
Ann Inst Stat Math (2012) 64:1161–1186
DOI 10.1007/s10463-012-0353-1

Resampling-based information criteria for best-subset
regression

Philip T. Reiss · Lei Huang ·
Joseph E. Cavanaugh · Amy Krain Roy

Received: 5 July 2010 / Revised: 16 August 2011 / Published online: 20 March 2012
© The Institute of Statistical Mathematics, Tokyo 2012

Abstract When a linear model is chosen by searching for the best subset among
a set of candidate predictors, a fixed penalty such as that imposed by the Akaike
information criterion may penalize model complexity inadequately, leading to biased
model selection. We study resampling-based information criteria that aim to overcome
this problem through improved estimation of the effective model dimension. The first
proposed approach builds upon previous work on bootstrap-based model selection.
We then propose a more novel approach based on cross-validation. Simulations and
analyses of a functional neuroimaging data set illustrate the strong performance of our
resampling-based methods, which are implemented in a new R package.
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1162 P. T. Reiss et al.

1 Introduction

A popular strategy for model selection is to choose the candidate model minimizing
an estimate of the expected value of some loss function for a hypothetical future set
of outcomes. That estimate may take the form of the value of the loss function for
the given data plus a penalty or correction term. The latter term compensates for the
fact that the loss function will tend to have a lower value for the data from which the
model fit was obtained than for a different data set to which the same fitted model is
applied. In other words, the correction represents the “overoptimism” (Efron 1983;
Pan and Le 2001) inherent in using the observed loss as an estimate of the expected
loss in a future data set. This general template can lead to ostensibly very different
model selection criteria, such as the Akaike (1973, 1974) information criterion (AIC),
Mallows’ (1973) C p statistic, and more recent “covariance penalty” methods (Efron
2004).

In this paper we are concerned with the problem of subset selection for linear models
(Miller 2002), which can be stated as follows. Suppose we are given an n-dimensional
outcome vector y, and an n × P matrix X full, where the first column of X full consists
of 1s, and the remaining columns correspond to P − 1 ≥ 1 candidate predictors. Let
A = {{1} ∪ Ã : Ã ⊂ {2, . . . , P}}. Any A ∈ A defines a model matrix X = X A of
those columns X full indexed by the elements of A, and thereby defines a model

y = Xβ + ε, (1)

where ε is an n-dimensional vector of mean-zero errors. (The definition of A implies
that we consider only models that include an intercept.) Our goal is to choose A ∈ A for
which the estimated expected loss for a future data set is lowest. Following Akaike, we
use −2 times the log likelihood as the loss function, which favors a model whose pre-
dictive distribution is closest to the true distribution in the sense of Kullback–Leibler
information (Konishi and Kitagawa 2008). The Akaike paradigm is built upon a solid
foundation, thanks to its connection with likelihood theory and information theory. In
part for this reason, AIC remains the best-known and most widely used criterion for
model selection.

Our contribution addresses a problem that is often overlooked in practice: the fact
that, when selecting one among many possible models, the overoptimism is inflated.
For example, AIC adds the penalty 2p to −2 times the log likelihood, where p = |A|.
Selecting the AIC-minimizing model is best suited to settings in which there is only
one candidate model of each size p. But when searching among all size-p subsets for
each p, the overoptimism associated with selecting the best size-p subset is greater
than 2p. “Adaptive” model selection procedures, in the sense of Tibshirani and Knight
(1999), increase the overoptimism penalty to account for searching among a number
of possible models of each size (cf. Shen and Ye 2002, who define adaptive model
selection somewhat differently).

We develop an approach to adaptive model selection that is particularly relevant to
applications with a moderate number of candidate predictors, i.e., P/n less than 1 but
not necessarily near zero. Whereas AIC is based on an asymptotic approximation that
assumes p � n, the corrected AIC (AICc) (Sugiura 1978; Hurvich and Tsai 1989)
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Resampling-based information criteria for best-subset regression 1163

Fig. 1 The eight brain regions studied by Stein et al. (2007), who identified the 10 indicated connections
(pairs of regions joined by edges) as potential predictors of psychological outcomes. Black dots indicate
regions that lie on the mid-sagittal plane shown, while grey dots indicate left-hemisphere regions that have
been projected onto this plane for illustration. AMY amygdala, INS insula, OFC orbitofrontal cortex, PCC
posterior cingulate cortex, PFC prefrontal cortex, PHG parahippocampal gyrusm, SUB subgenual cingulate,
SUP supragenual cingulate

applies an exact penalty term that is not proportional to p. This penalty term (see (7)
below) indicates that as p grows while n remains fixed, the rate of growth in overopti-
mism increases; in other words, complexity is more costly for small-to-moderate than
for large samples, so that complexity penalization should depend on both p and n.

This important case of moderate predictor dimension has not been fully addressed
in previous work on adaptive linear model selection. Since in this case it is problematic
to view the overoptimism as proportional to p, adaptive model selection methods that
seek to replace the AIC penalty 2p with λp for some λ > 2 (e.g., Foster and George
1994; Ye 1998; Shen and Ye 2002) may be less than ideal. Our proposed methods more
closely resemble the covariance inflation criterion of Tibshirani and Knight (1999),
which uses permuted versions of the data to estimate the overoptimism. While this esti-
mate works well when the true model is null, these authors acknowledge (p. 543) that
it is biased when the true model is non-null. Instead of data permutation, the adaptive
methods that we describe rely on two alternative resampling approaches, bootstrapping
and cross-validation, to produce overoptimism estimates that are appropriate whether
or not the true model is the null model.

This work was motivated by research relating psychological outcomes to functional
connectivity (FC), the temporal correlation of activity levels in different brain regions
of interest. In a study of eight left-hemisphere regions, Stein et al. (2007) identified
10 between-region connections (i.e., pairs of regions; see Fig. 1) whose FC, assessed
using functional magnetic resonance imaging (fMRI), may be related to psychological
measures. We were interested in exploring FC for these 10 connections as predictors
of two such measures: the Rosenberg (1965) self-esteem score, and the General Dis-
tress: Depressive Symptoms (GDD) subscale of the Mood and Anxiety Symptom
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Questionnaire (MASQ) (Watson et al. 1995). Given the paucity of scientific theory to
guide model building, it is natural to turn to automatic model selection criteria to find
the best subset of the 10 candidate predictors.

Section 2 introduces information criteria for linear model selection, and explains
in more detail the need for adaptive approaches. Section 3 describes the bootstrap-
based “extended information criterion” of Ishiguro et al. (1997), and its extension to
adaptive linear model selection. Section 4 proposes an alternative adaptive criterion,
based on cross-validatory estimation of the overoptimism, which may overcome some
of the limitations of the bootstrap method. Simulations in Sect. 5 demonstrate that
our adaptive methods perform well compared with previous approaches. Section 6
presents analyses of our functional connectivity data set, and Sect. 7 offers concluding
remarks.

2 Information criteria for linear models

2.1 AIC and corrected AIC

In what follows, we shall refer to model (1) with X = X A as model A. The notation X
for the design matrix, and β̂, σ̂ 2 for the parameter estimates, will refer to an a priori
model A with |A| = p, fitted to the n observations. We shall add subscripts to X, β̂, σ̂ 2

(i) to denote a model selected as the best model of a particular dimension, as opposed
to a priori, and/or (ii) to refer to resampled data sets and the associated model fits.

Imagine a future realization of the data with the same matrix of predictors X =
(x1, . . . , xn)T as in (1), but a new outcome vector y+ that is independent of y, condi-
tionally on X . A good model will give rise to maximum likelihood estimates (MLEs)
β̂, σ̂ 2 such that the expected −2 times log likelihood for the fitted model at the future
data ( y+, X), i.e.,

E
[
−2l(β̂, σ̂ 2| y+, X)

]
, (2)

will be as small as possible; here the expectation is with respect to the joint likelihood
of ( y, y+) conditional on X . Information criteria estimate the expected loss (2) by

− 2l(β̂, σ̂ 2| y, X) + Ĉ, (3)

where Ĉ is an estimate of the overoptimism

C ≡ E
[
−2l(β̂, σ̂ 2| y+, X)

]
− E

[
−2l(β̂, σ̂ 2| y, X)

]
. (4)

The idea of (3) is that −2l(β̂, σ̂ 2| y, X) has a downward bias as an estimate of (2),
since ( y, X) is the original data set for which the likelihood was maximized to obtain
(β̂, σ̂ 2). C is this bias, and the penalty term Ĉ in (3) is an estimate of it.

If model (1) holds with ε ∼ N (0, σ 2 I), then −2l(β̂, σ̂ 2| y, X) = n log σ̂ 2 + n, so
that
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Resampling-based information criteria for best-subset regression 1165

C = E
[
(n log σ̂ 2 + ‖ y+ − Xβ̂‖2/σ̂ 2) − (n log σ̂ 2 + n)

]

= E(‖ y+ − Xβ̂‖2/σ̂ 2) − n, (5)

and the generic information criterion (3) reduces to

n log σ̂ 2 + n + Ĉ . (6)

Sugiura (1978) and Hurvich and Tsai (1989) derive the exact value

C = CAICc (p) ≡ n(2p + 2)

n − p − 2
(7)

(see also the succinct treatment of Davison 2003, pp. 402–403). Substituting this value
for Ĉ in (6) gives the AICc

n log σ̂ 2 + n(n + p)

n − p − 2
. (8)

If p � n, (7) is approximately 2(p +1) or equivalently 2p, the ordinary AIC penalty.
The fact that formula (8) assumes that (1) is a correct model, i.e. either the true

data-generating model or a larger model, is sometimes seen as a limitation of choosing
among candidate models by minimizing AICc. In practice, though, model selection by
minimal AICc has proved effective, since it weeds out both overfitted models (which
are heavily penalized) and underfitted models (which have low likelihood). However,
this procedure is less than ideal when choosing among all possible subsets, as we
explain next.

2.2 Selection bias in best-subset regression

For p ∈ {1, . . . , P}, let M(p) denote the set in A of size p such that model M(p)

attains the highest maximized likelihood of any A ∈ A with |A| = p. A naïve
approach to subset selection would choose the AICc-minimizing subset M(pAICc )

where pAICc minimizes n log σ̂ 2
M(p) + n(n+p)

n−p−2 over p ∈ {1, . . . , P}. Note, however,

that this criterion equals min|A|=p(n log σ̂ 2
A) + n(n+p)

n−p−2 , which is smaller on average
than (8) for a fixed a priori size-p model, and hence is a downward-biased estimate
of (2). Equivalently, whereas the overoptimism (5) is equal to CAICc (p) = n(2p+2)

n−p−2
for a fixed size-p model, it is larger when considering the best size-p model. We shall
denote this larger value by Cad(p). The difference CAICc (p)− Cad(p) can be thought
of as the “selection bias” associated with using (7) to estimate the overoptimism of
the selected model of size p.

Of course, this selection bias would have no impact on model selection if it did
not depend on p. But it does: in particular, it equals zero for p ∈ {1, P}, since there
are only one size-1 (null) model and one size-P (full) model, but it is negative for
1 < p < P , so that AICc minimization will be tilted against the null model. This
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situation is somewhat akin to multiple hypothesis testing (cf. George and Foster 2000):
with many candidate predictors, even if the null model is true, there will be an unac-
ceptably high probability of choosing a non-null model, unless some sort of correction
is applied. An appropriate correction is to use an information criterion (6) in which,
instead of CAICc (p), we take Ĉ to be an estimate of Cad(p). This is the strategy pursued
by the resampling-based information criteria described in the next two sections.

3 The extended (bootstrap) information criterion

3.1 The fixed-model case

Ishiguro et al. (1997) propose a nonparametric bootstrap approach to estimating C in a
much more general setting than model (1). (See also Konishi and Kitagawa (1996), and
the bootstrap model selection criterion of Shao (1996), which is based on prediction
error loss rather than likelihood.) Suppose we sample n pairs (yi , xi ) from the data,
with replacement, B times, and denote the bth bootstrap data set thus generated by
( y∗

b, X∗
b) and the associated MLEs by β̂

∗
b, σ̂

∗2
b . Ishiguro et al.’s extended information

criterion (EIC) uses

Ĉboot = 1

B

B∑
b=1

[
−2l(β̂

∗
b, σ̂

∗2
b | y, X) + 2l(β̂

∗
b, σ̂

∗2
b | y∗

b, X∗
b)

]
(9)

as an estimate of the overoptimism (4). Intuitively, bootstrapping creates simulated rep-
licates of the data-generating process in which the empirical distribution of ( y∗

b, X∗
b)

replaces that of ( y, X), whereas the empirical distribution of ( y, X) replaces the pop-
ulation distribution; these correspondences motivate using (9) to estimate (4). In the
linear model setting this reduces to estimating E(‖ y+ − Xβ̂‖2/σ̂ 2), the first term of
(5), by 1

B

∑B
b=1 ‖ y − Xβ̂

∗
b‖2/σ̂ ∗2

b , so that (9) and (6) yield

Ĉboot = 1

B

B∑
b=1

‖ y − Xβ̂
∗
b‖2

σ̂ ∗2
b

− n, (10)

EIC = n log σ̂ 2 + 1

B

B∑
b=1

‖ y − Xβ̂
∗
b‖2

σ̂ ∗2
b

. (11)

3.2 The best-subset case

To correct for the “selection bias” problem described in Sect. 2.2, one can modify (11)
to define an information criterion associated with selection of the best subset of size
p. Whereas the bootstrap overoptimism estimate (10) is appropriate for a fixed model,
a natural extension to the best-subset case is to estimate Cad(p) by
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Ĉad,boot(p) = 1

B

B∑
b=1

‖ y − X M∗
b (p)β̂

∗
b;M∗

b (p)‖2

σ̂ ∗2
b;M∗

b (p)

− n, (12)

where M∗
b (p) is the best subset of size p for the bth resampled data set, and β̂b;M∗

b (p)

and σ̂ ∗2
b;M∗

b (p)
are the MLEs from the corresponding model for that data set. Substituting

into the generic criterion (6) gives an adaptive EIC

EICad(p) = n log σ̂ 2
M(p) + 1

B

B∑
b=1

‖ y − X M∗
b (p)β̂

∗
b;M∗

b (p)‖2

σ̂ ∗2
b;M∗

b (p)

, (13)

which is to be minimized with respect to p.
To understand the motivation for (12), (13), recall that in bootstrap estimation of

the overoptimism, each bootstrap data set takes the place of the original data, while
the original data stands in for the new data set. Estimate (12) substitutes the bootstrap
data for the original data both for selection of the best size-p model M∗

b (p) and for the

resulting parameter estimates β̂
∗
b;M∗

b (p), σ̂
∗2
b;M∗

b (p)
, in order to capture, and compensate

for, the overoptimism arising from the entire procedure of choosing the best size-p
subset. See Appendix A.1 for an alternative definition of best-subset EIC.

Criterion (13) is defined only for the best size-p model for each p. To be able to
assign a score to model A for any set A ∈ A, we extend the definition by applying
penalty (12) not only to the best p-term model but to every such model, and thus obtain

EICad(A) = n log σ̂ 2
A + 1

B

B∑
b=1

‖ y − X M∗
b (|A|)β̂

∗
b;M∗

b (|A|)‖2

σ̂ ∗2
b;M∗

b (|A|)
. (14)

The best size-p model M∗
b (p) for each bootstrap data set can be computed efficiently

using the branch-and-bound algorithm implemented in the package leaps (Lumley
2009) for R (R Development Core Team 2010). This algorithm would be difficult to
integrate with parametric bootstrap samples; hence our preference for nonparametric
bootstrapping.

3.3 Small-sample performance of EIC

Returning to the fixed-model setting of Sect. 3.1, we undertook to study the perfor-
mance of the bootstrap overoptimism estimate Ĉboot (10) when the true expected loss
(2) is known: namely, when model (1) is correct and the errors are independent and
identically distributed (IID) normal. As noted above, we then have C = n(2p+2)

n−p−2 . We

were thus able to compare the penalty Ĉboot to this “gold standard” in 300 Monte Carlo
simulations for each of the values of n and p displayed in Table 1 (see Appendix B
for details of the simulation procedure). For fixed n, E(Ĉboot) − C is seen to increase
with p, so that EIC will be biased toward smaller models.
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Table 1 Median (and range from 5th to 95th percentile) of E(Ĉboot) − C in 300 simulations

n p

5 10 15 20 25
50 0.8 (−4.2 to 6.8) 5.1 (−6.1 to 23) 29 (−3 to 88.5) 110.6 (17.4 to 411) 609.8 (123.3 to 5801.7)

100 0.3 (−3 to 3.9) 1 (−4.6 to 11.1) 5.4 (−5.8 to 19) 12.8 (−3.2 to 35.8) 23.4 (−0.4 to 65.8)

150 −0.1 (−2.3 to 2.5) 0.8 (−3.9 to 6.2) 2.2 (−5.8 to 11) 5.4 (−5.3 to 17.7) 10.6 (−4.6 to 28.7)

The positive bias of Ĉboot can be better understood by rewriting Ĉboot as

1

B

B∑
b=1

∑n
i=1(1 − rb

i )(yi − xT
i β̂

∗
b)

2

σ̂ ∗2
b

= 1

B

B∑
b=1

⎡
⎢⎣

∑

i :rb
i =0

(yi − xT
i β̂

∗
b)

2

σ̂ ∗2
b

−
∑

i :rb
i >1

(rb
i − 1)(yi − xT

i β̂
∗
b)

2

σ̂ ∗2
b

⎤
⎥⎦ , (15)

where rb
i is the number of occurrences of the i th observation (xi , yi ) in the bth boot-

strap sample. The first term within the brackets is the sum of scaled squared errors for
those observations not included in the bth bootstrap sample; the second is a weighted
sum of scaled squared errors for observations which are included multiple times, and
which therefore have high influence on the estimate β̂

∗
b. Consequently, the summands

in this second term will tend to be atypically small, making (15) a positively biased
estimate of the overoptimism. The key point for our purposes is that this bias increases
with p, especially when n is small (in agreement with the “EIC1” results of Konishi
and Kitagawa (2008), p. 209), so that EIC will tend to underfit in the fixed-model
case. The simulation results in Sect. 5 suggest that the same is true of EICad in the
best-subset case.

4 A cross-validation information criterion

4.1 Motivation and initial definition

We have seen that EIC seeks to gauge the extent to which the original-data likelihood
overestimates the expected likelihood for an independent data set, using bootstrap
samples as surrogates for the original data, and the full data as a surrogate for an
independent data set. But clearly the full-data outcomes are not independent of the
bootstrap-sample outcomes, and the argument at the end of the previous section sug-
gests that this lack of independence is what makes EIC biased in small samples. This
led us to consider an alternative: using cross-validation (CV) to estimate the overop-
timism. We remark that the bootstrap .632 and .632+ estimators of prediction error
(Efron 1983; Efron and Tibshirani 1997; cf. Efron 2004), which seek to improve
upon CV, use bootstrap samples in a similar spirit to CV—essentially, the data points
excluded from bootstrap samples are used to correct for overoptimism. However, this

123



Resampling-based information criteria for best-subset regression 1169

work is concerned with a different class of loss functions and with prediction error
for a fixed model, and it is not clear how to adapt the .632 and .632+ estimators to our
context of selecting among all possible subsets.

Let y =
⎛
⎜⎝

y1
...

yK

⎞
⎟⎠ and X =

⎛
⎜⎝

X1
...

X K

⎞
⎟⎠ where, for k = 1, . . . , K , yk ∈ Rnv and Xk

has nv rows, with nv = n/K . Let ( y−k, X−k) denote the kth “training set”, i.e. the
nt = n − nv observations not included in ( yk, Xk) (the kth “validation set”), and
let β̂−k, σ̂

2−k be the MLEs obtained by fitting model (1) to ( y−k, X−k). We can then
define a CV-based analogue of the overoptimism:

C∗ = E

(
K∑

k=1

‖ yk − Xk β̂−k‖2

σ̂ 2−k

)
− n (16)

(where the expectation is with respect to the joint distribution of ( y, X)), along with
its natural unbiased estimate Ĉ∗

CV = ∑K
k=1 ‖ yk − Xk β̂−k‖2/σ̂ 2−k − n, a CV-based

analogue of the EIC overoptimism estimate (10). Two remarks are in order:

1. C∗ is approximately equal to

E(‖ y+ − X+β̂‖2/σ̂ 2) − n, (17)

where ( y+, X+) is an independent set of n observations drawn from the same joint
distribution, and the expectation is with respect to the distribution of ( y, X, y+,

X+). But (16) is slightly larger than (17) because the estimates β̂−k, σ̂
2−k are

based on nt < n observations, inflating the mean prediction error.
2. (17) is similar to the overoptimism C (5), but the definition of C assumes the

original predictor matrix X is fixed and we draw an independent set of outcomes
y+ from the same conditional (on X) distribution as y.

In order to apply C∗ to selecting the model dimension, we will need to express it
as C∗(p), an explicit function of p, analogous to the overoptimism formula CAICc (p)

of (7). Since C∗ depends on the distribution of X as well as that of y, our deriva-
tion of C∗(p) (see below, Sect. 4.2) will rely on assumptions regarding the predictor
distribution.

Similarly to (12), we can define adaptive extensions of Ĉ∗
CV and C∗ for M(p), the

best model of dimension p:

Ĉ∗
ad,CV(p) =

K∑
k=1

‖ yk − Xk;M−k (p)β̂−k;M−k (p)‖2

σ̂ 2
−k;M−k (p)

− n, C∗
ad(p) = E[Ĉ∗

ad,CV(p)],

where M−k(p) is the best size-p model for the kth training set; β̂−k;M−k (p), σ̂
2
−k;M−k (p)

are the associated MLEs for this training set; and Xk;M−k (p) comprises the correspond-
ing columns of Xk .
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The function C∗(p), given explicitly in (23), is strictly increasing on its domain
and hence invertible, so we have CAICc (p) = CAICc ◦ C∗−1 ◦ C∗(p). This suggests
the following plug-in estimator of the overoptimism of M(p):

Ĉad,CV(p) = CAICc ◦ C∗−1 ◦ Ĉ∗
ad,CV(p)

= CAICc (dfp) = n(2dfp + 2)

n − dfp − 2
(18)

where

dfp = C∗−1[Ĉ∗
ad,CV(p)]. (19)

One can think of dfp as the effective degrees of freedom, or effective model dimension,
of M(p). As we show in Appendix C, generally speaking dfp ≥ p.

The overoptimism estimate (18) leads to

CVIC(p) = n log σ̂ 2
M(p) + n + Ĉad,CV(p) = n log σ̂ 2

M(p) + n(n + dfp)

n − dfp − 2
(20)

as our model selection criterion. Note that CVIC(p) can be viewed as AICc for model
M(p), but with p replaced by dfp in the penalty. Like (13), this criterion is defined
only for the best model of each size; but it can be extended to all candidate models,
analogously to (14).

4.2 Derivation of C∗(p)

To evaluate (18) and hence (20), we must derive the aforementioned function C∗(p).
We begin by writing

H = (hi j )1≤i, j≤n ≡ X(XT X)−1 XT =
⎛
⎜⎝

H11 . . . H1K
...

. . .
...

H K 1 . . . H K K

⎞
⎟⎠ ,

where each of the above blocks is nv × nv . We can then state the following result,
which gives the expectation of Ĉ∗

CV, conditional on the K “folds” that make up X .
Theorems 1 and 2 are proved in Appendix D.

Theorem 1 Suppose model (1) holds where X is an n× p matrix and ε ∼ N (0, σ 2 In).
Assume that nt > p + 2 and that Inv − Hkk is invertible for each k. Then

E

(
K∑

k=1

‖ yk − Xk β̂−k‖2

σ̂ 2−k

∣∣∣∣∣ X1, . . . , X K

)
= nt

nt − p − 2

K∑
k=1

tr[(Inv − Hkk)
−1].

(21)

To derive C∗(p), i.e. an expression for E(Ĉ∗
CV) that depends only on the model

dimension p but not on X , we require distributional assumptions on the rows of X .
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Resampling-based information criteria for best-subset regression 1171

Theorem 2 Let X = (1 | X̃) where x̃1, . . . , x̃n, the rows of X̃ , are IID (p−1)-variate
normal. Under the assumptions of Theorem 1, if X−k has rank p for each k, then

E

(
K∑

k=1

‖ yk − Xk β̂−k‖2

σ̂ 2−k

)
= n(nt + 1)(nt − 2)

(nt − p − 2)2 . (22)

By (16) and (22), we may take

C∗(p) = n

[
(nt + 1)(nt − 2)

(nt − p − 2)2 − 1

]
, (23)

provided that the predictor vectors are IID multivariate normal. In practice this con-
dition may not hold; but Appendix E offers evidence that (23) is a reasonable approx-
imation in most realistic settings. We therefore adopt (23) as our formula for C∗(p)

in what follows.

4.3 Refining the criterion by constrained monotone smoothing

Three obvious limitations of CVIC (20) are:

1. It is based on an overoptimism estimate Ĉad,CV(p) that is stochastic, unlike the
fixed penalty CAICc (p).

2. For p = 2, . . . , P − 1, we may be willing to accept the stochastic estimate
Ĉad,CV(p), since no closed-form expression for Cad(p) exists. But as noted in
Sect. 2.2, for p = 1, P , there is only one candidate model of size p, so Cad(p)

reduces to CAICc (p) = n(2p+2)
n−p−2 . In effect, for p = 1, P, dfp is just a noisy version

of p, and CVIC is just a noisy version of AICc—and hence inferior to simply
using AICc.

3. Whereas Cad is an increasing function of p, Ĉad,CV need not be. This may cause
CVIC to favor overfitting in some cases.

We can mitigate the first of these problems, and eliminate the other two, by means
of the constrained penalized spline algorithm implemented in the R package mgcv
(Wood 2006). This algorithm allows us to compute a smooth function d̃f(p), approx-
imating dfp at p = 1, . . . , P , such that (i) d̃f(1) = 1 and d̃f(P) = P , and (ii) d̃f is
constrained to be monotonically increasing, by the method of Wood (1994). (Figure 8
displays the raw dfp plotted against the smoothed d̃f(p) for a real data example.) We
can then replace the raw CVIC (20) with the monotonic variant

CVICmon(p) = n log σ̂ 2
M(p) + n[n + d̃f(p)]

n − d̃f(p) − 2
.

4.4 Summary of the proposed adaptive methods

We provide here a brief summary of the resampling-based information criteria con-
sidered above. Section 3 introduced the EIC of Ishiguro et al. (1997), based on using
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bootstrap samples to estimate the overoptimism (5), and proposed the adaptive exten-
sion EICad. In Sect. 3.3 we showed that the bootstrap tends to overpenalize larger
models in small samples, and this motivated an alternative, cross-validatory approach
to adaptive linear model selection. Section 4.1 defined the CVIC in terms of a quan-
tity C∗(p) which we derived in Sect. 4.2. In Sect. 4.3, we sought to overcome some
of CVIC’s limitations by applying constrained monotone smoothing to the effective
degrees of freedom, resulting in the new criterion CVICmon.

A somewhat unappealing feature of the CVIC overoptimism estimate (18) is that it
estimates Cad(p) indirectly, by applying CAICc ◦C∗−1 to Ĉ∗

ad,CV(p), in contrast to the

direct bootstrap estimate Ĉad,boot(p) (12). On the other hand, whereas Ĉad,boot(p) is an
adaptive extension of Ĉboot(p), which we have shown to be a biased overoptimism esti-
mator, Ĉ∗

ad,CV(p) is an adaptive extension of the unbiased estimator Ĉ∗
CV = Ĉ∗

CV(p)

of C∗(p)—offering some hope that the resulting model selection criterion CVIC will
outperform the bootstrap criterion EICad. Appendix A.2 discusses two alternative
CV-based approaches to subset selection.

5 Simulation study

5.1 Setup

We conducted a simulation study to compare the performance of minimization of (1)
AIC; (2) AICc; (3) BIC; (4) CIC; (5) EICad; (6) CVIC; and (7) CVICmon. Four sets of
300 simulations were performed. Each set began by choosing a 50×20 predictor matrix
X = (x1 . . . x50)

T whose rows were independently generated from a multivariate nor-
mal distribution with mean zero and 20 × 20 covariance matrix having ( j, k) entry
0.7| j−k|. (Note that here, as in the simulation study of Tibshirani and Knight (1999), X
does not include a column of 1s, since the true intercept is 0.) Then, for each individ-
ual simulation, outcomes y1, . . . , y50 were generated from the model yi = xT

i β + εi ,
where ε1, . . . , ε50 are independent normal variates with mean 0 and variance σ 2 = 1.
In the first set of simulations the true coefficient vector β ∈ R20 was set to zero. For
the remaining simulations, there were two sets of nonzero coefficients centered around
the 5th and 15th predictors. These were set initially to β5+ j = β15+ j = √

h − | j | for
| j | < h, where h was 1, 2, 3 in the second, third, and fourth sets of simulations, result-
ing in 2, 6, and 10 nonzero coefficients. We then multiplied β by a constant chosen so
that the final β would satisfy R2 ≡ βT XT Xβ/(nσ 2 +βT XT Xβ) = 0.75.This quan-
tity is the “theoretical R2” used by Tibshirani and Knight (1999), i.e., the regression
sum of squares divided by the expected total sum of squares for the true model; note
that the more general expression given by Luo et al. (2006) would be required if the
true model had a nonzero intercept. For CIC and EICad, resampling was performed
40 times per simulation; for the two CVIC variants, leave-one-out CV was used.

5.2 Comparative performance

Figures 2, 3, 4 and 5 display the true coefficients for each set of simulations, along
with the proportion of simulations in which each coefficient was included in the model
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Fig. 2 This figure and the three figures that follow show detection rates and false alarm rates for four true
models with 20 candidate predictors. The top left subfigure shows the true coefficients, which are all zero
in this case, while the other subfigures display the relative frequency of inclusion of each predictor, in 300
simulations, based on the seven methods listed in the text
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Fig. 3 Detection and false alarm rates for the true coefficient vector shown at top left, i.e., two equal
positive coefficients and all other coefficients equal to zero. Grey bars indicate detection rates for truly
nonzero coefficients, and white bars give false alarm rates for zero coefficients

123



1174 P. T. Reiss et al.

True coefficients
0.

0
0.

2
0.

4
AIC

0.
0

0.
5

1.
0

AICc

0.
0

0.
5

1.
0 BIC

0.
0

0.
5

1.
0

CIC

0.
0

0.
5

1.
0 EICad

0.
0

0.
5

1.
0

CVIC

0.
0

0.
5

1.
0 CVICmon

0.
0

0.
5

1.
0

Fig. 4 Detection and false alarm rates for the true coefficient vector shown at top left (six nonzero coeffi-
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True coefficients

0.
0

0.
2

0.
4 AIC

0.
0

0.
5

1.
0

AICc

0.
0

0.
5

1.
0 BIC

0.
0

0.
5

1.
0

CIC

0.
0

0.
5

1.
0 EICad

0.
0

0.
5

1.
0

CVIC

0.
0

0.
5

1.
0 CVICmon

0.
0

0.
5

1.
0

Fig. 5 Detection and false alarm rates for the true coefficient vector shown at top left (ten nonzero coeffi-
cients)

(i.e., the “detection rate” for truly nonzero coefficients, and the “false alarm rate”
for zero coefficients) for each method. Figure 6 shows boxplots of the model error
‖Xβ̂ − Xβ‖2 (i.e., the mean prediction error minus σ 2) for each method, in each set
of simulations.
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Fig. 6 Model error ‖Xβ̂ − Xβ‖2 under the four simulation settings

For the true models with 0 or 2 nonzero coefficients, the proposed methods EICad,
CVIC and CVICmon are the best performers, achieving near-perfect variable selec-
tion. The constrained smoothing makes CVICmon somewhat superior to CVIC, but
EICad attains the lowest model error of all the methods. For the models with 6 or
10 nonzero coefficients, the three proposed methods are again notably resistant to
false alarms, but have difficulty detecting the truly nonzero coefficients; hence these
methods’ model error is no better than that of the other methods, and indeed EICad,
which tends to overpenalize large models (see Sect. 3.3), has the highest model error
when the true model has 10 nonzero coefficients. Since the selection bias discussed
in Sect. 2.2 tends to favor non-null over null models, it is unsurprising that our adap-
tive methods provide the greatest benefit when all or most of the true coefficients are
zero.

CIC, like our proposed methods, aims to take into account the process of searching
among numerous candidate models, but the simulation results suggest that its ability
to protect against spurious predictors diminishes as the true model grows: CIC’s false
alarm rates are lower than AICc’s when the true model is null, but higher for the larger
models.

5.3 Variability

A key criticism of resampling-based overoptimism estimators is that their inherent
variability leads to unstable model selection. To investigate the variability of our esti-
mators of Cad, we performed another four sets of 100 simulations, using the exact
same specifications for the sample size, predictors and outcomes as above. For each
simulated data set, we computed 30 replicates of the EICad overoptimism estimate
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Table 2 Mean, over 100 simulated data sets, of the mean and standard deviation of the overoptimism
estimates from 30 replicates of each of the proposed adaptive procedures

Number of predictors with nonzero coefficients

0 2 6 10

EICad 4.18 (1.13) 10.76 (1.5) 72.16 (5.05) 147.38 (12.17)

CVIC 3.17 (1.24) 7.86 (2.09) 43.59 (7.06) 62.98 (8.20)

CVICmon 4.26 (0) 12.18 (2.19) 42.88 (5.91) 62.58 (7.23)

AICc 4.26 8.89 19.51 32.43

The last row shows CAICc (7) for comparison. Note that the value 4.26 in the first column is the true
overoptimism, and is recovered exactly by CVICmon. In the remaining columns, the true overoptimism Cad
is greater than CAICc due to the effect of model selection

for the true model size using 100 bootstrap samples, and 30 replicates of the CVIC
and CVICmon overoptimism estimates using 10-fold CV; we then obtained the mean
and standard deviation (SD) of the 30 estimates by each method. The means of these
values over the 100 data sets are given in Table 2.

The raw CVIC penalty is seen to have somewhat higher SD than that of EICad,
except in the column for 10 true predictors, where EICad has much higher SD. Note
that in that column the mean is much higher for EICad than for CVIC; although the
true value Cad is unknown, the EICad penalty seems to be positively biased here, in
line with the fixed-model results in Table 1. The SD values for CVICmon suggest that
the constrained monotone smoothing succeeds in reducing the penalty variability; the
only exception is that with 2 true predictors, the SD is slightly higher for CVICmon
than for raw CVIC, but here the mean is also notably higher.

6 Application: functional connectivity in the human brain

We now turn to the application outlined in Sect. 1. Self-esteem and MASQ-GDD
(depression) scores, and FC values for the 10 connections described above, were
acquired in a sample of 43 participants scanned with resting-state fMRI (Biswal et al.
1995) at New York University. The regions of interest were defined, and FC was
computed, as in Stark et al. (2008). Approximately optimal Box-Cox transformations
were applied to the two psychological outcomes (the third power for self-esteem,
and the logarithm for MASQ-GDD), which were then regressed on subsets of the 10
FC predictors. We compare the subset selection results for AIC, AICc, EICad, and
CVICmon.

For regression of self-esteem score on the 10 connections, there are 13 models,
with 1–5 predictors, having somewhat lower AIC than the null model. The best model
(AIC value 771.2, versus 771.7 for the second-best model and 772.5 for the null
model) includes the AMY-SUB, OFC-AMY, SUB-INS, and SUP-PCC connections.
But since a number of models have AIC near the minimum, it seems reasonable to
adopt a “pluralistic” approach that considers all of the near-optimal models and asks
which predictors appear most often in them. Of the 13 models that outperform the null
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Fig. 7 Information criterion values for the best models for MASQ-GDD score, based on AICc and on
CVICmon. The set of line segments at a given y-coordinate indicates the connections included in the model
attaining that value of the information criterion, and the dotted line in the right plot indicates CVICmon for
the null model

model, two of the above four connections stand out in terms of inclusion frequency:
SUB-INS appears in all 13 models, while OFC-AMY occurs in all but two—suggesting
that these two connections may be most strongly associated with self-esteem. How-
ever, AICc, EICad and CVICmon choose the null model as the best model, suggesting
that chance variation accounts for the AIC-based findings.

For the MASQ-GDD score, on the other hand, the adaptive criteria yield rather
different results than either AIC or AICc. The number of models outscoring the null
model is 78 for AIC and 56 for AICc, but only 3 for CVICmon (the models includ-
ing PCC-AMY only, SUB-INS only, or both), and 1 for EICad (the model including
both PCC-AMY and SUB-INS). Figure 7 displays the 10 best models according to
AICc, and the 3 models with lower CVICmon values than the null model. All four
criteria choose the model with the PCC-AMY and SUB-INS connections as the best.
Moreover, these two connections occur in all 10 of the lowest-AICc models, whereas
no other connection occurs in more than 3 of these models. But whereas the AICc

results indicate that one or two additional predictors might improve the model, the
EICad and CVICmon results imply that such predictors would be spurious. The 10
lowest-AIC models (not shown in Fig. 7), like the lowest-AICc models, consistently
include PCC-AMY and SUB-INS, but the former models are generally even larger,
including as many as 6 of the connections. Figure 8 shows the effective degrees of
freedom obtained by the CVICmon method.

The fitted models regressing log-transformed GDD on PCC-AMY and/or SUB-
INS suggest that both are positively related with depression: a one-standard-deviation
increase in either connectivity score is associated with approximately a 10% increase in
the GDD subscale. The coefficients of determination are roughly 11% for PCC-AMY
alone, 13% for SUB-INS alone, and 25% for the model containing both.
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7 Discussion

In Sect. 1, we argued that our resampling approach to model selection should be par-
ticularly relevant when the predictor dimension p is not negligible compared with the
sample size n. On the other hand, when p becomes too large to compute a score such
as AIC for all subsets, it is more common to turn to other methods such as partial
least squares (Helland 1988), ridge regression (Hoerl and Kennard 1970) or the lasso
(Tibshirani 1996). Indeed, such methods have been applied successfully in moderate-
p applications. Nevertheless, when it is feasible to evaluate a score such as CVICmon
for all subsets, there are advantages to doing so—including the fact that this approach
provides a natural framework for obtaining not just a single model estimate but a
collection of leading candidate models, as illustrated in our functional connectivity
example (Sect. 6 above).

The above data analysis also demonstrates that the relatively low false-alarm rate
of resampling-based information criteria makes them particularly useful for highly
exploratory “discovery science” studies in which preventing spurious findings is of
central importance. In other settings, however, these criteria’s tendency to err toward
non-detection of true predictors may represent a serious limitation. Another concern
is the variability of our methods’ overoptimism estimates, which cannot be reduced
by the technique of Konishi and Kitagawa (1996) since that device is applicable only
in the fixed-model case. In ongoing research, we are seeking ways to overcome these
limitations.

To extend our resampling-based information criteria from linear to generalized lin-
ear models (GLMs), two difficulties must be surmounted. First, finding the best model
for each resampled data set requires efficient subset selection algorithms, which are
readily available for linear models (e.g., the above-cited “leaps” algorithm) but much
less developed for GLMs. Second, the closed-form expressions for expected overop-
timism used in the CVIC criterion are valid only for the linear case. The methods of
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Lawless and Singhal (1978) and Cerdeira et al. (2009) have enabled us to overcome the
first difficulty and implement a logistic regression version of EICad, but this criterion
appears to suffer from a marked tendency to underfit. This preliminary finding adds to
our motivation to overcome the second difficulty and extend CVIC to the generalized
linear case.

The methods of this paper have been implemented in an R package called reams
(resampling-based adaptive model selection), available at
http://cran.r-project.org/web/packages/reams.

Appendix A: Some alternatives to our adaptive criteria

A.1 An alternative form of best-subset EIC

An alternative to (13) would be

n log σ̂ 2
M(p) + 1

B

B∑
b=1

‖ y − X M(p)β̂
∗
b;M(p)‖2

σ̂ ∗2
b;M(p)

. (24)

This criterion differs from (13) in that, although new parameter estimates β̂
∗
b;M(p),

σ̂ ∗2
b;M(p)

are obtained for each bootstrap sample, we reuse the original-data selected
subset M(p), rather than selecting a new subset M∗

b (p) for each bootstrap sample as
in (13). Criterion (24) is more computationally efficient than (13), and may be equiv-
alent to the “EIC2” criterion of Konishi and Kitagawa (2008, pp. 208-209). However,
because this criterion uses the bootstrap data as a surrogate for the real data only
for parameter estimation, but not for model selection, it may not fully capture the
overoptimism associated with parameter estimates from a selected model. Indeed, in
simulations similar to those reported in Sect. 5, we found criterion (24) to be suscep-
tible, like nonadaptive criteria, to a high rate of false detections.

A.2 Two alternative CV methods

An alternative to the CVIC (20), which at first glance may seem much simpler, is to
compute the usual K -fold CV estimate of prediction error

∑K
k=1 ‖ yk −X−k;Aβ−k;A‖2

for every possible subset A, and choose A for which this quantity is minimized. How-
ever, to the best of our knowledge, it is nontrivial to extend efficient all-subsets regres-
sion algorithms to perform all-subsets CV. Moreover, this approach would be biased
in favor of model dimensions p for which the number of subsets of size p is highest.

Another alternative to CVIC is to minimize

n log σ̂ 2
M(p) + n + Ĉ∗

ad,CV(p), (25)

i.e., to define our criterion directly in terms of Ĉ∗
ad,CV(p) instead of the overoptimism

estimate Ĉad,CV(p) = CAICc ◦C∗−1◦Ĉ∗
ad,CV(p) appearing in (20). However, we chose
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the latter quantity for consistency with the standard definitions (4), (5) of the overop-
timism C . Had we opted for (25), it would not have been clear whether our criterion
performed differently from AICc due to its adaptive nature, or due to substituting the
estimand C∗ for the traditional C .

Appendix B: The simulation procedure of Sect. 3.3

Suppose the bth bootstrap sample consists of cases ib
1 , ib

2 , . . . , ib
n . The resampled data

set can be written as y∗
b = Sb y and X∗

b = Sb X where Sb is the sampling-with-replace-
ment matrix (eib

1
eib

2
. . . eib

n
)T; here ek is the n-dimensional vector with 1 in the kth

position and 0 elsewhere. At first glance, Monte Carlo estimation of E(Ĉboot) for a
given design matrix X entails randomly generating (i) the bootstrap sampling matrix
Sb and (ii) the error vector ε. However, since

E(Ĉboot) = E

(
1

B

B∑
b=1

‖ y − Xβ̂
∗
b‖2

σ̂ ∗2
b

)
− n

= E

[
1

B

B∑
b=1

E

(
‖ y − Xβ̂

∗
b‖2

σ̂ ∗2
b

∣∣∣∣∣ Sb

)]
− n, (26)

we can eliminate the second source of simulation error by means of an analytic expres-
sion for the inner expectation in (26). We do this in two steps: expressing the fractional
expression in (26) as a quotient of quadratic forms, and exploiting a formula for the
expectation of such a quotient.

Step 1. It is easily seen that ST
b Sb = Db ≡ diag(rb

1 , rb
2 , . . . , rb

n ), where rb
k is the

number of occurrences of k in the bth bootstrap sample. If fewer than p of
rb

1 , rb
2 , . . . , rb

n are positive, i.e., if the bootstrap sample contains fewer than
p distinct cases, then σ̂ ∗2

b = 0 and EIC is undefined. On the other hand,
if the bootstrap sample contains at least p distinct cases, then XT Db X
would ordinarily be nonsingular. Assuming this to be the case, one can show
that ‖ y − Xβ̂

∗
b‖2/σ̂ ∗2

b = (n yT QT
b Qb y)/( yT QT

b Db Qb y), where Qb =
I − X(XT Db X)−1 XT Db. If X represents a correct model, i.e. (1) holds,
then since Qb X = 0, we obtain

‖ y − Xβ̂
∗
b‖2/σ̂ ∗2

b = nεT QT
b Qbε

εT QT
b Db Qbε

. (27)

Step 2. If ε is a vector of n IID normal variates with mean zero, A is a symmetric
n × n matrix, and B is a positive semidefinite n × n matrix with singular
value decomposition P�PT , then by Theorem 6 of Magnus (1986),
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E

(
εT Aε

εT Bε

)
=

∫ ∞

0

∣∣∣(I + 2t�)−1/2
∣∣∣ tr

[
(I + 2t�)−1 PT AP

]
dt,

(28)

provided the expectation exists. By (27), the inner expectation in (26) is
given by this integral with A = n QT

b Qb, B = QT
b Db Qb.

One can thus estimate E(Ĉboot) for a given X by numerically computing the inte-
gral (28) for each of a large set of bootstrap sampling matrices Sb. In our simulation,
for each (n, p), we generated 300 design matrices X by sampling each element inde-
pendently from the standard normal distribution, and drew a single bootstrap sample
for each X .

Appendix C: An explicit expression for df p

We attempt here to provide some intuition regarding dfp. By (19), C∗(dfp) =
Ĉ∗

ad,CV(p); (23) then leads to

dfp = nt −
√

n(nt + 1)(nt − 2)

n + Ĉ∗
ad,CV(p)

− 2,

or alternatively

dfp = p√
κ

+
(

1 − 1√
κ

)
(nt − 2), (29)

where κ = n+Ĉ∗
ad,CV(p)

n+C∗(p)
, i.e., the ratio of

∑K
k=1 ‖ yk − Xk;M−k (p)β̂−k;M−k (p)‖2/

σ̂ 2
−k;M−k (p)

to E(
∑K

k=1 ‖ yk − Xk β̂−k‖2/σ̂ 2−k) as given by (22). The convex com-

bination formula (29) makes it clear that dfp ≥ p if and only if Ĉ∗
ad,CV(p) ≥ C∗(p),

as would ordinarily be case.

Appendix D: Proofs of Theorems 1 and 2

D.1 Theorem 1

We suppress the conditioning on X1, . . . , X K in what follows. Since β̂−k and σ̂ 2−k are
independent, so are the numerator and denominator on the left side of (21). Therefore,
since σ̂ 2−k ∼ σ 2χ2

nt −p/nt ,
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E

(
K∑

k=1

‖ yk − Xk β̂−k‖2

σ̂ 2−k

)
=

K∑
k=1

E

(
1

σ̂ 2−k

)
E(‖ yk − Xk β̂−k‖2)

= nt
∑K

k=1 E(‖ yk − Xk β̂−k‖2)

σ 2(nt − p − 2)
.

It therefore suffices to show that

K∑
k=1

E(‖ yk − Xk β̂−k‖2) = σ 2
K∑

k=1

tr[(Inv − Hkk)
−1]. (30)

To prove (30) we use the identity

yk − Xk β̂−k = (Inv − Hkk)
−1( yk − Xk β̂),

the generalization to K -fold CV of a well-known result for leave-one-out CV (e.g.,
Reiss et al. 2010). Combining this with y − Xβ̂ = (In − H)ε implies that the left
side of (30) equals E[εT (In − H)B(In − H)ε] = σ 2tr[B(In − H)] where

B =

⎛
⎜⎜⎜⎝

(Inv − H11)
−2 0 . . . 0

0 (Inv − H22)
−2 . . . 0

...
...

. . .
...

0 . . . . . . (Inv − H K K )−2

⎞
⎟⎟⎟⎠ .

Clearly tr[B(In − H)] = ∑K
k=1 tr[(Inv − Hkk)

−1], so (30) follows.

D.2 Theorem 2

Since E
(∑K

k=1 ‖ yk − Xk β̂−k‖2/σ̂ 2−k

) = E
[
E
(∑K

k=1 ‖ yk − Xk β̂−k‖2/σ̂ 2−k

∣∣X1,

. . . , X K
)]

, (21) implies that it suffices to prove

K∑
k=1

E
[
tr{(Inv − Hkk)

−1}
]

= n(nt + 1)(nt − 2)

nt (nt − p − 2)
. (31)

By the Sherman–Morrison–Woodbury lemma (e.g., Harville 2008) and the fact that
Hkk = Xk(XT X)−1 Xk ,

tr[(Inv − Hkk)
−1] = tr

[
Inv + Xk(XT−k X−k)

−1 XT
k

]

= nv +
∑
i∈Vk

xT
i (XT−k X−k)

−1xi

= nv +
∑
i∈Vk

(1 x̃T
i )

(
nt nt ¯̃xT−k

nt ¯̃x−k X̃
T
−k X̃−k

)−1 (
1
x̃i

)
,
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where Vk = {i : xi belongs to the kth validation set}, X̃−k comprises the last p − 1
columns of X−k , and ¯̃x−k is the vector of column means of X̃−k . By a standard formula
for the inverse of a partitioned matrix, the above yields

tr[(Inv − Hkk)
−1] = nv +

∑
i∈Vk

[
1/nt + ¯̃xT−k(X̃

cT
−k X̃

c
−k)

−1 ¯̃x−k

−2x̃T
i (X̃

cT
−k X̃

c
−k)

−1 ¯̃x−k + x̃T
i (X̃

cT
−k X̃

c
−k)

−1 x̃i

]
,

where X̃
c
−k is the column-centered version of X̃−k . If ¯̃x−k = μ+ η̄−k and x̃i = μ+ηi

where μ ∈ Rp−1 is the mean of the predictor distribution, then some algebra leads to

E
[
tr{(Inv − Hkk)

−1}
]

= nv +
∑
i∈Vk

[
1/nt + E{η̄T−k(X̃

cT
−k X̃

c
−k)

−1η̄−k}

+ E{ηT
i (X̃

cT
−k X̃

c
−k)

−1ηi }
]
.

The two quadratic forms above are distributed as 1
nt (nt −1)

times the Hotelling T 2(p,

nt − 1) distribution and as 1
nt −1 times the T 2(p, nt − 1) distribution, respectively.

Hence

E
[
tr{(Inv − Hkk)

−1}
]

= nv +
∑
i∈Vk

[
1

nt
+

{
1

nt (nt − 1)
+ 1

nt − 1

}
(nt − 1)p

nt − p − 2

]
.

Summing over k leads to (31).

Appendix E: Robustness of (22)

E.1 Expectation of n + Ĉ∗
CV in general

Our formula for C∗(p) is based on (22), which gives the expectation of n + Ĉ∗
CV =∑K

k=1 ‖ yk − Xk β̂−k‖2/σ̂ 2−k assuming IID multivariate normal predictor vectors. Here
we consider the robustness of (22) to departures from this distribution, for the most
popular form of CV: leave-one-out CV, i.e., K = n. In this case the right-hand expres-

sions in (21) and (22) reduce to n−1
n−p−3

∑n
i=1

1
1−hii

and n2(n−3)

(n−p−3)2 , respectively. Let
rn,p(X) be the ratio of these two values, i.e.,

rn,p(X) = (n − 1)(n − p − 3)

n2(n − 3)

n∑
i=1

1

1 − hii
. (32)

The ratio of the actual expectation of n + Ĉ∗
CV to that given by Theorem 2 is then∫

rn,p(X)d X , where the integration is with respect to the distribution of the random
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Fig. 9 Contour plots, for n = 100, of the bounds imposed by Proposition 1 on the ratio rn,p(X). Note that
points below the line of identity are excluded, since hmax must be at least p/n

matrix X (if one wishes to view X as fixed, this distribution becomes a point mass).
We then have the following result.

Proposition 1 Let hmax = hmax(X) be the largest diagonal element of H . If the
assumptions of Theorem 2 hold and hmax < 1, then

(n − 1)(n − p − 3)

(n − 3)(n − p)
≤ rn,p(X) ≤ cX (n − 1)(n − p − 3)

n(n − 3)
,

where cX = min
{

1
1−hmax

, 1 + p
n(1−hmax)2 , 1 + p

n + phmax
n(1−hmax)3

}
.

We can gain insight into the practical implications of Proposition 1 by plotting the
above bounds on rn,p(X) with respect to p/n and hmax. The bounds depend only
weakly on n; Fig. 9 displays them for n = 100. For p not too large, the lower bound
is just slightly below 1, and the random quantity hmax will ordinarily have most of its
mass in the region where the upper bound is also near 1; hence

∫
rn,p(X)d X ≈ 1, i.e.,

(22) should provide a good approximation. The bounds deviate markedly from 1 only
when either p/n or hmax is very high, i.e., either the model dimension is very large or
there are inordinately high-leverage observations—two scenarios in which the entire
enterprise of linear modeling is generally unreliable.

E.2 Proof of Proposition 1

By (32), it suffices to show that

1

1 − p/n
≤ 1

n

n∑
i=1

1

1 − hii
≤ cX .
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The first inequality holds since the first expression is the harmonic mean, whereas the
second expression is the arithmetic mean, of 1

1−h11
, . . . , 1

1−hnn
. The second inequality

is derived from the following three inequalities:

n∑
i=1

1

1 − hii
≤ n

1 − hmax
;

n∑
i=1

1

1 − hii
=

n∑
i=1

[
1 + hii

(1 − h∗
i i )

2

]
where 0 < h∗

i i < hii for each i

< n + p

(1 − hmax)2 ;
n∑

i=1

1

1 − hii
=

n∑
i=1

[
1 + hii + h2

i i

(1 − h∗∗
i i )3

]
where 0 < h∗∗

i i < hii for each i

< n + p + phmax

(1 − hmax)3 .
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