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Abstract Various concepts of mean shape previously unrelated in the literature are
brought into relation. In particular, for non-manifolds, such as Kendall’s 3D shape
space, this paper answers the question, for which means one may apply a two-sample
test. The answer is positive if intrinsic or Ziezold means are used. The underlying
general result of manifold stability of a mean on a shape space, the quotient due to
an proper and isometric action of a Lie group on a Riemannian manifold, blends the
slice theorem from differential geometry with the statistics of shape. For 3D Procrustes
means, however, a counterexample is given. To further elucidate on subtleties of means,
for spheres and Kendall’s shape spaces, a first-order relationship between intrinsic,
residual/Procrustean and extrinsic/Ziezold means is derived stating that for high con-
centration the latter approximately divides the (generalized) geodesic segment between
the former two by the ratio 1:3. This fact, consequences of coordinate choices for the
power of tests and other details, e.g. that extrinsic Schoenberg means may increase
dimension are discussed and illustrated by simulations and exemplary datasets.

Keywords Intrinsic mean · Extrinsic mean · Procrustes mean · Schoenberg mean ·
Ziezold mean · Shape spaces · Proper Lie group action · Slice theorem · Horizontal
lift · Stratified spaces

1 Introduction

The analysis of shape may be counted among the very early activities of mankind; be
it for representation on cultural artefacts, or for morphological, biological and medical
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1228 S. F. Huckemann

Table 1 Three fundamental
types of means on a shape space
(right column) and their
horizontal lifts to the respective
manifold (left column)

Manifold means Shape means

Intrinsic Intrinsic

Extrinsic Ziezold

residual Procrustean

applications. In modern days shape analysis is gaining increased momentum in com-
puter vision, image analysis, biomedicine and many other fields. For a recent overview
(cf. Krim and Yezzi 2006).

A shape space can be viewed as the quotient of a Riemannian manifold—e.g. the
pre-shape sphere of centered unit size landmark configurations—modulo the isometric
and proper action of a Lie group (cf. Bredon 1972), conveying shape equivalence—e.g.
the group of rotations (cf. Kendall et al. 1999, Chapter 11). Thus, it carries the canon-
ical quotient structure of a union of manifold strata of different dimensions, which
give in general a Riemannian manifold part—possibly with singularities comprising
the non-manifold part of non-regular shapes at some of which sectional curvatures
may tend to infinity (cf. Kendall et al. 1999, Chapter 7.3) as well as Huckemann et al.
(2010b).

In a Euclidean space, there is a clear and unique concept of a mean in terms of least
squares minimization: the arithmetic average. Generalizing to manifolds, however, the
concept of expectation, average or mean is surprisingly non trivial and not at all canoni-
cal. In fact, it resulted in an overwhelming number of different concepts of means, each
defined by a specific concept of a distance, all of which are identical for the Euclidean
distance in a Euclidean space. More precisely, with every embedding in a Euclidean
space come specific extrinsic and residual means and with every Riemannian struc-
ture comes a specific intrinsic mean. Furthermore, due to the non-Euclidean geometry,
local minimizers introduced as Karcher means by Kendall (1990) may be different
from global minimizers called Fréchet means by Ziezold (1977), and, neither ones are
necessarily unique. Nonetheless, carrying statistics over to manifolds, strong consis-
tency by Ziezold (1977), Bhattacharya and Patrangenaru (2003) and under suitable
conditions, central limit theorems (CLTs) for such means have been derived by Jupp
(1988), Hendriks and Landsman (1996, 1998), Bhattacharya and Patrangenaru (2005)
as well as Huckemann (2011). On shape spaces, various other concepts of means have
been introduced, e.g. the famous Procrustes means (cf. Gower 1975; Ziezold 1977;
Dryden and Mardia 1998). As we show here, these means are related to the above ones
via a horizontal lifting from the bottom quotient to the top manifold (cf. Table 1. In
particular, since there are many—and often confusing—variants of Procrustes means
in the literature this paper takes the advantage of a nonstandard geometric viewpoint
and introduces the terminology of Procrustean means standing for inheritance from
residual means.

The CLTs quoted above assume a manifold structure locally relating to a Euclidean
space; namely, asserting that under scaling by the square root of sample size, in a
local chart sample means are asymptotically normally distributed. As in the Euclidean
case this allows for one-sample and two-sample tests. This argument fails, however, if
sample means converge to a singularity. For such cases the asymptotic distribution is
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not known in general, in consequence there are no one- and two-sample tests available.
On tree spaces (e.g. Billera et al. 2001), ongoing work has come up with a “sticky
CLT on the spine of the open book” ( Hotz et al. 2011). In particular, intrinsic means
on such spaces tend to lie on the singular part. For shape spaces, this leads to the
question under which conditions it can be guaranteed that a mean shape sticks not to
the singular part but lies “stably” on the manifold part.

Due to strong consistency, for a one-sample test for a specific mean shape on the
manifold part, it may be assumed that sample means eventually lie on the manifold
part as well, thus making the above cited CLTs available. A two- and a multi-sample
test for common mean shape, however, could not be justified to date because of a
lacking result on the following manifold stability.

Definition 1 A mean shape enjoys manifold stability if it is assumed on the manifold
part for any random shape assuming the manifold part with non-zero probability.

A key result of this paper establishes manifold stability for intrinsic and Ziezold
means under the following condition.

Condition 1 On the non-manifold part the distribution of the random shape contains
at most countably many point masses.

Since the non-manifold part is a null-set (e.g. Bredon 1972) under the projection
of the Riemannian volume, this condition covers most realistic cases.

We develop the corresponding theory for a general shape space quotient based
on lifting a distribution on the shape space to the pre-shape space and subsequently
exploiting the fact that intrinsic means are zeroes of an integral involving the Riemann
exponential. The similar argument can be applied to Ziezold means, but not to Pro-
crustean means. More specifically, we develop the notion of a measurable horizontal
lift of the shape space except for its quotient cut locus (introduced as well) to the pre-
shape space. This requires the geometric concept of tubular neighborhoods admitting
slices.

Curiously, the result applied to the finite dimensional subspaces exhausting the
quotient shape space of closed planar curves with arbitrary initial point introduced by
Zahn and Roskies (1972) and further studied by Klassen et al. (2004), gives that the
shape of the circle, since it is a singularity, can never be an intrinsic shape mean of
non-circular curves.

As a second curiosity, 3D full Procrustes means do not enjoy manifold stability
in general, a counterexample involving low concentration is given. This is due to the
fact that for low concentration, full Procrustes means may be ‘blinder’ in compari-
son to intrinsic and Ziezold means to distributional changes far away from a mode.
Included in this context is also a discussion of the Schoenberg means, recently intro-
duced by Bandulasiri and Patrangenaru (2005) as well as by Dryden et al. (2008) for
the non-manifold Kendall reflection shape spaces, which in the ambient space, also
allow for a CLT. Schoenberg means, as demonstrated, however, may feature ‘blind-
ness’ in comparison to intrinsic and Ziezold means, with respect to changes in the
distribution of nearly degenerate shapes. In a simulation we show that these features
render Schoenberg means less effective for a discrimination involving degenerate or
nearly degenerate shapes.
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As a third curiosity, for spheres and Kendall’s shape spaces, it is shown that, given
uniqueness, with order of concentration, the (generalized) geodesic segment between
the intrinsic mean and the residual/Procrustean mean is in approximation divided by
the extrinsic/Ziezold mean by the ratio 1:3. This first order relationship can be readily
observed in existing data sets. In particular, this result supports the conjecture that
Procrustean means of sufficiently concentrated distributions enjoy stability as well.

This paper is structured as follows. For the convenience of the reader the follow-
ing Sect. 2 is a self- contained account on manifold stability for Procrustes and other
means on Kendall’s shape spaces which can be read alone. This section is followed by
a general classification of concepts of means on general shape spaces in Sect. 3. The
rather technical Sect. 4 develops horizontal lifting and establishes manifold stability,
technical proofs are deferred to the Appendix. In Sect. 5, extrinsic Schoenberg means
are discussed and Sect. 6 tackles local effects of curvature on spheres and Kendall’s
shape spaces. Section 7 illustrates practical consequences using classical data-sets as
well as simulations. Note that lacking stability does not affect the validity of the Strong
Law, on which the considerations on asymptotic distance in Sects. 6 and 7 are based.

An R-package for all of the computations performed is provided online: Huckemann
(2010).

2 Stability of means on Kendall’s shape spaces

In the statistical analysis of similarity shapes based on landmark configurations, geo-
metrical m-dimensional objects (usually m = 2, 3) are studied by placing k > m
landmarks at specific locations of each object. Each object is then described by a
matrix in the space M(m, k) of m × k matrices, each of the k columns denoting an
m-dimensional landmark vector. 〈x, y〉 := tr(xyT ) denotes the usual inner product
with norm ‖x‖ = √〈x, x〉. For convenience and without loss of generality for the
considerations below, only centered configurations are considered. Centering can be
achieved by multiplying with a sub-Helmert matrix H ∈ M(k, k − 1) from the right,
yielding a configuration xH in M(m, k − 1). For this and other centering methods
(cf. Dryden and Mardia 1998, Chapter 2). Excluding also all configurations with all
landmarks coinciding gives the space of configurations

Fk
m := M(m, k − 1) \ {0}.

Since only the similarity shape is of concern, we may assume that all configurations
are contained in the unit sphere Sk

m := {x ∈ Fk
m : ‖x‖ = 1} called the pre-shape

sphere. With O(m) := {g ∈ M(m,m) : gT g = e} denoting the orthogonal group,
e := diag(1, . . . , 1) the unit matrix, ẽ := diag(−1, 1, . . . , 1) and SO(m) := {g ∈
O(m) : det(g) = 1} the special orthogonal group, Kendall’s shape space is then the
canonical quotient

�k
m := Sk

m/SO(m) = {[x] : x ∈ Sk
m} with the orbit [x] = {gx : g ∈ SO(m)}.
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In some applications reflections are also filtered out giving Kendall’s reflection shape
space

R�k
m := �k

m/{e, ẽ } = Sk
m/O(m).

For 1 ≤ j < m < k consider the isometric embedding

Sk
j ↪→ Sk

m : x 	→
(

x
0

)

(1)

giving rise to a canonical embedding R�k
j ↪→ �k

m which is isometric with respect to

the intrinsic distance ρ(i)(x, x ′) := min
g∈G

arccos〈gx, x ′〉 ,

the Ziezold distance ρ(z)(x, x ′) := min
g∈G

√

2 − 2〈gx, x ′〉

and the Procrustean distance ρ(p)(x, x ′) := min
g ∈ G

〈gx, x ′〉 ≥ 0

√

1 − 〈gx, x ′〉2

with G = SO(m) for �k
m and G = O( j) for R�k

j (cf. Sect. 3) (Kendall et al. 1999,
p. 29) and also Remark 1 below.

We say that a configuration in R
m is j -dimensional, or more precisely non-degen-

erate j-dimensional if its preshape x ∈ Sk
m is of rank j . Moreover, for j ≥ 3 the shape

spaces�k
j and R�k

j decompose into a manifold part (cf. Sects. 3, 5) of regular shapes

(�k
j )

∗ = {[x] ∈ �k
j : rank(x) ≥ j − 1} and (R�k

j )
∗ = {[x] ∈ R�k

j : rank(x) = j} ,

respectively, given by the shapes corresponding to configurations of at least dimension
j −1 and j , respectively and a non void part of singular shapes corresponding to lower
dimensional configurations, respectively.

Given a random shape [X ] ∈ � = �k
m or R�k

j , various concepts of expected
shapes are possible. The sets of minimizers of the following expectations are called

intrinsic means: argmin
q∈�

E
(

ρ(p)(q, [X ])2) ,

Ziezold means: argmin
q∈�

E
(

ρ(z)(q, [X ])2) , and

full Procrustes means: argmin
q∈�

E
(

ρ(p)(q, [X ])2).

We say that a mean is unique if the corresponding set contains one element only. A
detailed discussion of these and more concept of means can be found in Sect. 3.

The proofs of the following two Theorems can be found in the Appendix.
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Theorem 1 Suppose that [X ] is a random shape on �k
m assuming shapes in R�k

j
(1 ≤ j < m < k) with probability one. Then every full Procrustes mean shape of [X ]
and every unique intrinsic or Ziezold mean shape assuming the non-manifold part
(R�k

j ) \ (R�k
j )

∗ only with at most countably many point masses corresponds to a
configuration of dimension less than or equal to j .

The following theorem is the application of the key result applied to Kendall’s shape
spaces.

Theorem 2 (Stability theorem for intrinsic and Ziezold means) Let [X ] be a random
shape on �k

m, 0 < m < k, with unique intrinsic or Ziezold mean shape [μ] ∈ �k
m,

[μ] ∈ Sk
m and let 1 ≤ j ≤ m be the maximal dimension of configurations of shapes

assumed by X with non-zero probability. Suppose moreover that shapes of configu-
rations of strictly lower dimensions are assumed with at most countably many point
masses.

1. If j < m then [μ] corresponds to a non-degenerate j-dimensional configuration.
2. If j = m then [μ] corresponds to a non-degenerate configuration of dimension

m − 1 or m.

Remark 1 The result of Theorem 2 is sharp. To see this, consider for α > β > 0,
α2 + β2 = 1 the pre-shapes

x =
(

α 0 0
0 β 0

)

, y =
(

α 0 0
0 −β 0

)

and z =
(

1 0 0
0 0 0

)

∈ S4
2 .

Then x and y correspond to non-degenerate two-dimensional quadrilateral configu-
rations while z corresponds to a one-dimensional (collinear) quadrilateral. Still, [z] is
regular in �4

2 and it is the intrinsic and Ziezold mean of [x] and [y] in �4
2 . Under the

embedding R�4
2 ↪→ �4

3 we have the pre-shapes

x ′ =
⎛

⎝

α 0 0
0 β 0
0 0 0

⎞

⎠ , y′ =
⎛

⎝

α 0 0
0 −β 0
0 0 0

⎞

⎠ and z′ =
⎛

⎝

1 0 0
0 0 0
0 0 0

⎞

⎠ ∈ S4
3 .

Just as [x] = [y] in R�4
2 so do x ′ and y′ have regular and identical shape in �4

3 .
However, [z′] is not regular and it is not the intrinsic or Ziezold mean in �4

3 .

3 Fundamental types of means

In the previous section we introduced Kendall’s shape and reflection shape space based
on invariance under similarity transformations and, including reflections, respectively.
Invariance under congruence transformations only leads to Kendall’s size-and-shape
space. More generally in image analysis, invariance may also be considered under
the affine or projective group (cf. Mardia and Patrangenaru 2001, 2005). A different
yet also very popular set of shape spaces for two-dimensional configurations modulo
the group of similarities has been introduced by Zahn and Roskies (1972). Instead
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of building on a finite dimensional Euclidean matrix space modeling landmarks, the
basic ingredient of these spaces modeling closed planar unit speed curves is the infinite
dimensional Hilbert space of Fourier series (cf. Klassen et al. 2004). In practice for
numerical computations, only finitely many Fourier coefficients are considered.

To start with, a shape space is a metric space (Q, d). For this entire paper suppose
that X, X1, X2, . . . are i.i.d. random elements mapping from an abstract probability
space (�,A,P) to (Q, d) equipped with its self understood Borel σ -field. Here and
in the following, measurable will refer to the corresponding Borel σ -algebras, respec-
tively. Moreover, denote by E(Y ) the classical expected value of a random vector Y
on a D-dimensional Euclidean space R

D , if existent.

Definition 2 For a continuous function ρ : Q × Q → [0,∞) define the set of popu-
lation Fréchet ρ-means by

E (ρ)(X) = argmin
μ∈Q

E
(

ρ(X, μ)2
)

.

For ω ∈ � denote the set of sample Fréchet ρ-means by

E (ρ)n (ω) = argmin
μ∈Q

n
∑

j=1

ρ
(

X j (ω), μ
)2
.

By continuity of ρ, the ρ-means are closed sets, additionally, sample ρ-means are
random sets, all of which may be empty. For our purpose here, we rely on the definition
of random closed sets as introduced and studied by Choquet (1954), Kendall (1974)
and Matheron (1975). Since their original definition for ρ = d by Fréchet (1948) such
means have found much interest.

Intrinsic means. Independently, for a connected Riemannian manifold with geodesic
distance ρ(i), Kobayashi and Nomizu (1969) defined the corresponding means as cen-
ters of gravity. They are nowadays also well known as intrinsic means by Bhattacharya
and Patrangenaru (2003, 2005).

Extrinsic means. With respect to the chordal or extrinsic metric ρ(e) due to an embed-
ding of a Riemannian manifold in an ambient Euclidean space, Fréchet ρ-means have
been called mean locations by Hendriks and Landsman (1996) or extrinsic means by
Bhattacharya and Patrangenaru (2003).

More precisely, let Q = M ⊂ R
D be a complete Riemannian manifold embedded in

a Euclidean space R
D with standard inner product 〈x, y〉, ‖x‖ = √〈x, x〉, ρ(e)(x, y) =

‖x − y‖ and let 
 : R
D → M denote the orthogonal projection, 
(x) =

argminp∈M‖x − p‖. For any Riemannian manifold an embedding that is even iso-
metric can be found for D sufficiently large, see Nash (1956). Due to an extension of
Sard’s Theorem by (Bhattacharya and Patrangenaru 2003, p.12) for a closed manifold,

 is univalent up to a set of Lebesgue measure zero. Then the set of extrinsic means
is given by the set of images 


(

E(Y )
)

where Y denotes X viewed as taking values in
R

D (cf. Bhattacharya and Patrangenaru 2003).
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Residual means. In this context, setting ρ(r)(p, p′) = ‖d
p′(p − p′)‖ (p, p′ ∈ M)
with the derivative d
p′ at p′ yielding the orthogonal projection to the embedded tan-

gent space Tp′RD → Tp′ M ⊂ Tp′RD , call the corresponding mean sets E (ρ
(r))(X)

and E (ρ
(r))

n (ω), the sets of residual population means and residual sample means,
respectively. For two-spheres, ρ(r)(p, p′) has been studied under the name of crude
residuals by Jupp (1988). On unit-spheres

ρ(r)(p, p′) = ‖p − 〈p, p′〉p′‖ =
√

1 − 〈p, p′〉2 = ρ(r)(p′, p) (2)

is a quasi-metric (symmetric, vanishing on the diagonal p = p′ and satisfying the
triangle inequality). On general manifolds, however, the residual distance ρ(r) may
be neither symmetric nor satisfying the triangle inequality.

Obviously, for X uniformly distributed on a sphere, the entire sphere is identical
with the set of intrinsic, extrinsic and residual means: non-unique intrinsic and extrin-
sic means may depend counterintuitively on the dimension of the ambient space. Here
is a simple illustration.

Proposition 1 Suppose that X is a random point on a unit sphere SD−1 that is uni-
formly distributed on a unit subsphere S. Then

(i) every point on SD−1 is an extrinsic mean and,
(ii) if S is a proper subsphere then the set of intrinsic means is equal to the unit

subsphere S′ orthogonal to S.

Proof The first assertion is a consequence of ρ(e)(x, y)2 +ρ(e)(x,−y)2 = 4 for every
x, y ∈ SD−1. The second assertion follows from

ρ(i)(x, y)2 + ρ(i)(x,−y)2 = ρ(i)(x, y)2 + (

π − ρ(i)(x, y)
)2

≥ π2

2
for every x, y ∈ SD−1

for the intrinsic distance ρ(i)(x, y) = 2 arcsin(‖x − y‖/2) with equality if and only if
x is orthogonal to y. ��
Proposition 2 If a random point X on a unit sphere is a.s. contained in a unit sub-
sphere S then S contains every residual mean as well as every unique intrinsic or
extrinsic mean.

Proof Suppose that x = v + ν is a mean of X with v/‖v‖ ∈ S and ν ∈ SD−1 normal
to S. Since 1−〈X, v+ν〉2 = 1−〈X, v〉2 ≥ 1−〈X, v〉2/‖v‖2 a.s. with equality if and
only if ν = 0, the assertion for residual means follows at once from (2). For intrinsic
and extrinsic means we argue with ‖X − (v + ν)‖ = ‖X − (v − ν)‖ a.s. yielding
ν = 0 in case of uniqueness. ��

Let us now incorporate more of the structure common to shape spaces. Expanding
the definition due to (Kendall et al. 1999, p. 249), we start by assuming that the shape
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space is a quotient modulo a proper group action of a Lie group G on a manifold
M , i.e. that every sequence gn ∈ G has a point of accumulation g ∈ G if there are
p, p′ ∈ M and a sequence M � pn → p such that gn pn → p′ (cf. Palais 1961).
In consequence, the orbits [p] = {gp : g ∈ G} are closed in M and the canonical
quotient Q = M/G is Hausdorff. Obviously, every compact group such as SO(m) or
O(m) acts properly. Examples of non-compact groups acting properly can be found
in projective shape analysis (cf. Kent et al. 2011).

Definition 3 A complete connected finite-dimensional Riemannian manifold M with
geodesic distance dM on which a Lie group G acts properly and isometrically from
the left is called a pre-shape space. Moreover the canonical quotient

π : M → Q := M/G = {[p] : p ∈ M} with the orbit [p] = {gp : g ∈ G} ,

is called a shape space.

As a consequence of the isometric action we have that dM (gp, p′) = d(p, g−1 p′)
for all p, p′ ∈ M , g ∈ G. For p, p′ ∈ M we say that p is in optimal position to p′ if
dM (p, p′) = ming∈G dM (gp, p′), the minimum is attained since the action is proper.
As is well known (e.g. Bredon 1972, p. 179) there is an open and dense submanifold
M∗ of M such that the canonical quotient Q∗ = M∗/G restricted to M∗ carries a
natural manifold structure also being open and dense in Q. Elements in M∗ and Q∗,
respectively, are called regular, the complementary elements are singular; Q∗ is the
manifold part of Q.

Intrinsic means on shape spaces. The canonical quotient distance

dQ([p], [p′]) := min
g∈G

dM (gp, p′) = min
g,h∈G

dM (gp, h p′)

is called intrinsic distance and the corresponding dQ-Fréchet mean sets are called
intrinsic means. Note that the intrinsic distance on Q∗ is equal to the canonical geo-
desic distance.

Ziezold and Procrustean means. Now, assume that we have an embedding with
orthogonal projection 
 : R

D → M ⊂ R
D as above. If the action of G is isometric

w.r.t. the extrinsic metric, i.e. if ‖gp − g p′‖ = ‖p − p′‖ for all p, p′ ∈ M and g ∈ G
then call

ρ
(z)
Q ([p], [p′]) := min

g∈G
‖gp − p′‖ and

ρ
(p)
Q ([p], [p′]) := min

g ∈ G, gp in
opt. pos. to p′

‖d
p′(gp − p′)‖

the Ziezold distance and the Procrustean distance on Q, respectively. Call the corre-
sponding population and sample Fréchet ρ(z)Q -means, respectively, the sets of popula-

123
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tion and sample Ziezold means, respectively. Similarly, call the corresponding popu-
lation and sample Fréchet ρ(p)

Q -means, respectively, the sets of population and sample
Procrustean means, respectively.

We say that optimal positioning is invariant if for all p, p′ ∈ M and g∗ ∈ G,

dM (g
∗ p, p′) = min

g∈G
dM (gp, p′) ⇔ ‖g∗ p − p′‖ = min

g∈G
‖gp − p′‖.

Remark 2 Indeed for Q = �k
m, R�k

m , optimal positioning is invariant (cf. Kendall
et al. 1999, p. 206), Procrustean means coincide with means of general Procrustes
analysis introduced by Gower (1975) and Ziezold means coincide with means as intro-
duced by Ziezold (1994) for�k

2 . For�k
m , these means have already been introduced in

Sect. 2. Moreover for�k
2 , Procrustean means agree with extrinsic means with respect to

the Veronese–Whitney embedding (cf. Bhattacharya and Patrangenaru 2003; Sect. 5).

As previously defined in Sect. 2, Procrustean means on�k
m are also called full Pro-

crustes means in the literature to distinguish them from partial Procrustes means on
Kendall’s size-and-shape spaces not further discussed here (e.g. Dryden and Mardia
1998). We only note that partial Procrustes means are identical to the respective intrin-
sic, Procrustean and Ziezold means which on Kendall’s size-and-shape spaces, all
agree with one another. Ziezold means on Kendall’s shape spaces have also been stud-
ied as partial Procrustes means of unit size confiugrations by Kendall et al. (1999).

4 Horizontal lifting and manifold stability

In this section we derive a measurable horizontal lifting and the stability theorem
underlying Theorem 2. To this end we first recall how a shape space is made up from
manifold strata of varying dimensions. Unless otherwise referenced, we use basic ter-
minology that can be found in any standard textbook on differential geometry, e.g.
Kobayashi and Nomizu (1963, 1969).

4.1 Preliminaries

Assume that Q = M/G is a shape space as in Definition 3. Tp M is the tangent space
of M at p ∈ M and expp denotes the Riemannian exponential at p. Recall that on
a Riemannian manifold the cut locus C(p) of p comprises all points q such that the
extension of a length minimizing geodesic joining p with q is no longer minimizing
beyond q. In consequence, on a complete and connected manifold M we have for
every p′ ∈ M that there is v′ ∈ Tp M such that p′ = expp v

′ while v′ = exp−1
p p′ of

minimal modulus is uniquely determined as long as p′ ∈ M \ C(p). It is well known
that the cut locus has measure zero in the sense that its image in any local chart has
Lebesgue measure zero. From now on we call the cut locus the manifold cut locus in
order to distinguish it from the quotient cut locus Cquot(q) of q ∈ Q which we define
as Cquot(q) := {[p′] : p′ ∈ C(p) is in optimal position to some p ∈ q}. Due to the
isometric action we have for any p ∈ q that
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On the meaning of mean shape 1237

Cquot(q) = {[p′] : p′ ∈ C(p) is in optimal position to p} ⊂ π
(

C(p)
)

. (3)

Recall from Sect. 3 that Q contains an open and dense manifold part Q∗. Thus, for
q ∈ Q∗ we can consider the quotient cut locus and the manifold cut locus, both
of which are subsets of Q, in general different as the following Lemma teaches. In
particular, quotient cut loci are void in the special case of Kendall’s shape spaces.

Lemma 1 C(q) �= ∅ for every q ∈ �k
2 while Cquot(q) = ∅ for all q ∈ �k

m . Similarly
Cquot(q) = ∅ for all q ∈ R�k

m .

Proof The first assertion follows from the fact that�k
2 is a compact manifold. For the

second assertion consider [p] ∈ �k
m . Since C(p) = {−p} for p ∈ Sk

m and [p] = [−p]
for even m as well as for odd m if p is not regular, and, since p,−p are not in optimal
position for odd m if p is regular, we have that Cquot([p]) = ∅. The third assertion
follows from the fact that [p] = [−p] for all [p] ∈ R�k

m . ��

Next we collect consequences of the isometric Lie group action, see Bredon (1972).

(A) With the isotropy group Ip = {g ∈ G : gp = p} for p ∈ M , every orbit carries
the natural structure of a coset space [p] ∼= G/Ip. Moreover, p′ ∈ M is of orbit
type (G/Ip) if Ip′ = gIpg−1 = Igp for a suitable g ∈ G. If Ip ⊂ Igp′ for
suitable g ∈ G then p′ is of lower orbit type than p and p is of higher orbit type
than p′.

(B) The pre-shapes of equal orbit type M (Ip) :={p′ ∈ M : p′ is of orbit type (G/Ip)}
and the corresponding shapes Q(Ip) := {[p′] : p′ ∈ M (Ip)} are manifolds in M
and Q, respectively. Moreover, for q ∈ Q denote by Q(q) the shapes of higher
orbit type.

(C) The orthogonal complement Hp M in Tp M of the tangent space Tp[p] along the
orbit is called the horizontal space: Tp M = Tp[p] ⊕ Hp M .

(D) The Slice Theorem states that every p ∈ M has a tubular neighborhood [p] ⊂
U ⊂ M such that with a suitable subset D ⊂ Hp M the twisted product
expp D ×Ip G is diffeomorphic with U . Here, the twisted product is the natural
topological quotient of the product space expp D × G modulo the equivalence

(expp v, g) ∼Ip (expp v
′, g′) ⇔ ∃h ∈ Ip such that v′ = dhv, g′ = gh−1.

We then say that the tubular neighborhood U admits a slice expp D via U ∼=
expp D ×Ip G.

(E) Every p ∈ M has a tubular neighborhood U of p that admits a slice expp D such
that every p′ ∈ expp D is in optimal position to p. Moreover, for any tubular
neighborhood U admitting a slice expp D, all points p′ ∈ U are of orbit type
higher than or equal to the orbit type of p and only finitely many orbit types
occur in U . If p is regular, i.e. of maximal orbit type, then the product is trivial:
expp D ×Ip G ∼= expp D × G/Ip.
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Finally let us extend the following uniqueness property for the intrinsic distance

to the Ziezold distance. The differential of the mapping f p′
int : M \ C(p′) → [0,∞)

defined by f p′
int (p) = dM (p, expp p′)2 is given by d f p′

int (p) = −2v with v = exp−1
p p′

(cf. Kobayashi and Nomizu 1969, p. 110; Karcher 1977). Hence, we have for p1, p2 ∈
M \ C(p) that

d f p1
int (p) = d f p2

int (p) ⇔ p1 = p2. (4)

In view of the extrinsic distance let f p′
ext : M \ C(p′) → [0,∞) be defined by

f p′
ext(p) = ‖p − p′‖2 = ‖p − expp(exp−1

p p′)‖2. Mimicking (4) introduce the follow-
ing condition

d f p1
ext (p) = d f p2

ext (p) ⇔ p1 = p2 (5)

for p1, p2 ∈ M \ C(p).

Remark 3 (5) is valid on closed half spheres since on the unit sphere

d f p′
ext(p) = −2

v

‖v‖ sin(‖v‖) with v = exp−1
p p′.

4.2 A measurable horizontal lift

To establish the stability of means in Theorem 5 in the following Sect. 4.3, here we lift
a random shape X from Q horizontally to a random pre-shape Y on M . In order to do
so we need to guarantee the measurability of the horizontal lift in Theorem 3 below,
the proof of which can be found in the Appendix.

Before continuing, let us consider a simple example for illustration. Suppose that
G = S1 ⊂ C acts on M = C by complex scalar multiplication. Then [0,∞) ∼=
Q = M/G having the two orbit types (S1/I0) = {1} and (S1/I1) = S1 gives rise to
Q(I0) = {0} and Q(I1) = (0,∞). Obviously, M admits a global slice via the polar
decomposition [0,∞)×S1 S1 = {0}∪(

(0,∞)×S1
) ∼= M about 0 ∈ M (the Riemann-

ian exponential is the identity if T0C is identified with C). Here, X can be identified
with its horizontal lift Y to the global slice [0,∞) ⊂ M . If, say, X is uniformly dis-
tributed on [1, 2] then P{X ∈ Q(I1)} > 0. In this case the stability theorem states the
obvious fact that 0 ∈ Q(I0) cannot be a mean of X .

Definition 4 Call a measurable subset L ⊂ M a measurable horizontal lift of a mea-
surable subset R of M/G in optimal position to p ∈ M if

the canonical projection L → R ⊂ M/G is surjective,
every p′ ∈ L is in optimal position to p,
every orbit [p′] of p′ ∈ L meets L once.

Theorem 3 Let p ∈ [p] ∈ Q and A ⊂ Q countable. Then there is a measurable
horizontal lift L of Q([p]) ∪ A in optimal position to p.
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Theorem 4 Assume that X is a random shape on Q and that there are p ∈ M and
A ⊂ Q countable such that X is supported by

(

Q([p]) ∪ A
) \ Cquot([p]). With a mea-

surable horizontal lift L of
(

Q([p]) ∪ A
) \ Cquot([p]) in optimal position to p define

the random element Y on L ⊂ M by π ◦ Y = X.

(i) If [p] is an intrinsic mean of X on Q, then p is an intrinsic mean of Y on M
and

E(exp−1
p Y ) = 0.

(ii) If [p] is a Ziezold mean of X on Q and optimal positioning is invariant, then p
is an extrinsic mean of Y on M and

E
(

d f Y
ext(p)

) = 0.

(iii) If [p] is a Procrustean mean of X on Q and optimal positioning is invariant,
then p is a residual mean of Y on M.

Proof Suppose that [p] is an intrinsic mean of X . If p were not an intrinsic mean of
Y , there would be some M � p′ �= p leading to the contradiction

E
(

dQ([p′], X)2
) = E

(

dM (p
′,Y )2

)

< E
(

dM (p,Y )2
) = E

(

dQ([p], X)2
)

.

Hence, p is an intrinsic mean of Y . Replacing dQ by ρ(z)Q and dM by the Euclidean
distance gives the assertion for Ziezold and extrinsic means, respectively; and, using
the Procrustean distance ρ(p)

Q on Q as well as the residual distance ρ(r)M on M gives
the assertion for Procrustean and residual means, respectively.

For intrinsic means p ∈ M , the necessary condition E
(

exp−1
p Y

) = 0 is developed
in Kobayashi and Nomizu (1969, p. 110), cf. also Karcher (1977) and Kendall (1990,
p. 395), which yields the asserted equality in (i). By definition, the analog condition
for an extrinsic mean p ∈ M is E

(

d f Y
ext(p)

) = 0 which is the asserted equality in (ii)
completing the proof. ��
Remark 4 Since the maximal intrinsic distance on �k

m and R�k
m is

π

2
= max

x,y∈Sk
m

min
g∈SO(m)

arccos
(

tr(gxyT )
) = max

x,y∈Sk
m

min
g∈O(m)

arccos
(

tr(gxyT )
)

,

taking into account Remark 3, Condition (5) is satisfied for any horizontal lift in
optimal position.

4.3 Manifold stability

The proof of the following central theorem is deferred to the Appendix.
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Theorem 5 Assume that X is a random shape on Q, p ∈ M and that A ⊂ Q is count-
able such that X is supported by

(

Q([p]) ∪ A
) \ Cquot([p]) and let p′ ∈ [p′] ∈ Q([p]).

If P{X ∈ Q(Ip′ )} �= 0 and if either [p] is

(i) an intrinsic mean of X or
(ii) a Ziezold mean of X while optimal positioning is invariant and (5) is valid,

then p′ is of lower orbit type than p.

We have at once the following Corollary.

Corollary 1 (Manifold stability theorem) Suppose that X is a random shape on Q
that is supported by Q \ Cquot([p]) for some [p] ∈ Q assuming the manifold part
Q∗ with non-zero probability and having at most countably many point masses on the
singular part. Then [p] is regular if it is an intrinsic mean of X, or if it is a Ziezold
mean, optimal positioning is invariant and (5) is valid.

Since Q \ Q(q) is a null set in Q for every q ∈ Q (cf. Bredon 1972, p. 184) and so is
Cquot(q)—by (3) it is contained in the projection of a null set—we have the following
practical application.

Corollary 2 Suppose that a random shape on Q is absolutely continuously distrib-
uted with respect to the projection of the Riemannian volume on M. Then intrinsic
and Ziezold population means are regular; the latter if optimal positioning is invariant
and (5) is valid. In addition, intrinsic and Ziezold sample means are a.s. regular.

4.4 An example for non-stability of Procrustean means

Consider a random configuration Z ∈ F4
3 assuming the collinear quadrangle q1 with

probability 2/3 and the planar quadrangle q2 with probability 1/3 where

q1 =
⎛

⎝

1 −1 0 0
0 0 0 0
0 0 0 0

⎞

⎠ , q2 =
⎛

⎝

1 1 −2 0
1√
2

1√
2

1√
2

− 3√
2

0 0 0 0

⎞

⎠ .

Corresponding pre-shapes in optimal position w.r.t. the action of SO(3) and O(3) are
given by

p1 =
⎛

⎝

1 0 0
0 0 0
0 0 0

⎞

⎠ , p2 = 1√
2

⎛

⎝

0 1 0
0 0 1
0 0 0

⎞

⎠ .

Note that [p2] has regular shape in (�4
3)

∗. The full Procrustes mean of [Z ] ∈ �4
3 is

easily computed to have the singular shape [p1] ∈ �4
3 \ (�4

3)
∗, see Fig. 2 as well as

Examples 1 and Sect. 7.2, cf. also Remark 1.
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5 Extrinsic means for Kendall’s (reflection) shape spaces

Let us recall the well known Veronese–Whitney embedding for Kendall’s planar shape
spaces�k

2 . Identify Fk
2 with C

k−1\{0} such that every landmark column corresponds to
a complex number. This means in particular that z ∈ C

k−1 is a complex row(!)-vector.
With the Hermitian conjugate a∗ = (akj ) of a complex matrix a = (a jk) the pre-shape
sphere Sk

2 is identified with {z ∈ C
k−1 : zz∗ = 1} on which SO(2) identified with

S1 = {λ ∈ C : |λ| = 1} acts by complex scalar multiplication. Then, the well-known
Hopf-Fibration mapping to complex projective space gives �k

2 = Sk
2/S1 = CPk−2.

Moreover, denoting with M(k − 1, k − 1,C) all complex (k − 1)× (k − 1) matrices,
the Veronese–Whitney embedding is given by

Sk
2/S1 → {a ∈ M(k − 1, k − 1,C) : a∗ = a} , [z] 	→ z∗z.

Remark 5 The Procrustean metric of �k
2 is isometric with the Euclidean metric of

M(k − 1, k − 1,C) since we have 〈z, w〉 = Re(zw∗) for z, w ∈ Sk
2 and hence,

d(p)
�k

2
([z], [w]) = √

1 − wz∗zw∗ = ‖w∗w − z∗z‖/√2.

The idea of the Veronese–Whitney embedding can be carried to the general case
of shapes of arbitrary dimension m ≥ 2. Even though the embedding given below is
apt only for reflection shape space it can be applied to practical situations in similarity
shape analysis whenever the geometrical objects considered have a common orienta-
tion. As above, the number k of landmarks is essential and will be considered fixed
throughout this section; the dimension 1 ≤ m < k, however, is lost in the embedding
and needs to be retrieved by projection. To this end recall the embedding of Sk

j in Sk
m

(1 ≤ j ≤ m) in (1) which gives rise to a canonical embedding of R�m
j in R�k

m .
Moreover, consider the strata

(R�k
m)

j := {[x] ∈ R�k
m : rank(x) = j}, (�k

m)
j := {[x] ∈ �k

m : rank(x) = j}

for j = 1, . . . ,m, each of which carries a canonical manifold structure; due to the
above embedding, (R�k

m)
j will be identified with (R�k

j )
j such that

R�k
m =

m
⋃

j=1

(R�k
j )

j ,

and (R�k
m)

j with (�k
m)

j in case of j < m. At this point we note that SO(m) is
connected, while O(m) is not; and the consequences for the respective manifold parts,
i.e. points of maximal orbit type:

(�k
m)

∗ = (�k
m)

m−1 ∪ (�k
m)

m , (R�k
m)

∗ = (R�k
m)

m . (6)

Similarly, we have a stratifiction
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1242 S. F. Huckemann

P :=
{

a ∈ M(k − 1, k − 1) : a = aT ≥ 0, tr(a) = 1
}

=
k−1
⋃

j=1

P j

of a compact flat convex space P with non-flat manifolds P j := {a ∈ P : rank(a) =
j} ( j = 1, . . . , k − 1) , all embedded in M(k − 1, k − 1). The Schoenberg map
s : R�k

m → P is then defined on each stratum by

s|(R�k
m)

j =: s j : (R�k
m)

j → P j , [x] 	→ xT x .

For x ∈ Sk
j recall the tangent space decomposition Tx Sk

j = Tx [x]⊕ Hx Sk
j into the ver-

tical tangent space along the orbit [x] and its orthogonal complement the horizontal
tangent space. For x ∈ (Sk

j )
j identify canonically (cf. Kendall et al. 1999, p. 109):

T[x](R�k
j )

j ∼= Hx Sk
j = {w ∈ M( j, k − 1) : tr(wxT ) = 0, wxT = xwT }.

Then the assertion of the following Theorem condenses results of Bandulasiri and
Patrangenaru (2005), cf. also Dryden et al. (2008).

Theorem 6 Each s j is a diffeomorphism with inverse (s j )−1(a) = [(√λuT )
j
1] where

a = uλuT with u ∈ O(k − 1), λ = diag(λ1, . . . , λm), and 0 = λ j+1 = . . . = λk−1 in

case of j < k − 1. Here, (a) j
1 denotes the matrix obtained from taking only the first j

rows from a. For x ∈ Sk
j and w ∈ Hx Sk

j
∼= T[x](R�k

j )
j the derivative is given by

d(s j )[x]w = xTw + wT x .

Remark 6 In contrast to the Veronese-Whitney embedding, the Schoenberg embed-
ding is not isometric as the example of

x =
(

cosφ 0
0 sin φ

)

, w1 =
(

sin φ 0
0 − cosφ

)

, w2 =
(

0 cosφ
sin φ 0

)

,

teaches: ‖xTw1 + wT
1 x‖ = √

2 2| cosφ sin φ|, ‖xTw2 + wT
2 x‖ = √

2.

Since P is bounded, convex and Euclidean, the classical expectation E(X T X) ∈ P j

for some 1 ≤ j ≤ k − 1 of the Schoenberg image X T X of an arbitrary random reflec-
tion shape [X ] ∈ R�k

m is well defined. Then we have at once the following relation
between the rank of the Euclidean mean and increasing sample size.

Theorem 7 Suppose that a random reflection shape [X ] ∈ R�k
m is distributed abso-

lutely continuous w.r.t. the projection of the spherical volume on Sk
m. Then

E(X T X) ∈ Pk−1 and
1

n

n
∑

i=1

X T
i Xi ∈ Pmin(nm,k−1) a.s.

for every i.i.d. sample X1, . . . , Xn ∼ X.
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Hence, in statistical settings involving a higher number of landmarks, a sufficiently
well behaved projection of a high rank Euclidean mean onto lower rank Pr ∼= (�k

r )
r ,

usually m = r , is to be employed, giving at once a mean shape satisfying strong
consistency and a CLT. Here, unlike to intrinsic or Procrustes analysis, the dimension
r chosen is crucial for the dimensionality of the mean obtained.

The orthogonal projection

φr : ⋃k−1
i=r P i → Pr , a 	→ argminb∈Pr tr

(

(a − b)2
)

giving the set of extrinsic Schoenberg means has been computed by Bhattacharya
(2008):

Theorem 8 For 1 ≤ r ≤ k − 1, a = uλuT ∈ P with u ∈ O(k − 1), λ =
diag(λ1, . . . , λm), λ1 ≥ · · · ≥ λk−1 and λr > 0 the orthogonal projection onto
Pr is given by φr (a) = uμuT with μ = diag(μ1, . . . , μr , 0, . . . , 0),

μi = λi + 1

r
− λr (i = 1, . . . , r)

and λr = 1
r

∑r
i=1 λi ≤ 1

r which is uniquely determined if and only if λr > λr+1.

With the notation of Theorem 8, a non-orthogonal central projectionψr (a) = uνuT

equally well and uniquely determined has been proposed by Dryden et al. (2008) with

ν = diag(ν1, . . . , νr , 0, . . . , 0), νi = λi

rλr
(i = 1, . . . , r).

Orthogonal and central projection are depicted in Fig. 1.

Fig. 1 Projections (if existent) of two points (crosses) in the λ-plane to the open line segment � =
{(λ1, λ2) : λ1 + λ2 = 1, λ1, λ2 > 0}. The dotted line gives the central projections (denoted by stars)
which is well defined for all symmetric, positive definite matrices (corresponding to the first open quad-
rant), the dashed line gives the orthogonal projection (circle) which is well defined in the triangle below�

(corresponding to P) and above � in an open strip. In particular, it exists not for the right point
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6 Testing, local effects of curvature and loci

In this section we assume that a manifold stratum M supporting a random element X
is isometrically embedded in a Euclidean space R

D of dimension D > 0. With the
orthogonal projection 
 : R

D → M from Sect. 3 and the Riemannian exponential
expp of M at p we have the

intrinsic tangent space coordinate exp−1
p X and the

residual tangent space coordinate d
p(X − p) ,

respectively, of X at p, if existent.

6.1 The two sample test for equality of means

Let φp denote a local chart of M near p. E.g. φp can be one of the above tangent space
coordinates. The following Theorem is taken from Huckemann (2011), cf. also Jupp
(1988), Hendriks and Landsman (1996), and Bhattacharya and Patrangenaru (2005).

Theorem 9 (CLT for Fréchetρ-means) Letμ be a unique Fréchetρ-mean of a random
M-valued variable X. If X → ρ2(X, μ) is twice continuously differentiable on the
support of X, if first moments of the second derivatives and the second moments of the
first derivatives of p → ρ(X, p)2 exist and are continuous near p = μ and if μn is a
measurable selection of the sample mean set, then there are symmetric semi-positive
definite matrices A, � such that

√
n Aφμ(μn) → N (0, �) in distribution as n → ∞.

For the following suppose that X1, . . . , Xn
i.i.d∼ X and Y1, . . . ,Ym

i.i.d∼ Y are
independent samples on M with unique Fréchet ρ-means μX and μY , respectively
(m, n > 0). Moreover assume that under the null hypothesis μX = μY = μ the
support of X and Y is contained in the domain of definition of φμ. Then under the
hypotheses of Theorem 9, if A has maximal rank (which is the case in most realistic
situations) the classical Hotelling T 2 statistic T 2(n,m) ofφμn+m (X1), . . . , φμn+m (Xn)

andφμn+m (Y1), . . . , φμn+m (Ym) is well defined for n+m sufficiently large whereμn+m

denotes a measurable selection of a pooled Fréchet ρ-sample mean (e.g. Anderson
2003, Chapter 5). Finally, we assume that there is a constant C > 0 such that ‖φp(X)−
φμ(X)‖, ‖φp(Y ) − φμ(Y )‖ ≤ C‖p − μ‖ a.s. for p near μ. This latter condition is
fulfilled for intrinsic and extrinsic coordinates if X and Y have compact support.

Theorem 10 (Two-sample test) Under the above hypotheses for n,m → ∞, T 2(n,m)
is asymptotically Hotelling T 2-distributed if either n/m → 1 or if COV(φμ(X)) =
COV(φμ(Y )).

Proof Let P1, . . . , Pn+m for X1, . . . , Xn,Y1, . . . ,Ym and consider the Euclidean data
Z (n,m)j = φμn+m (Pj ), Z j = φμ(Pj ) for j = 1, . . . , n + m, n,m ∈ N. Since the
Z j are independent (Lehmann 1997, p. 462) yields that the corresponding Hotelling
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T 2-statistic is asymptotically Hotelling T 2 distributed under either condition of the
Theorem. Since Z (n,m)j = Z j + Op

(

1/
√

n
)

by Theorem 9 and the uniform Lips-

chitz condition on p → φp(X), the same holds for the Hotelling T 2 statistic T (n,m)

obtained from the Z (n,m)j . ��
The hypotheses of Theorems 9 and 10 are fulfilled if X,Y have compact support

not containing the cut locus C(μ) and if φ is an intrinsic or extrinsic tangent space
coordinate.

6.2 Finite power of tests and tangent space coordinates

With the above setup, assume that μ ∈ M is a unique mean of X . Moreover, we
assume that M is curved near μ, i.e. that there is c ∈ R

D , the center of the osculatory
circle touching the geodesic segment in M from X to μ at μwith radius r . If Xr is the
orthogonal projection of X to that circle, then X = Xr + O(‖X − μ‖3). Moreover,
with

cosα =
〈

X − c

‖X − c‖ ,
μ− c

r

〉

= 1

r2 〈Xr − c, μ− c〉 + O(‖X − μ‖3)

we have the residual tangent space coordinate

v = X − c − μ− c

r
‖X − c‖ cosα = Xr − c − (μ− c) cosα + O(‖X − μ‖3)

having squared length ‖v‖2 = r2 sin α2 + O(‖X −μ‖3). By isometry of the embed-
ding, the intrinsic tangent space coordinate is given by

exp−1
μ X = rα

‖v‖ v + O(‖X − μ‖3).

With the component

ν = μ− c − ‖X − c‖μ− c

r
cosα = (μ− c)(1 − cosα)+ O(‖X − μ‖3)

of X normal to the above mentioned geodesic segment of squared length ‖ν‖2 =
r2(1−cosα)2+O(‖X−μ‖3), we obtain‖ exp−1

μ X‖2 = ‖v‖2+‖ν‖2+O(‖X−μ‖3) ,

since

(1 − cosα)2 + sin2 α = 2(1 − cosα) = α2 + 2
α4

4! + · · ·

and α = O(‖X − μ‖). In consequence we have
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Remark 7 In approximation, the variation of intrinsic tangent space coordinates is
the sum of the variation ‖v‖2 of residual tangent space coordinates and the variation
normal to it. In particular due to Pythagoras’ theorem,

‖ exp−1
μ X‖2 ≥ ‖v‖2 + ‖ν‖2

whenver the l.h.s. is defined. Since for a two-sample test for equality of means (cf.
Sect. 6.1) even under the alternative, the means in the normal coordinate tend to agree
with one another (especially for n = m), a higher power for tests based on intrinsic
means can be expected when solely residual tangent space coordinates obtained from
an isometric embedding are used rather than intrinsic tangent space coordinates. This

effect, however, is only of order n− 3
2 (cf. Hendriks and Landsman 1996).

Note that the natural tangent space coordinates for Ziezold means are residual.

A simulated classification example in Sect. 7 illustrates this effect.

6.3 The 1:3-property for spherical and Kendall shape means

In this section M = SD−1 ⊂ R
D is the (D−1)-dimensional unit-hypersphere embed-

ded isometrically in Euclidean D-dimensional space. The orthogonal projection 
 :
R

D → SD−1 : p → p
‖p‖ is well defined except for the origin p = 0, and the normal

space at p ∈ SD−1 is spanned by p itself. In consequence, a random point X on SD−1

has

d
p(X − p) = X − p cosα, exp−1
p (X) =

{

α
sin α d
p(X − p) for X �= p
0 for X = p

as residual and intrinsic, resp., tangent space coordinate at −X �= p ∈ SD−1 where
cosα = 〈X, p〉, α ∈ [0, π).
Theorem 11 If X a.s. is contained in an open half sphere, it has a unique intrinsic
mean which is assumed in the interior of that half sphere.

Proof Below we show that every intrinsic mean necessarily lies within the interior
of the half sphere. Then, Kendall (1990, Theorem 7.3) yields uniqueness. W.l.o.g. let
X = (sin φ, x2, . . . , xn) such that P{sin φ ≤ 0} = 0 = 1 − P{sin φ > 0} and assume
that p = (sinψ, p2, . . . , pn) ∈ SD−1 is an intrinsic mean, −π/2 ≤ φ,ψ ≤ π/2.
Moreover let p′ = (sin(|ψ |), p2, . . . , pn). Since

E

(

‖ exp−1
p (X)‖2

)

= E

(

arccos2〈p, X〉
)

= E

⎛

⎝arccos2

⎛

⎝sinψ sin φ +
n

∑

j=2

p j x j

⎞

⎠

⎞

⎠

≥ E

(

‖ exp−1
p′ (X)‖2

)
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with equality if and only if sin |ψ | = sinψ , this can only happen for sinψ ≥ 0. Now,
suppose that p = (0, p2, . . . , pn) is an intrinsic mean. For small deterministic ψ ≥ 0
consider p(ψ) = (sinψ, p1 cosψ, . . . , pn cosψ). Then

E

(

‖ exp−1
p(ψ)(X)‖2

)

= E

⎛

⎝arccos2

⎛

⎝sinψ sin φ + cosψ
n

∑

j=2

p j x j

⎞

⎠

⎞

⎠

= E

(

‖ exp−1
p (X)‖2

)

− C1ψ + O(ψ2)

with C1 > 0 since P{sin φ > 0} > 0. In consequence, p cannot be an intrinsic mean.
Hence, we have shown that every intrinsic mean is contained in the interior of the half
sphere. ��
Remark 8 For the special case of spheres, this is a simple proof for the general the-
orem recently established by Afsari (2011) which extends results of Karcher (1977),
Kendall (1990) and Le (2001, 2004), stating that the intrinsic mean on a general mani-
fold is unique if among others the support of the distribution is contained in a geodesic
half ball.

The following theorem characterizes the three spherical means.

Theorem 12 Let X be a random point on SD−1. Then x (e) ∈ SD−1 is the unique
extrinsic mean if and only if the Euclidean mean E(X) = ∫

SD−1 X d PX is non-zero.
In that case

λ(e)x (e) = E(X)

with λ(e) = ‖E(X)‖ > 0. Moreover, there are suitable λ(r) > 0 and λ(i) > 0 such
that every residual mean x (r) ∈ SD−1 satisfies

λ(r)x (r) = E
(〈X, x (r)〉 X

)

,

and every intrinsic mean x (i) ∈ SD−1 satisfies

λ(i)x (i) = E

(

arccos〈X, x (i)〉
√

1 − 〈X, x (i)〉2
X

)

.

In the last case we additionally require that E

(

arccos〈X,x (i)〉√
1−〈X,x (i)〉2

〈X, x (i)〉
)

> 0 which is

in particular the case if X is a.s. contained in an open half sphere.

Proof The assertions for the extrinsic mean are well known from Hendriks et al.
(1996). The second assertion for residual means follows from minimization of

∫

SD−1
‖p − 〈p, x〉x‖2 d PX (p) = 1 −

∫

SD−1
〈p, x〉2 d PX (p)
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1248 S. F. Huckemann

with respect to x ∈ R
D under the constraining condition ‖x‖ = 1. Using a Lagrange

ansatz this leads to the necessary condition

∫

SD−1
〈p, x〉 p d PX (p) = λx

with a Lagrange multiplier λ of value E(〈X, x〉2) which is positive unless X is sup-
ported by the hypersphere orthogonal to x . In that case, by Proposition 2, x cannot be
a residual mean of X , as every residual mean is as well contained in that hypersphere.
Hence, we have λ(r) := λ > 0.

The Lagrange method applied to

∫

SD−1
‖ exp−1

x (p)‖2 d PX (p) =
∫

SD−1
arccos2(〈p, x〉) d PX (p)

taking into account Theorem 11, insuring that x (i) is in the open half sphere that
contatins X a.s., yields the third assertion on the intrinsic mean. ��

Recall that residual means are eigenvectors to the largest eigenvalue of the matrix
E(X X T ). As such, they rather reflect the mode than the classical mean of a distribution:

Example 1 Consider γ ∈ (0, π) and a random variable X on the unit circle {eiθ : θ ∈
[0, 2π)} which takes the value 1 with probability 2/3 and eiγ with probability 1/3.
Then, explicit computation gives the unique intrinsic and extrinsic mean as well as the
two residual means

x (i) = ei γ3 , x (e) = ei arctan sin γ
2+cos γ , x (r) = ± ei 1

2 arctan sin(2γ )
2+cos(2γ ) .

Figure 2 shows the case γ = π
2 .

In contrast to Fig. 2, one may assume in many practical applications that the mutual
distances of the unique intrinsic mean x (i), the unique extrinsic mean x (e) and the
unique residual mean x (r0) closer to x (e) are rather small, namely of the same order as
the squared proximity of the modulus ‖E(X)‖ of the Euclidean mean to 1 (cf. Table 2).
We will use the following condition

‖x (e) − x (r0)‖ , ‖x (e) − x (i)‖ = O
(

(1 − ‖ E(X)‖)2) (7)

with the concentration parameter 1 − ‖ E(X)‖.

Fig. 2 Means on a circle of a
distribution taking the upper
dotted value with probability
1/3 and the lower right dotted
value with probability 2/3. The
latter happens to be one of the
two residual means

intrinsic mean
extrinsic mean

residual mean
Euclidean mean

residual mean
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Table 2 Mutual shape distances between intrinsic mean μ(i), Ziezold mean μ(z) and full Procrustes mean
μ(p) for various data sets

Data set d
�k

m
(μ(i), μ(z)) d

�k
m
(μ(p), μ(z)) d

�k
m
(μ(p), μ(i)) (1 − ‖ E(Y )‖)2

Poplar leaves 6.05e−05 1.83e−04 2.44e−04 5.24e−05

Digits ‘3’ 0.00154 0.00452 0.00605 0.00155

Macaque skulls 1.96e−05 5.89e−05 7.85e−05 7.59e−06

Iron age brooches 0.000578 0.001713 0.002291 0.000217

Last column: the concentration parameter from (7), cf. also Corollary 4

Corollary 3 Under condition (7), if all three means are unique, then the great circu-
lar segment between the residual mean x (r0) closer to the extrinsic mean x (e) and the
intrinsic mean x (i) is divided by the extrinsic mean in approximation by the ratio 1:3:

x (r0) = ‖ E(X)‖
λ(r)

(

x (e) − E
(〈X − x (e), X〉 X

)

‖ E(X)‖ + O
(

(1 − ‖ E(X)‖)2)
)

x (i) = ‖ E(X)‖
λ(i)

(

x (e) + 1

3

E
(〈X − x (e), X〉 X

)

‖ E(X)‖ + O
(

(1 − ‖ E(X)‖)2)
)

with λ(i) and λ(r) from Theorem 12.

Proof For any x, p ∈ SD−1 decompose p − x = p − 〈x, p〉 x − z(x, p)x with
z(x, p) = 1−〈x, p〉, the length of the part of p normal to the tangent space at x . Note
that E

(

z(x (e), X
) = 1 − ‖ E(X)‖. Now, under condition (7), verify the first assertion

using Theorem 12:

x (r0) = 1

λ(r)

(

E(X)− E
(

z(x (r0), X)X
)

)

.

On the other hand since

arccos(1 − z)
√

1 − (1 − z)2
= 1 + 1

3
z + 2

15
z2 + . . .

we obtain with the same argument the second assertion

x (i) = 1

λ(i)
E

(

arccos〈X, x (i)〉
√

1 − 〈X, x (i)〉2
X

)

= 1

λ(i)

(

E(X)+ 1

3
E

(

z(x (i), X) X
)

+ 2

15
E

(

z(x (i), X)2 X
)

+ . . .

)

= ‖ E(X)‖
λ(i)

(

x (e) + 1

3‖ E(X)‖ E

(

z(x (e), X) X
)

+ O
(

(1 − ‖ E(X)‖)2)
)

.

��
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1250 S. F. Huckemann

Remark 9 The tangent vector defining the great circle approximately connecting the
three means is obtained from correcting with the expected normal component of any
of the means. As numerical experiments show, this great circle is different from the
first principal component geodesic as defined in Huckemann and Ziezold (2006).

Recall the following connection between top and quotient space means (cf. Theorem 4).

Remark 10 Let p ∈ Sk
m such that a random shape X on�k

m is supported by (�k
m)
([p])∪

A with A ⊂ �k
m at most countable. By Lemma 1 and Theorem 4, (�k

m)
([p])∪ A admits

a horizontal measurable lift L ⊂ Sk
m in optimal position to p ∈ Sk

m . Define the random
variable Y on L ⊂ Sk

m by π ◦ Y = X . Then we have that

if [p] is an intrinsic mean of X then p is an intrinsic mean of Y ,
if [p] is a full Procrustean mean of X then p is a residual mean of Y ,
if [p] is a Ziezold mean of X then p is an extrinsic mean of Y .

In consequence, Corollary 3 extends at once to Kendall’s shape spaces. Generalized
geodesics referred to below are an extension of the concept of geodesics to non-man-
ifold shape spaces (cf. Huckemann et al. 2010b).

Corollary 4 Suppose that a random shape X on �k
m with unique intrinsic mean

μ(i), unique Ziezold mean μ(z) and unique Procrustean mean μ(p) is supported by
R = (�k

m)
(μ(i)) ∩ (�k

m)
(μ(z)) ∩ (�k

m)
(μ(p)). If the means are sufficiently close to each

other in the sense of

d�k
m
(μ(z) − μ(p)) , d�k

m
(μ(z) − μ(i)) = O

(

(1 − ‖ E(Y )‖)2)

with the random pre-shape Y on a horizontal lift L of R defined by X = π ◦ Y , then
the generalized geodesic segment between μ(i) and μ(p) is approximately divided by
μ(z) by the ratio 1:3 with an error of order O

(

(1 − ‖ E(Y )‖)2).

7 Examples: exemplary datasets and simulations

All of the results of this section are based on datasets and simulations, i.e., all means
considered are sample means. An R-package for the computation of all means includ-
ing the poplar leaves data can be found under Huckemann (2010).

7.1 The 1:3 property

In the first example we illustrate Corollary 4 on the basis of four classical data sets:

Poplar leaves: contains 104 quadrangular planar shapes extracted from poplar
leaves in a joint collaboration with Institute for Forest Biometry
and Informatics at the University of Göttingen (cf. Huckemann
2010; Huckemann et al. 2010a).

Digits ‘3’: contains 30 planar shapes with 13 landmarks each, extracted
from handwritten digits ’3’ (cf. Dryden and Mardia 1998, p.
318).
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−0.00025 −0.00015 −0.00005

−
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−
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−

05
means of 104 poplar leaf shapes

−0.008 −0.004 0.000−
0.

00
3

0.
00

0
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00
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means of 30 digits ’3’

−8e−05 −6e−05 −4e−05 −2e−05 0e+00

−
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−
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+
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−
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means of 18 macaque skulls

−0.0020 −0.0010 0.0000

−
5e

−
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5e
−

04

means of 28 iron age brooches

Fig. 3 Depicting shape means for four typical data sets: intrinsic (star), Ziezold (circle) and full Procrustes
(diamond) projected to the tangent space at the intrinsic mean. The cross divides the generalized geodesic
segment joining the intrinsic with the full Procrustes mean by the ratio 1:3

Macaque skulls: contains three-dimensional shapes with 7 landmarks each, of 18
macaque skulls (cf. Dryden and Mardia 1998, p. 16).

Iron age brooches: contains 28 three-dimensional tetrahedral shapes of iron age
brooches (cf. Small 1996, Section 3.5).

As clearly visible from Fig. 3 and Table 2, the approximation of Corollary 4 for
two- and three-dimensional shapes is highly accurate for data of little dispersion (the
macaque skull data) and still fairly accurate for highly dispersed data (the digits ‘3’
data).

7.2 “Partial Blindness” of full Procrustes and Schoenberg means

In the second example we illustrate an effect of “blindness to data” of full Procrus-
tes means and Schoenberg means. The former blindness is due to the affinity of the
Procrustes mean to the mode in conjunction with curvature, the latter is due to non-
isometry of the Schoenberg embedding. While the former effect occurs only for some
highly dispersed data when the analog of condition (7) is violated, the latter effect is
local in nature and may occur for concentrated data as well.

Reenacting the situation of Sect. 4.4, cf. also Example 1 and Fig. 2, the shapes of
the triangles q1 and q2 in Fig. 4 are almost maximally remote. Since the mode q1 is
assumed twice and q2 only once, the full Procrustes mean is nearly blind to q2.
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1252 S. F. Huckemann

Fig. 4 A data set of three planar
triangles (top row) with its
corresponding intrinsic mean
(bottom left), Ziezold mean
(bottom center) and full
Procrustes mean (bottom right)

q1 q1 q2

intrinsic
 mean

Ziezold
 mean

Procrustes
 mean

Fig. 5 Planar triangles
q1 = x cosβ − w2 sin β,
q2 = x cosβ + w2 sin β and
q = x cosβ + w1 sin β with
x, w1, w2 from Remark 6,
φ = 0.05, β = 0.3 (top row).
Intrinsic means (middle row) of
sample (q1, q2) (left) and
(q1, q2, q) (right). Schoenberg
means (bottom row) of sample
(q1, q2) (left) and (q1, q2, q)
(right)

q1 q2 q

intrinsic
 mean (q1,q2)

intrinsic
 mean (q1,q2,q)

Schoenberg
 mean (q1,q2)

Schoenberg
 mean (q1,q2,q)

Even though Schoenberg means have been introduced to tackle 3D shapes, the
effect of “blindness” can be well illustrated already for 2D. To this end consider
x = x(φ), w1 = w1(φ) and w2 = w2(φ) as introduced in Remark 6. Along the
horizontal geodesic through x with initial velocity w2 we pick two points q1 =
x cosβ +w2 sin β and q2 = x cosβ −w2 sin β. On the orthogonal horizontal geode-
sic through x with initial velocity w1 pick q = x cosβ ′ + w1 sin β ′. Recall from
Remark 6, that along that geodesic the derivative of the Schoenberg embedding
can be made arbitrarily small for φ near 0. Indeed, Fig. 5 illustrates that in contrast
to the intrinsic mean, the Schoenberg mean is “blind” to the strong collinearity of
q1 and q2.

7.3 Discrimination power

In the ultimate example we illustrate the consequences of the choice of tangent
space coordinates and the effect of the tendency of the Schoenberg mean to increase
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Fig. 6 Cube (left) and pyramid of varying height ε (right) for classification

Table 3 Percentage of correct classifications within 1,000 simulations each of 10 unit-cubes and 10 pyra-
mids determined by ε (which gives the height), where each landmark is independently corrupted by Gaussian
noise of variance σ 2 = 0.2 via a Hotelling T 2 test for equality of means to the significance level 0.05

ε Intrinsic mean with Intrinsic mean with Ziezold mean (%) Schoenberg mean (%)
intrinsic tangent space residual tangent space
coordinates (%) coordinates (%)

0.0 70 74 74 64
0.2 56 58 57 51
0.3 41 42 42 42

dimension by a classification simulation. To this end we apply a Hotelling T 2-test to
discriminate the shapes of 10 noisy samples of regular unit cubes from the shapes of
10 noisy samples of pyramids with top section chopped off, each with 8 landmarks,
given by the following configuration matrix

⎛

⎝

0 1 1+ε
2

1−ε
2 0 1 1+ε

2
1−ε

2
0 0 1−ε

2
1−ε

2 1 1 1+ε
2

1+ε
2

0 0 ε ε 0 0 ε ε

⎞

⎠

(cf. Fig. 6) determined by ε > 0. In the simulation, independent Gaussian noise is
added to each landmark measurement. Table 3 gives the percentages of correct classifi-
cations. As visible from Table 3, discriminating flattened pyramids (ε = 0) from cubes
(ε = 1) is achieved much better by employing intrinsic or Ziezold means rather than
Schoenberg means. This finding is in concord with Theorem 7: samples of size 10 of
two-dimensional configurations yield Euclidean means a.s. in P7 which are projected
to P3 to obtain Schoenberg means in�8

3 . In consequence, Schoenberg means of noisy
nearly two-dimensional pyramids are essentially three dimensional. With increased
height of the pyramid (ε > 0, i.e. for more pronounced third dimension and increased
proximity to the unit cube) this effect waynes and all means perform equally well (or
bad). Moreover in any case, intrinsic means with intrinsic tangent space coordinates
qualify less for shape discrimination than intrinsic means with residual tangent space
coordinates, cf. Remark 7. The latter (intrinsic means with residual tangent space
coordinates) are better or equally well behaved as Ziezold means (which naturally use
residual tangent space coordinates).
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Table 4 Average time (s) for the computation of means in �8
3 of sample size 20 on a PC with a 800 MHZ

CPU based on 1, 000 repetitions

Intrinsic mean Ziezold mean Schoenberg mean

0.24 0.18 0.04

In conclusion, we record the time for the computations of means in Table 4. While
Ziezold means compute in approximately 3/4 of the computational time for intrinsic
means, Schoenberg means are obtained approximately 6 times faster.

8 Discussion

By establishing stability results for intrinsic and Ziezold means on the manifold part
of a shape space, a gap in asymptotic theory for general non-manifold shape spaces
could be closed, now allowing for multi-sample tests of equality of intrinsic means
and Ziezold means. A similar stability assertion in general is false for Procrustean
means for low concentration. There is reason to believe, however, that it would be
true for higher concentration. Note that the argument applied to intrinsic and Ziezold
means fails for Procrustean means, since in contrast to the equations in Theorem 4 the
sum of Procrustes residuals is in general non-zero. Loosely speaking, the findings on
dimensionality condense to

• Procrustean means may decrease dimension by 2 or more,
• intrinsic and Ziezold means decrease dimension at most by 1, in particular, they

preserve regularity,
• Schoenberg means tend to increase up to the maximal dimension possible.

Owing to the proximity of Ziezold and intrinsic means on Kendall’s shape spaces
in most practical applications, taking into consideration that the former are compu-
tationally easier accessible (optimally positioning and Euclidean averaging in every
iteration step) than intrinsic means (optimally positioning and weighted averaging in
every iteration step), Ziezold means can be preferred over intrinsic means. They may
be even more preferred over intrinsic means, since Ziezold means naturally come with
residual tangent space coordinates which may allow in case of intrinsic means for a
higher finite power of tests than intrinsic tangent space coordinates.

Computationally much faster (not relying on iteration at all) are Schoenberg means
which are available for Kendall’s reflection shape spaces. As a drawback, however,
Schoenberg means seem less sensitive for dimensionality of configurations considered
than intrinsic or Ziezold means. In particular for problems involving small sample
sizes, n and a large number of parameters p as currently of high interest in statistical
applications, involving (nearly) degenerate data, Ziezold means may also be preferred
over Schoenberg means due to higher power of tests.

Finally, note that Ziezold means may be defined for the shape spaces of planar
curves introduced by Zahn and Roskies (1972), which are currently of interest, e.g.
Klassen et al. (2004) or Schmidt et al. (2006). Employing Ziezold means there, a com-
putational advantage greater than found here can be expected since the computation

123



On the meaning of mean shape 1255

of iterates of intrinsic means involves computations of geodesics which themselves
can only be found iteratively.

Appendix A: Proofs

Proof of Theorem 1. The assertion follows from Proposition 2, Remark 10 and the
fact that R�k

j ⊂ �k
m contains all shapes in �k

m of configurations of dimension up to
j , 1 ≤ j < m < k. ��

Proof of Theorem 2. Lemma 1 teaches that for Kendall’s shape spaces, all quotient
cut loci are void. Since for Ziezold means, Remark 2 provides invariant optimal posi-
tioning and Remark 3 provides the validity of (5), Corollary 1 applied to R�k

j as well

as to�k
m states that intrinsic and Ziezold means are also assumed on the manifold parts

of R�k
j and�k

m , respectively. In conjunction with Theorem 1, this gives the assertion.
��

Lemma 2 Let U ⊂ M be a tubular neighborhood about p ∈ M that admits a slice via
expp D ×Ip G ∼= U in optimal position to p. Then, there is a measurable horizontal
lift L ⊂ expp D of π(U ) in optimal position to p.

Proof If p is regular, then L = expp D has the desired properties. Now assume that
p is not of maximal orbit type. W.l.o.g. assume that D contains the closed ball B of
radius r > 0 with bounding sphere S = ∂B and that there are p1, . . . , pJ ∈ expp(S)

having the distinct orbit types occurring in S. S j denotes all points on S of orbit type
(G/Ip j ), j = 1, . . . , J , respectively. Observe that each S j is a manifold on which Ip

acts isometrically. Hence for every 1 ≤ j ≤ J , there is a finite (K j < ∞) or countable

(K j = ∞) sequence of tubular neighborhoods U j
k ⊂ S j covering S j , admitting trivial

slices via

expS j

p j
k

D j
k × Ip/I

p j
k

∼= U j
k , p j

k ∈ U j
k , 1 ≤ k ≤ K j .

Here, expS j

p j
k

denotes the Riemannian exponential of S j . Defining a disjoint sequence

˜U j
1 := U j

1 ,
˜U j

k+1 := U j
k+1 \ ˜U j

k for 1 ≤ k ≤ K j − 1

exhausting S j we obtain a corresponding sequence of disjoint measurable sets expS j

p j
k

˜D j
k

with

expS j

p j
k

˜D j
k × Ip/I

p j
k

∼= ˜U j
k , 1 ≤ k ≤ K j .
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Hence, setting

L j
k := expS j

p j
k

˜D j
k and L j :=

K j
⋃

k=1

L j
k

observe that every p′ ∈ S j has a unique lift in L j which is contained in a unique L j
k .

This lift is by construction (all L j
k are in expp D) in optimal position to p. Moreover,

if p′ ∈ L j
k and gp′ ∈ L j

k′ for some g ∈ G with 1 ≤ k′, k ≤ K j we have by the disjoint

construction of ˜U j
k and ˜U j

k′ that k = k′, hence the isotropy groups of gp′ and p′ agree,
yielding gp′ = p′. In consequence, L j is a measurable horizontal lift of S j in optimal
position to p. Since every horizontal geodesic segment t 	→ expp(tv), v ∈ Hp M
contained in expp D features a constant isotropy group, except possibly for the initial
point we obtain with the definition of

L := ∪J
j=1 M j with M j := {expp(tv) ∈ expp(D) : v ∈ exp−1

p (L j ), t ≥ 0}

a measurable horizontal lift of π(U ) in optimal position to p. ��
Proof of Theorem 3. Since M is connected, any two points p, p′ can be brought into
optimal position p, gp′ and a closed minimizing horizontal geodesic segment γgp′
between p, gp′ can be found. If [p′] ∈ Q([p]) then also γgp′ ⊂ Q([p]). In conse-
quence, there are tubular neighborhoods Up of p and Up′ of γgp′ admitting slices
in optimal position to p, which by Lemma 2, have horizontal lifts L p and L p′ in
optimal position to p. Since M is a manifold, there is a sequence [p0], . . . ∈ Q([p]),
g j ∈ G, p j ∈ M such that p0 = p and that each g j p j is in optimal position to p
( j ∈ J, J ⊂ N) and such that

Q([p]) ⊂
⋃

j∈J∪{0}
π(Up j )

with measurable horizontal lifts L p j of π(Up j ). Defining L ′
p0

:= L p0 and recursively
L ′

p j+1
:= L p j+1 \ L ′

p j
for j = 1, . . . a measurable horizontal lift L ′ := ∪∞

j=0 L ′
p j

of Q([p]) in optimal position to p is obtained. Finally, suppose that p j is in optimal
position to p for p j ∈ [p j ] ∈ A and set L ′′

0 := L ′, L ′′
j := L ′′

j−1 ∪{p j } if [p j ]∩L ′
j = ∅

and L ′′
j = L ′′

j−1 ( j ≥ 1) otherwise to obtain the desired measurable horizontal lift
L ′′ := ∪[p j ]∈A L ′′

j in optimal position to p. ��
Proof of Theorem 5. In case of intrinsic means, with the hypotheses and notations
of the above proof of Theorem 3, suppose that L ′′ is a measurable horizontal lift of
Q([p]) ∪ A in optimal position to an intrinsic mean p ∈ M of the random element
Y on M defined as in Theorem 4 with [p] ∈ E (dQ)(X). For notational simplicity we
assume that Q([p]) = π(U ) with a single tubular neighborhood U of p admitting a
slice.
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Then, additionally using the notation of the above proof of Lemma 2, if the assertion
of the Theorem were false, w.l.o.g. there would be g ∈ Ip, 1 ≤ j ≤ J , p j ∈ S j with
gp j �= p j and P{Y ∈ M j } > 0. In particular, in the proof Lemma 2, we may choose

a sufficiently small U j
k around p j such that in consequence of (4)

∫

M j
k (ε)

(

exp−1
p Y − exp−1

p (gY )
)

d PY �= 0 (8)

with some ε, r > 0, M j
k (ε) := {expp(tv) ∈ expp(D) : v ∈ exp−1

p (L j
k ), |t − r | < ε}

and L j
k obtained from U j

k as in the proof of Lemma 2. Suppose that L ⊂ L ′′ is obtained

as in the proof of Lemma 2 by using L j
k and suppose that ˜L ′′ is obtained from L ′′ by

replacing the M j
k (ε) part of M j

k with {expp(tv) ∈ expp(D) : v ∈ exp−1
p (gL j

k ), |t −
r | < ε}. Then ˜L ′′ is also a measurable horizontal lift in optimal position to p. Since
we assume that [p] is an intrinsic mean of X , assertion (i) of Theorem 4 teaches that
p is also an intrinsic mean of lift ˜Y of X to ˜L ′′, i.e.

0 =
∫

L ′′
exp−1

p Y d PY −
∫

˜L ′′
exp−1

p
˜Y d P

′
Y

=
∫

M j
k (ε)

(

exp−1
p Y − exp−1

p (gY )
)

d PY .

This is a contradiction to (8) yielding the validity of the theorem for intrinsic means.
The assertion in case of Ziezold means is similarly obtained. Use the same horizon-

tal lifts L ′′ and ˜L ′′ from above, replace exp−1
p Y , exp−1

p
˜Y and exp−1

p (gY ) by d f Y
ext(p),

d f ˜Y
ext(p) and d f gY

ext (p), respectively, use the hypothesis (5) to obtain the analog of (8)
and finally obtain the contradiction arguing with assertion (ii) of Theorem 4. ��
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