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Abstract We study statistical properties of a class of non-linear models for regres-
sion analysis of count time series. Under mild conditions, it is shown that a perturbed
version of the model is geometrically ergodic and possesses moments of any order.
This result turns out to be instrumental on deriving large sample properties of the
maximum likelihood estimators of the regression parameters. The theory is illustrated
with examples.
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1 Introduction

Suppose that {Yt } is a time series of counts and let FY,λ
t be the σ -field generated by

{Y0, . . . , Yt , λ0}, where λ0 is the initial value of a Poisson intensity process {λt }. In
Fokianos et al. (2009a,b) we studied the linear Poisson autoregressive model

Yt |FY,λ
t−1 ∼ Poisson(λt ), λt = d + aλt−1 + bYt−1 (1)

for t ≥ 1, and where the parameters d, a, b are assumed to be positive and λ0, Y0 are
fixed.
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1206 K. Fokianos, D. Tjøstheim

To study the probabilistic properties of (1), it is advantageous (cf. Fokianos et al.
2009a) to reformulate the model such that the sequence of independent Poisson draw-
ings is expressed explicitly in terms of random variables. This strategy bears some
analogy with the observational equation in a state space model, or like the defining
equation of a GARCH model giving the relationship between the observations and the
conditional variance. Towards this goal, for each time point t , a Poisson process Nt (·)
of unit intensity is introduced. Then, the first part of (1) can be restated in terms of
these Poisson processes by assuming that Yt is equal to the number of events of Nt (λt )

of Nt (·) in the time interval [0, λt ]. Let therefore {Nt (·), t = 1, 2 . . .} be a sequence
of independent Poisson processes of unit intensity and formulate model (1) as

Yt = Nt (λt ), λt = d + aλt−1 + bYt−1, (2)

for t ≥ 1 and with Y0, λ0 fixed.
In this paper we will study the following nonlinear generalization of (2) (or equiv-

alently of (1)):

Yt = Nt (λt ), λt = f (λt−1) + b(Yt−1), (3)

for t ≥ 1. In the above, f (·) and b(·) are known functions up to an unknown finite
dimensional parameter vector. Moreover, both functions take values on the positive
real line, that is, f, b : R+ → R+ and, the initial values Y0 and λ0 are assumed to be
fixed. It can be shown that the process {λt } in (3) can be expressed as a function of
past Yt ’s, and λ0 after repeated substitution. In other words, the hidden process {λt } is
determined by past functions of lagged responses, or equivalently, (3) belongs to the
class of observation driven models in the sense of Cox (1981).

Model (2) is a special case of (3) upon defining f (x) = d + ax and with a slight
abuse of notation, b(x) = bx , with d, a, b > 0, and x > 0. The nonlinear autore-
gressive Poisson process (3) constitutes an analogy of ordinary nonlinear autoregres-
sive models as treated, for example, in Tong (1990) and Fan and Yao (2003). With
the exception of Fokianos et al. (2009a), Fokianos et al. (2009b), Neumann (2011),
Franke (2010) and Doukhan et al. (2012) these types of models have not been consid-
ered before in the literature. Hence, our study enriches the class of models for count
time series and provides simultaneously tools for inference and testing.

The recent contribution by Neumann (2011) proves, under a uniform contractivity
condition, that the process {Yt , λt } is ergodic. However, the author recognizes the
fact that {Yt , λt } and even the intensity process {λt } alone are not strongly mixing in
general. Moreover, only the second moment of {λt } is shown to exist. These findings
make it difficult to prove asymptotic normality of the maximum likelihood estimators
of any finite dimensional parameter vector contained in f (·) and b(·) of (3), as it
will be explained in Sect. 4. Possibly, Neumann’s results combined with weak depen-
dence results derived in Franke (2010) and Doukhan et al. (2012) could be used for
this purpose, but it is far from straightforward, and we have chosen the alternative
way based on Fokianos et al. (2009a). In that approach, asymptotic normality of the
parameter estimates of a perturbed process is proved. Then asymptotic normality for
the original parameter estimates is obtained by a limiting argument connecting the
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two representations. This method of proof requires geometric ergodicity of the per-
turbed version of {λt } (where the results by Neumann do not apply). The perturbation
means that the traditional drift criterion for Markov chains can be used for proving
φ-irreducibility. However, if the drift criterion is applied to the non perturbed model,
then φ-irreducibility cannot be established. In fact, we are only able to show open
set irreducibility and this is not sufficient to prove geometric ergodicity (cf. Fokianos
et al. 2009b, Lemma A1).

Therefore, we study the ergodic properties of a perturbed version of (3), namely

Y m
t = Nt (λ

m
t ), λm

t = f (λm
t−1) + b(Y m

t−1) + εt,m

εt,m = cm1(Y m
t = 1)Ut , cm > 0, Ut iid U [0, 1], (4)

and where {Y m
t } can be identified with {Yt } as observations but not as random vari-

ables. The perturbation can be included in many other ways, and the results of this
paper will still remain valid. For example, the indicator function 1(Y m

t = 1) can be
removed. For further motivation and details for the perturbation methodology we refer
to Fokianos et al. (2009a,b).

In this contribution, we will outline a theory of inference for model (3) with asymp-
totic distributional results for the conditional maximum likelihood estimates of the
unknown parameters contained in both functions f (·) and b(·). The perturbed version
(4) will be instrumental in this analysis because geometric ergodicity is being proved
for this version, and then asymptotics for the conditional maximum likelihood esti-
mates in (3) are obtained by a limiting argument where we allow cm ↓ 0 in (4). Related
literature regarding log-linear models for time series of counts include the works by
Zeger and Qaqish (1988), Li (1994), MacDonald and Zucchini (1997). Brumback
et al. (2000), Fahrmeir and Tutz (2001), Kedem and Fokianos (2002), Davis et al.
(2003), Fokianos and Kedem (2004), Jung et al. (2006) and more recently Fokianos
and Tjøstheim (2011).

An outline of the paper is as follows: In Sect. 2 we will briefly review the results on
geometric ergodicity for the perturbed model (4) obtained in Fokianos et al. (2009a,b).
In Sect. 3 we provide a link between the nonlinear model (3) that we are primarily
interested in and its perturbed version (4). The main section of the paper is Sect. 4,
where we derive the asymptotic theory of the conditional maximum likelihood esti-
mates. Finally, in Sects. 5 and 6 we report some simulations and a real data example,
respectively.

2 Geometric ergodicity

Geometric ergodicity of model (4) is important for proving asymptotic normality of
the conditional maximum likelihood estimates of (4), which in turn is used to prove
asymptotic normality of the estimates in (3) via a limiting process with cm ↓ 0 as
m → ∞. The ergodic problem was considered in Fokianos et al. (2009b), and we
now briefly review and complement the results obtained there. Throughout the paper
the following assumption—which in essence is identical to the assumption NL in
Fokianos et al. (2009b)—on functions f (·) and b(·) will be used.
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Assumption A1 (i) There exists a unique solution, denoted λ∗, of the equation
λ = f (λ).

(ii) With λ positive real and y a positive integer, f (λ) is increasing in λ for λ > λ∗
and b(y) is increasing in y such that b(y) ≥ β∗y, β∗ > 0 and with b(0) = 0.

(iii) For some α2 > 0, | f (λ2) − f (λ1)| ≤ α2|λ2 − λ1| for all λ1, λ2 ≥ 0.
(iv) For some β2 > 0 such that α2 +β2 < 1, b(y2)−b(y1) ≤ β2(y2 − y1), y2 ≥ y1.

The conditions (i) and (ii) are used in proving that {λt } is open set irreducible (cf.
Fokianos et al. 2009a). When this is combined with the perturbation in (4), φ-irreduc-
ibility is obtained. The added conditions (iii) and (iv) imply geometric ergodicity and
are used in establishing the asymptotic proximity of λt , λ

m
t and Yt , Y m

t in Proposition 3.
Note that geometric ergodicity of the perturbed process can be proved under weaker
conditions. The uniformity in (iii) and (iv) is needed in the proof of Proposition 3.

An example of a model fulfilling assumption A1 is the following model, see also
Gao et al. (2009):

f (λ) = d
1

(1 + λ)γ
+ aλ and b(y) = by, (5)

provided that all the parameters d, a, b, γ are positive such that

sup
λ≥0

∣
∣
∣
∣
a − d

γ

(1 + λ)γ+1

∣
∣
∣
∣
+ b < 1. (6)

The inclusion of the parameter γ introduces a nonlinear deviation, in the sense that
small values of the parameter γ cause (5) to approach model (1). Moderate values of
γ introduce a stronger deviation.

Another interesting example of a non-linear regression model for count time series
analysis is given by the following specification:

f (λ) = d + (a + c exp(−γ λ2))λ and b(y) = by, (7)

where d, a, c, γ are positive parameters. It can be seen from (3) that λt ≥ d. Moreover,

∂ f

∂λ
= a + ce−γ λ2

(1 − 2γ λ2)

and to satisfy A1 we must have

sup
λ≥d

|a + ce−γ λ2
(1 − 2γ λ2)| + b < 1. (8)

The above model parallels the structure of the traditional exponential autoregressive
model, see Haggan and Ozaki (1981). In Fokianos et al. (2009a,b) model (7) was stud-
ied for the case d = 0. Several other examples are provided by the class of smooth
transition autoregressive models of which the exponential autoregressive model is a
special case (cf. Teräsvirta et al. 2010). We have the following result for the general
perturbed nonlinear model (4), see Fokianos et al. (2009b, Prop. 2.3):
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Proposition 1 Consider the perturbed model (4) and suppose that assumption A1
holds. Then, the process {λm

t , t ≥ 0} is a geometrically ergodic Markov chain with
finite moments of order k, for an arbitrary k.

Proof The proof is essentially given in Fokianos et al. (2009b, Prop. 2.3), except that
we did not provide the details of the aperiodicity part. Hence, referring to the proof of
aperiodicity in the linear case of Fokianos et al. (2009b, Prop. 2.1), let λ∗ be the fixed
point of f (·) defined in condition A1 (i). Consider the small set C = [λ∗, K ]. Note that
for the φ-measure defined in the proof of Fokianos et al. (2009b, Prop. 2.1), we have
φ(C) > 0, and let λm

t−1 = λ ∈ C . Then λm
t = f (λ) + b(Y m

t−1) + εt,m . If Y m
t−1 = 0,

then λm
t = f (λ∗)+ f (λ)− f (λ∗) = λ∗+ f (λ)− f (λ∗) ≥ λ∗, since f is non-decreas-

ing. On the other hand, λm
t − λ = f (λm

t−1) − λ = f (λ∗) + f (λ) − f (λ∗) − λ ≤
λ∗ −λ+α2(λ−λ∗) = (1−α2)(λ

∗ −λ) ≤ 0, and the rest of the proof is as in Fokianos
et al. (2009b). 
�

Consider again the defining equation (4) for the perturbed version of the non-
linear model (3). The following proposition shows that the joint trivariate process
(Y m

t , Ut , λ
m
t ) is V(Y,U,λ-geometrically ergodic with VY,U,λ(Y, U, λ) = 1 + Y k +λk +

U k , see Meyn and Tweedie (1993, p. 355) and Meitz and Saikonnen (2008).

Proposition 2 Consider the perturbed model (4) and suppose that assumption A1
holds.Then the process {(Y m

t , Ut , λ
m
t ), t ≥ 0} is a V(Y,U,λ)-geometrically ergodic

Markov chain with VY,U,λ(Y, U, λ) = 1 + Y k + λk + U k.

Proof This is proved as in Fokianos et al. (2009b, Prop. 2.2). The first part of the proof
of that proposition can be adopted with virtually no changes to the present situation,
since the conditioning arguments do not depend on differences in model structure
between the perturbed version of model (2) and model (4). In the last part, where exis-
tence of a k-th order moment is shown, the same technique is used, just combined with
the last part of Fokianos et al. (2009b, Prop. 2.3) for the evaluation of E[{b(Y m

t−1)}k].

�

We have the following results:

Corollary 1 Consider the perturbed version of model (5)

Y m
t = Nt (λ

m
t ), λm

t = d
1

(1 + λm
t−1)

γ
+ aλm

t−1 + bY m
t−1 + εt,m,

with the same notation as in (4) and suppose that (6) holds true. Then the pro-
cess {(Y m

t , Ut , λ
m
t ), t ≥ 0} is V(Y,U,λ)-geometrically ergodic Markov chain with

VY,U,λ(Y, U, λ) = 1 + Y k + λk + U k.

Corollary 2 Consider the perturbed version of model (7)

Y m
t = Nt (λ

m
t ), λm

t = d + (a + c exp(−γ (λm
t−1)

2))λm
t−1 + bY m

t−1 + εt,m,

with the same notation as in (4) and suppose that (8) holds true. Then the pro-
cess {(Y m

t , Ut , λ
m
t ), t ≥ 0} is V(Y,U,λ)-geometrically ergodic Markov chain with

VY,U,λ(Y, U, λ) = 1 + Y k + λk + U k.
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3 The limit of the perturbed version

To be able to carry through the likelihood arguments of the next section we need to
establish that the models (3) and (4) are close as cm ↓ 0 in model (4). The following
results establish this connection:

Proposition 3 Suppose that {Yt , λt } and {Y m
t , λm

t } are defined by models (3) and (4),
respectively. If condition A1 holds, then as cm ↓ 0 fast enough and λm

0 = λ0, the
following results hold true:

(i) E |λm
t − λt | ≤ δ1,m,

(ii) E |(λm
t − λt )

2 ≤ δ2,m,
(iii) E |Y m

t − Yt | ≤ δ3,m,
(iv) E(Y m

t − Yt )
2 ≤ δ4,m,

(v) Almost surely |λm
t − λt | → 0 and |Y m

t − Yt | → 0.

The sequences δi,m can be chosen to be independent of t and δi,m → 0 as m → ∞,
for i = 1, . . . , 4.

Proof We first prove (i) and the first part of (v). By subtracting model (3) from model
(4), we obtain that

λm
t − λt = f (λm

t−1) − f (λt−1) + b(Y m
t−1) − b(Yt−1) + εt,m .

Now, we use the fact that {Y m
t } and {Yt } are generated by the same sequence of inde-

pendent Poisson processes {Nt (·)} of unit intensity. In other words, Y m
t = Nt (λ

m
t )

is the number of events for Nt (·) in the stochastic time interval [0, λm
t ] and similarly

for Yt = Nt (λt ). Assume first that λm
t−1 ≥ λt−1. This implies that Y m

t−1 ≥ Yt−1 and
Y m

t−1 = �Y m
t−1 + Yt−1, where �Y m

t−1 is independent of Yt−1 given λt−1 and λm
t−1.

Then A1 (iii) yields

E | f (λm
t−1) − f (λt−1| ≤ α2 E |λm

t−1 − λt−1|.

Similarly, A1 (iv) shows that

E |b(Y m
t−1) − b(Yt−1)| ≤ β2 E |Y m

t−1 − Yt−1| = β2 E[E(|�Y m
t−1| |λt−1, λ

m
t−1)]

= β2 E |λm
t−1 − λt−1|.

Therefore, we have that

E |λm
t − λt | ≤ (α2 + β2)E |λm

t−1 − λt−1| + E |εt,m |. (9)

By A1 (iv), α2 + β2 < 1. Moreover, E |εt,m | ≤ cm → 0, and since λm
0 = λ0, it

follows that E |λm
t − λt | → 0 as m → ∞. Because the rate at which cm ↓ 0 is at our

disposal, we can prove that λm
t − λt → 0 almost surely, and this completes the proof

of (i) and the first part of (v).
Next, we note that E(λk

t ) < ∞. This result can be proved along the lines of the
proof of E((λm

t )k) < ∞ (cf. Fokianos et al. 2009b, Prop. 2.3). We point out that the
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property of φ-irreducibility is not required in that proof; the only conditions that are
needed are α2 + β2 < 1 and the Markov property. Then (ii) follows from the first
part of (v) and Lebesgue dominated convergence because E(λm

t − λt )
2 is bounded

independently of m.
Since Y m

t ≥ Yt if and only if λm
t ≥ λt , item (iii) follows from E(Y m

t − Yt ) =
E(E(Y m

t − Yt )|λm
t , λt )) = E(λm

t − λt ) and (i). From this also follows the last part of
(v), because E(Y m

t − Yt )
2 = E(E(�Y m

t )2|λt , λ
m
t )) = E(λm

t − λt )
2 + E2(λm

t − λt ),
and (iv) follows from (i) and (ii). (Alternatively, one could use the last part of (v) and
Lebesgue dominated convergence). By going through the proof step by step, it is seen
that identical arguments can be used for the case λt−1 > λm

t−1. This completes the
proof. 
�

4 Likelihood inference

The principles of likelihood inference in the linear case have been studied extensively
in Fokianos et al. (2009b). Because we retain the conditional Poisson assumption also
in the nonlinear situation, there are considerable structural similarities. We assume that
f (·) and b(·) in both (3) and (4) are known up to some unknown finite dimensional
parameters, θ1 = (θ11, . . . , θ1p)

′ and θ2 = (θ21, . . . , θ2q)′ say, which make up the
unknown parameter vector θ .

The conditional likelihood function for θ based on (3) and given the starting value
λ0 in terms of the observations Y1, . . . , Yn is given by

L(θ) =
n

∏

t=1

exp(−λt (θ))λ
Yt
t (θ)

Yt ! ,

and the corresponding log-likelihood (omitting an unimportant constant) and score
functions are given by

l(θ) =
n

∑

t=1

lt (θ) =
n

∑

t=1

(Yt log λt (θ) − λt (θ)), (10)

and

Sn(θ) = ∂l(θ)

∂θ
=

n
∑

t=1

(
Yt

λt (θ)
− 1

)
∂λt (θ)

∂θ)
, (11)

respectively. The solution of the equation Sn(θ) = 0, provided that it exists, yields the
maximum conditional likelihood estimator of θ , which is denoted by θ̂ . The Hessian
matrix for model (3) is obtained by differentiating the score function. That is

Hn(θ) = −
n

∑

t=1

∂2lt (θ)

∂θ∂θ ′ =
n

∑

t=1

Yt

λ2
t (θ)

(
∂λt (θ)

∂θ

)(
∂λt (θ)

∂θ

)′

−
n

∑

t=1

(
Yt

λt (θ)
− 1

)
∂2λt (θ)

∂θ∂θ ′ . (12)
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1212 K. Fokianos, D. Tjøstheim

Similarly for the perturbed system (4), it is assumed (artificially) that both
Y m

1 , . . . Y m
n and U1, . . . , Un are observed. In other words, we obtain

Lm(θ) =
n

∏

t=1

exp(−λm
t (θ))(λm

t (θ))Y m
t

Y m
t !

n
∏

t=1

fu(Ut ),

by the Poisson assumption and the asserted independence of Ut from (Y m
t−1, λ

m
t−1)

with fu(·) denoting the uniform density. Moreover,

lm(θ) =
n

∑

t=1

(Y m
t log λm

t (θ) − λm
t (θ)) +

n
∑

t=1

log fu(Ut ),

Sm
n (θ) = ∂lm(θ)

∂θ
=

n
∑

t=1

(
Y m

t

λm
t (θ)

− 1

)
∂λm

t (θ)

∂θ
,

and

Hm
n (θ) = −

n
∑

t=1

∂2lm
t (θ)

∂θ∂θ ′

=
n

∑

t=1

Y m
t

(λm
t (θ))2

(
∂λm

t (θ)

∂θ

)(
∂λm

t (θ)

∂θ

)′
−

n
∑

t=1

(
Y m

t

λm
t (θ)

− 1

)
∂2λm

t (θ)

∂θ∂θ ′ .

Recall the notation introduced in (4) and denote by Ft the σ -algebra generated by
{Uk+1, Nk, k ≤ t}. The proof of asymptotic normality of the conditional maximum
likelihood estimates in Fokianos et al. (2009b) uses a martingale approach where the
score has martingale difference terms, so that with Zm

t = (Y m
t /λm

t − 1), we have
E(Zm

t |Ft−1) = 0 and E((Zm
t )2|Ft−1) = 1/λm

t , under the true value θ = θ0. This
remains true in our more general case. But the evaluation of derivatives needed in the
proof requires new regularity conditions. First note that the following is true:

∂λt

∂θ1
= ∂ f (λt−1, θ1)

∂θ1
+ ∂ f (λt−1, θ1)

∂λ

∂λt−1

∂θ1
,

∂λt

∂θ2
= ∂b(Yt−1, θ2)

∂θ2
+ ∂ f (λt−1, θ1)

∂λ

∂λt−1

∂θ2
, (13)

and similarly for the perturbed system,

∂λm
t

∂θ1
= ∂ f (λm

t−1, θ1)

∂θ1
+ ∂ f (λm

t−1, θ1)

∂λ

∂λm
t−1

∂θ1
,

∂λm
t

∂θ2
= ∂b(Y m

t−1, θ2)

∂θ2
+ ∂ f (λm

t−1, θ1)

∂λ

∂λm
t−1

∂θ2
. (14)

The above expressions show the importance of Proposition 2 for studying the large
sample properties of the conditional maximum likelihood estimator. It is well known

123



Nonlinear Poisson autoregression 1213

that an asymptotic theory can be developed upon proving that the score evaluated at
the true parameter is a martingale which converges to a normal random variable and
the Hessian matrix has to converge in probability to a finite limit. In addition, the third
derivatives need to be bounded by a sequence which converges in probability. Propo-
sition 2 guarantees that all the above conditions are met for the perturbed model (4)
when likelihood inference is based on the log-likelihood function lm(θ). In particular,
existence of moments guarantees the application of central limit theorem for martin-
gales and ensures bounds for all necessary moments. In addition, geometric ergodicity
assures that the Hessian matrix has a limit. Lemma 3 shows that the two models are
close and this in turn implies that the large sample theory which is developed below
is valid for model (3).

The following regularity conditions are assumed to hold: The parameter spaces for
θ1 and θ2 will be denoted by �1 and �2, respectively. We denote by θ10, θ20, the true
values of θ1 and θ2, respectively. The notation θ0 = (θ ′

10, θ
′
20)

′ denotes the true value
of θ .

A2 The parameter θ belongs to an open set � which is composed from �1 and �2.
In addition, the function f (·) satisfies

f (λ, θ1) ≥ c1 > 0,

for some positive constant c1, θ1 ∈ �1, λ ≥ 0.
A3 The components of ∂ f/∂θ1 and ∂b/∂θ2 are not linearly dependent; i.e., there do

not exist a vectors vi = 0, i = 1, 2 so that v1
′∂ f/∂θ1 + v2

′∂b/∂θ2 = 0.
A4 The functions f (·) and b(·) are four times continuously differentiable with respect

to θ1 and θ2, respectively, and all their derivatives are bounded. Moreover, f (·)
is four times continuously differentiable with respect to θ1 and λ and such that
all of such derivatives are bounded by a linear function of λ, so that, for example,
||∂4 f/∂θ1∂λ3|| ≤ C3λ for a non-negative C3.

A5 The following identifiability condition holds:
(a) f (λt−1, θ1) = f (λt−1, θ10) implies θ1 = θ10 and
(b) b(Yt−1, θ2) = b(Yt−1, θ20) implies θ2 = θ20.

Conditions A1–A5 are relatively mild. They are satisfied for the linear model (1),
for models (5) and (7) under the corresponding stated condition for these examples
in Sect. 2 and for similar smooth transition autoregressive models. In particular, con-
dition A5 is equivalent to θ0 being a locally unique asymptotic maximizer of the
log-likelihood function (10); see Berkes et al. (2003, Theorem 2.3) and Francq and
Zakoïan (2004, Assumption A4 and Remark 2.4). We are now ready to formulate our
main theorem:

Theorem 1 Consider model (3) and assume that the conditions A1–A5 are fulfilled.
Then, there exists an open neighborhood O = O(θ0) of the true value θ0, such that the
probability that a locally unique maximum conditional likelihood estimator exists con-
verge to one, as n → ∞. Moreover, there exists a sequence of maximum conditional
likelihood estimators θ̂ which is consistent and asymptotically normal,

√
n(̂θ − θ0)

D→ N (0, G−1),
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1214 K. Fokianos, D. Tjøstheim

where the matrix G is given by

G(θ) = E

(
1

λt

(
∂λt

∂θ

) (
∂λt

∂θ

)′)
. (15)

A consistent estimator of G is given by Gn (̂θ)/n, where

Gn(θ) =
n

∑

t=1

Var

[
∂lt (θ)

∂θ
|Ft−1

]

=
n

∑

t=1

1

λt (θ)

(
∂λt (θ)

∂θ

)(
∂λt (θ)

∂θ

)′
,

where Ft is the σ -algebra generated by {Uk+1, Nk, k ≤ t}.
Remark 1 The expression in (15) requires the process {λt } to be stationary. Strictly
speaking, {λt } will not be stationary if it is initiated with λ0 fixed. However, the geo-
metric ergodicity of the perturbed process {λm

t } and the fact that λm
t → λt almost

surely imply that the limit, as t → ∞, in the right-hand side of (15) exists. It is this
limit which by a slight abuse of notation is denoted by G(θ). The same notation will
be used in the sequel, and it was also used in Fokianos et al. (2009a) and Fokianos
and Tjøstheim (2011).

The basic technique of proving the above theorem follows the arguments given in
the proof of Fokianos et al. (2009b, Thm 3.1). It turns out that to study the asymptotic
properties of the maximum likelihood estimator θ̂ for model (3), we need to derive
and use the asymptotic properties of the maximum likelihood estimator θ̂

m
for the per-

turbed system (4). The main tool in connecting θ̂ to θ̂
m

is Brockwell and Davis (1991,

Prop. 6.3.9). Accordingly, we first show that θ̂
m

is asymptotically normal, where the
geometric ergodicity of the perturbed system is employed to derive the large sam-
ple results. Next, it is shown that the score function, the information matrix and the
third derivative of the perturbed likelihood tend to the corresponding quantities for the
unperturbed likelihood function, which in turn allows the application of Brockwell
and Davis (1991, Prop. 6.3.9). This was proved in a series of lemmas for the case
of the linear model (1), see Fokianos et al. (2009b, Lemmas 3.1–3.4). In the case of
non-linear model (3) these results are restated below to complement our presentation.
In addition, we give a proof for the existence and consistency of θ̂ . All proofs are
postponed to the Appendix.

Lemma 1 Define the matrices

Gm(θ) = E

(
1

λm
t

(
∂λm

t

∂θ

)(
∂λm

t

∂θ

)′)
and G(θ) = E

(
1

λt

(
∂λt

∂θ

) (
∂λt

∂θ

)′)
.

Under the assumptions of Theorem 1, the above matrices evaluated at the true value
θ = θ0 satisfy Gm → G, as m → ∞. In addition, Gm and G are positive definite.

Lemma 2 Under the assumptions of Theorem 1, the score functions defined by (11)
and its perturbed counterpart evaluated at the true value θ = θ0 satisfy the following:
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1. 1√
n

Sm
n

D→ Sm := N (0, Gm), as n → ∞ for each m = 1, 2 . . .,

2. Sm D→ N (0, G) as m → ∞,
3. limm→∞ lim supn→∞ P(||Sm

n − Sn|| > ε
√

n) = 0, for every ε > 0.

Lemma 3 Under the assumptions of Theorem 1, the Hessian matrices defined by (12)
and its perturbed counterpart evaluated at the true value θ = θ0 satisfy the following:

1. 1
n Hm

n
P→ Gm as n → ∞ for each m = 1, 2 . . .,

2. Gm → G, as m → ∞,
3. limm→∞ lim supn→∞ P(‖Hm

n − Hn‖ > εn) = 0, for every ε > 0.

Lemma 4 It holds under the assumptions of Theorem 1, with the neighborhood O(θ0),
that

max
i, j,k=1,2,3

sup
θ∈O(θ0)

∣
∣
∣
∣
∣

1

n

n
∑

t=1

∂3lt (θ)

∂θ i∂θ j∂θk

∣
∣
∣
∣
∣
≤ Mn .

Define correspondingly Mm
n in terms of Y m

t . Then

1. Mm
n

P→ Mm, as n → ∞ for each m = 1, 2 . . .,
2. Mm→M, as m → ∞, where M is a finite constant,
3. limm→∞ lim supn→∞ P(|Mm

n − Mn| > εn) = 0, for every ε > 0.

5 Examples

As an example of a non-linear model for count time series, we study (5) with γ known
and fixed. The estimation results can be extended to the case of unknown γ along the
lines of Fokianos et al. (2009b, Sec. 4.2). For real data, the parameter γ is unknown
and this case is treated in Sect. 6. For model (5), θ1 = (d, a) and θ2 = b. Recall that
in Sect. 2, condition (6) was stated so that A1 is satisfied. The derivatives of f (·) and
b(·) with respect to the parameters are given by

∂ f

∂d
= 1

(1 + λ)γ
,

∂ f

∂a
= λ,

∂b(y, b)

∂b
= y,

and it is seen that all of these derivatives satisfy assumption A4. Therefore, we should
have a central limit theorem for the maximum likelihood estimates when (6) holds.

For the above model the score equations are given by (11) with recursions (13)
satisfying the following:

∂λt

∂d
= a

∂λt−1

∂d
+ 1

(1 + λt−1)γ
− dγ

(1 + λt−1)γ+1

∂λt−1

∂d
,

∂λt

∂a
= λt−1 + a

∂λt−1

∂a
− dγ

(1 + λt−1)γ+1

∂λt−1

∂a
,

∂λt

∂b
= a

∂λt−1

∂b
− dγ

(1 + λt−1)γ+1

∂λt−1

∂b
+ Yt−1.
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Table 1 Maximum likelihood estimation results from 1000 simulations for model (5) with γ = 1 and for
different parameter values and sample sizes

Parameter values Estimators and SE Sample size

a d b â d̂ b̂

0.30 1 0.40 0.2914 (0.0798) 1.0240 (0.2038) 0.3976 (0.0492) 500

0.2974 (0.0537) 1.0107 (0.1444) 0.3994 (0.0326) 1000

0.30 0.25 0.40 0.2894 (0.0905) 0.2592 (0.0583) 0.3974 (0.0556) 500

0.2996 (0.0632) 0.2528 (0.0423) 0.3956 (0.0393) 1000

0.50 2 0.40 0.4923 (0.0536) 2.1897 (0.5113) 0.3981 (0.0427) 500

0.4947 (0.0390) 2.0983 (0.3781) 0.4012 (0.0304) 1000

Table 2 Maximum likelihood estimation results from 1000 simulations for model (5) with γ = 2 and for
different parameter values and sample sizes

Parameter values Estimators and SE Sample size

a d b â d̂ b̂

0.20 1 0.50 0.2016 (0.0558) 1.0047 (0.1796) 0.4965 (0.0489) 500

0.2001 (0.0411) 1.0008 (0.1263) 0.4972 (0.0340) 1000

0.20 0.25 0.50 0.1985 (0.0701) 0.2534 (0.0525) 0.4935 (0.0594) 500

0.1985 (0.0506) 0.2531 (0.0361) 0.4978 (0.0438) 1000

We illustrate the asymptotic normality of the maximum likelihood estimators for
model (5) by presenting some limited simulation results. In all cases considered, con-
dition (6) is satisfied. Tables 1 and 2 report results from 1000 simulations for model
(5) with γ = 1 and γ = 2, respectively. Note that for the data example to be discussed
in Sect. 6, we have obtained that γ̂ ≈ 2. To fit the model, we optimize the log-likeli-
hood function (10) by a quasi-Newton method. Data from model (5) are generated for
different parameter configurations and sample sizes and estimation is implemented
by discarding the first 200 observations. Tables 1 and 2 report the estimates of the
parameters by averaging out all the simulation output. In addition, the standard error
of the estimators—in parentheses—is reported. In all cases, we note that the maximum
likelihood estimators are consistent and their standard error decreases, as the sample
size increases. Furthermore, the asymptotic normality is supported by Fig. 1 which
shows qq-plots of the sampling distribution of the maximum likelihood estimators.
The plots illustrate adequacy of the asymptotic normal distribution.

Turning now to model (7) with γ known and positive, we note that θ1 = (d, a, c)
and θ2 = b. Recall that conditions for A1 to be satisfied were given in Sect. 2. The
derivatives of f (·) and b(·) with respect to the parameters are given by

∂ f

∂d
= 1,

∂ f

∂a
= λ,

∂ f

∂c
= e−γ λ2

λ, and
∂b(y, b)

∂b
= y,

and it is seen that all of these derivatives satisfy assumption A4.
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Fig. 1 QQplots of the sampling distribution of a â, b d̂ and c b̂ for the non-linear model (5) when the true
values are a = 0.30, d = 1 and b = 0.40. The results are based on 500 observations and 1000 simulation
runs

We conclude that we should have a central limit theorem for the maximum likeli-
hood estimates under the stated conditions. Even though we do not provide simulation
results for model (7) we report that the introduction of the constant term d makes
the estimation problem more challenging compared to the case d = 0, see Fokianos
et al. (2009b). More specifically, estimation of the parameter c is more complicated.
This can be explained by the fact that exp(−γ d2) typically assumes small values even
for small values of the parameter d. Therefore, the effect of parameter c cannot be
identified since it is multiplied by a small number. When d ∼ 0, then the parameter c
is approximated more accurately but there appears to be a problem with estimation of
d. In this case, constrained estimation shows that the asymptotic distribution of d has
a positive mass at zero. These type of issues, even for the case of ordinary exponential
autoregressive models, have been raised by several authors; see Chen et al. (2010) for
a recent contribution.

6 Data analysis

We illustrate the application of the non-linear model (5) to real mortality data and we
compare it to the linear count time series model (1). Figure 2 shows a time series plot
of the daily number of deaths in Evora, Portugal, starting from 1st of January 1996
and ending at 31st of December 2007. The sample mean of the series is 6.119 and the
variance is equal to 7.483, that is, the data are overdispersed. The plot illustrates that
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Fig. 2 Mortality data and their autocorrelation function

there is some type of periodicity in these data and the autocorrelation function is still
significant for relatively large lag values.

First, we fit linear model (1) to these data. The results are given by d̂ = 0.711
(0.225), â = 0.762 (0.051) and b̂ = 0.122 (0.024), where in parentheses are the
standard errors of the estimators obtained by inversion of the information matrix, see
Theorem 1. Note that the inclusion of the feedback mechanism is significant since
the value of â is large when compared with its standard error. We also consider the
Pearson residuals which are defined by et = (Yt − λt )/

√
λt and form a white noise

sequence with constant variance, see Kedem and Fokianos (2002, Sec. 1.6.3). The
sequence {et } is calculated by substituting λt with λt (θ̂). The mean square error of
the Pearson residuals is defined by

∑N
t=1 e2

t /(N − p), where p denotes the number
of estimated parameters.

For the mortality data and for the linear model application, the mean square error
of Pearson residuals is equal to 1.150. The sequence of residuals and their cumulative
periodogram plot are shown in Fig. 3. The bottom plot of this figure clearly indicates
that the Pearson residuals obtained after the application of the linear model (1) do not
deviate from a white noise sequence. The AIC (BIC, respectively) of the fit is equal
to −7273.609 (−7279.609, respectively).

To apply the non-linear model (5), we first choose the value of the parameter γ

by following a profiling procedure whereby we calculate the log-likelihood function
(10) for a grid of values of γ and then we choose γ as the value that maximizes the
log-likelihood function—Fig. 4 illustrates the method. With γ = 1.80, we fit model
(5) to the mortality data and we obtain that d̂ = 5.072 (0.007), â = 0.886 (0.194)
and b̂ = 0.089 (0.212), where in parentheses are the standard errors of the estimators
obtained by inversion of the information matrix, see Theorem 1. Note that both the
constant term and the coefficient that corresponds to feedback mechanism are sig-
nificant, whereas the Yt−1-terms is less important in explaining the dynamics of the
observed process. Nevertheless, the sum of both coefficients is close to unity which
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Fig. 3 Pearson residuals (top) and their cumulative periodogram plot (bottom) for the linear model (1)
fitted to mortality data
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Fig. 4 Log-likelihood function (10) for a grid of values of γ . The values of γ are generated from 0.50
to 2.50 by a step equal to 0.10. For each value of γ , model (5) is fitted to the mortality data and the
corresponding log-likelihood is evaluated. For these data, the maximum value of γ occurs at 1.80

possibly indicates some evidence of non-stationarity when using model (5) to explain
these data. In contrast, the sum of the estimated coefficient for the linear model fit is
0.874 which is well below the unity. Some further analysis of model (5) shows that
the mean square error of the Pearson residuals is 1.130 which is slightly smaller than
the corresponding mean square error of the Pearson residuals obtained from the linear
model fit. The AIC (BIC, respectively) for model (5) fit is −7291.895 (−7297.895,

respectively). We see that both of these values are smaller than the corresponding
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Fig. 5 Pearson residuals (top) and their cumulative periodogram plot (bottom) for the non-linear model
(5) fitted to mortality data

values obtained form the linear model. As a final remark, we note that Fig. 5 points
to the adequacy of the model when applied to these mortality data. In fact, the cumu-
lative periodogram plot shown in the bottom plot of Fig. 5 shows that the residuals
obtained from the fit of model (5) approximate better a white noise processes than the
corresponding residuals obtained form the linear model fit; compare with bottom plot
of Fig. 3.

Appendix

Proof of Lemma 1

This lemma is concerned with the convergence of Gm to G and the positive definite-
ness of these two matrices. It is based on the evaluation of derivatives of λt and λm

t with
respect to the unknown parameters. For simplicity, in this proof and in other proofs,
we only treat derivatives with respect to θ1; the derivation for θ2 being quite similar.

In the present case we have

E

∥
∥
∥
∥

∂λm
t

∂θ1
− ∂λt

∂θ1

∥
∥
∥
∥

= E

∥
∥
∥
∥

∂ f (λm
t−1, θ1)

∂θ1
− ∂ f (λm

t−1, θ1)

∂θ1

+∂ f (λm
t−1, θ1)

∂λ

∂λm
t−1

∂θ1
− ∂ f (λt−1, θ1)

∂λ

∂λt−1

∂θ1

∥
∥
∥
∥
.

But by using an addition subtraction argument, the last two terms can be written:

∂ f (λm
t−1, θ1)

∂λ

[
∂λm

t−1

∂θ1
− ∂λt−1

∂θ1

]

+
[
∂ f (λm

t−1, θ1)

∂λ
− ∂ f (λt−1, θ1)

∂λ

]
∂λt−1

∂θ1
. (16)
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By (13), (14), assumptions A1, A4 and the existence of any moment of λt and λm
t ,

using the technique of proof of Proposition 3, it follows that E ||∂λt−1/∂θ1||2 < ∞
and E ||∂λm

t−1/∂θ1||2 < ∞. Then, by the Schwartz inequality, assumption A4, Prop-
osition 3 and Lebesgue dominated convergence, the expected value of the norm of
the last of the two terms in (16) can be made arbitrarily small. We are then left with a
recursive relationship of the type (9) in the proof of Proposition 3 and using A1,

E

∥
∥
∥
∥

∂λm
t

∂θ1
− ∂λt

∂θ1

∥
∥
∥
∥

< δm,

with δm → 0 as m → ∞. From this it follows that the analogue of Fokianos et al.
(2009b, Eq. A–4) in their proof of Lemma 3.1 is fulfilled.

We can handle differentiation with respect to θ2 with very similar arguments. Higher
order moments like E(||∂λm

t /∂θ1 − ∂λt/∂θ1||2) can also be tackled using such argu-
ments. Finally, there is the following term

E

∥
∥
∥
∥

1

λm
t

∂λm
t

∂θ1

∂λm
t

∂θ ′
1

− 1

λt

∂λt

∂θ1

∂λt

∂θ ′
1

∥
∥
∥
∥

,

analogous to the term treated after the proof of Fokianos et al. (2009b, Eq. A–4). In
the linear case we used λt ≥ d > 0 to evaluate that term, whereas in the present case
we use the defining relationships (3) and (4) and assumption A2. Finally, the positive
definiteness of the information matrix follows from the convergence established in
the first part of the lemma and assumption A3.

Proof of Lemma 2

This lemma is concerned with the asymptotic normality of θ̂
m

and the convergence
to this distribution as m → ∞. This is achieved by using the property of geometric
ergodicity for the perturbed system and by evaluating the appropriate derivatives and
their differences. To apply the martingale CLT we need to verify a Lindeberg condition
which means that we essentially have to prove boundedness of moments such as

E

∥
∥
∥
∥

∂λm
t

∂θ1

∥
∥
∥
∥

4

< ∞, E

∥
∥
∥
∥

∂λm
t

∂θ2

∥
∥
∥
∥

4

< ∞, E

(
Y m

t

λm
t

)4

< ∞. (17)

From the model definition (4) and Assumption A2 we obtain that λm
t ≥ f (λm

t−1) ≥
c1. The last inequality of (17) then follows and by using the existence of arbitrary
moments of Y m

t and the fact that 1/λm
t ≤ 1/c1. Next, observe that by repeated substi-

tution and use of assumption A1

∥
∥
∥
∥

∂λm
t

∂θ1

∥
∥
∥
∥

=
∥
∥
∥
∥

∂ f (λm
t−1, θ1)

∂θ1
+ ∂ f (λm

t−1, θ1)

∂λ

∂λm
t−1

∂θ1

∥
∥
∥
∥

≤
∑

i

αi−1
2

∥
∥
∥
∥

∂ f (λm
t−i , θ1)

∂θ1

∥
∥
∥
∥

+ αt
2

∥
∥
∥
∥

∂λm
0

∂θ1

∥
∥
∥
∥

, (18)
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where α2 < 1 is given in assumption A1. The last term can be neglected by an
appropriate choice of initial condition. On the other hand

E

∥
∥
∥
∥
∥

∑

i

αi−1
2

∂ f (λm
t−i , θ1)

∂θ1

∥
∥
∥
∥
∥

≤
∑

i

αi−1
2 E |λm

t−i | < ∞, (19)

due to assumption A4 and the existence of the first moment of |λm
t |. We use this

expansion raised to the fourth power to bound E ||∂λm
t /∂θ1||4. We will then encounter

moments of the type E |λm
t−i1

λm
t−i2

λm
t−i3

λm
t−i4

| which exist due to the Schwartz inequal-
ity and the existence of an arbitrary moment of λt . Since α2 < 1 the corresponding
four-dimensional sum is finite, independent of t , and the first part of (17) is proved.
The rest of the proof follows step by step from the proof of Fokianos et al. (2009b,
Lemma 3.2).

Proof of Lemma 3

This lemma is concerned with the convergence of the scaled Hessian n−1Hm
n to the

matrix Gm corresponding to G of Theorem 1 as n → ∞, the convergence of Gm to
G as m → ∞ and the convergence of Hm

n − Hn to zero as n, m → ∞.
To apply the LLN of Jensen and Rahbek (2007), we have to show that

E

∥
∥
∥
∥

∂2λm
t

∂θ∂θ ′

∥
∥
∥
∥

2

< ∞ and E(Zm
t )2 < ∞, (20)

where Zm
t = (Y m

t /λm
t − 1). Moreover, to carry through the last part of the proof one

has to show that

∥
∥
∥
∥

∂2λm
t

∂θ∂θ ′ − ∂2λt

∂θ∂θ ′

∥
∥
∥
∥

a.s→ 0, (21)

as m → ∞. The second part of (20) follows immediately from E((Zm
t )2|Ft−1) =

1/λm
t ≤ 1/c1. The first part of (20) is more complicated and requires the evaluation

of mixed second derivatives. As an example consider

∂2λm
t

∂θ1∂θ ′
1

= ∂2 f

∂θ1∂θ ′
1

+ ∂2 f

∂λ∂θ1

∂λm
t−1

∂θ ′
1

+ ∂2 f

∂λ2

∂λm
t−1

∂θ1

∂λm
t−1

∂θ ′
1

+ ∂ f

∂λ

∂2λm
t−1

∂θ1∂θ ′
1
, (22)

where the argument of f (·) is always (λm
t−1, θ1) We can now use the same expansion

as in (18) and (19) in the modified proof of Fokianos et al. (2009b, Lemma 3.2).
This is combined with the Schwarz inequality, assumptions A4 (in particular the last
statement of this condition), and the existence of any moments of Y m

t and λm
t yield

the desired result in (20). To prove (21), the representation (22) is employed again.
The differences arising from the three last terms can be handled using the technique of
the last part of the proof of Fokianos et al. (2009b, Lemma 3.1), whereas the difference

123



Nonlinear Poisson autoregression 1223

due to the first term of (22) can be treated by a first-order Taylor expansion in λ, use
of A4 and Proposition 3.

Proof of Lemma 4

This lemma is concerned with the evaluation of the third-order derivative of the log
likelihood. If O(θ0) is a fixed open neighborhood of θ0, then we must show that

mt = sup
θ∈O(θ 0)

∂3lt (θ)

∂θi∂θ j∂θk

should exist and be bounded as θ varies. Moreover, it has to be shown that

E(|mt |) < ∞ and |mm
t − mt | a.s→ 0,

as m → ∞. The first claim is shown using the existence of at least fourth-order contin-
uous derivatives. Along these lines, it is sufficient to show that for Mt = Mt;i, j,k(θ) =
∂3lt/∂θi∂θ j∂θk ,

E(|Mt |) < ∞ and |Mm
t − Mt | a.s→ 0.

The verification of the above display requires some detailed calculations which are
based on the fact that three different types of terms are involved,

(
Yt

λt (θ)
− 1

)
∂3λt (θ)

∂θi∂θ j∂θk
,

Yt

λ2
t (θ)

∂λt (θ)

∂θi

∂2λt (θ)

∂θ jθk
,

Yt

λ3
t (θ)

∂λt (θ)

∂θi

∂λt (θ)

∂θ j

∂λt (θ)

∂θk
.

These can now be evaluated using the technique of the proofs of Fokianos et al.
(2009b, Lemmas 3.1 and 3.2) and again using the assumptions of A1–A4. The condi-
tion |Mm

t − Mt | < δm → 0 is shown using arguments that are identical to those used
at the end of the proof of Lemma 3.

Proof of Theorem 1

Recall the log-likelihood function (10) of the unperturbed model. Let Cn(r) = {θ :
||θ − θ0|| ≤ r/

√
n} be a compact neighborhood of the true value θ0 for any r > 0.

Then, if θ lies on the line between θ and θ0, a Taylor expansion, shows that

l(θ) − l(θ0) = (θ − θ0)
′Sn(θ0) − 1

2
(θ − θ0)

′Hn(θ)(θ − θ0)

= (θ − θ0)
′(Sn(θ0) − Sm

n (θ0)) + (θ − θ0)
′Sm

n (θ0)

−1

2
(θ − θ0)

′(Hn(θ) − Hm
n (θ))(θ − θ0)
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−1

2
(θ − θ0)

′(Hm
n (θ) − Hm

n (θ0))(θ − θ0)

−1

2
(θ − θ0)

′Hm
n (θ0)(θ − θ0)

= I1n + I2n + I3n + I4n + I5n . (23)

We will prove that for every η > 0, there exist n and r such that

P[l(θ) − l(θ0) < 0, ∀ θ ∈ ∂Cn(r)] ≥ 1 − η,

which shows that the maximum is attained in the interior of Cn(r), with probability
tending to 1. However, we have that Iin → 0, in probability, for i = 1, 3, 4. To see
this, note that the result for I1n is based on the proof of Lemma 2. The other two con-
vergence results are based on the proofs of Lemmas 3 and 4 and the continuity of the
Hessian matrix as a function of θ . In addition, we obtain that I2n ≤ ||Sm

n (θ0)||r/√n
and I5n ≤ −λmin (Hm

n (θ0))r2/2n, where λmin (A) denotes the smallest eigenvalue of
a symmetric matrix A. Therefore, combining all the above, (23) yields

P[l(θ) − l(θ0) < 0, ∀ θ ∈ ∂Cn(r)] ≥ P

[∥
∥
∥
∥

Sm
n (θ0)√

n

∥
∥
∥
∥

2

≤ 1

4
r2λ2

min (Hm
n (θ0)/n)

]

≥ P

[∥
∥
∥
∥

Sm
n (θ0)√

n

∥
∥
∥
∥

2

≤ 1

4
r2

]

− η

2

≥ 1 − 4E[||Sm
n (θ0)/

√
n||2]

r2 − η

2
.

Since E[||Sm
n (θ0)/

√
n||2] < ∞ from Lemma 2, the second term of the above

expression can become arbitrarily small. Therefore, we have established asymptotic
existence, or in other words, there exists a sequence of conditional MLE, θ̂ such that,
for any η > 0, there exists an r and an n1 such that

P [̂θ ∈ Cn(r)] ≥ 1 − η, for all n ≥ n1.

Similar to the proofs of Lemmas 2 and 3. we also obtain that Hn(θ) is positive definite
throughout Cn(r) with probability tending to one. In conclusion, there is exactly one
solution θ̂ to the likelihood equation in the interior of Cn(r).

Using the same argument as before, for any δ, 0 < δ < r , there exists with prob-
ability tending to one a solution to the score equations in Cn(δ). But θ̂ is the unique
solution to the score equations in Cn(r) and therefore lies in Cn(δ) with probability
tending to one. In other words, θ̂ is consistent. The asymptotic normality follows by
a Taylor expansion of the score and Lemmas 1–4.
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