V_i) \stackrel{d}{\to} N\left(\begin{pmatrix}0\\0\end{pmatrix}, q(1-q)f(x_0)\begin{pmatrix}\nu_0 & 0\\ 0 & \nu_2\end{pmatrix}\right),$$

Case 1B:

$$\begin{aligned} \frac{\tau_n}{nh} &\sum_{i=1}^n K_i \eta_i \rho_q'(V_i) \\ &= -f(x_0) \begin{pmatrix} 1\\0 \end{pmatrix} \int \rho_q'(V(x_0, z)) g_\infty'(z) dz \cdot \frac{\tau_n}{n} \sum_{i=1}^n \tilde{Z}_{i,0} + o_p(1) \\ &\stackrel{d}{\to} -f(x_0) \begin{pmatrix} 1\\0 \end{pmatrix} \int \rho_q'(V(x_0, z)) g_\infty'(z) dz \cdot c_d L, \end{aligned}$$

where c_d and L are defined in Theorem 1.

Here we give an outline of the proof of Proposition 1. First write

$$\sum_{i=1}^{n} K_{i} \eta_{i} \rho_{q}'(V_{i})$$

$$= \sum_{i=1}^{n} (K_{i} \eta_{i} \rho_{q}'(V_{i}) - \mathbb{E}\{K_{i} \eta_{i} \rho_{q}'(V_{i}) | S_{i-1}\}) + \sum_{i=1}^{n} \mathbb{E}\{K_{i} \eta_{i} \rho_{q}'(V_{i}) | S_{i-1}\}$$

$$= A_{n} + B_{n}$$

as in Wu and Mielniczuk (2002) and Honda (2009a). We deal with A_n and B_n by using the martingale CLT and the result of Koul and Surgailis (2001), respectively. Especially, $(nh)^{-1/2}A_n$ converges in distribution to a normal distribution. The limiting distribution depends on which of A_n and B_n is stochastically larger. In Case 1A, A_n is dominant. In Case 1B, B_n is dominant. In the proof of Proposition 2, we apply the results of Surgailis (2002) and Honda (2009b) instead of that of Koul and Surgailis (2001). In Case 3, we have $B_n = O_p(h\sqrt{n})$ and we do not see any effects of B_n in the asymptotics.

Proposition 2 Suppose that the same assumptions hold as in Theorem 2. Then as $n \to \infty$,

Case 2A: we have the same result as in Case 1A of Proposition 1, **Case 2B:** $\frac{\tau_n}{nh} \sum_{i=1}^n K_i \eta_i \rho'_q(V_i) = o_p(1)$, **Case 2C:**

$$\frac{\tau_n}{nh}\sum_{i=1}^n K_i\eta_i\rho_q'(V_i) \xrightarrow{d} f(x_0) \begin{pmatrix} 1\\0 \end{pmatrix} \sigma_{\alpha\beta}(c_+^{1/(\alpha\beta)}C_q^+L^+ + c_-^{1/(\alpha\beta)}C_q^-L^-),$$

where $\sigma_{\alpha\beta}$, C_q^{\pm} , and L^{\pm} are defined in Theorem 2.

Proposition 3 Suppose that the same assumptions hold as in Theorem 3. Then we have the same result as in Case 1A of Proposition 1.

Proposition 4 Suppose that the Assumptions V, K, H, Z1–Z3, and X1–X2 hold. Then for any fixed θ , we have as $n \to \infty$,

$$\frac{\tau_n^2}{nh} \sum_{i=1}^n K_i(\rho_q(V_i^* - \tau_n^{-1}\eta_i^T\theta) - \rho_q(V_i^*)) = \frac{1}{2}\theta^T \begin{pmatrix} 1 & 0\\ 0 & \kappa_2 \end{pmatrix} \theta f_V(0|x_0) f(x_0) - \left(\frac{\tau_n}{nh} \sum_{i=1}^n K_i \eta_i \rho_q'(V_i^*)\right)^T \theta + o_p(1).$$

The bias term in Proposition 5 below is negligible in Cases 1B, 2B, and 2C since $\tau_n/\sqrt{nh} \rightarrow 0$ in these cases.

Proposition 5 Suppose that the Assumptions V, K, H, Z1–Z3, and X1–X2 hold. Then we have as $n \to \infty$,

$$\frac{\tau_n}{nh} \sum_{i=1}^n K_i \eta_i \rho'_q(V_i^*)
= \frac{\tau_n}{nh} \sum_{i=1}^n K_i \eta_i \rho'_q(V_i) + \frac{\tau_n}{2\sqrt{nh}} \begin{pmatrix} c_h^{5/2} \kappa_2 u''(x_0) f_V(0|x_0) f(x_0) \\ 0 \end{pmatrix} + o_p(1).$$

Now we prove Theorem 1 as in Fan et al. (1994) and Hall et al. (2002) by adapting the method of Pollard (1991) to nonparametric regression. Theorems 2–3 can be established in the same way by applying Propositions 2–3, respectively and the proofs are omitted.

Proof of Theorem 1 Recall that $\tau_n/\sqrt{nh} = 1$ in Case 1A and $\tau_n/\sqrt{nh} = o(1)$ in Case 1B. Equation (4) is equivalent to

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \mathbb{R}^2} \frac{\tau_n^2}{nh} \sum_{i=1}^n K_i (\rho_q (V_i^* - \tau_n^{-1} \eta_i^T \theta) - \rho_q (V_i^*)).$$
(13)

By Propositions 4–5, we have for any fixed $\theta \in \mathbb{R}^2$,

$$\frac{\tau_n^2}{nh} \sum_{i=1}^n K_i(\rho_q(V_i^* - \tau_n^{-1}\eta_i^T\theta) - \rho_q(V_i^*)) \\
= \frac{1}{2}\theta^T \begin{pmatrix} 1 & 0\\ 0 & \kappa_2 \end{pmatrix} \theta f_V(0|x_0) f(x_0) - \left(\frac{\tau_n}{nh} \sum_{i=1}^n K_i \eta_i \rho_q'(V_i)\right)^T \theta \\
- \frac{\tau_n}{2\sqrt{nh}} (c_h^{5/2} \kappa_2 u''(x_0) f_V(0|x_0) f(x_0), 0)\theta + o_p(1).$$
(14)

As in Pollard (1991), Fan et al. (1994) and Hall et al. (2002), the convexity lemma implies that (14) holds uniformly on $\{|\theta| < M\}$ for any positive *M*.

We consider the RHS of (14). Proposition 1 implies that

$$\frac{\tau_n}{nh} \sum_{i=1}^n K_i \eta_i \rho_q'(V_i) = O_p(1).$$
(15)

Combining (15), $\tau_n/\sqrt{nh} = O(1)$, the uniformity of (14), and the convexity of the objective function in (13), we conclude that $|\hat{\theta}| = O_p(1)$ by appealing to the standard argument.

By using $|\hat{\theta}| = O_p(1)$ and the uniformity of (14) again, we obtain

$$\hat{\theta} = \frac{1}{f_V(0|x_0) f(x_0)} \begin{pmatrix} 1 & 0 \\ 0 & \kappa_2 \end{pmatrix}^{-1} \\ \times \left\{ \frac{\tau_n}{nh} \sum_{i=1}^n K_i \eta_i \rho_q'(V_i) + \frac{\tau_n}{2\sqrt{nh}} (c_h^{5/2} \kappa_2 u''(x_0) f_V(0|x_0) f(x_0), 0)^T \right\} + o_p(1).$$
(16)

The results of the theorem follow from (16) and Proposition 1. Hence the proof of the theorem is complete.

5 Proofs of Propositions 1–5

We present Lemmas 1-3 before we prove Propositions 1-5. (ii) of Lemmas 1-2 are employed to derive the asymptotic distributions in Cases 1B and 2C, respectively. (i) of Lemmas 1-2 and Lemma 3 is enough to consider the other cases and establish Propositions 4-5.

The proofs of the lemmas are postponed to Sect. 6. We introduce some more notation for Lemmas 1-3.

Define $B_{\xi,s}(\tilde{Z}_{i,s-1})$ and $B_{\xi,\infty}(v)$ for $\xi \in [-C_K, C_K]$ by

$$B_{\xi,s}(\tilde{Z}_{i,s-1}) = \mathbb{E}\{B_{\xi}(Z_i)|\mathcal{G}_{i-s}\} \text{ and } B_{\xi,\infty}(v) = \mathbb{E}\{B_{\xi}(Z_1+v)\},$$
(17)

Deringer

where $B_{\xi}(z)$ is uniformly bounded in ξ and will be specified in the proofs of Propositions 1–5. When $B_{\xi}(z)$ does not depend on ξ , we write B(z) for $B_{\xi}(z)$.

Next we define $o_{m,r}(a_n)$ for $r \ge 1$ by

$$W_{\xi} = o_{m,r}(a_n) \Leftrightarrow ||a_n^{-1}W_{\xi}||_r = o(1) \text{ uniformly in } \xi.$$
(18)

The definition of $O_{m,r}(a_n)$ is obvious from (18).

Recall that $A_{\xi}(i) = f_1(x_0 + \xi h | \mathcal{F}_{i-1})$ and $\mathbb{E}\{A_{\xi}(i)\} = f(x_0 + \xi h)$. Hereafter we omit "as $n \to \infty$ ".

Lemma 1 Suppose that Assumptions X1–X2 and Z1–Z3 hold in Case 1.

(i) There exists $1 < r < \alpha$ s.t.

$$\frac{1}{n} \sum_{i=1}^{n} A_{\xi}(i) B_{\xi,1}(\tilde{Z}_{i,0})
= (f(x_0 + \xi h) + o_{m,r}(1)) \mathbb{E} \{ B_{\xi,1}(\tilde{Z}_{1,0}) \} + \frac{1}{n} B'_{\xi,\infty}(0) \sum_{i=1}^{n} A_{\xi}(i) \tilde{Z}_{i,0}
+ o_{m,r}(n^{-\beta + 1/\alpha}).$$
(19)

(ii) When Assumption X3 with $p = \alpha$ or X4 holds, we can replace $A_{\xi}(i)$ in the RHS of (19) with $E\{A_{\xi}(i)\} = f(x_0 + \xi h)$.

It is easy to see that $E\{|n^{-1}\sum_{i=1}^{n} A_{\xi}(i)\tilde{Z}_{i,0}|^r\} = o(1)$ for any $1 < r < \alpha$.

When we use an assumption similar to Assumption X4 instead of Assumption X5 in Lemma 2(ii) below, we have to assume that $2/(\alpha\beta) - 1 < \gamma_x$ to obtain the same result. Note that $B_{\xi,j}(z)$ is defined in (17).

Lemma 2 Suppose that Assumptions X1–X2 and Z1–Z3 hold in Case 2.

(i) There exists $1 < r < \alpha\beta$ s.t.

$$\frac{1}{n} \sum_{i=1}^{n} A_{\xi}(i) B_{\xi,1}(\tilde{Z}_{i,0})
= (f(x_0 + \xi h) + o_{m,r}(1)) E\{B_{\xi,1}(\tilde{Z}_{1,0})\}
+ \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{\infty} A_{\xi}(i+j) (B_{\xi,j}(c_j\zeta_i) - E\{B_{\xi,j}(c_j\zeta_i)\}) + o_{m,r}(n^{-1+1/(\alpha\beta)}).$$
(20)

In addition, for any $1 < r < \alpha\beta$,

$$\mathbb{E}\left\{ \left| \sum_{j=1}^{\infty} A_{\xi}(i+j) (B_{\xi,j}(c_{j}\zeta_{i}) - \mathbb{E}\{B_{\xi,j}(c_{j}\zeta_{i})\})\right|^{r} \right\} < C$$

uniformly in ξ and i.

🖉 Springer

(ii) When Assumption X3 with $\alpha\beta < p$ or X5 holds, we can replace $A_{\xi}(i + j)$ in the RHS of (20) with $\mathbb{E}\{A_{\xi}(i + j)\} = f(x_0 + \xi h)$. Besides, when $B_{\xi}(z) = B(z)$ for some function B(z), we have

$$\begin{split} n^{-1/(\alpha\beta)} &\sum_{i=1}^{n} \sum_{j=1}^{\infty} (B_j(c_j\zeta_i) - \mathbb{E}\{B_j(c_j\zeta_i)\}) \\ &\stackrel{d}{\rightarrow} \sigma_{\alpha\beta}(c_+^{1/(\alpha\beta)}C_B^+L^+ + c_-^{1/(\alpha\beta)}C_B^-L^-), \end{split}$$

where $C_B^{\pm} = \int_0^\infty (B_\infty(\pm v) - B_\infty(0))v^{-(1+1/\beta)}dv$. See Theorem 2 for the definitions of $\sigma_{\alpha\beta}$ and L^{\pm} .

Lemma 3 Suppose that Assumptions X1–X2 and Z1–Z3 hold in Case 3. Then we have

$$\frac{1}{n}\sum_{i=1}^{n}A_{\xi}(i)B_{\xi,1}(\tilde{Z}_{i,0}) = (f(x_0+\xi h)+o_{m,p}(1))\mathbb{E}\{B_{\xi,1}(\tilde{Z}_{1,0})\} + O_{m,2}(n^{-1/2}).$$

Now we begin to prove Propositions 1-5.

Proof of Proposition 1. We follow Wu and Mielniczuk (2002), Mielniczuk and Wu (2004) and Honda (2009a). We consider only the first element. The second element can be treated in the same way.

Set

$$T_i = K_i \rho_q'(V_i) - \mathbb{E}\{K_i \rho_q'(V_i) | \mathcal{S}_{i-1}\}.$$

Note that $|T_i| \leq C$ and that

$$\frac{1}{nh} \sum_{i=1}^{n} \mathbb{E}\{T_{i}^{2} | \mathcal{S}_{i-1}\} \\
= \frac{1}{n} \sum_{i=1}^{n} \int \int K^{2}(\xi) f_{1}(x_{0} + \xi h | \mathcal{F}_{i-1}) (\rho_{q}'(V(x_{0} + \xi h, z)))^{2} g_{0}(z - \tilde{Z}_{i,0}) d\xi dz \\
+ o_{p}(1) \\
= \frac{v_{0}}{n} \sum_{i=1}^{n} f_{1}(x_{0} | \mathcal{F}_{i-1}) \int (\rho_{q}'(V(x_{0}, z)))^{2} g_{0}(z - \tilde{Z}_{i,0}) dz + o_{p}(1) \\
\xrightarrow{P} v_{0} f(x_{0}) q(1 - q).$$
(21)

We used the monotonicity of V(x, z) in z, Assumption X1, and the ergodic theorem in (21). Therefore by the martingale central limit theorem,

$$\frac{\tau_n}{nh} \sum_{i=1}^n T_i \begin{cases} \frac{d}{\rightarrow} N(0, f(x_0)q(1-q)\nu_0) & \text{in Case1A,} \\ = o_p(1) & \text{in Case1B.} \end{cases}$$
(22)

Springer

Next we deal with $E\{K_i \rho'_q(V_i) | S_{i-1}\}$. Since

$$\frac{1}{h} \mathbb{E}\{K_{i}\rho_{q}'(V_{i})|\mathcal{S}_{i-1}\} = \int K(\xi) \left\{ f_{1}(x_{0} + \xi h|\mathcal{F}_{i-1}) \int \rho_{q}'(V(x_{0} + \xi h, z))g_{0}(z - \tilde{Z}_{i,0})dz \right\} d\xi, \quad (23)$$

we apply Lemma 1 with $B_{\xi}(z) = \rho'_q(V(x_0 + \xi h, z)) = \rho'_q(V(x_0, z))$ and

$$B_{\xi,1}(\tilde{Z}_{i,0}) = \int \rho_q'(V(x_0 + \xi h, z))g_0(z - \tilde{Z}_{i,0})dz = \int \rho_q'(V(x_0, z))g_0(z - \tilde{Z}_{i,0})dz.$$

Notice that

$$\mathbb{E}\{B_{\xi,1}(\tilde{Z}_{i,0})\} = 0 \text{ and } B'_{\xi,\infty}(0) = -\int \rho'_q(V(x_0,z))g'_\infty(z)dz.$$
(24)

From Lemma 1(ii) and (24), we have in Case 1B that

$$\frac{1}{n} \sum_{i=1}^{n} A_{\xi}(i) B_{\xi,1}(\tilde{Z}_{i,0})
= -f(x_0 + \xi h) \int \rho'_q(V(x_0, z)) g'_{\infty}(z) dz \frac{1}{n} \sum_{i=1}^{n} \tilde{Z}_{i,0} + o_{m,r}(n^{-\beta + 1/\alpha}).$$
(25)

From Jensen's inequality w.r.t. $\int K(\xi) d\xi$, (23), and (25), we obtain

$$\frac{1}{nh} \sum_{i=1}^{n} \mathbb{E}\{K_i \rho_q'(V_i) | \mathcal{S}_{i-1}\} = -f(x_0) \int \rho_q'(V(x_0, z)) g_{\infty}'(z) dz \frac{1}{n} \sum_{i=1}^{n} \tilde{Z}_{i,0} + o_p(n^{-\beta + 1/\alpha}).$$
(26)

We can proceed in a similar way in Case 1A by employing Lemma 1(i). Thus by (26) and the definition of τ_n ,

$$\frac{\tau_n}{nh} \sum_{i=1}^n \mathbb{E}\{K_i \rho_q'(V_i) | \mathcal{S}_{i-1}\} \begin{cases} = o_p(1) & \text{in Case 1A,} \\ = -f(x_0) \int \rho_q'(V(x_0, z)) g_\infty'(z) dz \\ \times \frac{\tau_n}{n} \sum_{i=1}^n \tilde{Z}_{i,0} + o_p(1) & \text{in Case 1B.} \end{cases}$$
(27)

The desired result follows from (22), (27), and Kasahara and Maejima (1988). Hence the proof is complete. $\hfill \Box$

Proof of Proposition 2. We define T_i as in the proof of Proposition 1 and T_i can be treated in the same way as in the proof of Proposition 1. Then we have

$$\frac{\tau_n}{nh} \sum_{i=1}^n T_i \quad \begin{cases} \frac{d}{\rightarrow} N(0, f(x_0)q(1-q)\nu_0) & \text{in Case 2A,} \\ = o_p(1) & \text{in Case 2B, C.} \end{cases}$$
(28)

Next we deal with $\frac{1}{h} \mathbb{E}\{K_i \rho'_q(V_i) | S_{i-1}\}$ by applying Lemma 2 as in the proof of Proposition 1.

By Lemma 2(i),

$$\frac{1}{n} \int K(\xi) A_{\xi}(i) B_{\xi,1}(\tilde{Z}_{i,0}) d\xi$$

= $\frac{1}{n} \sum_{i=1}^{n} \int K(\xi) \left\{ \sum_{j=1}^{\infty} A_{\xi}(i+j) (B_{\xi,j}(c_j\zeta_i) - \mathbb{E}\{B_{\xi,j}(c_j\zeta_i)\}) \right\} d\xi$
+ $o_p(n^{-1+1/(\alpha\beta)}).$

From the latter half of Lemma 2(i), we have for any $1 < r < \alpha\beta$,

$$\frac{1}{n}\sum_{i=1}^{n}\int K(\xi)A_{\xi}(i)B_{\xi,1}(\tilde{Z}_{i,0})\mathrm{d}\xi = O_p(n^{-1+1/r}).$$
(29)

Finally, we consider the case where Assumption X3 with $\alpha\beta < p$ or X5 holds. Then Lemma 2(ii), the monotonicity of V(x, z) in z, and Jensen's inequality w.r.t. $\int \cdot K(\xi) d\xi$ yield that

$$\frac{1}{n} \int K(\xi) A_{\xi}(i) B_{\xi,1}(\tilde{Z}_{i,0}) d\xi$$

= $\frac{1}{n} \int K(\xi) f(x_0 + \xi h) d\xi \sum_{i=1}^{n} \sum_{j=1}^{\infty} (B_j(c_j \eta_i) - \mathbb{E}\{B_j(c_j \eta_i)\}) + o_p(n^{-1+1/(\alpha\beta)}),$

where $B(z) = \rho'_q(V(x_0, z))$. The convergence in distribution follows from the latter half of Lemma 2(ii) with

$$B_{\infty}(v) = \int (q - I(z + v < m_q))g_{\infty}(z)\mathrm{d}z = q - G_{\infty}(m_q - v).$$

Consequently we have

$$\frac{\tau_n}{nh} \sum_{i=1}^n \mathbb{E}\{K_i \rho_q'(V_i) | \mathcal{S}_{i-1}\} \begin{cases} = o_p(1) & \text{in Case 2A, B,} \\ \stackrel{d}{\to} \sigma_{\alpha\beta}(c_+^{1/(\alpha\beta)}C_q^+L^+ & \text{in Case 2C.} \\ +c_-^{1/(\alpha\beta)}C_q^-L^-) \end{cases}$$
(30)

Deringer

The desired result follows from (28) and (30). Hence the proof of the lemma is complete. $\hfill \Box$

Proof of Proposition 3. We can proceed as in the proofs of Propositions 1–2 by appealing to Lemma 3. Since $E\{B_{\xi,1}(\tilde{Z}_{i,0})\} = 0$, $\sum_{i=1}^{n} T_i$ is stochastically larger than $\sum_{i=1}^{n} E\{K_i \rho'_q(V_i) | S_{i-1}\}$ for any pair of α and β of Case 3. The details are omitted.

Proof of Proposition 4. We establish Proposition 4 by employing Lemmas 1–3. Set

$$S_{\theta}(X_i, Z_i) = \rho_q(V_i^* - \tau_n^{-1}\eta_i^T\theta) - \rho_q(V_i^*) + \tau_n^{-1}\eta_i^T\theta\rho_q'(V_i^*).$$

Since $|V_i^* - V_i| \le Ch^2$ and $\tau_n = O(h^{-2})$, we have

$$|S_{\theta}(X_i, Z_i)| \le C |\tau_n^{-1} \eta_i^T \theta| I(|V_i| \le C \tau_n^{-1} |\theta|).$$

Letting

$$T_i = K_i S_{\theta}(X_i, Z_i) - \mathbb{E}\{K_i S_{\theta}(X_i, Z_i) | \mathcal{S}_{i-1}\},\$$

we have

$$\frac{\tau_n^2}{nh} \sum_{i=1}^n T_i = o_p(1)$$
(31)

because

$$\begin{split} \mathbf{E}\Big\{\Big(\frac{\tau_n^2}{nh}\sum_{i=1}^n T_i\Big)^2\Big\} &\leq C\frac{\tau_n^2|\theta|^2}{(nh)^2}\sum_{i=1}^n \mathbf{E}\{K_i^2 I(|V_i| \leq C\tau_n^{-1}|\theta|)\}\\ &\leq C\frac{\tau_n|\theta|^3}{nh} \to 0. \end{split}$$

Next we deal with $E\{K_i S_{\theta}(X_i, Z_i) | S_{i-1}\}$, which is written as

$$\frac{\tau_n^2}{h} \mathbb{E}\{K_i S_\theta(X_i, Z_i) | S_{i-1}\}
= \int K(\xi) \left\{ f_1(x_0 + \xi h | \mathcal{F}_{i-1}) \tau_n^2 \int S_\theta(x_0 + \xi h, z) g_0(z - \tilde{Z}_{i,0}) dz \right\} d\xi.$$
(32)

We take $B_{\xi}(z) = \tau_n^2 S_{\theta}(x_0 + \xi h, z)$ for Lemmas 1–3 and have

$$E\{B_{\xi}(Z_i)\} = \frac{1}{2}((1,\xi)\theta)^2 f_V(0|x_0) + o(1) \text{ uniformly in } \xi.$$

Note that $B_{\xi}(z)$ is not uniformly bounded in ξ . However, $B_{\xi,1}(z)$ is uniformly bounded in ξ . Therefore, we should apply Lemma 1–3 with $\tilde{Z}_{i,0}$ and $B_{\xi,1}(z)$ replaced by $\tilde{Z}_{i,1}$ and $B_{\xi,2}(z)$. Then we have for some 1 < r,

$$\frac{1}{n}\sum_{i=1}^{n}A_{\xi}(i)B_{\xi,2}(\tilde{Z}_{i,1}) = \frac{1}{2}((1,\xi)\theta)^{2}f_{V}(0|x_{0})f(x_{0}) + o_{m,r}(1).$$
(33)

We also have

$$\frac{1}{n}\sum_{i=1}^{n}A_{\xi}(i)(B_{\xi,1}(\tilde{Z}_{i,0}) - B_{\xi,2}(\tilde{Z}_{i,1})) = O_{m,2}(n^{-1/2}).$$
(34)

By (32)-(34),

$$\frac{\tau_n^2}{nh} \mathbb{E}\{K_i S_\theta(X_i, Z_i) | \mathcal{S}_{i-1}\} = \frac{1}{2} \theta^T \begin{pmatrix} 1 & 0\\ 0 & \kappa_2 \end{pmatrix} \theta f_V(0|x_0) f(x_0) + o_p(1).$$
(35)

The desired result follows from (31) and (35). Hence the proof of the proposition is complete.

Proof of Proposition 5. we can prove Proposition 5 in the same way as Proposition 4 by setting

$$T_i = K_i(\rho'_q(V_i^*) - \rho'_q(V_i)) - \mathbb{E}\{K_i(\rho'_q(V_i^*) - \rho'_q(V_i)) | \mathcal{S}_{i-1}\}$$

and

$$B_{\xi}(z) = \tau_n(\rho_q'(V^*(x_0 + \xi h, z)) - \rho_q'(V(x_0 + \xi h, z))).$$

The details are omitted.

6 Technical lemmas

ы

We establish Lemmas 1–3 in this section. We state Lemmas 4–6 before the proof of Lemma 1, Lemmas 7–8 before the proof of Lemma 2, and Lemma 9 before the proof of Lemma 3, respectively. The proofs of Lemmas 4–9 are relegated to Honda (2010b) and omitted here.

Lemma 4 below is essentially Lemma 4.1 of Koul and Surgailis (2001) and their lemma deals with empirical distribution functions. We can prove Lemmas 5–6 by some tedious calculation.

Lemma 4 Suppose that Assumptions X1–X2 and Z1–Z3 hold in Case 1. Then there exists $1 < r < \alpha$ s.t.

$$\frac{1}{n}\sum_{i=1}^{n}A_{\xi}(i)(B_{\xi,1}(\tilde{Z}_{i,0}) - \mathbb{E}\{B_{\xi,1}(\tilde{Z}_{i,0})\} - B'_{\xi,\infty}(0)\tilde{Z}_{i,0}) = o_{m,r}(n^{-\beta+1/\alpha}).$$

Lemma 5 Suppose that Assumptions X1–X3 with $p = \alpha$, and Z1–Z3 hold in Case 1. Then there exists $1 < r < \alpha$ s.t.

$$\frac{1}{n}\sum_{i=1}^{n} (A_{\xi}(i) - \mathbb{E}\{A_{\xi}(i)\})B'_{\xi,\infty}(0)\tilde{Z}_{i,0} = o_{m,r}(n^{-\beta+1/\alpha}).$$

Lemma 6 Suppose that Assumptions X1–X2, X4, and Z1–Z3 hold in Case 1. Then there exists $1 < r < \alpha$ s.t.

$$\frac{1}{n}\sum_{i=1}^{n} (A_{\xi}(i) - \mathbb{E}\{A_{\xi}(i)\})B'_{\xi,\infty}(0)\tilde{Z}_{i,0} = o_{m,r}(n^{-\beta+1/\alpha}).$$

Proof of Lemma 1. From Lemmas 4–6, we have

$$\begin{split} &\frac{1}{n} \sum_{i=1}^{n} A_{\xi}(i) (B_{\xi,1}(\tilde{Z}_{i,0}) - \mathcal{E}\{B_{\xi,1}(\tilde{Z}_{i,0})\}) \\ &= \frac{1}{n} A_{\xi}(i) B'_{\xi,\infty}(0) \tilde{Z}_{i,0} + o_{m,r_1}(n^{-\beta+1/\alpha}) \\ &= \frac{1}{n} \mathcal{E}\{A_{\xi}(i)\} B'_{\xi,\infty}(0) \tilde{Z}_{i,0} + o_{m,r_1}(n^{-\beta+1/\alpha}) + o_{m,r_2}(n^{-\beta+1/\alpha}), \end{split}$$

where r_1 is from Lemma 1, r_2 is from Lemma 2 or 3, and $1 < r_1, r_2 < \alpha$. We set $r = r_1 \wedge r_2$ and apply (9) to $\mathbb{E}\{B_{\xi,1}(\tilde{Z}_{1,0})\}\sum_{i=1}^n A_{\xi}(i)$. Hence the proof of Lemma 1 is complete.

Lemma 7 below is essentially proved for $1 < \alpha < 2$ and for $0 < \alpha \le 1$ in Surgailis (2002) and Honda (2009b), respectively. We can verify Lemma 8 in the same way as Lemmas 5–6.

Lemma 7 Suppose that Assumptions X1–X2 and and Z1–Z3 hold in Case 2. Then there exists $1 < r < \alpha\beta$ s.t.

$$\begin{aligned} &\frac{1}{n}\sum_{i=1}^{n}A_{\xi}(i)(B_{\xi,1}(\tilde{Z}_{i,0})-\mathbb{E}\{B_{\xi,1}(\tilde{Z}_{i,0})\})\\ &=\frac{1}{n}\sum_{i=1}^{n}\sum_{j=1}^{\infty}A_{\xi}(i+j)(B_{\xi,j}(c_{j}\zeta_{i})-\mathbb{E}\{B_{\xi,j}(c_{j}\zeta_{i})\})+o_{m,r}(n^{-1+1/(\alpha\beta)}).\end{aligned}$$

Lemma 8 Suppose that Assumptions X1–X2 and and Z1–Z3 hold in Case 2. In addition, Assumption X3 with $\alpha\beta < p$ or X5 holds. Then there exists $1 < r < \alpha\beta$ s.t.

$$\begin{aligned} &\frac{1}{n}\sum_{i=1}^{n}A_{\xi}(i)(B_{\xi,1}(\tilde{Z}_{i,0})-\mathsf{E}\{B_{\xi,1}(\tilde{Z}_{i,0})\})\\ &=\frac{1}{n}f(x_{0}+\xi h)\sum_{i=1}^{n}\sum_{j=1}^{\infty}(B_{\xi,j}(c_{j}\zeta_{i})-\mathsf{E}\{B_{\xi,j}(c_{j}\zeta_{i})\})+o_{m,r}(n^{-1+1/(\alpha\beta)}).\end{aligned}$$

🖉 Springer

Proof of Lemma 2.

(i) The former half of (i) follows from Lemma 7 and (9). Next by following Lemma 3.1 of Surgailis (2002) and Proposition 2.3 of Honda (2009b), we can demonstrate that given $\{\epsilon_i\}$,

$$\operatorname{limsup}_{|z|\to\infty}|z|^{-1/\beta}\Big|\sum_{j=1}^{\infty}A_{\xi}(i+j)(B_{\xi,j}(c_jz)-\mathrm{E}\{B_{\xi,j}(c_j\zeta_i)\}\Big|\leq C,$$

uniformly in ξ and *i* and *C* is independent of $\{\epsilon_i\}$. This implies that

$$\operatorname{limsup}_{z \to \infty} z^{\alpha \beta} \mathbb{P} \left(\left| \sum_{j=1}^{\infty} A_{\xi}(i+j) (B_{\xi,j}(c_j \zeta_i) - \mathbb{E} \{ B_{\xi,j}(c_j \zeta_i) \}) \right| > z \right) \le C,$$
(36)

uniformly in ξ and *i*. The latter half of (i) follows from (36)

(ii) The desired result follows from (i), Lemma 8, and Proposition 2.3 of Honda (2009b).

Lemma 9 below is almost given in Pipiras and Taqqu (2003).

Lemma 9 Suppose that Assumptions X1-X2 and Z1-Z3 hold in Case 3. Then we have

$$\frac{1}{n}\sum_{i=1}^{n}A_{\xi}(i)(B_{\xi,1}(\tilde{Z}_{i,0}) - \mathbb{E}\{B_{\xi,1}(\tilde{Z}_{i,0})\}) = O_{m,2}(n^{-1/2}).$$

Proof of Lemma 3. We can verify Lemma 3 in the same way as Lemmas 1-2 using Lemma 9. The details are omitted.

Acknowledgments The author appreciates valuable comments of the associate editor and the referee very much. This research is partially supported by the Global COE Program Research Unit for Statistical and Empirical Analysis in Social Sciences at Hitotsubashi University.

References

Beran, J. (1994). Statistics for long-memory processes. New York: Chapman & Hall.

- Chan, N. H., Zhang, R. (2009). M-estimation in nonparametric regression under strong dependence and infinite variance. *The Annals of the Institute of Statistical Mathematics*, 61, 391–411.
- Chaudhuri, P. (1991). Nonparametric estimates of regression quantiles and their local Bahadur representation. *The Annals of Statistics*, 19, 760–777.
- Csörgő, S., Mielniczuk, J. (2000). The smoothing dichotomy in random-design regression with longmemory errors based on moving averages. *Statistica Sinica*, 10, 771–787.
- Doukhan, P., Oppenheim, G., Taqqu, M. S. (Eds.) (2003). Theory and applications of long-range dependence. Boston: Birkhäser.

Fan, J., Gijbels, I. (1996). Local polynomial modelling and its applications. London: Chapman & Hall.

Fan, J., Yao, Q. (2003). Nonlinear time series. New York: Springer.

- Fan, J., Hu, T.-C., Truong, Y. K. (1994). Robust nonparametric function estimation. Scandinavian Journal of Statistics, 21, 867–885.
- Giraitis, L., Koul, H. L., Surgailis, D. (1996). Asymptotic normality of regression estimators with long memory errors. *Statistics & Probability Letters*, 29, 317–335.
- Guo, H., Koul, H. L. (2007). Nonparametric regression with heteroscedastic long memory errors. Journal of Statistical Planning and Inference, 137, 379–404.
- Hall, P., Peng, L., Yao, Q. (2002). Prediction and nonparametric estimation for time series with heavy tails. *Journal of Time Series Analysis*, 23, 313–331.
- Härdle, W. K., Song, S. (2010). Confidence bands in quantile regression. *Econometric Theory*, 26, 1180– 1200.
- Hidalgo, J. (1997). Non-parametric estimation with strongly dependent multi variate time series. Journal of Time Series Analysis, 18, 95–122.
- Ho, H.-C., Hsing, T. (1996). On the asymptotic expansion of the empirical process of long-memory moving averages. *The Annals of Statistics*, 24, 992–1024.
- Ho, H.-C., Hsing, T. (1997). Limit theorems for functionals of moving averages. *The Annals of Probability*, 25, 1636–1669.
- Honda, T. (2000a). Nonparametric estimation of a conditional quantile for α -mixing processes. *The Annals* of the Institute of Statistical Mathematics, 52, 459–470.
- Honda, T. (2000b). Nonparametric estimation of the conditional median function for long-range dependent processes. *Journal of the Japan Statistical Society*, 30, 129–142.
- Honda, T. (2009a). Nonparametric density estimation for linear processes with infinite variance. *The Annals of the Institute of Statistical Mathematics*, 61, 413–439.
- Honda, T. (2009b). A limit theorem for sums of bounded functionals of linear processes without finite mean. *Probability and Mathematical Statistics*, 29, 337–351.
- Honda, T. (2010a). Nonparametric estimation of conditional medians for linear and related processes. The Annals of the Institute of Statistical Mathematics, 62, 995–1021.
- Honda, T. (2010b). Nonparametric quantile regression with heavy-tailed and strongly dependent errors. Global COE Hi-Stat Discussion Paper Series No.157, Hitotsubashi University. http://gcoe.ier.hit-u.ac. jp/research/discussion/2008/pdf/gd10-157.pdf.
- Hsing, T. (1999). On the asymptotic distribution of partial sum of functionals of infinite-variance moving averages. *The Annals of Probability*, 27, 1579–1599.
- Kasahara, Y., Maejima, M. (1988). Weighted sums of i.i.d. random variables attracted to integrals of stable processes. *Probability Theory and Related Fields*, 78, 75–96.
- Koenker, R. (2005). Quantile regression. New York: Cambridge University Press.
- Koenker, R. (2009). quantreg: Quantile Regression, R package version 4.44. http://CRAN.R-project.org/ package=quantreg.
- Koenker, R., Basset, G. (1978). Regression quantiles. Econometrica, 46, 33-50.
- Koul, H. L., Surgailis, D. (2001). Asymptotics of empirical processes of long memory moving averages with infinite variance. *Stochastic Processes and Their Application*, 91, 309–336.
- Mielniczuk, J., Wu, W. B. (2004). On random design model with dependent errors. *Statistica Sinica*, 14, 1105–1126.
- Masry, E., Mielniczuk, J. (1999). Local linear regression estimation for time series with long-range dependence. *Stochastic Processes and their Applications*, 82, 173–193.
- Peng, L., Yao, Q. (2004). Nonparametric regression under dependent errors with infinite variance. The Annals of the Institute of Statistical Mathematics, 56, 73–86.
- Pipiras, V., Taqqu, M. S. (2003). Central limit theorems for partial sums of bounded functionals of infinitevariance moving averages. *Bernoulli*, 9, 833–855.
- Pollard, D. (1991). Asymptotics for least absolute deviation regression estimates. *Econometric Theory*, 7, 186–198.
- Robinson, P. M. (1997). Large-sample inference for nonparametric regression with dependent errors. *The Annals of Statistics*, 25, 2054–2083.
- Robinson, P. M. (Ed.) (2003). Time series with long memory. New York: Oxford University Press.
- Samorodnitsky, G., Taqqu, M. S. (1994). Stable non-Gaussian processes: Stochastic models with infinite variance. London: Chapman & Hall.
- Surgailis, D. (2002). Stable limits of empirical processes of moving averages with infinite variance. Stochastic Processes and Their Applications, 100, 255–274.

- Wu, W. B., Mielniczuk, J. (2002). Kernel density estimation for linear processes. *The Annals of Statistics*, 30, 1441–1459.
- Wu, W. B., Huang, Y. (2010). Kernel estimation for time series: An asymptotic theory. Stochastic Processes and Their Applications, 120, 2412–2431.
- Wuertz, D., many others, see the SOURCE file (2009). fBasics: Rmetrics—Markets and Basic Statistics. R package version 2100.78. http://CRAN.R-project.org/package=fBasics.
- Zhao, Z., Wu, W. B. (2006). Kernel quantile regression for nonlinear stochastic models. Technical Report No.572, Department of Statistics, The University of Chicago.
- Zhou, Z. (2010). Nonparametric inference of quantile curves for nonstationary time series. *The Annals of Statistics*, 38, 2187–2217.
- Zhou, Z., Wu, W. B. (2010). On linear models with long memory and heavy-tailed errors. Forthcoming. *Journal of Multivariate Analysis*.