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Abstract We construct and investigate a (1−α)-upper prediction bound for a future
observation of a cyclic Poisson process using past data. A normal based confidence
interval for our upper prediction bound is established. A comparison of the new pre-
diction bound with a simpler nonparametric prediction bound is also given.
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1 Introduction

Let X be a Poisson process on the real line R with (unknown) locally integrable inten-
sity function λ. We assume that λ is periodic with period τ > 0 and is positive a.e.
w.r.t. Lebesgue measure. We do not assume any parametric form of λ.

Suppose that, for some ω ∈ �, a single realization X (ω) of the Poisson process X
defined on a probability space (�,F , P) with intensity function λ is observed, though
only within a bounded interval [−n, 0].

Our goal in this paper is to propose and investigate a (1−α)-upper prediction bound
for the time Z of the first event of the Poisson process X after the present time 0, using
only a single realization X (ω) of the cyclic Poisson process X observed in the past,
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1262 R. Helmers, I. W. Mangku

i.e. in an interval [−n, 0]. A possible application of our (1 − α)-th upper prediction
bounds (cf. (9)) is to forecast daily patient arrivals into an accident and emergency
department of a hospital, using past data of previous arrivals. We refer to Au-Yeung,
Harder, McCoy, and Knottenbelt (2009) for some applied work in this area. Though
the probability model for patient arrivals they propose—a structural time series model
with a weekly periodicity—is somewhat different from our semiparametric cyclic
Poisson model, their basic statistical set up appears to be very similar to ours. Past real
data sets of previous arrivals over a 5 year period (n being large, as in our Theorem 1)
are used to predict or forecast the daily arrivals in the near future, say 1–7 days ahead
(predicting the first future event, as in (9)). A much simpler but related prediction
problem for the homogeneous Poisson process was investigated in Vit (1973): given
the number of events in [−n, 0] a prediction interval for the number of events in [0, y]
is obtained.

It is well-known that, for any real number z > 0, the distribution function of Z is
given by :

FZ (z) = P (Z ≤ z) = 1 − P (Z > z) = 1 − e−�(z), (1)

with �(z) = ∫ z
0 λ(s)ds. Let zr = z−τ [ z

τ
] where for any real number x , [x] denotes the

largest integer that less than or equal to x . Then, for any z > 0 we have z = τ [ z
τ
]+ zr

with 0 < zr < τ . Let θ = τ−1
∫ τ

0 λ(s)ds be the global intensity of X . Then, for any
z > 0, we can write

�(z) = θτ
[ z

τ

]
+ �(zr ). (2)

Since λ(s) > 0 a.e. we also have θ > 0. This latter condition is equivalent to the
requirement that, with P-probability one, the realization X (ω) consists of infinite
many points, which is obviously a necessary assumption for obtaining our consis-
tency results.

In view of (1) and (2) our probability model for Z is a semiparametric one, the
nonparametric component is given by the function �(zr ) = ∫ zr

0 λ(s)ds, 0 < zr < τ ,
whereas the parametric component is described by θ (with known period τ ).

Let F̂Z ,n(z) denote the empirical counterpart of FZ (z), using the available past data
set at hand, i.e. X (ω) ∩ [−n, 0], the Poisson process X observed in [−n, 0], which is
given by

F̂Z ,n(z) = 1 − e−�̂n(z) (3)

with

�̂n(z) = τ
[ z

τ

]
θ̂n + �̂n(zr ) (4)
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where

θ̂n = X ([−τnτ , 0])
τnτ

, (5)

�̂n(zr ) = 1

nτ

nτ∑

k=1

X ([−kτ, zr − kτ ]), (6)

and nτ = [ n
τ
].

A (1 − α)-prediction interval for a future observation of X , i.e. the time of the first
event after time 0, is given by (0, ξZ ,1−α), where ξZ ,1−α is defined by

ξZ ,1−α = inf{z : FZ (z) ≥ 1 − α}, (7)

i.e. ξZ ,1−α = F−1
Z (1 − α), where F−1

Z denotes the inverse of FZ . In other words,
ξZ ,1−α is nothing but the solution of

P
(
Z ≤ ξZ ,1−α

) = 1 − α. (8)

Since the distribution of Z is unknown, we replace equation (7) by its empirical coun-
terpart, i.e. we define ξ̂Z ,n,1−α by

ξ̂Z ,n,1−α = F̂−1
Z ,n(1 − α). (9)

As a simple consequence of (9) we have that

F̂Z ,n(ξ̂Z ,n,1−α) = 1 − α + Op(n
−1),

as n → ∞, which in turn easily reduces to the equation

τ

[
ξ̂Z ,n,1−α

τ

]

θ̂n + 1

nτ

nτ∑

k=1

X ([−kτ, ξ̂Z ,n,1−α,r − kτ ]) = ln

(
1

α

)

+ Op

(
1

n

)

,

(10)

as n → ∞, where ξ̂Z ,n,1−α,r = ξ̂Z ,n,1−α − τ
[

ξ̂Z ,n,1−α

τ

]
. In other words, ξ̂Z ,n,1−α

given by (9) is nothing but the (smallest) solution of (10). Note that the non negative
Op(n−1) error term appearing in (10) is due to the fact that F̂Z ,n is discrete, a step
function with jumps of size Op(n−1) occuring at points z = si + kτ for positive
integers k and events si which belong to our past data set X (ω) ∩ [−n, 0].

The density of Z exists and is given by (cf. (1))

fZ (z) = d

dz
(FZ (z)) = λ(z)e−�(z).

Clearly fZ is unknown, but we can estimate fZ at a given point z by

f̂ Z ,n(z) = λ̂n,K (z)e−�̂n(z), (11)
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where, for any z > 0, λ̂n,K (z) is given by

λ̂n,K (z) = τ

n

∞∑

k=0

1

hn

∫ 0

−n
K

(
x − (z + kτ)

hn

)

X (dx), (12)

which is the kernel-type estimator of the intensity function λ of X introduced in
Helmers, Mangku, and Zitikis (2003) and investigated also in Helmers, Mangku,
Zitikis (2005). Here, hn is a sequence of positive real numbers such that hn ↓ 0, as
n → ∞, and K denotes a kernel function K : R → [0,∞) satisfying the following
properties: (K.1) K is a probability density function, (K.2) K is bounded, and (K.3)
K has support in [−1, 1]. The estimator λ̂n,K (z) (cf. (12)) will be used in (16).

The rest of the paper is organized as follows. In Sect. 2, we present our main results.
Some asymptotics, which are needed for proving the main results, are given in Sect. 3.
Proofs of the main results are presented in Sects. 4 and 5.

2 Main results

The main result of this paper is the following theorem:

Theorem 1 Suppose that λ is periodic and locally integrable. Let ξ̂Z ,n,1−α given by
(9), i.e. the smallest solution of (10).

(i) (Consistency) We have

P
(

Z ≤ ξ̂Z ,n,1−α

)
→ 1 − α, (13)

as n → ∞.
(ii) (Asymptotic Normality) We have

√
nτ λ(ξZ ,1−α)
√

q(ξZ ,1−α)

(
ξ̂Z ,n,1−α − ξZ ,1−α

)
d→ N (0, 1) (14)

as n → ∞, provided ξZ ,1−α is a Lebesgue point of λ, where for any z > 0

q(z) =
[ z

τ

]2
τθ +

(
1 + 2

[ z

τ

])
�(zr ) (15)

with zr = z − τ [ z
τ
].

(iii) (Studentization) Let λ̂n,K be the kernel-type estimator of λ given by (12), then
we have

√
nτ λ̂n,K (ξ̂Z ,n,1−α)
√

q̂n(ξ̂Z ,n,1−α)

(
ξ̂Z ,n,1−α − ξZ ,1−α

)
d→ N (0, 1) (16)
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Predicting a cyclic Poisson process 1265

as n → ∞, provided hn ↓ 0, nhn → ∞, λ(ξZ ,1−α) > 0 and ξZ ,1−α is a
Lebesgue point of λ, where for any z > 0

q̂n(z) =
[ z

τ

]2
τ θ̂n +

(
1 + 2

[ z

τ

])
�̂n(zr ). (17)

Note that, a point z is called a Lebesgue point of λ if limh↓0
1

2h

∫ h
−h |λ(z + x) −

λ(z)|dx = 0. This assumption is a rather mild one since the set of all Lebesgue point
of λ is dense in R, whenever λ is assumed to be locally integrable. The Lebesgue point
assumption also occurs in Helmers et al. (2003, 2005).

It is easy to check (cf. (72) and (73)) that q(ξZ ,1−α) appearing in (14) reduces
to �(ξZ ,1−α,r ), with ξZ ,1−α,r = ξZ ,1−α − τ [ ξZ ,1−α

τ
], whenever ξZ ,1−α < τ which

happens if and only if θτ > ln(1/α) (cf. (74)). In other words

q(ξZ ,1−α) = �(ξZ ,1−α,r ) = �(ξZ ,1−α) <=> θτ > ln(1/α). (18)

We note in passing that q(ξZ ,1−α) = �(ξZ ,1−α,r ) also holds true in the case that θ

is assumed to be known. To check this is an easy matter in view of (4); i.e. �̂n(z) now
reduces to τ [ z

τ
]θ + �̂n(zr ).

An important statistical application of (16) is that it enables one to construct a
confidence interval for the (1 − α)−upper prediction bound ξZ ,1−α as follows:

Corollary 1 For any significance level p, 0 < p < 1, a normal based confidence
interval for ξZ ,1−α with approximate coverage probability 1 − p is given by

In =
⎛

⎝ξ̂Z ,n,1−α− 
−1(1− p
2 )

√
q̂n(ξ̂Z ,n,1−α)

√
[ n
τ
] λ̂n,K (ξ̂Z ,n,1−α)

, ξ̂Z ,n,1−α+ 
−1(1− p
2 )

√
q̂n(ξ̂Z ,n,1−α)

√
[ n
τ
] λ̂n,K (ξ̂Z ,n,1−α)

⎞

⎠,

(19)

where 
 denote the distribution function of a standard normal r.v. and

P
(
ξZ ,1−α ∈ In

) = 1 − p + o(1), (20)

as n → ∞, provided ξZ ,1−α is a Lebesgue point of λ, λ(ξZ ,1−α) > 0 and the period
τ is known.

The upper prediction bound ξ̂Z ,n,1−α can be viewed as an estimator of ξZ ,1−α

based on the semiparametric model (1). In contrast, a simple nonparametric esti-
mator of ξZ ,1−α is given by the sample quantile ξ̂ N P

Z ,N ,1−α , which can be defined as
follows. First of all, let the Z ′

i s, i = 1, 2, . . . , N , denote the observed times to the
first ’event’ in X (ω) ∩ [−n, 0], starting at time −(nτ − i + 1)τ , i = 1, 2, . . . , nτ ,
whenever well-defined. For instance, when X ([−n, 0]) = 0, i.e. the data set at hand
is empty, the Z ′

i s do not exist; i.e. N = 0. If there is no ’event’ of X (ω) in the
interval [−(nτ − i + 1)τ,−(nτ − i)τ ) but there is an ’event’ in the next interval
[−(nτ − i)τ,−(nτ − i − 1)τ ), then we know that τ < Zi < 2τ . To obtain Zi+1
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1266 R. Helmers, I. W. Mangku

we observe the time to the next ’event’ of X (ω) starting from time −(nτ − i − 1)τ .
More generally, if N = m, m = 0, 1, 2, . . . , nτ , then precisely m waiting times, say
Z1, Z2, . . . , Zm , are observed. Of course, the Z ′

i s are i.i.d. with common df FZ (cf.
(1)), due to periodicity of λ.

The sample quantile ξ̂ N P
Z ,N ,1−α is defined as

ξ̂ N P
Z ,N ,1−α = F̂−1

N (1 − α) (21)

where for any 0 < s < 1, F̂−1
N (s) = inf{x : F̂N (x) ≥ s}, and F̂N denote the empirical

distribution function (df) with random sample size N of Z1, Z2, . . . , Z N , with

N =
nτ∑

i=1

I(X ([−(nτ − i + 1)τ,−(nτ − i)τ )) ≥ 1) (22)

where N has Binomial distribution with parameters nτ and 1−e−θτ . Note that for each
i , i = 1, 2, . . . , nτ , we have P(X ([−(nτ − i + 1)τ,−(nτ − i)τ )) ≥ 1) = 1 − e−θτ ,
whereas the summands in (22) are i.i.d.

Using a well-known result for sample quantiles based on a sample with nonrandom

sample size (see, e.g., Reiss 1989, p.109) and the fact that
√

N/(nτ (1 − e−θτ ))
p→ 1,

as n → ∞, we have

√
nτ (1 − e−θτ ) fZ (ξZ ,1−α)√

α(1 − α)

(
ξ̂ N P

Z ,N ,1−α − ξZ ,1−α

)
d→ N (0, 1) (23)

as n → ∞. So, the asymptotic variance of ξ̂ N P
Z ,N ,1−α is equal to

α(1 − α)

nτ (1 − e−θτ ) f 2
Z (ξZ ,1−α)

, (24)

provided fZ (ξZ ,1−α) > 0.
Our prediction bound ξ̂Z ,n,1−α uses the whole past data set X (ω) ∩ [−n, 0] at

hand. So, in contrast to ξ̂ N P
Z ,N ,1−α , which based on a Binomial random sample of size

N with mean nτ (1 − e−θτ ), our proposed prediction bound ξ̂Z ,n,1−α is a function
of X ([−n, 0]) data points—a Poisson random sample size with mean

∫ 0
−n λ(s)ds ≈

nτ

∫ τ

0 λ(s)ds = nτ θτ . Since for any θτ > 0 we have θτ > (1 − e−θτ ), we use,
on the average, a bigger data set in constructing ξ̂Z ,n,1−α compared with ξ̂ N P

Z ,N ,1−α .

Comparing (24) with the asymptotic variance of ξ̂Z ,n,1−α (cf. (14)) which is equal to

q(ξZ ,1−α)

nτ λ2(ξZ ,1−α)
= q(ξZ ,1−α)e−2�(ξZ ,1−α)

nτ f 2
Z (ξZ ,1−α)

= q(ξZ ,1−α)α2

nτ f 2
Z (ξZ ,1−α)

, (25)

provided λ(ξZ ,1−α) > 0, one can check—cf. Theorem 2 below—that the variance in
(25) is smaller than the variance in (24), as one would perhaps expect.
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Theorem 2 Suppose that λ is periodic and locally integrable. If

θτ >
ln(1/α)

3
, (26)

then for any 0 < α < 1, we have

q(ξZ ,1−α)α2

nτ f 2
Z (ξZ ,1−α)

<
α(1 − α)

nτ (1 − e−θτ ) f 2
Z (ξZ ,1−α)

, (27)

provided fZ (ξZ ,1−α) > 0.

Comparing the r.h.s. of (27) (cf. (24)) with the l.h.s. of (27) in the special case that
(18) holds true, i.e. when q(ξZ ,1−α) reduces to �(ξZ ,1−α,r ) = �(ξZ ,1−α) = ln(α−1),
a simple calculation shows that

asymp. var (ξ̂ N P
Z ,n,1−α)

asymp. var (ξ̂Z ,n,1−α)
= α−1 − 1

ln(α−1)(1 − e−θτ )
(28)

holds true, provided θτ > ln(1/α). Condition θτ > ln(1/α), when α = 0.05 (0.10),
is equivalent to assuming that, on the average, there are at least 2.9957 (2.3026) events
of the process X in any interval of length τ . In particular this means, for instance, when
α = 0.05 (0.10), the ratio in (28) is bigger or equal to 6.6762 (4.3430), whenever
θτ > 2.9957 (2.3026).

To obtain a Studentized version of (23) (cf. Ho and Lee 2005; Reiss 1989) one need
to estimate θ and fZ (ξZ ,1−α) by θ̂n (cf. (5)) and a density estimate f̂ Z ,n(ξ̂ N P

Z ,N ,1−α),

where f̂ Z ,n (cf. (11)) denotes an appropriate density estimate of f . For any significance
level p, 0 < p < 1, a normal based confidence interval for ξZ ,1−α with approximate
coverage probability 1 − p is given by

I N P
n =

⎛

⎝ξ̂ N P
Z ,N ,1−α − 
−1(1 − p

2 )
√

α(1 − α)
√

[ n
τ
](1 − e−τ θ̂n ) f̂ Z ,n(ξ̂ N P

Z ,N ,1−α)

,

ξ̂ N P
Z ,N ,1−α + 
−1(1 − p

2 )
√

α(1 − α)
√

[ n
τ
](1 − e−τ θ̂n ) f̂ Z ,n(ξ̂ N P

Z ,N ,1−α)

⎞

⎠

where

P
(
ξZ ,1−α ∈ I N P

n

)
= 1 − p + o(1), (29)

as n → ∞, provided ξZ ,1−α is a Lebesgue point of λ, λ(ξZ ,1−α) > 0 and the period
τ is known.

Ho and Lee (2005) recently obtained an iterated smoothed bootstrap-t method for
setting confidence interval for quantiles like ξ̂ N P

Z ,N ,1−α for a nonrandom sample size n,
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with coverage error of order n−58/57, i.e. the classical normal error O(n−1/2), which
one would expect in (29), is replaced by a much smaller coverage error O(n−58/57)

using an iterated smoothed bootstrap method to approximate the distribution of a
Studentized sample quantile. The question remains whether we can obtain such much
smaller coverage errors using bootstrap methods for (29) and (20) as well. The authors
hope to pursue this matter elsewhere.

In certain cases of interest the intensity function λ is apriori known to be sufficiently
smooth and one may estimate �(z) by

∫ z
0 λ̂n,K (s)ds instead of �̂n(z), for any z > 0.

In this set up, it might be of interest to construct a confidence region for the function
�(z), z > 0 (cf. (2)) using a kernel type estimator for λ, somewhat similar to the
methodology used in Helmers, Wang, and Zitikis (2009).

To conclude this section we also want to refer to Helmers and Zitikis (1999) and
Helmers and Mangku (2009) for some related statistical work on Poisson intensity
functions.

3 Some asymptotics

In this section we investigate the asymptotic behaviour of F̂Z ,n (cf. (3)), our estimator
of FZ .

Proposition 1 Suppose that λ is periodic and locally integrable.

(i) (Consistency) For any z > 0 we have

F̂Z ,n(z)
p→ FZ (z), (30)

as n → ∞.
(ii) (Asymptotic normality) For any z > 0 we have

√
nτ e�(z)

√
q(z)

(
F̂Z ,n(z) − FZ (z)

)
d→ N (0, 1) (31)

as n → ∞, where N (0, 1) denotes a standard normal random variable and
q(z) is given by (15).

(iii) (Studentization) For any z > 0 we have

√
nτ e�̂n(z)

√
q̂n(z)

(
F̂Z ,n(z) − FZ (z)

)
d→ N (0, 1) (32)

as n → ∞, where q̂n(z) is given by (17).

The error of the normal approximation in (31) is easily seen to be of the classical
order n−1/2. A correction term of Edgeworth type, correcting not only for bias and
skewness but also for the lattice character of the Poisson distribution, can in principle
be established using a general result on Edgeworth expansions for lattice distributions
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due to Kolassa and McCullagh (1990). We also refer to (44) for a simple explicit bias
correction term to F̂Z ,n(z) of order n−1/2.

Next we prove Proposition 1. To check Proposition 1 we need the following lemmas.

Lemma 1 Suppose that λ is periodic and locally integrable. Then for any z > 0 we
have

E�̂n(z) = �(z), (33)

V ar
(
�̂n(z)

)
= q(z)

nτ

, (34)

where q(z) is given by (15), and

√
nτ√

q(z)

(
�̂n(z) − �(z)

)
d→ N (0, 1) (35)

as n → ∞.

Note also that, since 0 ≤ �(zr ) ≤ τθ , from (34), we have that, for any z > 0,
V ar(�̂n(z)) = O(n−1), as n → ∞.

Proof Define �c(zr ) = ∫ τ

zr
λ(s)ds. Then �(zr )+�c(zr ) = θτ so that, for any z > 0,

we have

�(z) =
(

1 +
[ z

τ

])
�(zr ) +

[ z

τ

]
�c(zr ) (36)

instead of (2). An estimator of �c(zr ) is given by

�̂c
n(zr ) = 1

nτ

nτ∑

k=1

X ((zr − kτ, τ − kτ)).

Note that �̂n(zr ) and �̂c
n(zr ) are independent and �̂n(zr ) + �̂c

n(zr ) = τ θ̂n . Hence,
we can write �̂n(z) in (4) as

�̂n(z) =
(

1 +
[ z

τ

])
�̂n(zr ) +

[ z

τ

]
�̂c

n(zr ), (37)

where

E�̂n(zr ) = 1

nτ

nτ∑

k=1

EX ([−kτ, zr − kτ ]) = 1

nτ

nτ∑

k=1

∫ zr −kτ

−kτ

λ(x)dx = �(zr ), (38)

similarly E�̂c
n(zr ) = �c(zr ), and relation (33) follows.
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1270 R. Helmers, I. W. Mangku

Next we prove (34). Since �̂n(zr ) and �̂c
n(zr ) are independent, by (37), we have

V ar(�̂n(z)) =
(

1 +
[ z

τ

])2
V ar(�̂n(zr )) +

[ z

τ

]2
V ar(�̂c

n(zr )). (39)

For any 0 < zr < τ and any pair of integers (k, j), with k �= j , we have that
X ([−kτ, zr − kτ ]) and X ([− jτ, zr − jτ ]) are independent. By a similar calculation
as the one in (38), we obtain

V ar
(
�̂n(zr )

)
= 1

n2
τ

nτ∑

k=1

V ar(X ([−kτ, zr − kτ ]) = �(zr )

nτ

. (40)

Similarly we also have V ar(�̂c
n(zr )) = �c(zr )/nτ . Substituting these variances into

the r.h.s. of (39) we obtain

V ar(�̂n(z)) = (1 + [ z
τ
])2�(zr ) + [ z

τ
]2�c(zr )

nτ

. (41)

Since �c(zr ) = θτ − �(zr ), we have

(
1 +

[ z

τ

])2
�(zr ) +

[ z

τ

]2
�c(zr ) =

[ z

τ

]2
τθ +

(
1 + 2

[ z

τ

])
�(zr ) = q(z) (42)

(cf. (15)). Substituting (42) into (41), we obtain (34).
Next we check (35). An easy calculation using (36), (37), (40) and the line after

(40), shows that

√
nτ

(
�̂n(z) − �(z)

)

= √
�(zr )

(
1 +

[ z

τ

])(∑nτ

k=1 X ([−kτ, zr − kτ ]) − nτ�(zr )√
nτ�(zr )

)

+√�c(zr )
[ z

τ

](∑nτ

k=1 X ((zr −kτ, τ −kτ))−nτ�
c(zr )√

nτ�c(zr )

)

.

(43)

Since
∑nτ

k=1 X ([−kτ, zr − kτ ]) is a Poisson random variable with mean nτ�(zr ),
the normal approximation for Poisson random variables directly yields that the first
term on the r.h.s. of (43) converges in distribution to N (0, (1 + [ z

τ
])2�(zr )), as n →

∞, and similarly the second term on the r.h.s. of (43) converges in distribution to
N (0, [ z

τ
]2�c(zr )), as n → ∞. Since these two normal r.v.’s are independent, we

obtain

√
nτ

(
�̂n(z) − �(z)

)
d→ N (0,

(
1 +

[ z

τ

])2
�(zr ) +

[ z

τ

]2
�c(zr ))

as n → ∞, and consequently also (35). This completes the proof of Lemma 1. �
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Lemma 2 Suppose that λ is periodic and locally integrable. Then for any z > 0 we
have

E
(

F̂Z ,n(z)
)

= FZ (z) − q(z)e−�(z)

2nτ

+ O
(

1

n2

)

, (44)

and

V ar
(

F̂Z ,n(z)
)

= q(z)e−2�(z)

nτ

+ O
(

1

n2

)

, (45)

as n → ∞.

Proof First we check (44). By (3), (37) and noting that �̂n(zr ) and �̂c
n(zr ) are inde-

pendent, we obtain

E
(

F̂Z ,n(z)
)

= 1 − Ee−(1+[ z
τ
])�̂n(zr )Ee−[ z

τ
]�̂c

n(zr ). (46)

Using the moment generating function of a Poisson r.v. we obtain

Ee−(1+[ z
τ
])�̂n(zr ) = exp

(
nτ�(zr )

(
e−(1+[ z

τ
])/nτ − 1

))
. (47)

A Taylor expansion yields

e−(1+[ z
τ
])/nτ = 1 − (1 + [ z

τ
])

nτ

+ (1 + [ z
τ
])2

2n2
τ

+ O
(

1

n3

)

(48)

as n → ∞. Substituting (48) into the r.h.s. of (47), we find after some calculations

Ee−(1+[ z
τ
])�̂n(zr ) = exp

(

nτ�(zr )

(

− (1 + [ z
τ
])

nτ

+ (1 + [ z
τ
])2

2n2
τ

+ O
(

1

n3

)))

= e−(1+[ z
τ
])�(zr ) + (1 + [ z

τ
])2�(zr )e−(1+[ z

τ
])�(zr )

2nτ

+ O
(

1

n2

)

,

(49)

as n → ∞. Similarly we have

Ee−[ z
τ
]�̂c

n(zr ) = e−[ z
τ
]�c(zr ) + [ z

τ
]2�c(zr )e−[ z

τ
]�c(zr )

2nτ

+ O
(

1

n2

)

, (50)

as n → ∞. Combining (49) and (50) with (46) and using (42), we obtain (44).
Next we verify (45).

V ar
(

F̂Z ,n(z)
)

= E
(

e−�̂n(z)
)2 −

(
Ee−�̂n(z)

)2
.
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1272 R. Helmers, I. W. Mangku

Since

E
(

e−�̂n(z)
)2 = E

(
e−2�̂n(z)

)
= Ee−2(1+[ z

τ
])�̂n(zr ) Ee−2[ z

τ
]�̂c

n(zr ),

a similar calculation as the one in (47)–(49), with −(1 +[ z
τ
])/nτ replaced by −2(1 +

[ z
τ
])/nτ , yields that Ee−2(1+[ z

τ
])�̂n(zr ) is equal to the r.h.s. of (49) with (1 + [ z

τ
])

replaced by 2(1 + [ z
τ
]). Similarly, Ee−2[ z

τ
]�̂c

n(zr ) is equal to the r.h.s. of (50) with [ z
τ
]

replaced by 2[ z
τ
]. Combining these results with (42), we obtain

E
(

e−�̂n(z)
)2 = e−2�(z) + 2q(z) e−2�(z)

nτ

+ O
(

1

n2

)

,

as n → ∞. From (44) we easily obtain

(
Ee−�̂n(z)

)2 = e−2�(z) + q(z) e−2�(z)

nτ

+ O
(

1

n2

)

,

as n → ∞. Together these results yield (45). This completes the proof of Lemma 2. �

Proof of Proposition 1 By Lemma 2, i.e. E(F̂Z ,n(z) − FZ (z)) = O(n−1) and
V ar(F̂Z ,n(z)) = O(n−1), as n → ∞, Chebychev inequality yields part (i) of Propo-
sition 1.

To prove part (ii) of Proposition 1, we argue as follows. First we write the l.h.s. of
(31) as follows

√
nτ e�(z)

√
q(z)

(
e−�(z) − e−�̂n(z)

)
=

√
nτ√

q(z)

(
1 − e−(�̂n(z)−�(z))

)
. (51)

By a Taylor expansion

e−(�̂n(z)−�(z)) = 1 −
(
�̂n(z) − �(z)

)
+ 1

2!
(
�̂n(z) − �(z)

)2 − · · ·

and from (35) we know

(
�̂n(z) − �(z)

)
=

√
q(z)√
nτ

N (0, 1) + op

(
1√
n

)

, (52)

as n → ∞, and consequently

(
1 − e−(�̂n(z)−�(z))

)
=

√
q(z)√
nτ

N (0, 1) + op

(
1√
n

)

, (53)

123
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as n → ∞, directly follows. Substituting (53) into r.h.s. of (51), we obtain

√
nτ e�(z)

√
q(z)

(
F̂Z ,n(z) − FZ (z)

)
= N (0, 1) + op(1),

as n → ∞. This completes the proof of part(ii) of Proposition 1.
To establish part (iii) of Proposition 1, it suffices to check, for any z > 0,

√
q(z)

q̂n(z)
e(�̂n(z)−�(z)) p→ 1, (54)

as n → ∞. By (35) we have (�̂n(z) − �(z)) = Op(n−1/2), as n → ∞. From (52)
we know that (�̂n(zr ) − �(zr )) = Op(n−1/2) as n → ∞. A simple calculation also
shows that

(θ̂n − θ) = Op(n
−1/2), (55)

as n → ∞. Consequently q̂n(z) = q(z) + Op(n−1/2), as n → ∞, and (54) is
immediate. This completes the proof of Proposition 1. �

4 Proof of Theorem 1 and relation (18)

First we prove part (i) of Theorem 1. To check this, we write the l.h.s. of (13) as

P
(

Z ≤ ξZ ,1−α + (ξ̂Z ,n,1−α − ξZ ,1−α)
)

= P
(

Z − (ξ̂Z ,n,1−α − ξZ ,1−α) ≤ ξZ ,1−α

)

Then, by (8), proving (13) is equivalent to showing that

P
(

Z − (ξ̂Z ,n,1−α − ξZ ,1−α) ≤ ξZ ,1−α

)
→ P

(
Z ≤ ξZ ,1−α

)
, (56)

as n → ∞. To prove (56), it suffices to check

(ξ̂Z ,n,1−α − ξZ ,1−α)
p→ 0, (57)

as n → ∞. By (7) and (9), to verify (57), it suffices to show

(
inf

{
x : FZ (x) + (F̂Z ,n(x) − FZ (x))≥1 − α

}
− inf {x : FZ (x)≥1 − α}

)
p→ 0,

(58)

as n → ∞. By part (i) of Proposition 1 (cf. Sect. 3) and the fact that FZ is continuous
in a neighborhood of ξZ ,1−α , we obtain (58). This completes the proof of part (i) of
Theorem 1.
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Next we prove part (ii) of Theorem 1. To verify this, by (7) and (9), we write the
l.h.s. of (14) as

√
nτ λ(ξZ ,1−α)
√

q(ξZ ,1−α)

(
inf

{
x : F̂Z ,n(x) ≥ 1 − α

}
− inf {x : FZ (x) ≥ 1 − α}

)
. (59)

By part (ii) of Proposition 1 we can write

F̂Z ,n(x) = FZ (x) + N (0, 1)
√

q(x)√
nτ e�(x)

+ op

(
1√
n

)

, (60)

as n → ∞. By (58), we know from the proof of part (i) of Theorem 1 that

inf
{

x : F̂Z ,n(x) ≥ 1 − α
}

− ξZ ,1−α = op(1),

as n → ∞. Hence, to prove part (ii) of Theorem 1 we only need to consider x in a
shrinking neighborhood of ξZ ,1−α . Next we show that, for any sequence {xn}, such
that |xn − ξZ ,1−α| = op(1), as n → ∞, N (0, 1)

√
q(xn)e−�(xn)/

√
nτ in (60) can be

replaced by N (0, 1)
√

q(ξZ ,1−α)e−�(ξZ ,1−α)/
√

nτ . To verify this we have to show

(√
q(xn) e−�(xn) −√

q(ξZ ,1−α) e−�(ξZ ,1−α)
)

= op(1), (61)

as n → ∞. To prove (61), we write the l.h.s. of (61) as

√
q(xn)

(
e−�(xn) − e−�(ξZ ,1−α)

)
+ e−�(xn)

(√
q(xn) −√

q(ξZ ,1−α)
)

. (62)

Since |xn − ξZ ,1−α| = op(1) as n → ∞, a simple argument show that, the quantity
in (62) is of order op(1) as n → ∞, provided

�(xn) − �(ξZ ,1−α) = op(1), (63)

as n → ∞. To verify (63) we note that the l.h.s. of (63) is equal to

∫ xn

ξZ ,1−α

λ(s)ds =
∫ (xn−ξZ ,1−α)

0
λ(s + ξZ ,1−α)ds = λ(ξZ ,1−α)(xn − ξZ ,1−α)

+ (xn − ξZ ,1−α)

(
1

(xn − ξZ ,1−α)

∫ (xn−ξZ ,1−α)

0
(λ(s + ξZ ,1−α) − λ(ξZ ,1−α))ds

)

.

(64)

Since ξZ ,1−α is a Lebesgue point of λ and |xn − ξZ ,1−α| = op(1), then the r.h.s. of
(64) is op(1), as n → ∞. Hence we have (61).
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Next, substituting (60) with N (0, 1)
√

q(x)e−�(x)/
√

nτ replaced by N (0, 1)√
q(ξZ ,1−α)e−�(ξZ ,1−α)/

√
nτ into (59), we obtain that the l.h.s. of (14) is equal to

√
nτ λ(ξZ ,1−α)
√

q(ξZ ,1−α)

(

inf

{

x : FZ (x) + N (0, 1)
√

q(ξZ ,1−α)√
nτ e�(ξZ ,1−α)

+ op

(
1√
n

)

≥ 1 − α

}

− inf {x : FZ (x) ≥ 1 − α})

=
√

nτ λ(ξZ ,1−α)
√

q(ξZ ,1−α)

(

F−1
Z

(

1−α + N (0, 1)
√

q(ξZ ,1−α)√
nτ e�(ξZ ,1−α)

+op

(
1√
n

))

−F−1
Z (1−α)

)

=
√

nτ λ(ξZ ,1−α)
√

q(ξZ ,1−α)

(
N (0, 1)

√
q(ξZ ,1−α)√

nτ e�(ξZ ,1−α)
+op

(
1√
n

))(
1

fZ (F−1
Z (1−α))

+op(1)

)

= N (0, 1) + op(1),

as n → ∞, where for any 0 < s < 1, F−1
Z (s) = inf{x : FZ (x) ≥ s}. This completes

the proof of part (ii) of Theorem 1.
Next we prove part (iii) of Theorem 1. To check this, by (14), it suffices to show

√
q(ξZ ,1−α)

√
q̂n(ξ̂Z ,n,1−α)

p→ 1, (65)

and

λ̂n,K (ξ̂Z ,n,1−α)

λ(ξZ ,1−α)

p→ 1, (66)

as n → ∞.
First we consider (65). By writing q̂n(ξ̂Z ,n,1−α) = q(ξZ ,1−α) + (q̂n(ξ̂Z ,n,1−α) −

q(ξZ ,1−α)), to prove (65), it suffices to check

(
q̂n(ξ̂Z ,n,1−α) − q(ξZ ,1−α)

)
p→ 0,

as n → ∞. By (15) and (17), and since (ξ̂Z ,n,1−α − ξZ ,1−α) = Op(n−1/2) (cf. (14))
and (θ̂n − θ) = Op(n−1/2), as n → ∞ (cf. (55)), a simple argument shows that, to
prove (65), it suffices to verify

(
�̂n(ξ̂Z ,n,1−α,r ) − �(ξZ ,1−α,r )

)
p→ 0, (67)

as n → ∞. To verify (67), we write the l.h.s. of (67) as

(
�̂n(ξ̂Z ,n,1−α,r ) − �̂n(ξZ ,1−α,r )

)
+
(
�̂n(ξZ ,1−α,r ) − �(ξZ ,1−α,r )

)
. (68)
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By (52) with z replaced by ξZ ,1−α,r , we have the second term of (68) is of order
Op(n−1/2), as n → ∞. Next we show the first term of (68) is of the same order, i.e.

(
�̂n(ξ̂Z ,n,1−α,r ) − �̂n(ξZ ,1−α,r )

)
= Op

(
1√
n

)

, (69)

as n → ∞. To verify (69), note that by (14), we have ξ̂Z ,n,1−α = ξZ ,1−α +Op(n−1/2),
which also implies ξ̂Z ,n,1−α,r = ξZ ,1−α,r + Op(n−1/2), as n → ∞. The l.h.s. of (69)
can be written as

1

nτ

nτ∑

k=1

X ([−kτ, ξ̂Z ,n,1−α,r − kτ ]) − 1

nτ

nτ∑

k=1

X ([−kτ, ξZ ,1−α,r − kτ ])=Op

(
1√
n

)

,

as n → ∞, since clearly X ([ξZ ,1−α,r −kτ, ξZ ,1−α,r −kτ +Op(n−1/2)]) = Op(n−1/2)

uniformly in k, because λ is periodic and ξZ ,1−α is a Lebesgue point of λ. Hence we
have (69). Therefore, we obtain (67).

Next we prove (66). By writing λ̂n,K (ξ̂Z ,n,1−α) = λ(ξZ ,1−α) + (λ̂n,K (ξ̂Z ,n,1−α) −
λ(ξZ ,1−α)), to prove (66), it suffices to check

(
λ̂n,K (ξ̂Z ,n,1−α) − λ(ξZ ,1−α)

)
p→ 0, (70)

as n → ∞. To verify (70), we write the l.h.s. of (70) as

(
λ̂n,K (ξ̂Z ,n,1−α) − λ̂n,K (ξZ ,1−α)

)
+
(
λ̂n,K (ξZ ,1−α) − λ(ξZ ,1−α)

)
. (71)

Since ξZ ,1−α is a Lebesgue point of λ, Theorem 2.1. of Helmers et al. (2003) for
the case τ is known yields that the second term of (71) is op(1), as n → ∞. By a
similar argument as the one used to prove (69), we also obtain the first term of (71) is
op(1), as n → ∞. Hence we have (70) and (66) follows. This completes the proof of
Theorem 1. �

Proof of (18) To begin with, first we show

ξZ ,1−α < τ if and only if θτ > ln

(
1

α

)

. (72)

To verify (72) we argue as follows. By (8) we have P
(
Z > ξZ ,1−α

) = α. Note also
that

ξZ ,1−α < τ <=> P (Z > τ) < P
(
Z > ξZ ,1−α

)
<=> P (Z > τ) < α.

(73)
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Since P(Z > τ) = e−θτ , the statement in (73) is equivalent to

e−θτ < α <=> θτ > ln

(
1

α

)

. (74)

Combining (73) and (74) we obtain (72). By the l.h.s. of (72) we have
[

ξZ ,1−α

τ

]
= 0.

Substituting
[

ξZ ,1−α

τ

]
= 0 into q(ξZ ,1−α) we obtain the l.h.s. of (18). This completes

the proof of (18). �

5 Proof of Theorem 2

Since �(ξZ ,1−α,r ) = �(ξZ ,1−α) −
[

ξZ ,1−α

τ

]
θτ , q(ξZ ,1−α) can also be written as

q(ξZ ,1−α) =
(

1 + 2

[
ξZ ,1−α

τ

])

�(ξZ ,1−α) −
(

1 +
[
ξZ ,1−α

τ

])[
ξZ ,1−α

τ

]

τθ,

instead of (15). Then, proving (27) is equivalent to checking that

{(

1 + 2

[
ξZ ,1−α

τ

])

�(ξZ ,1−α) −
(

1 +
[
ξZ ,1−α

τ

])[
ξZ ,1−α

τ

]

τθ

}

<
(1 − α)

α(1 − e−θτ )
. (75)

To prove (75), we split up condition (26) into three cases, namely, case (i) θτ >

ln(1/α), case (ii) ln(1/α)/2 < θτ ≤ ln(1/α) and case (iii) ln(1/α)/3 < θτ ≤
ln(1/α)/2.

First we consider case (i). In this case, by (72), we have
[

ξZ ,1−α

τ

]
= 0. Since

(1 − e−θτ ) < 1, proving (75) in this case, it suffices to check

�(ξZ ,1−α,r ) <
(1 − α)

α
. (76)

By noting that �(ξZ ,1−α,r ) ≤ �(ξZ ,1−α) = − ln(α), to prove (76), it suffices to check

− ln(α) <
(1 − α)

α
<=> ln(α) + 1

α
− 1 > 0.

Let h(α) = ln(α) + 1/α − 1. We have to show, for all 0 < α < 1, h(α) > 0. To
do this, note that h(1) = 0 and h′(α) = α−1(1 − α−1). Since 0 < α < 1, we have
α−1 > 0 and (1 − α−1) < 0, which implies h′(α) < 0 for all 0 < α < 1. Hence,
h(α) is monotone decreasing to 0 in interval (0, 1), which implies h(α) > 0 for all
0 < α < 1. Therefore we obtain (27).
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Next we consider case (ii). By a similar argument as the proof of (72), we have

ln(1/α)

2
<θτ ≤ ln

(
1

α

)

<=> θτ ≤ ln

(
1

α

)

<2θτ if and only if τ ≤ξZ ,1−α <2τ.

(77)

By (77) we have
[

ξZ ,1−α

τ

]
= 1. Since θτ ≤ ln(1/α), we have (1−α)/(1− e−θτ ) ≥ 1.

Then to prove (75) in this case, it suffices to check

{3�(ξZ ,1−α) − 2τθ} <
1

α
. (78)

By noting that �(ξZ ,1−α) = ln(1/α) and 2θτ > ln(1/α) (cf. (77)), to prove (78), it
suffices to verify

{3 ln(1/α) − ln(1/α)} <
1

α
<=> α(ln(1/α)) <

1

2
. (79)

Since the maximum value of α(ln(1/α)) is e−1 (when α = e−1) which is less than
1/2, we have (79).

Next we consider case (iii). Similarly to (77), we now have

ln(1/α)

3
< θτ ≤ ln(1/α)

2
<=> 2θτ ≤ ln

(
1

α

)

< 3θτ iff 2τ ≤ ξZ ,1−α < 3τ.

(80)

By (80) we have
[

ξZ ,1−α

τ

]
= 2. Next to prove (75) in this case, it suffices to check

{5�(ξZ ,1−α) − 6τθ} <
(1 − α)

α(1 − e−θτ )
. (81)

Since θτ ≤ ln(1/α)/2, we have (1−e−θτ ) ≤ (1−α1/2). By noting that �(ξZ ,1−α) =
ln(1/α) and θτ > ln(1/α)/3 (cf. (80)), to prove (81), it suffices to verify

{5 ln(1/α) − 2 ln(1/α)} <
(1 − α)

α(1 − α1/2)
<=>

(1 − α)

3(1 − α1/2)
+ α ln(α) > 0.

Define

f3(α) = (1 − α)

3(1 − α1/2)
+ α ln(α) = 1

3
+

√
α

3
+ α ln(α).

It remains to show that f3(α) > 0 for all 0 < α < 1. To verify this, first note that
f ′
3(α) = 1/(6

√
α)+ ln(α)+1 and f ′′

3 (α) = −1/(12α3/2)+1/α. Since the first deriv-
ative f ′

3 is monotone increasing on (0, 1) with f ′
3(0) = −∞ and f ′

3(1) = 7/6, the
function f ′

3 is equal to zero for exactly one value of α, namely 0.266351 . . . Because
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Predicting a cyclic Poisson process 1279

f ′′
3 (0.266351) = 3.148215 > 0, we can conclude that f3(0.266351) = 0.152998

is the minimum value of f3 on (0, 1). Hence f3(α) > 0 for all 0 < α < 1. This
completes the proof of Theorem 2. �
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