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Abstract We consider a class of cure rate frailty models for multivariate failure time
data with a survival fraction. This class is formulated through a transformation on the
unknown population survival function. It incorporates random effects to account for
the underlying correlation, and includes the mixture cure model and the proportional
hazards cure model as two special cases. We develop efficient likelihood-based estima-
tion and inference procedures. We show that the nonparametric maximum likelihood
estimators for the parameters of these models are consistent and asymptotically nor-
mal, and that the limiting variances achieve the semiparametric efficiency bounds.
Simulation studies demonstrate that the proposed methods perform well in finite sam-
ples. We provide an application of the proposed methods to the data of the age at onset
of alcohol dependence, from the Collaborative Study on the Genetics of Alcoholism.

Keywords Box-Cox transformation · Cure fraction · Empirical process · Mixture
cure model · NPMLE · Proportional hazards cure model · Semiparametric efficiency

1 Introduction

Cure rate models, which are used for modeling time-to-event data incorporating a
survival fraction, have become increasingly important in biomedical and genetic stud-
ies. The commonly used cure rate models include the mixture cure model and the
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proportional hazards cure model. To introduce these models, we let Spop(t |Zi ,Xi ) be
an improper population survival function, limt→∞ Spop(t |Zi ,Xi ) > 0, and S(t |Xi ) be
a proper survival function, limt→∞ S(t |Xi ) = 0, where Zi and Xi are two covariate
vectors for subject i(i = 1, . . . , n). Note that Zi includes 1 and may share common
components with Xi . The mixture cure model (Berkson and Gage 1952) is composed
of a certain fraction of the population that will be cured or that is not susceptible to
the event of interest, 1 − θ(Zi ), and a remaining proportion that will not be cured or
that is susceptible to the event of interest, θ(Zi ), such that

Spop(t |Zi ,Xi ) = 1 − θ(Zi )+ θ(Zi )S(t |Xi ), (1)

where S(t |Xi ) is the survival function for the uncured/susceptible population. A logis-
tic regression formulation is usually assumed for θ(Zi ) so that

θ(Zi ) = exp(βT Zi )

1 + exp(βT Zi )
.

The mixture cure model (1) has been extensively studied in the literature, which
includes the work of Gray and Tsiatis (1989), Kuk and Chen (1992), Taylor (1995),
Sy and Taylor (2000), Peng and Dear (2000), and Betensky and Schoenfeld (2001),
among others. A comprehensive discussion of the mixture cure model is given by
Maller and Zhou (1996).

The proportional hazards cure model, an alternative definition of a cure rate model,
has been proposed and investigated by Yakovlev et al. (1993), Tsodikov (1998), Chen
et al. (1999) and Tsodikov et al. (2003), among others. Its population survival function
is given by

Spop(t |Zi ) = exp{−θ(Zi )F(t)}, (2)

where F(t) is a distribution function and θ(Zi ) = exp(βT Zi ). The hazard function
corresponding to (2) is λpop(t |Zi ) = θ(Zi ) f (t), where f (t) = dF(t)/dt . The cure
rate for subject i under model (2) is limt→∞ Spop(t |Zi ) = exp{−θ(Zi )}. In more
general settings, Yin and Ibrahim (2005), Zeng et al. (2006), and Cooner et al. (2007)
proposed several general classes of cure rate models that include the mixture, the
proportional hazards, and the proportional odds cure models as special cases.

A critical assumption common to the aforementioned methods is the independence
of the survival times; however, this may not be true in practical applications. In bio-
medical research, we often encounter multivariate failure time data for which the
correlation may be induced by natural or artificial clustering effects. Such exam-
ples include experiments with litter-matched mice, family studies of genetic diseases,
or ophthalmologic research. In these cases, the underlying correlation needs to be
adjusted to ensure valid estimation and inference. A natural way to account for the
underlying dependence is to introduce a frailty that is specific to each cluster. For
subject j in cluster i with a covariate vector Xi j (i = 1, . . . , n; j = 1, . . . , ni ), the
usual Cox-type shared frailty model is given by
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λ(t |Xi j ,Wi ) = λ(t)Wi exp(βT Xi j ), (3)

where λ(t) is the unknown and unspecified baseline hazard function and Wi is the
unobservable frailty induced by the i th cluster. Conditional on Wi , the failure times
in cluster i are assumed to be independent. Typically, the Wi s are assumed to be inde-
pendent and identically distributed (i.i.d.) from a gamma distribution with mean one
(Clayton 1978). If a positive stable distribution is assumed for Wi , the proportional
hazards structure would be preserved after integrating out Wi . Recently, Zeng and Lin
(2007) and Zeng et al. (2008) proposed a general class of semiparametric transforma-
tion models with random effects for clustered failure time data. This class includes
proportional hazards and proportional odds models as special cases and accommodates
a variety of random-effects distributions.

Limited research has been conducted on cure rate models with multivariate failure
time data. Chatterjee and Shih (2001) proposed a marginal approach using bivariate
copula models. Yau and Ng (2001) and Price and Manatunga (2001) imposed frailty
to account for correlation under parametric model assumptions. Chen et al. (2002)
proposed a multivariate proportional hazards cure model using a positive stable frailty
in the Bayesian framework. More recently, Peng et al. (2007) and Yu and Peng (2008)
proposed a marginal regression approach using sandwich variance estimators and
one-step jackknife variance estimators, respectively, without theoretical justifications.
All the above methods except Chen et al. (2002) were based on the mixture cure
model (1). An interesting example involves data from the Collaborative Study on the
Genetics of Alcoholism (COGA, Begleiter et al. 1995). COGA is a nine-site national
collaboration with the goal of identifying genetic factors that affect susceptibility to
alcohol dependence and characterizing the related phenotypes. The data provided at
the Genetic Analysis Workshop 14 (Bailey-Wilson et al. 2005), represented a total of
1,614 individuals in 143 multi-generation families, with family sizes ranging from 5
to 32. As it is known that alcoholism has a genetic component, the observations from
members of the same family were considered to be dependent. In the application of
our model, we examined the age at onset of alcohol dependence, and set the ages at
interview to be the censoring times for the unaffected individuals. Among the 1,614
individuals in the study, 643 were affected with alcoholism, 626 of whom had known
ages at onset. Thus, the final data set for our analysis consisted of 1,371 individuals
without missing genotype data: 626 who were affected with alcoholism and 745 who
were unaffected. Of the 626 affected individuals, 424 were males; and of the 745 unaf-
fected individuals, 229 were males. Figure 1 depicts the Kaplan–Meier survival curves
for the alcoholism age-at-onset data for each genotype group at SNP rs1972373 on
chromosome 14. We can see that a stable plateau is reached at the tail of each survival
curve, which indicates that a cure rate model would be suitable for the data.

To enhance model flexibility, we consider a general class of cure rate frailty models
that contains the mixture and proportional hazards cure models as two special cases.
This class of models is built through a transformation (Box and Cox 1964) on the
population survival function. The Box-Cox transformation in linear models improves
the normality of the errors, under which the transformed response variable is defined
as Y (α) = (Y α − 1)/α if α �= 0, and log(Y ) if α = 0. In our case, by adding an extra
transformation parameter, the two main formulations of cure rate models are unified
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Fig. 1 Kaplan–Meier estimates of the disease-free probabilities stratified by the genotype of SNP rs1972373
on chromosome 14 for the age at onset of alcohol dependence in the COGA data

together and the resulting model structure allows for a much richer class of cure rate
structures. In the Bayesian paradigm, Yin (2008) investigated a different class of cure
frailty models which involves the proportional odds model as a special case, but not
the popular mixture cure structure.

The rest of this article is organized as follows. In Sect. 2, we introduce the notation
and the class of cure rate frailty models based on the transformed population survival
function. In Sect. 3, we describe the model assumptions, formulate the likelihood func-
tion and derive the asymptotic theories. We present simulation studies to examine the
finite sample properties of the proposed method in Sect. 4, and illustrate the proposed
methodology through the analysis of COGA data in Sect. 5. We conclude with a brief
discussion in Sect. 6.

2 A class of cure rate frailty models

Suppose that there are n independent clusters, and ni subjects within cluster i . For
i = 1, . . . , n, and j = 1, . . . , ni , we observe {Yi j = min(Ti j ,Ci j ),�i j = I (Ti j ≤
Ci j ),Zi j ,Xi j }, where Ti j is the failure time for member j in cluster i,Ci j is the cen-
soring variable, Zi j and Xi j are d1- and d2-dimensional vectors of bounded covariates,
respectively. The first component of Zi j is 1, and Zi j and Xi j may share common com-
ponents. The right-censoring time Ci j is assumed to be conditionally independent of
Ti j given Zi j and Xi j and has a finite hazard rate almost everywhere.

Define

Gα(x) =
{
(1 + αx)1/α if α > 0

ex if α = 0,

and let the Wi s be i.i.d. gamma random variables with mean one and variance η. We
consider a class of cure rate frailty models
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Spop(t |Zi j ,Xi j ,Wi ) = Gα(−θ(Zi j |α,Wi )F(t |Xi j ,Wi )). (4)

When α → 0, model (4) becomes log{Spop(t |Zi j ,Xi j ,Wi )} = −θ(Zi j |0,Wi )

F(t |Xi j ,Wi ), and thus reduces to the proportional hazards cure model; and when
α = 1, it has the mixture modeling structure,

Spop(t |Zi j ,Xi j ,Wi ) = 1 − θ(Zi j |1,Wi )F(t |Xi j ,Wi ),

where F(t |Xi j ,Wi ) = 1 − S(t |Xi j ,Wi ). The corresponding cure rate for subject j in
cluster i is limt→∞ Spop(t |Zi j ,Xi j ,Wi ) = Gα(−θ(Zi j |α,Wi )). Thus, we can model
a broad class of improper survival functions with a variety of cure fractions based on
different values of α. In (4), we need the constraint

0 ≤ αθ(Zi j |α,Wi )F(t |Xi j ,Wi ) ≤ 1

to be satisfied for all i, j and t , which can be further simplified to

0 ≤ αθ(Zi j |α,Wi ) ≤ 1,

since 0 ≤ F(t |Xi j ,Wi ) ≤ 1. Constrained parameter problems often make computa-
tion and analysis much more complicated. It is noteworthy that the improper population
survival function in (4) is defined at the cluster-specific level.

To accommodate various model structures, we propose a general form of the covar-
iates,

θ(Zi j |α,Wi ) = Wi exp(βT Zi j )

1 + αWi exp(βT Zi j )
. (5)

When α = 0, Eq. (5) has the exponential form as in the proportional hazards
cure model, i.e., θ(Zi j |0,Wi ) = Wi exp(βT Zi j ); and when α = 1, it has the logis-
tic structure of the mixture cure model, i.e., θ(Zi j |1,Wi ) = Wi exp(βT Zi j )/{1 +
Wi exp(βT Zi j )}. More importantly, the parameter constraints are automatically satis-
fied with (5), and thus it reduces to an unconstrained parameter problem since

0 ≤ αWi exp(βT Zi j )

1 + αWi exp(βT Zi j )
≤ 1, i = 1, . . . , n; j = 1, . . . , ni .

This covariate structure completely eliminates the burden due to the parameter
constraints, and nicely facilitates the estimation procedure.

Based on the Cox-type shared frailty model, we incorporate the covariates Xi j

through

F(t |Xi j ,Wi ) = 1 − S(t)Wi exp(γ T Xi j ), (6)
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where S(t) = 1 − F(t) is the baseline survival function. Let φ = (β, γ , η, F) and
W = (W1, . . . ,Wn)

T . Then the conditional likelihood function given W is

n∏
i=1

ni∏
j=1

[{
G ′
α(−θ(Zi j |α,Wi )F(Yi j |Xi j ,Wi ))θ(Zi j |α,Wi ) f (Yi j |Xi j ,Wi )

}�i j

×
{
Gα(−θ(Zi j |α,Wi )F(Yi j |Xi j ,Wi ))

}1−�i j
]I (Yi j<∞)[

Gα(−θ(Zi j |α,Wi ))

]I (Yi j =∞)

,

where f (t |Xi j ,Wi ) is the first derivative of F(t |Xi j ,Wi )with respect to t , and G ′
α(x)

is that of Gα(x). We can obtain the observed-data likelihood for φ by integrating out
the frailty in the complete-data likelihood,

n∏
i=1

∫ ∞

0

( ni∏
j=1

[{
G ′
α(−θ(Zi j |α,Wi )F(Yi j |Xi j ,Wi ))θ(Zi j |α,Wi ) f (Yi j |Xi j ,Wi )

}�i j

×
{

Gα(−θ(Zi j |α,Wi )F(Yi j |Xi j ,Wi ))

}1−�i j
]I (Yi j<∞)

×
[

Gα(−θ(Zi j |α,Wi ))

]I (Yi j =∞))
ψ(Wi |η)dWi

where ψ(Wi |η) is a gamma density function with mean 1 and variance η.
In order to estimate the unknown parameters, we need to maximize the observed-

data likelihood. However, this maximum does not exist because one can always choose
f (Yi j ) = ∞ for some Yi j with �i j = 1, where f (t) = F ′(t) is the baseline den-
sity function. Thus, we take a nonparametric maximum likelihood approach, in which
F is allowed to be a right-continuous function. Specifically, we replace f (Yi j ) with
F{Yi j }, the jump size of F(Yi j ) at Yi j , and the jump size of F(t |Xi j ,Wi ) at Yi j is
F{Yi j |Xi j ,Wi }. The resultant nonparametric likelihood function is denoted by Ln(φ).

We maximize the logarithm of Ln(φ), denoted by ln(φ), to obtain the nonparamet-
ric maximum likelihood estimators (NPMLE) of φ, φ̂n ≡ (β̂n, γ̂ n, η̂n, F̂n). It is easy
to show that F̂n must be a step function with jumps only at the observed failure time
points, and that φ̂n depends on the Yi j s only through their ranks. Let Y(1) < · · · < Y(m)
denote the ordered distinct observed failure times. We can show that F̂n must satisfy
the constraint

m∑
k=1

F̂n{Y(k)} = 1,

where F̂n{Y(k)} denotes the jump size of F̂n at Y(k). This constraint presents both
numerical and theoretical challenges in terms of maximizing the nonparametric like-
lihood and deriving the asymptotic properties of the NPMLE. We reparameterize the
unknown parameters and consider the baseline cumulative hazard function �(t) =
− log(1 − F(t)). Therefore, we estimate the jump sizes of �(t), denoted by �{t}, at
t = Y(k), k = 1, . . . ,m − 1. The jump size of �(t) at t = Y(m) is fixed at ∞. Let �̂n
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denote the NPMLE of �, then we can estimate F by F̂n(t) = 1 − exp(−�̂n(t)) for
t < Y(m) and F̂n(t) = 1 for t ≥ Y(m).

Following the argument of Murphy and van der Vaart (2000), we can estimate the
covariance matrix of (β̂n, γ̂ n, η̂n) using the profile likelihood function for (β, γ , η),
which is defined as the maximum likelihood of Ln(φ) for any fixed (β, γ , η). Alter-
natively, we may estimate the asymptotic covariance by simply inverting the observed
information matrix for all the parameters including β, γ , η, and the jump sizes of F̂n

or �̂n . With this approach, we can estimate the asymptotic variance for F̂n as well.
Our simulation studies indicated that both approaches work very well in practical
situations.

3 Asymptotic properties

We first impose the following assumptions:

(C1) Covariates Xi j and Zi j are bounded with probability one. Furthermore, if there
exist constant vectors β and γ such that

βT Zi j = 0 and γ T Xi j = 0,

almost surely, then β = 0 and γ = 0.
(C2) Conditional on Xi j and Zi j , the right-censoring time Ci j is independent of Ti j

and random effect Wi , and P(Ci j = ∞ and Ti j = ∞|Xi j ,Zi j ) > 0.
(C3) The true values of (β, γ , η), denoted by (β0, γ 0, η0), belong to the interior of

a known compact set,

B0 ={(β, γ , η) : |β| ≤ B and |γ | ≤ B for some constant B,

η is bounded away from 0 and ∞}.

(C4) The true baseline cumulative distribution function for the uncured population
F0 is differentiable with f0(t) ≡ F ′

0(t) > 0 for all t ∈ R+.
(C5) The cluster size is completely random. In addition, there exists a positive integer

n0 such that 1 ≤ ni ≤ n0 and P(ni ≥ 2) > 0.

Condition (C1) is equivalent to the linear independence of Xi j and the linear inde-
pendence of Zi j . The condition P(Ci j = ∞ and Ti j = ∞|Xi j ,Zi j ) > 0 in (C2)
ensures that at least some subjects are cured and are not right-censored. If (C2) is not
true, one would need to impose one of the following three assumptions as noted by Li
et al. (2001): (1) regression parameters excluding intercept in β cannot all be zero, (2)
there exists a constant τ such that P(Ci j = τ |Xi j ,Zi j ) = P(Ci j >= τ |Xi j ,Zi j ) > 0
and F(τ ) = 1, (3) F(t) has a parametric form. The first assumption implies that the
model is not identifiable if there are no covariate effects. The second assumption is
essentially the same as (C2) and τ can be treated as ∞. The third assumption does
not apply in our case since F(t) is unspecified in the proposed semiparametric model.
Condition (C5) implies that the cluster size is bounded and some clusters have at least
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two subjects. Conditions (C1), (C2) and (C5) ensure the identifiability of the unknown
parameters φ.

We first show that the maximizers of the nonparametric likelihood function Ln(φ)

exist. For any (β, γ , η, F) in the parameter space, Ln(φ) is bounded by

n∏
i=1

max
Xi j ,Zi j ,(β,γ ,η)∈B0

∫ ∞

0

{ ni∏
j=1

(1 + αWi exp(βT Zi j ))
�i j

}
ψ(Wi |η)dWi < ∞,

where the inequality follows from the boundedness of Xi j and the compactness of B0.
The following statements provide the asymptotic properties of the proposed esti-

mators.

Theorem 1 Under conditions (C1)–(C5), ‖β̂n − β0‖ → 0, ‖γ̂ n − γ 0‖ → 0, |̂ηn −
η0| → 0, and supt∈R+ |F̂n(t)− F0(t)| → 0 almost surely, where ‖ · ‖ is the Euclidean
norm.

Theorem 2 Under conditions (C1)–(C5),
√

n(β̂n − β0, γ̂ n − γ 0, η̂n − η0, F̂n − F0)

converges weakly to a zero-mean Gaussian process in the metric space l∞(H), where

H ={(h1,h2, h3, h4) : h1 ∈ Rd1 ,h2 ∈ Rd2 , h3 ∈ R,

h4(·) is a function on [0,∞); ‖h1‖ ≤ 1, ‖h2‖ ≤ 1, |h3| ≤ 1, ‖h4‖V ≤ 1}

and ‖h4‖V denotes the total variation of h4(·) in [0,∞). Furthermore, (β̂n, γ̂ n, η̂n)

are asymptotically efficient.

Theorem 1 establishes the consistency of the NPMLEs. The basic idea to prove
Theorem 1 is as follows. Suppose that φ̂n converges to φ∗. We construct a dis-
tribution function F̃n converging to F0. Then, because ln(β̂n, γ̂ n, η̂n, F̂n)/n −
ln(β0, γ 0, η0, F̃n)/n ≥ 0, this difference diverges to the negative Kullback–Leibler
divergence between φ∗ and φ0. Next we prove that φ is identifiable and then the iden-
tifiability result gives φ∗ = φ0. Once the consistency of the NPMLEs is established,
the asymptotic distribution of the NPMLEs stated in Theorem 2 can be derived by ver-
ifying the four conditions in Theorem 3.3.1 of van der Vaart and Wellner (1996). The
key steps in the proof are verifying some Donsker classes and proving the invertibility
of the information operator. The proof of Theorems 1 and 2 are given in Appendix.

The inference is based on the selected model with the transformation parameter
fixed. To select the best model or estimate the transformation parameter α, we may
minimize the Akaike information criterion (AIC), which is defined as twice the neg-
ative log-likelihood function plus twice the number of parameters.

4 Simulation studies

We conducted extensive simulation studies to examine the finite-sample performance
of our proposed methodology. In the first set of simulation studies, we investigated the
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properties of the proposed NPMLEs and their variance estimates. We generated data
from model (4), where Zi j1 = 1, Zi j2 was a Bernoulli random variable with a success
probability of 0.5, Xi j1 was a standard normal random variable, and Xi j2 = Zi j2.
The true parameter values of β1, β2, γ1 and γ2 were set to be 0.5, −0.5, 0.5 and 0.5,
respectively. The gamma random variable Wi had mean 1 and variance η = 1. The
baseline survival function was from an exponential distribution with mean 1, i.e.,
S(t) = exp(−t). We considered four different models by varying the values of α from
0 to 1. The median lifetime for uncured subjects ranged from 0.24 to 0.54 and the
average cure rate ranged from 0.37 to 0.50 as α changed from 0 to 1. The censoring
time was generated from a uniform distribution on (0, 20) and then censoring times
greater than 15 were treated as ∞. Subjects who were not cured had an approximately
10% chance of being right-censored. We considered different combinations of sam-
ple sizes and cluster sizes. For each simulation set-up, we generated 1,000 data sets.
As there was no closed form for the observed-data likelihood, we used the Gauss–La-
guerre quadrature to numerically approximate the likelihood function. Our experience
indicated that a Gauss–Laguerre quadrature with 40 abscissae would provide a very
accurate approximation. We maximized the observed-data likelihood by directly using
the quasi-Newton algorithm in Press et al. (1992).

In Tables 1 and 2, we summarize the estimation results for each value of α: “SE” is
the sampling standard error of the parameter estimator, “SEE” the average of the esti-
mated standard errors based on the asymptotic normal approximation, and “CP(%)”
is the coverage probability of the 95% confidence interval. The biases of the proposed
estimators appear to be negligible. The estimate of the standard error reflects accu-
rately the true variation, and for moderate sample sizes and cluster sizes the confidence
intervals have proper coverage probabilities. As the sample size becomes larger (either
by increasing the number of clusters or the cluster size), the variances of the parameter
estimates decrease, and the coverage probabilities improve. The asymptotic variances
of the NPMLEs were obtained by inverting the observed information matrix. We also
applied the profile likelihood approach, and obtained similar results for (β, γ , η).
For the nonparametric estimation of F(t), we evaluated its estimates at t = 0.5 and
t = 1.0. The biases of F̂n(t) are very small, and the standard error estimates are quite
close to the sampling standard errors. The coverage probability of the 95% confidence
interval is slightly low for small sample sizes; however, it improves substantially as
the sample size increases.

The simulation results in Tables 1 and 2 were obtained by fixing the transforma-
tion parameter α at the true value. In practice, we may choose the transformation that
minimizes the AIC. In our situation, the numbers of unknown parameters are the same
for different transformation models. Therefore, minimizing the AIC is equivalent to
maximizing the log-likelihood function. Figure 2 depicts the average of the profile
log-likelihood functions over 1,000 replicates of 100 clusters with size four for differ-
ent transformations. As expected, the transformation that maximizes the average of
the profile log-likelihood functions is close to the true transformation.

In a hypothesis testing framework, we evaluated the effect on the inference of the
regression parameter if the within-cluster correlation is ignored. In particular, we were
interested in testing the hypotheses H0 : β2 = 0 and H0 : γ2 = 0, respectively. We
considered the proportional hazards cure model, and set other parameter values to be
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Fig. 2 Average of the profile log-likelihood functions over 1,000 replicates with n = 100 and ni = 4, for
different transformations

the same as in the previous simulation studies. For making inference on β2, we set
γ2 = 0.6 and varied β2 from 0 to 0.3; for making inference on γ2, we set β2 = 0.3
and varied γ2 from 0 to 0.6. For each set-up, we generated 1,000 data sets, each
with 100 independent clusters of size four. Figure 3 depicts the type I error rates and
powers of the Wald tests of β2 and γ2 at the nominal significance levels of 0.05 and
0.01, respectively. The proposed test has an accurate control of the type I error rate
and has substantially more power than the naive method ignoring the within-cluster
correlations.

Finally, we conducted simulation studies to evaluate the performance of the pro-
posed approach when the frailty distribution was misspecified. Specifically, we used
the same simulation setting as above except that the frailty was generated from a log-
normal distribution with mean 1 and variance 1. Simulation results are summarized
in Table 3. Although the variance parameter η is underestimated, the estimation and
inference of regression parameters are relatively robust to the misspecified frailty dis-
tribution. For regression parameters, the proposed estimators appear to be unbiased;
the estimated standard errors agree well with the sampling standard errors; and the cov-
erage probabilities are accurate. We observed similar patterns as in Fig. 3 for the test
size/power comparison. The proposed test still controls the type I error rate accurately
and is substantially more powerful than its counterpart ignoring correlations.
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Fig. 3 Type I error rate and power of the Wald test of H0 : β2 = 0 and H0 : γ2 = 0, respectively

Table 3 Sensitivity analysis under a misspecified frailty distribution

Parameters Bias SE SEE CP(%)

β1 0.026 0.130 0.120 92.2

β2 0.001 0.090 0.085 94.9

γ1 0.001 0.107 0.106 95.3

γ2 0.009 0.180 0.181 95.1

η 0.378 0.129 0.134 24.9

5 COGA data

As an illustration, we applied the proposed methods to the COGA data. We considered
a subject as “cured” or insusceptible to alcoholism if the subject was censored at 62
years of age or beyond. In the data set, 107 individuals had a censoring time longer than
or equal to 62 years. Using a semiparametric transformation model with random effects
for right-censored data, Diao and Lin (2006) found a significant association between
genotype at SNP rs1972373 on chromosome 14 and the age at onset of alcoholism. In
our analysis, we fit the proposed model and included the subject’s sex, the between-
family genotype score and the within-family genotype score at SNP rs1972373 as
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Fig. 4 Akaike information criterion versus transformation parameter α for the COGA data

Table 4 NPMLEs under the mixture cure frailty model for the COGA data

Parameters Estimate SE Est/SE p value

βintercept −0.719 0.092 −7.815 <0.001

βsex 1.906 0.101 18.871 <0.001

βBscore 0.266 0.096 2.771 0.006

βWscore 0.574 0.111 5.171 <0.001

γsex 0.271 0.090 3.011 0.026

γBscore 0.150 0.079 −1.899 0.058

γWscore 0.185 0.092 2.011 0.044

η 0.100 0.036 2.778 0.003

covariates, i.e., Zi j = (1,XT
i j )

T , and Xi j = (Sexi j ,Bscorei j ,Wscorei j )
T . The sex

of the subject was coded as 1 for male and 0 for female, and the genotype score was
coded as 0, 1, and 2 for 1/1, 1/2, and 2/2, respectively. We used the between-family
genotype score to account for spurious association introduced by population admix-
ture (Abecasis et al. 2000). We compared different models within the proposed general
transformation class, including the proportional hazards cure model and the mixture
cure model. According to the AIC (see Fig. 4), we selected the mixture cure model,
the results of which are reported in Table 4. We can see that the sex of the subject
significantly affected both the cure fraction and survival probability for the uncured
subjects. Particularly, female subjects were more likely to be “cured,” that is not to
have alcoholism. We also found significant associations between the SNP genotype
and the cure fraction and the survival probability for uncured individuals. The sub-
population with genotype 2/2 appeared to be at a higher risk of developing alcoholism
and to have a lower cure fraction. These results agree very well with the empirical
observations in the Kaplan–Meier curves.

123



A general transformation class 975

6 Discussion

We have considered a class of cure rate frailty models by imposing the Box-Cox
transformation on the population survival function. Even though a nonlinear parame-
ter constraint arises from this model formulation, our general covariate form removes
the constraint completely. This class of transformation models makes the cure rate
modeling scheme much more flexible and general than other methods. It nicely links
the two main formulations of cure rate models, i.e., the mixture and the proportional
hazards cure models. This family of cure rate frailty models has great potential in
modeling multivariate survival data with a cure fraction. In contrast to the marginal
models by Peng et al. (2007) and Yu and Peng (2008) that yield population-average
estimates, our frailty model takes a subject-specific approach.

In this paper, we have considered the shared frailty model, i.e., all subjects from the
same cluster are assumed to share a common frailty. As one referee pointed out,
the shared frailty model is ideal when the cluster sizes are large and subjects within
the same cluster are exchangeable. As family members are usually not exchangeable
in the COGA data, it would be more desirable to use correlated frailty models. For
example, Locatelli et al. (2007) studied genetic and environmental factors in suscep-
tibility to breast cancer in a correlated frailty-mixture model. More specifically, we
may accommodate family structures through

λ(t |Xi j , Ri j ) = λ(t) exp(γ T Xi j + Ri j ),

and

θ(Zi j |α, Ri j ) = exp(βT Zi j + Ri j )

1 + α exp(βT Zi j + Ri j )
,

where Ri ≡ (Ri1, . . ., Rini )
T is a vector of normal random variables with mean val-

ues of 0 and variance–covariance matrix �i . To take into consideration of the family
structure, we can let �i = ηVi , where Vi is the kinship coefficient matrix for the
i th family. The kinship coefficient between two individuals is the probability that
two genes sampled at random from each individual are identical and is often used in
genetic literature to measure the relatedness between individuals. Such modeling is
commonly used in the association analysis of quantitative traits in genetic family stud-
ies and can accommodate arbitrary family structures (Abecasis et al. 2000). For not too
large family sizes, we can use the Gaussian–Hermite quadrature to approximate the
marginal likelihood function. However, the Gaussian quadrature approximation may
be computationally intensive with large families as the computation burden increases
exponentially as the family size increases. Alternatively, one may consider less accu-
rate approaches such as the Laplace approximation or the Monte Carlo method. Future
research along this direction is warranted.

We have assumed gamma frailty in the proposed cure rate models, as gamma
frailty is commonly used in the analysis of clustered time-to-event data. Unlike in
the Cox model with gamma frailty, there is no closed form for the marginal likelihood
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under the cure rate gamma frailty model because of the involvement of the cure frac-
tion. However, the gamma frailty model can be easily generalized to different frailty
distributions, including the log-normal distribution or positive stable distribution. It
would be worthwhile to consider a variety of frailty distributions and examine them
empirically (Glidden 2007).

We have developed free-downloading computer software for the new methods,
which computes the NPMLE very fast, and can also handle large clusters. For the
COGA data with 1,371 observations and the largest family size of 32, it took less
than 1 min to obtain the NPMLE on a Dell PowerEdge 2900 server. With cluster sizes
ranging from 3 to 4, and n = 100, in the simulation studies, the computation took less
than 1 s.

The proposed class of models is fundamentally different from that of Zeng et al.
(2006). The latter does not include the mixture cure model, which, however, is one
of the most commonly used cure models in the literature. In addition, their method
requires independent observations and thus is not appropriate for the COGA family
genetic data. We used reparameterization of the constrained parameter F(t), whereas
Zeng et al. (2006) applied the Lagrange multiplier method. Our approach greatly
facilitates the theoretical development of the asymptotic properties of the NPMLE.

Our numerical experience indicates that with a small sample size, the likelihood
function under the proposed model tends to be quite flat for the transformation param-
eter α. Moreover, the computation may not be stable if we simultaneously estimate
all the unknown parameters including α. Instead, we suggest to use the grid search
technique to choose the transformation parameter according to the AIC. The proposed
inference procedure is based on model selection after fitting each model with the trans-
formation parameter fixed. It would be desirable to account for the additional variation
that is introduced by the data-based selection of α. Future investigation is warranted
along this direction.

7 Appendix

7.1 Proof of Theorem 1

We first prove that under conditions (C1)–(C5), the parameters φ = (β, γ , η, F)
are identifiable. Suppose that two sets of parameters φ and φ∗ give the same likeli-
hood function for the observed data, then we claim that φ = φ∗. Let θ∗(Zi j |α,Wi ),

F∗(Yi j |Xi j ,Wi ), and f ∗(Yi j |Xi j ,Wi ) have the same expressions as θ(Zi j |α,Wi ),

F(Yi j |Xi j ,Wi ), and f (Yi j |Xi j ,Wi ), respectively, but with φ replaced by φ∗. Since∫ ∞

0

( ni∏
j=1

[{
G ′
α(−θ(Zi j |α,Wi )F(Yi j |Xi j ,Wi ))θ(Zi j |α,Wi ) f (Yi j |Xi j ,Wi )

}�i j

×
{

Gα(−θ(Zi j |α,Wi )F(Yi j |Xi j ,Wi ))

}1−�i j
]I (Yi j<∞)

×
[

Gα(−θ(Zi j |α,Wi ))

]I (Yi j =∞))
ψ(Wi |η)dWi
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=
∫ ∞

0

( ni∏
j=1

[{
G ′
α(−θ∗(Zi j |α,Wi )F

∗(Yi j |Xi j ,Wi ))θ
∗(Zi j |α,Wi ) f ∗(Yi j |Xi j ,Wi )

}�i j

×
{

Gα(−θ∗(Zi j |α,Wi )F
∗(Yi j |Xi j ,Wi ))

}1−�i j
]I (Yi j<∞)

×
[

Gα(−θ∗(Zi j |α,Wi ))

]I (Yi j =∞))
ψ(Wi |η∗)dWi (7)

for an integer k such that 1 ≤ k ≤ ni , according to condition (C2) we let Yi j = ∞
for j = 1, . . . , k; for those j > k, we perform the following action on the j th term
on both sides of (7). If �i j = 0, then we replace Yi j with ∞; if �i j = 1, then we
integrate Yi j from 0 to ∞. Then we obtain

∫ ∞

0

{ k∏
j=1

Gα(−θ(Zi j |α,Wi ))

}{ ni∏
j=k+1

(Gα(−θ(Zi j |α,Wi )))
1−�i j

×(1 − Gα(−θ(Zi j |α,Wi )))
�i j

}
ψ(Wi |η)dWi

=
∫ ∞

0

{ k∏
j=1

Gα(−θ∗(Zi j |α,Wi ))

}{ ni∏
j=k+1

(Gα(−θ∗(Zi j |α,Wi )))
1−�i j

×(1 − Gα(−θ∗(Zi j |α,Wi )))
�i j

}
ψ(Wi |η∗)dWi .

We sum the above equalities over all possible {�i j : j = k + 1, . . . , ni }. Thus, it
holds that ∫ ∞

0

{ k∏
j=1

Gα(−θ(Zi j |α,Wi ))

}
ψ(Wi |η)dWi

=
∫ ∞

0

{ k∏
j=1

Gα(−θ∗(Zi j |α,Wi ))

}
ψ(Wi |η∗)dWi .

When α = 0, we obtain

(
1

1 + ηe
∑k

j=1 βT Zi j

)1/η

=
(

1

1 + η∗e
∑k

j=1 β∗T Zi j

)1/η∗

(8)

When α > 0, we obtain

∫ ∞

0

{ k∏
j=1

(1 + αWi e
βT Zi j )−1/α

}
ψ(Wi |η)dWi =

∫ ∞

0

{ k∏
j=1

(1 + αWi e
β∗T Zi j )−1/α

}
ψ(Wi |η∗)dWi

Note that the left-hand side of (8) is a strictly monotone function of
∑k

j=1 βT Zi j .

Therefore there exists a unique function q(·) such that
∑k

j=1 βT Zi j =q(
∑k

j=1 β∗T Zi j
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978 G. Diao, G. Yin

|η, η∗). Since (8) holds for arbitrary 1 ≤ k ≤ ni and arbitrary Zi j , j = 1, . . . , k, q
must satisfy q(x + y) = q(x) + q(y) for arbitrary x, y ∈ R. Therefore q takes the
form q(x) = cx , where c is a constant. It can be show that (8) cannot hold for all
possible values of βT Zi j if c �= 1. It follows that βT Zi j = β∗T Zi j . By condition
(C1), we prove that β = β∗. Immediately, we can obtain η = η∗. We can prove this
result in a similar way when α > 0.

Next, we let �i j = 1,Yi j = 0 for j ≤ k, and perform the same action as shown
previously for j > k to obtain

∫ ∞

0

{ k∏
j=1

θ(Zi j |α,Wi )Wi e
γ T Xi j f (0)

}
ψ(Wi |η)dWi

=
∫ ∞

0

{ k∏
j=1

θ∗(Zi j |α,Wi )Wi e
γ ∗T Xi j f ∗(0)

}
ψ(Wi |η∗)dWi . (9)

The index set {1, . . . , k} in (9) can be replaced by any subset of {1, . . . , ni }. Further-
more, by assumption (C4), f (0) > 0. Thus, it is easy to derive from (9) that γ = γ ∗
and f (0) = f ∗(0).

To show that F = F∗, we let �i j = 1 in (7) and integrate Yi j from 0 to y; we
perform the same action as shown previously for j > k to obtain

∫ ∞

0

{ ni∏
j=1

(1 − Gα(−θ(Zi j |α,Wi )F(y|Xi j ,Wi )))

}
ψ(Wi |η)dWi

=
∫ ∞

0

{ ni∏
j=1

(1 − Gα(−θ∗(Zi j |α,Wi )F
∗(y|Xi j ,Wi )))

}
ψ(Wi |η∗)dWi .

As both sides of the foregoing equation are strictly monotone in F(y) and F∗(y),
we have F(y) = F∗(y) for any y.

We next prove that F̂n(t) is bounded in [0, 1] with probability 1. By differentiating
ln(φ) with respect to�{Yi j } for Yi j < Y(m) and setting the derivative to 0, we see that
�̂n satisfies the following equation:

�i j

�{Yi j } =
n∑

k=1

∫ ∞

0
R1k(β̂n, γ̂ n, F,Wk)R2k(Yi j , β̂n, γ̂ n, F,Wk)ψ(Wk |̂ηn)dWk

×
{∫ ∞

0
R1k(β̂n, γ̂ n, F,Wk)ψ(Wk |̂ηn)dWk

}−1

where

R1k(β, γ , F,Wk)

=
nk∏

l=1

[{
G ′
α(−θ(Zkl |α,Wk)F(Ykl |Xkl ,Wk))θ(Zkl |α,Wk) f (Ykl |Xkl ,Wk)

}�kl
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A general transformation class 979

×
{

Gα(−θ(Zkl |α,Wk)F(Ykl |Xkl ,Wk))

}1−�kl
]I (Ykl<∞)

×
[

Gα(−θ(Zkl |α,Wk))

]I (Yi j =∞)

,

and

R2k(t,β, γ , F,Wk)

=
nk∑

l=1

Wkeγ T Xkl I (t ≤ Ykl < ∞)

[
�kl + θ(Zkl |α,Wk)e

−Wk eγ T Xkl�(Ykl )

×
{
�kl

G ′′
α(−θ(Zkl |α,Wk)F(Ykl |Xkl ,Wk))

G ′
α(−θ(Zkl |α,Wk)F(Ykl |Xkl ,Wk))

+(1 −�kl)
G ′
α(−θ(Zkl |α,Wk)F(Ykl |Xkl ,Wk))

Gα(−θ(Zkl |α,Wk)F(Ykl |Xkl ,Wk))

}]

=
nk∑

l=1

Wkeγ T Xkl I (t ≤ Ykl < ∞)

×�kl(1 − αθ(Zkl |α,Wk))+ θ(Zkl |α,Wk)(1 − F(Ykl |Xkl ,Wk))

1 − αθ(Zkl |α,Wk)F(Ykl |Xkl ,Wk)
.

It is easy to show that �̂n{Y(l)} > 0 for l < m and α ≥ 0. Therefore, F̂n(Y(l)) =
1 − exp(−�̂n(Y(l))) is bounded with probability one. Thus, by choosing a subse-
quence, still indexed by {n}, we assume that F̂n converges pointwise to a cumulative
distribution function F∗ in [0,∞). Because β̂n, γ̂ n, η̂n belong to a compact set, by
choosing a further subsequence, we can assume that β̂ → β∗, γ̂ → γ ∗, η̂ → η∗.

Next, we show that β∗ =β0, γ
∗ =γ 0, η

∗ =η0, and F∗(t)= F0(t). To do so, we con-
struct another function �̃n which only has jumps at Yi j such that�i j =1 and satisfies

�i j

�̃n{Yi j } =
n∑

k=1

∫ ∞

0
R1k(β0, γ 0, F0,Wk)R2k(Yi j , γ 0,β0, F0,Wk)ψ(Wk |η0)dWk

×
{∫ ∞

0
R1k(β0, γ 0, F0,Wk)ψ(Wk |η0)dWk

}−1

,

for Yi j < Y(m). Then we define �̃n(t) = ∑n
i=1

∑ni
j=1 I (Yi j ≤ t)�̃n{Yi j } and

F̃n(t) = 1 − exp(−�̃n(t)) for t < Y(m) and F̃n(t) = 1 for t ≥ Y(m).
We show that F̃n(t) converges to F0(t) uniformly in t ∈ [0,∞) with probability 1.

To this end, we wish to show that the following two classes

C1 =
{∫ ∞

0
R1k(β, γ , F,Wk)ψ(Wk |η)dWk :

(β, γ , η) ∈ B0, F is a cumulative distribution function in [0,∞)

}
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980 G. Diao, G. Yin

and

C2 =
{∫ ∞

0
R1k(β, γ , F,Wk)R2k(y,β, γ , F,Wk)ψ(Wk |η)dWk :

(β, γ , η) ∈ B0, F is a cumulative distribution function in [0,∞), y ∈[0,∞)

}

are P-Donsker. For any (β1, γ 1, η1) and (β2, γ 2, η2) ∈ B0 and any cumulative distri-
bution functions F1 and F2 in [0,∞), we have

|R1k(β1, γ 1, F1,Wk)− R1k(β2, γ 2, F2,Wk)|

≤ O(1)

{
‖β1 − β2‖ + ‖γ 1 − γ 2‖ +

nk∑
l=1

|F1(Ykl)− F2(Ykl)|
}
(B01 + W nk

k )

and

|ψ(Wk |η1)− ψ(Wk |η2)| ≤ O(1)W B02−1
k e

− Wk
B03 |η1 − η2|,

where B0p, p = 1, 2, 3, are positive constants. It follows that

∣∣∣∣
∫ ∞

0
R1k(β1, γ 1, F1,Wk)ψ(Wk |η1)dWk −

∫ ∞

0
R1k(β2, γ 2, F2,Wk)ψ(Wk |η2)dWk

∣∣∣∣
≤ O(1)

{
‖β1 − β2‖ + ‖γ 1 − γ 2‖ + |η1 − η2| +

nk∑
l=1

|F1(Ykl)− F2(Ykl)|
}
.

Since the following class

B0 × {F : F is a cumulative distribution function in [0,∞)}

is a Donsker class, we conclude that C1 is P-Donsker. Note that I (y ≤ Ykl < ∞)

is P-Donsker. By the same argument for C1, we can show that C2 is also P-Donsker.
It is easy to verify that C1 and C2 are bounded from below and above. Thus, {log g :
g ∈ C1}, {log g : g ∈ C2}, and {g2/g1 : g1 ∈ C1, g2 ∈ C2} are all P-Donsker.
Since a P-Donsker class is also a Glivenko–Cantelli class, by the Glivenko–Cantelli
theorem (van der Vaart and Wellner 1996, p. 122), �̃n(t) converges almost surely to
E{∑ni

j=1 I (Yi j ≤ t)�i j/μ(Yi j )}, where

μ(y) = E

[∫ ∞

0
R1k(β0, γ 0, F0,Wk)R2k(y, γ 0,β0, F0,Wk)ψ(Wk |η0)dWk

×
{∫ ∞

0
R1k(β0, γ 0, F0,Wk)ψ(Wk |η0)dWk

}−1]
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A general transformation class 981

= E

[ nk∑
l=1

Wkeγ T
0 Xkl E

{
I (y ≤ Ykl < ∞)

×�kl(1 − αθ0(Zkl |α,Wk))+ θ0(Zkl |α,Wk)(1 − F0(Ykl |Xkl ,Wk))

1 − αθ0(Zkl |α,Wk)F0(Ykl |Xkl ,Wk)

∣∣∣∣nk

}]
,

and θ0(Zkl |α,Wk) and F0(Ykl |Xkl ,Wk) are evaluated at φ0.
Denoting by SC (·|Xkl ,Zkl) the survival function of Ckl given (Xkl ,Zkl), we have

E

{
I (y ≤ Ykl < ∞)

�kl (1−αθ0(Zkl |α,Wk))+θ0(Zkl |α,Wk)(1 − F0(Ykl |Xkl ,Wk))

1−αθ0(Zkl |α,Wk)F0(Ykl |Xkl ,Wk)

∣∣∣∣nk

}

= E

{∫ ∞
y

1 − αθ0(Zkl |α,Wk)+ θ0(Zkl |α,Wk)(1 − F0(t |Xkl ,Wk))

1 − αθ0(Zkl |α,Wk)F0(t |Xkl ,Wk)

×G′
α(−θ0(Zkl |α,Wk)F0(t |Xkl ,Wk))θ0(Zkl |α,Wk) f0(t |Xkl ,Wk)SC (t |Xkl ,Zkl )dt

∣∣∣∣nk

}

−E

{∫ ∞
y

θ0(Zkl |α,Wk)(1 − F0(t |Xkl ,Wk))

1 − αθ0(Zkl |α,Wk)F0(t |Xkl ,Wk)

×Gα(−θ0(Zkl |α,Wk)F0(t |Xkl ,Wk))d SC (t |Xkl ,Zkl )

∣∣∣∣nk

}

= E

{
θ0(Zkl |α,Wk)(1 − F0(y|Xkl ,Wk))

1 − αθ0(Zkl |α,Wk)F0(y|Xkl ,Wk)

×Gα(−θ0(Zkl |α,Wk)F0(y|Xkl ,Wk))SC (y|Xkl ,Zkl )

∣∣∣∣nk

}
,

where f0(t |Xkl ,Wk) is the first derivative of F0(t |Xkl ,Wk) with respect to t and the second
equality follows from integration by part. Thus,

E

⎧⎨
⎩

ni∑
j=1

I (Yi j ≤ t)�i j

μ(Yi j )

⎫⎬
⎭

= E

[ ni∑
j=1

E

{∫ t

0

SC (y|Xi j ,Zi j )

μ(y)
G′
α(−θ0(Zi j |α,Wi )F0(Yi j |Xi j ,Wi ))

×θ0(Zi j |α,Wi )Wi eγ T
0 Xi j (1 − F0(Yi j |Xi j ,Wi ))d�0(y)

∣∣∣∣ni

}]

=
∫ t

0
d�0(y) = �0(t).

Consequently, F̃n(t) uniformly converges to F0(t), t ∈ [0,∞).
As the observed log-likelihood function at (β̂n, γ̂ n, η̂n, F̂n) is larger or equal to the

observed log-likelihood function at (β0, γ 0, η0, F̃n), we have

1

n
ln(β̂n, γ̂ n, η̂n, F̂n) ≥ 1

n
ln(β0, γ 0, η0, F̃n).

By taking limits on both sides, we obtain−K ((β∗, γ ∗, η∗, F∗), (β0, γ 0, η0, F0)) ≥
0, where K (·, ·) denotes the Kullback–Leibler information of (β∗, γ ∗, η∗, F∗) with
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982 G. Diao, G. Yin

respect to the true parameters. Therefore, the following equality∫ ∞

0
R1k(β0, γ 0, F0,Wi )ψ(Wk |η0)dWk =

∫ ∞

0
R1k(β

∗, γ ∗, F∗,Wi )ψ(Wk |η∗)dWk,

holds almost surely. According to the identifiability of the model, we obtain β∗ =
β0, γ

∗ = γ 0, η
∗ = η0, and F∗ = F0. Because every subsequence of n contains a fur-

ther subsequence for (β̂n, γ̂ n, η̂n, F̂n)which converges uniformly to (β0, γ 0, η0, F0),
we have the convergence of the entire sequence. Hence, with probability one, β̂n →
β0, γ̂ n → γ 0, η̂n → η0 and F̂n(t) → F0(t) for every t ∈ [0,∞). Particularly, we
have sup

t∈[0,∞)

|F̂n(t)− F0(t)| → 0 due to the continuity of F0. �

7.2 Proof of Theorem 2

We first define a neighborhood of φ0, denoted by U , as

U ={(β, γ , η, F) : ‖β−β0‖ + ‖γ − γ 0‖ + |η − η0| + sup
t∈[0,∞)

|F(t)− F0(t)| < ε0}

for a very small constant ε0. Based on the consistency theorem, φ̂n belongs to U with
probability close to 1 when the sample size n is large enough. We define a sequence
of maps Un mapping U into l∞(H) as

Un(φ)[h1,h2, h3, h4]
≡ n−1 d

dε
ln

(
β + εh1, γ + εh2, η + εh3, F(t)+ ε

∫ t

0
QF [h4](s)d F(s)

)∣∣∣∣
ε=0

≡ An1[h1] + An2[h2] + An3[h3] + An4[h4],

where QF [h4](t) = h4(t)−
∫ ∞

0 h4(s)d F(s), and Anp, p = 1, . . . , 4 are linear func-
tionals on Rd1 , Rd2 , R, and BV [0,∞), which is the space of functions with finite total
variation in [0,∞). Let lβ(φ), lγ (φ), lη(φ), and lF (φ)[

∫
QF [h4]d F] denote the score

functions for β, γ , η, and the score for F along the path F(t)+ε ∫ t
0 QF [h4](s)d F(s),

respectively, for a single cluster. Then

Un(φ)[h1, h2, h3, h4]=Pn

{
hT

1 lβ(φ)+hT
2 lγ (φ)+h3lη(φ)+lF (φ)

[∫
QF [h4]d F

]}
,

where Pn denotes the empirical measure based on n independent clusters. Define

Qi j (β, γ , F,Wi ) = I (Yi j = ∞)
G ′
α(−θ(Zi j |α,Wi ))

Gα(−θ(Zi j |α,Wi ))

+I (Yi j < ∞)

{
�i j

G ′′
α(−θ(Zi j |α,Wi )F(Yi j |Xi j ,Wi ))

G ′
α(−θ(Zi j |α,Wi )F(Yi j |Xi j ,Wi ))

+(1 −�i j )
G ′
α(−θ(Zi j |α,Wi )F(Yi j |Xi j ,Wi ))

Gα(−θ(Zi j |α,Wi )F(Yi j |Xi j ,Wi ))

}
.

123
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The explicit expression of the functionals Anp, p = 1, . . . , 4 are given as follows

An1[h1] = n−1
n∑

i=1

{∫ ∞

0
R1i (β, γ , F,Wi )Rβi (β, γ , F,Wi )[h1]ψ(Wi |η)dWi

}

×
{∫ ∞

0
R1i (β, γ , F,Wi )ψ(Wi |η)dWi

}−1

,

An2[h2] = n−1
n∑

i=1

{∫ ∞

0
R1i (β, γ , F,Wi )Rγ i (β, γ , F,Wi )[h2]ψ(Wi |η)dWi

}

×
{∫ ∞

0
R1i (β, γ , F,Wi )ψ(Wi |η)dWi

}−1

,

An3[h3] = n−1
n∑

i=1

{∫ ∞

0
R1i (β, γ , F,Wi )Rηi (η,Wi )h3ψ(Wi |η)dWi

}

×
{∫ ∞

0
R1i (β, γ , F,Wi )ψ(Wi |η)dWi

}−1

,

and

An4[h4] = n−1
n∑

i=1

{∫ ∞

0
R1i (β, γ , F,Wi )RFi (β, γ , F,Wi )

×
[∫

QF [h4]d F

]
ψ(Wi |η)dWi

}

×
{∫ ∞

0
R1i (β, γ , F,Wi )ψ(Wi |η)dWi

}−1

,

where

Rβi (β, γ , F,Wi )[h1] =
ni∑

j=1

ZT
i j h1(1 − αθ(Zi j |α,Wi ))

×
{

I (Yi j < ∞)�i j − Qi j (β, γ , F,Wi )θ(Zi j |α,Wi )F(Yi j |Xi j ,Wi )

}
,

Rγ i (β, γ , F,Wi )[h2] =
ni∑

j=1

XT
i j h2 I (Yi j < ∞)

{
�i j (1 + log(1 − F(Yi j |Xi j ,Wi )))

+Qi j (β, γ , F,Wi )θ(Zi j |α,Wi )(1 − F(Yi j |Xi j ,Wi ))

× log(1 − F(Yi j |Xi j ,Wi ))

}
,
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984 G. Diao, G. Yin

RFi (β, γ , F,Wi )

[∫
QF [h4]d F

]

=
ni∑

j=1

{
−Qi j (β, γ , F,Wi )θ(Zi j |α,Wi )Wi e

γ T Xi j S(Yi j )
Wi eγ T Xi j −1

+I (Yi j < ∞)�i j (Wi e
γ T Xi j − 1)

}

×
∫ Yi j

0
QF [h4](y)d F(y)+ I (Yi j < ∞)�i j QF [h4](Yi j ),

and Rηi (η,Wi ) is the first derivative of logψ(Wi |η) with respect to η. Correspond-
ingly, we define the limit map U : U → l∞(H) as

U (φ)[h1,h2, h3, h4]
≡ A1[h1] + A2[h2] + A3[h3] + A4[h4]

≡ P
{

hT
1 lβ(φ)+ hT

2 lγ (φ)+ h3lη(φ)+ lF

[∫
QF [h4]d F

]}
,

where P denotes the expectation of the empirical measure. It is easy to see that
Un(φ̂n) = 0 and U (φ0) = 0.

We shall prove the theorem by verifying the following four properties stated in
Theorem 3.3.1 of van der Vaart and Wellner (1996):

(P1)
√

n(Un − U )(φ̂n)− √
n(Un − U )(φ0) = op(1 + √

n‖β̂n − β0‖ + √
n‖γ̂ n −

γ 0‖ + √
n |̂ηn − η0| + supy∈[0,∞)|F̂n(y)− F0(y)|).

(P2)
√

n(Un − U )(φ0) converges to a tight random element ξ .
(P3) U (φ) is Fréchet-differentiable at φ0.
(P4) The derivative of U (φ) at φ0, denoted by U ′(φ0), is continuously invertible.

To verify property (P1), we first note that based on the explicit expressions of
lβ , lγ , lη, and lF , we have

∣∣∣∣
{

hT
1 lβ(φ1)+ hT

2 lγ (φ1)+ h3lη(φ1)+ lF (φ1)

[∫
QF1[h4]d F1

]}

−
{

hT
1 lβ(φ2)+ hT

2 lγ (φ2)+ h3lη(φ2)+ lF (φ2)

[∫
QF2 [h4]d F2

]}∣∣∣∣
≤ O(1)

{
‖β1 − β2‖ − ‖γ 1 − γ 2‖ + |η1 − η2|

+
ni∑

j=1

|F1(Yi j )− F2(Yi j )| +
∫ ∞

0
|F1(t)− F2(t)|dt

}
,
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for any pair φ1 and φ2 ∈ U . Therefore

sup
(h1,h2,h3,h4)∈H

E

[{
hT

1 lβ(φ)+ hT
2 lγ (φ)+ h3lη(φ)+ lF (φ)

[∫
QF [h4]d F

]

−hT
1 lβ(φ0)− hT

2 lγ (φ0)− h3lη(φ0)− lF (φ0)

[∫
QF0 [h4]d F0

]}2]

converges to zero if ‖β−β0‖+‖γ −γ 0‖+|η−η0|+supy∈[0,∞) |F(y)− F0(y)| → 0.
In addition, by the same arguments as in the consistency proof, the class of functions

{
hT

1 lβ(φ)+ hT
2 lγ (φ)+ h3lη(φ)+ lF (φ)

[∫
QF [h4]d F

]

−hT
1 lβ(φ0)− hT

2 lγ (φ0)− h3lη(φ0)− lF (φ0)

[∫
QF0 [h4]d F0

]
:

(h1,h2, h3, h4) ∈ H,φ ∈ U
}

is P-Donsker. Therefore, according to Lemma 3.3.5 of van der Vaart and Wellner
(1996), property (P1) holds.

Property (P2) holds again because of the P-Donsker property of the class

{
hT

1 lβ(φ0)+hT
2 lγ (φ0)+h3lη(φ0)+lF (φ0)

[∫
QF0 [h4]d F0

]
: (h1,h2, h3, h4)∈H

}
.

Furthermore, the limit random element ξ is a Gaussian process indexed by (h1,h2,

h3, h4) ∈ H and the covariance between ξ (h11,h21, h31, h41) and ξ(h12,h22, h32, h42)

is equal to

E

[{
hT

11lβ(φ0)+ hT
21lγ (φ0)+ h31lη(φ0)+ lF (φ0)

[∫
QF0 [h41]d F0

]}

×
{

hT
12lβ(φ0)+ hT

22lγ (φ0)+ h32lη(φ0)+ lF (φ0)

[∫
QF0 [h42]d F0

]}]
.

The Fréchet differentiability can be directly verified using the smoothness of U (φ).
It remains to show that the derivative of U is continuously invertible at φ0. For

convenience, we abbreviate U ′(φ0) as U ′. We note that U ′ is a map from the set
U ′ ≡ {(β − β0, γ − γ 0, η − η0, F − F0) : (β, γ , η, F) ∈ U} to l∞(H). With
straightforward calculations, we obtain

U ′(β − β0, γ − γ 0, η − η0, F − F0)[h1,h2, h3, h4]
= (β − β0)

T Q1(h1,h2, h3, h4)+ (γ − γ 0)
T Q2(h1,h2, h3, h4)

+(η − η0)Q3(h1,h2, h3, h4)+
∫ ∞

0
Q4(h1,h2, h3, h4)d(F − F0),
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where

Q1(h1,h2, h3, h4) = E{lββ(φ0)}h1 + E{lβγ (φ0)}h2 + E{lβη(φ0)}h3

+E

{
lβF (φ0)

[∫
QF0 [h4]d F0

]}
,

Q2(h1,h2, h3, h4) = E{lγβ(φ0)}h1 + E{lγ γ (φ0)}h2 + E{lγ η(φ0)}h3

+E

{
lγ F (φ0)

[∫
QF0 [h4]d F0

]}
,

Q3(h1,h2, h3, h4) = E{lηβ(φ0)}h1 + E{lηγ (φ0)}h2 + E{lηη(φ0)}h3

+E

{
lηF (φ0)

[∫
QF0 [h4]d F0

]}
,

and

Q4(h1,h2, h3, h4) = E{lFβ(φ0)[F − F0]}h1 + E{lFγ (φ0)[F − F0]}h2

+E{lFη(φ0)[F − F0]}h3 + E

{
lF F (φ0)

[∫
QF0 [h4]d F0, F − F0

]}
,

where lββ(φ), lβγ (φ), lβη(φ), and lβF (φ)[
∫

QF [h4]d F] denote the first derivatives
of lβ(φ) with respect to β, γ , η, and F along the path F + ε

∫
QF [h4]d F , respec-

tively; lγβ(φ), lγ γ (φ), lγ η(φ), and lγ F (φ)[
∫

QF [h4]d F] denote the first derivatives
of lγ (φ)with respect to β, γ , η, and F along the path F +ε ∫

QF [h4]d F , respectively;
lηβ(φ), lηγ (φ), lηη(φ), and lηF (φ)[

∫
QF [h4]d F] denote the first derivatives of lη(φ)

with respect to β, γ , η, and F along the path F + ε
∫

QF [h4]d F , respectively; and
lFβ(φ)[F − F0], lFγ (φ)[F − F0], lFη(φ)[F − F0], and lF F (φ)[

∫
QF [h4]d F, F − F0]

denote the first derivatives of lF (φ)[F − F0] with respect to β, γ , η, and F along the
path F + ε

∫
QF [h4]d F , respectively.

If we treat (β − β0, γ − γ 0, η − η0, F − F0) as an element in l∞(H) by defining
its value at (h1,h2, h3, h4) as

(β − β0)
T h1 + (γ − γ 0)

T h2 + (η − η0)h3 +
∫

QF0 [h4]d(F − F0),

then the operator Q ≡ (Q1,Q2,Q3,Q4) can be considered as a sum of a continu-
ously invertible linear operator and a compact operator from l∞(H) to l∞(H). Thus
it suffices to prove that Q is a one-to-one map (Rudin 1973, pp. 99–103); that is, there
exists some (h1,h2, h3, h4) ∈ H such that Q(h1,h2, h3, h4) = 0, and then we need
to show that h1 = 0,h2 = 0, h3 = 0, and QF0 [h4] = 0. If so, then

U ′(β − β0, γ − γ 0, η − η0, F − F0)[h1,h2, h3, h4] = 0

for any φ ∈ U . In particular, we choose

β = β0 + εh1, γ = γ 0 + εh2, η = η0 + εh3, F(y) = F0(y)

+ ε
∫ y

0
QF0 [h4](s)d F0(s)
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for a small constant ε. By the definition of U ′, we obtain

E

[{
hT

1 lβ(φ0)+ hT
2 lγ (φ0)+ h3lη(φ0)+ lF (φ0)

[∫
QF0 [h4]d F0

]}2]
= 0.

Thus hT
1 lβ(φ0)+hT

2 lγ (φ0)+h3lη(φ0)+lF (φ0)[
∫

QF0 [h4]d F0] = 0 almost surely.
Equivalently, the following equation holds

∫ ∞

0
R1i (β0, γ 0, F0,Wi )

{
Rβi (β0, γ 0, F0,Wi )[h1] + Rγ i (β0, γ 0, F0,Wi )[h2]

+Rηi (η0,Wi )h3 + RFi (β0, γ 0, F0,Wi )

[∫
QF0 [h4]d F0

]}
ψ(Wi |η)dWi = 0.

(10)

We will show that this equation yields that h1 = 0,h2 = 0, h3 = 0, and QF0 [h4] =
0. We follow the ideas of proving the identifiability in the proof of consistency. Spe-
cifically, we let Yi j = ∞ for j = 1, . . . , k, for any integer k such that 1 ≤ k ≤ ni ; for
those j > k, we perform the following action on the j th term on the left-hand side of
(10). If �i j = 0, then we replace Yi j with ∞; if �i j = 1, then we integrate Yi j from
0 to ∞. Then we sum the resulting quantity over all possible�i j : j = k + 1, . . . , ni

and we can obtain h1 = 0 and h3 = 0. Next, we let�i j = 1 and Yi j = 0 for j ≤ k and
perform the same action for j > k to obtain h2 = 0. Finally, we let�i j = 1 for j ≤ k
and integrate Yi j from 0 to y; and we perform the same action described previously for
j > k to obtain QF0 [h4] = 0. Therefore, we have shown the invertibility of U ′(φ0).

By Theorem 3.3.1 of van der Vaart and Wellner (1996), we conclude that
√

n(β̂n −
β0, γ̂ n − γ 0, η̂n − η0, F̂n − F0) converges weakly to −U ′ξ . Specifically, for any
(h1,h2, h3, h4) ∈ H, we have

√
n

{
(β̂n − β0)

T h1 + (γ̂ n − γ 0)
T h2 + (̂ηn − η0)h3 +

∫ ∞

0
QF0 [h4]d(F̂n − F0)

}

= −√
n

{
lβ(φ0)

T h̃1 + lγ (φ0)
T h̃2 + lη(φ0)̃h3 + lF (φ0)[QF0 [̃h4]]

}
+ op(1), (11)

where (̃h1, h̃2, h̃3, h̃4) = (Q1,Q2,Q3,Q4)
−1(h1,h2, h3, h4). By choosing h4 = 0

in (11), we conclude that β̂
T
n h1, γ̂

T
n h2, and η̂h3 are asymptotic linear estimators of

βT
0 h1, γ

T
0 h2, and η0h3, respectively, and the corresponding influence functions are

on the linear space spanned by the score functions. This implies that β̂n, γ̂ n , and η̂n

are semiparametrically efficient by the semiparametric efficiency theory (Bickel et al.
1993, Ch. 3). �
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