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Abstract We consider a random vector X , whose components are neither neces-
sarily independent nor identically distributed. The fragility index (FI), if it exists, is
defined as the limit of the expected number of exceedances among the components
of X above a high threshold, given that there is at least one exceedance. It measures
the asymptotic stability of the system of components. The system is called stable if
the FI is one and fragile otherwise. In this paper, we show that the asymptotic condi-
tional distribution of exceedance counts exists, if the copula of X is in the domain of
attraction of a multivariate extreme value distribution, and if the marginal distribution
functions satisfy an appropriate tail condition. This enables the computation of the FI
corresponding to X and of the extended FI as well as of the asymptotic distribution
of the exceedance cluster length also in that case, where the components of X are not
identically distributed.

Keywords Exceedance over high threshold · Fragility index · Extended fragility
index · Multivariate extreme value theory · Peaks-over-threshold approach · Copula ·
Exceedance cluster length

1 Introduction

Let X = (X1, . . . , Xd) be a random vector (rv), whose components are identi-
cally distributed but not necessarily independent. The number of exceedances among
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1072 M. Falk, D. Tichy

X1, . . . , Xd above the threshold s is denoted by Ns := ∑d
i=1 1(s,∞)(Xi ). The fragility

index (FI) corresponding to X is the asymptotic conditional expected number of excee-
dances, given that there is at least one exceedance, i.e., FI = lims↗ E(Ns | Ns > 0).
The FI was introduced in Geluk et al. (2007) to measure the stability of the stochastic
system {X1, . . . , Xd}. The system is called stable if FI = 1, otherwise it is called
fragile.

In the two-dimensional case, the FI is directly linked to the upper tail dependence
coefficient λup := limt↓0 P(X2 > F−1

2 (1 − t) | X1 > F−1
1 (1 − t)), which goes

back to Geffroy (1958, 1959) and Sibuya (1960). We have FI = 2/(2 − λup), pro-
vided the df F1, F2 of X1, X2 are continuous and λup exists. In contrast to the upper
tail dependence coefficient, the FI presents a measure for tail dependence in arbitrary
dimensions.

In Falk and Tichy (2012), the asymptotic conditional distribution pk := lims↗
P(Ns = k | Ns > 0) of the number of exceedances was investigated, given that there
is at least one exceedance, 1 ≤ k ≤ d.

It turned out that this asymptotic conditional distribution of exceedance counts
(ACDEC) exists, if the copula C corresponding to X is in the domain of attraction
of a (multivariate) extreme value distribution (EVD) G, denoted by C ∈ D(G), i.e.
Cn((1 + x1

n , . . . , 1 + xd
n )) →n→∞ G(x), x ≤ 0 ∈ R

d .

In this paper, we investigate the ACDEC, dropping the assumption that the margins
Xi , 1 ≤ i ≤ d, are identically distributed. This will be done in Sect. 2. If the ACDEC
exists then the FI exists and we have, in particular, FI = ∑d

k=1 kpk . In Sect. 3 we will
compute the FI under quite general conditions on X .

The extended fragility index FI(m) is the extension of the FI = FI(1) through the
condition that there are at least m ≥ 1 exceedances, i.e.,

FI(m) = lim
s↗ E(Ns | Ns ≥ m) =

∑d
k=m kpk

∑d
k=m pk

,

if the ACDEC exists. But now we encounter the problem that the denominator in
the definition of FI(m) may vanish:

∑d
k=m pk = 0. In Sect. 4 we will establish a

characterization of
∑d

k=m pk = 0 in terms of tools from multivariate extreme value
theory.

The total number of sequential time points at which a stochastic process exceeds
a high threshold is an exceedance cluster length. The asymptotic distribution as the
threshold increases of the remaining exceedance cluster length, conditional on the
assumption that there is an exceedance at index κ ∈ {1, . . . , d}, will be computed for
X = (X1, . . . , Xd) in Sect. 5. It turns out that this can be expressed in terms of the
minimum of a generator of the D-norm, cf. Eq. (2).

2 ACDEC

By Sklar’s Theorem (see, for example, Nelsen 2006, Theorem 2.10.9) we can assume
the representation (X1, . . . , Xd) = (F−1

1 (U1), . . . , F−1
d (Ud)), where Fi is the (uni-

variate) distribution function (df) of Xi , 1 ≤ i ≤ d, and the rv U = (U1, . . . , Ud)

123



Conditional distribution of exceedance counts 1073

follows a copula on R
d , i.e., each Ui is uniformly on (0, 1) distributed, 1 ≤ i ≤ d. By

F−1(q) := inf {t ∈ R : F(t) ≥ q} , q ∈ (0, 1), we denote the generalized inverse of
a df F .

The following condition is crucial for the present paper. It substitutes the condition
of equal margins F1 = · · · = Fd in Falk and Tichy (2012). By ω(F) := sup{F−1(q) :
q ∈ (0, 1)} = sup {t ∈ R : F(t) < 1} we denote the upper endpoint of a df F .

We require throughout the existence of an index κ ∈ {1, . . . , d} with ω(Fκ) =: ω∗,
such that

lim
s↑ω∗

1 − Fi (s)

1 − Fκ(s)
= γi ∈ [0,∞), 1 ≤ i ≤ d. (C)

Note that condition (C) implies ω(Fi ) ≤ ω∗ for each i , since otherwise we would get
γi = ∞, which is excluded. We, thus, have ω∗ = maxi≤d ω(Fi ).

The following result is taken from Aulbach et al. (2011). By ei we denote the i-th
unit vector in R

d , 1 ≤ i ≤ d; all operations on vectors such as x ≤ 0 ∈ R
d are meant

componentwise.

Proposition 1 An arbitrary copula C on R
d is in the domain of attraction of an EVD

G if and only if there exists a norm ‖·‖D on R
d with ‖ei‖D = 1, 1 ≤ i ≤ d, such that

C( y) = 1 − ‖ y − 1‖D + o
(‖ y − 1‖D

)
,

uniformly for y ∈ [0, 1]d . In this case G(x) = exp(−‖x‖D), x ≤ 0 ∈ R
d .

The following result is an immediate consequence of Proposition 1 and the equiv-
alence F−1(q) ≤ t ⇐⇒ q ≤ F(t), q ∈ (0, 1), t ∈ R, which holds for an arbitrary
df F .

Corollary 1 Suppose that the copula C corresponding to the rv X is in the domain
of attraction of an EVD G and that condition (C) is satisfied. Then there exists a
norm ‖·‖D on R

d with ‖ei‖D = 1, 1 ≤ i ≤ d, such that for any nonempty index set
K ⊂ {1, . . . , d}

P(Xk ≤ s, k ∈ K ) = 1 − (1 − Fκ(s))

∥
∥
∥
∥
∥

∑

k∈K

γk ek

∥
∥
∥
∥
∥

D

+ o(1 − Fκ(s))

as s ↑ ω∗.

The following result provides the asymptotic unconditional distribution of exceed-
ance counts.

Lemma 1 Under the conditions of Corollary 1 we obtain with c := 1 − Fκ(s)

ak := lim
s↑ω∗

P(Ns = k)

c

=
∑

0≤ j≤k

(−1)k− j+1
(

d − j

k − j

) ∑

∅�=T ⊂{1,...,d}
|T |=d− j

∥
∥
∥
∥
∥

∑

i∈T

γi ei

∥
∥
∥
∥
∥

D
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1074 M. Falk, D. Tichy

for 1 ≤ k ≤ d, and

a0 := lim
s↑ω∗

1 − P(Ns = 0)

c
=

∥
∥
∥
∥
∥
∥

d∑

j=1

γ j e j

∥
∥
∥
∥
∥
∥

D

.

Proof Corollary 1 implies

P(Ns = 0) = 1 − c

∥
∥
∥
∥
∥
∥

d∑

j=1

γ j e j

∥
∥
∥
∥
∥
∥

D

+ o(c),

for s ↑ ω∗.
From the well-known additivity formula, Corollary 1 and the equality∑
∅�=T ⊂S(−1)|T |+1 = 1 for any nonempty subset S ⊂ {1, . . . , d}, we obtain for

1 ≤ k ≤ d as s ↑ ω∗

P(Ns = k)

=
∑

S⊂{1,...,d}
|S|=k

P
(

Xi > s, i ∈ S, X j ≤ s, j ∈ S�
)

=
∑

S⊂{1,...,d}
|S|=k

P
(

Xi > s, i ∈ S | X j ≤ s, j ∈ S�
)

P
(

X j ≤ s, j ∈ S�
)

=
∑

S⊂{1,...,d}
|S|=k

⎛

⎝1 −
∑

∅�=T ⊂S

(−1)|T |+1 P
(

Xi ≤ s, i ∈ T | X j ≤ s, j ∈ S�
)
⎞

⎠

×P
(

X j ≤ s, j ∈ S�
)

=
∑

S⊂{1,...,d}
|S|=k

⎛

⎝P
(

X j ≤ s, j ∈ S�
)

−
∑

∅�=T ⊂S

(−1)|T |+1 P
(

Xi ≤ s, i ∈ T ∪ S�
)
⎞

⎠

=
∑

S⊂{1,...,d}
|S|=k

⎛

⎝1 − c

∥
∥
∥
∥
∥
∥

∑

j∈S�
γ j e j

∥
∥
∥
∥
∥
∥

D

−
∑

∅�=T ⊂S

(−1)|T |+1

⎛

⎝1 − c

∥
∥
∥
∥
∥
∥

∑

j∈T ∪S�
γ j e j

∥
∥
∥
∥
∥
∥

D

⎞

⎠

⎞

⎠

+o(c)

= c
∑

S⊂{1,...,d}
|S|=k

∑

T ⊂S

(−1)|T |+1

∥
∥
∥
∥
∥
∥

∑

j∈T ∪S�
γ j e j

∥
∥
∥
∥
∥
∥

D

+ o(c).
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Conditional distribution of exceedance counts 1075

With a suitable index transformation we get

P(Ns = k) = c
∑

S⊂{1,...,d}
|S|=k

∑

0≤r≤|S|
(−1)r+1

∑

K⊂S|K |=r

∥
∥
∥
∥
∥
∥
∥
∥

∑

i∈K∪S� :=T|T |=r+d−k

γi ei

∥
∥
∥
∥
∥
∥
∥
∥

D

+ o(c)

= c
∑

0≤ j≤k

(−1)k− j+1
(

d − j

k − j

) ∑

T ⊂{1,...,d}
|T |=d− j

∥
∥
∥
∥
∥
∥

∑

j∈T

γ j e j

∥
∥
∥
∥
∥
∥

D

+ o(c),

which completes the proof of Lemma 1. ��
Note that a0 > 0 as γk = 1 and that ak ≥ 0, 1 ≤ k ≤ d, in Lemma 1. The fol-

lowing main result of this section is, therefore, an immediate consequence of Lemma
1. It provides the ACDEC also in the case, where the components Xi of the rv X =
(X1, . . . , Xd) are not identically distributed.

Theorem 1 (ACDEC) Under the conditions of Corollary 1 we have that the limits

pk := lim
s↑ω∗ P(Ns = k | Ns > 0) = ak

a0
, 1 ≤ k ≤ d,

exist and that they define a probability distribution on {1, . . . , d}.
fOR the usual λ-norm ‖x‖λ = (

∑
1≤i≤d |xi |λ)1/λ, x ∈ R

d , λ ∈ [1,∞), we obtain,
for example, a0 = (

∑
1≤i≤d γ λ

i )1/λ and

ak =
∑

0≤ j≤k

(−1)k− j+1
(

d − j

k − j

) ∑

∅�=T ⊂{1,...,d}
|T |=d− j

(
∑

i∈T

γ λ
i

)1/λ

, 1 ≤ k ≤ d.

For λ = 1, which is the case of independent margins of G, we obtain, in particular,
a0 = ∑

1≤i≤d γi = a1, ak = 0, 2 ≤ k ≤ d, and, thus, p1 = 1, pk = 0, 2 ≤ k ≤ d.

3 The fragility index

The following theorem is the main result of this section.

Theorem 2 Under the conditions of Corollary 1 we have

FI =
∑d

i=1 γi∥
∥
∥
∑d

i=1 γi ei

∥
∥
∥

D

∈ [1, d].
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1076 M. Falk, D. Tichy

Proof We have

E(Ns | Ns > 0) =
d∑

i=1

E
(
1(s,∞)(Xi ) | Ns > 0

)

=
d∑

i=1

P(Xi > s)

1 − P(Ns = 0)

=
d∑

i=1

1 − Fi (s)

1 − Fκ(s)

1 − Fκ(s)

1 − P(Ns = 0)

→s↑ω∗

∑d
i=1 γi∥

∥
∥
∑d

i=1 γi ei

∥
∥
∥

D

.

by Lemma 1 and condition (C). ��
It is well known that an arbitrary D-norm satisfies the inequality ‖x‖∞ ≤ ‖x‖D ≤

‖x‖1 , x ≥ 0 ∈ R
d ; see, for example Falk et al. (2010, 4.37). The range of the FI in

Theorem 2 is, consequently, [1, d].
Suppose that γi > 0, 1 ≤ i ≤ d. Then it follows from Takahashi (1988) that

∥
∥
∥
∥
∥

d∑

i=1

γi ei

∥
∥
∥
∥
∥

D

=
d∑

i=1

γi ⇐⇒ ‖·‖D = ‖·‖1 ,

where ‖·‖D = ‖·‖1 is the case of independence of the margins of G. We, thus, obtain
in case γi > 0, 1 ≤ i ≤ d,

FI = 1 ⇐⇒ ‖·‖D = ‖·‖1 ⇐⇒ independence of the margins of G.

In case of complete dependence of G, i.e., if ‖x‖D = ‖x‖∞ = max1≤i≤d |xi |, we
obtain for general γi ≥ 0 that FI = ∑d

i=1 γi/ max1≤i≤d γi .

Example 1 (Weighted Pareto) Let Y1, . . . , Ym be independent and identically Pareto
distributed rv with parameter α > 0. Put Xi := ∑m

j=1 λi j Y j , 1 ≤ i ≤ d, where the
weights λi j are nonnegative and satisfy

∑m
j=1 λα

i j = 1, 1 ≤ i ≤ d.
The df of the rv X = (X1, . . . , Xd) is in the domain of attraction of the EVD

G∗(s) = exp

⎛

⎝−
m∑

j=1

max
i≤d

(
λi j

si

)α
⎞

⎠ , s = (s1, . . . , sd) > 0,

with standard Fréchet margins Gk(s) = exp(−s−α), s > 0, 1 ≤ k ≤ d. This can be
seen by proving that for s > 0 ∈ R

d
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Conditional distribution of exceedance counts 1077

P

⎛

⎝
m∑

j=1

λi j Y j ≤ n1/αsi , 1 ≤ i ≤ d

⎞

⎠ = 1 − 1

n

⎛

⎝
m∑

j=1

max
i≤d

(
λi j

si

)α

+ o(1)

⎞

⎠ ,

which follows from tedious but elementary computations, using conditioning on Y j =
y j , j = 2, . . . , m.

As a consequence we obtain that the copula pertaining to X is in the domain of attrac-
tion of G(x) = exp(−‖x‖D), x ≤ 0 ∈ R

d , where‖x‖D := ∑m
j=1(maxi≤d(λα

i j |xi |)),
x ∈ R

d .
From Embrechts et al. (1997, Lemma A 3.26) we obtain that the df Fi of Xi satisfies

1 − Fi (s) ∼ s−α
∑m

j=1 λα
i j = s−α, 1 ≤ i ≤ d, as s → ∞ and, thus,

γi = lim
s→∞

1 − Fi (s)

1 − Fκ(s)
= 1, 1 ≤ i ≤ d,

where κ ∈ {1, . . . , d} can be chosen arbitrarily. As a consequence we obtain for the
fragility index

FI =
∑d

i=1 γi∥
∥
∥
∑d

i=1 γi ei

∥
∥
∥

D

= d
∑m

j=1 maxi≤d λα
i j

.

Example 2 (GPD-Copula) Take an arbitrary rv Z that realizes in [0, c]d and which
satisfies E(Zi ) = 1, 1 ≤ i ≤ d. Choose β1, . . . , βd > 0 and let U be a rv,
which is uniformly on (0, 1) distributed and that is independent of Z. Put X :=
(β1 Z1, . . . , βd Zd)/U . Then Fi (x) = P(Xi ≤ x) = 1 − βi

x , x ≥ cβi , 1 ≤ i ≤ d, and
the copula of X is in the domain of attraction of the EVD G(x) = exp(−‖x‖D), x ≤
0 ∈ R

d , with ‖x‖D = E(max1≤i≤d(|xi | Zi )), x ∈ R
d .

Let βκ = max1≤i≤d βi . Then we have

1 − Fi (s)

1 − Fκ(s)
= βi

βκ

=: γi , s ≥ cβκ, 1 ≤ i ≤ d,

and we obtain for the fragility index corresponding to X

FI =
∑d

i=1 γi

E
(
max1≤i≤d γi Zi

) .

Note that the copula C of X is actually a GPD copula ((multivariate) generalized Pa-
reto distribution), characterized by the equation C(u) = 1−‖1 − u‖D for u ∈ [0, 1]d

close to 1, see Aulbach et al. (2011). If Z1 = · · · = Zd a.s., then we obtain the
maximum-norm ‖x‖D = max1≤i≤d |xi |, and FI = ∑d

i=1 γi/ max1≤i≤d γi .
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4 The extended fragility index

The extended FI is the asymptotic expected number of exceedances above a high
threshold, conditional on the assumption that there are at least m ≥ 1 exceedances:

FI(m) := lim
s↗ E(Ns | Ns ≥ m), 1 ≤ m ≤ d.

If the ACDEC corresponding to X1, . . . Xd exists, then, obviously,

FI(m) =
∑d

k=m kpk
∑d

k=m pk
, 1 ≤ m ≤ d. (1)

But now we encounter the problem that we might divide by 0 in (1), i.e.,
∑d

k=m pk

can vanish if m ≥ 2. This is, for example, true for the L1-norm. But there are other
norms in dimension d ≥ 3 such that

∑d
k=m pk = 0, see Falk and Tichy (2012). In this

section we establish a characterization of
∑d

k=m pk = 0 also in that case, where the
initial X1, . . . , Xd follow different distributions.

Lemma 2 Assume the conditions of Corollary 1 and put I := {i ∈ {1, . . . , d} : γi =
0}. Then we obtain

∑d
k=m pk = 0 for m > m∗ :=

∣
∣
∣I �

∣
∣
∣ = d − |I |.

Proof Without loss of generality we can assume that I �= ∅. Recall, moreover, that
γκ = 1, i.e., I �= {1, . . . , d} as well. We have

ak = lim
s↑ω∗

P(Ns = k)

1 − Fκ(s)
= lim

s↑ω∗

∑

S⊂{1,...,d}
|S|=k

P
(

Xi > s, i ∈ S, X j ≤ s, j ∈ S�
)

1 − Fκ(s)
.

If |S| = k ≥ m∗ + 1, then S must contain an index iS , say, with iS ∈ I . We, thus,
obtain for k ≥ m∗ + 1

ak ≤ lim sup
s↑ω∗

∑

S⊂{1,...,d}
absS=k

P(XiS > s)

1 − Fκ(s)
=

∑

S⊂{1,...,d}
|S|=k

lim
s↑ω∗

1 − FiS (s)

1 − Fκ(s)
= 0.

��
The following characterization is the main result of this section. It is formulated

in terms of different representations of a multivariate EVD G on R
d with standard

negative exponential margins G(xei ) = exp(x), x ≤ 0, 1 ≤ i ≤ d. We have for
x ≤ 0 ∈ R

d

G(x) = exp (−‖x‖D) (Hofmann)

= exp

(

−
∫

Sd

max(−ui xi ) μ(du)

)

(Pickands–de Haan-Resnick)
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Conditional distribution of exceedance counts 1079

= exp
(
−ν

(
[−∞, x]�

))
, (Balkema–Resnick)

where ‖·‖D is some norm on R
d with ‖ei‖D = 1, 1 ≤ i ≤ d, μ is the angu-

lar measure on the unit simplex Sd = {
u ∈ [0, 1]d : ∑

i≤d ui = 1
}
, satisfying

μ(Sd) = d,
∫

Sd
ui μ(du) = 1, 1 ≤ i ≤ d, and ν is the σ -finite exponent measure

on [−∞, 0]d\ {∞}; for details we refer to Falk et al. (2010). We also include the fact
that each D-norm can be generated by nonnegative and bounded rv Z1, . . . , Zd with
E(Zi ) = 1, 1 ≤ i ≤ d, as

‖x‖D = E

(

max
1≤i≤d

(|xi | Zi )

)

, x = (x1, . . . , xd) ∈ R
d . (2)

This is a consequence of the Pickands–de Haan-Resnick representation. The rv Z =
(Z1, . . . , Zd) is called generator of ‖·‖D . Note that each rv Z = (Z1, . . . , Zd) of
nonnegative and bounded rv Zi with E(Zi ) = 1 generates a D-norm via Eq. (2).

Proposition 2 Assume the conditions of Corollary 1 and put I = {i ∈ {1, . . . , d} :
γi = 0}. Then we have

∑d
k=m pk = 0 for some m ≤ m∗ =

∣
∣
∣I �

∣
∣
∣ if and only if we have

for each subset K ⊂ I � with at least m elements

lim
s↑ω∗

P(Xk > s, k ∈ K )

1 − Fκ(s)
= 0 (3)

⇐⇒
∑

T ⊂K

(−1)|T |−1

∥
∥
∥
∥
∥

∑

i∈T

xi ei

∥
∥
∥
∥
∥

D

= 0 for all x ≥ 0 ∈ R
d

⇐⇒
∑

T ⊂K

(−1)|T |−1

∥
∥
∥
∥
∥

∑

i∈T

ei

∥
∥
∥
∥
∥

D

= 0

⇐⇒ min
k∈K

Zk = 0 a.s. (4)

⇐⇒ μ

({

u ∈ Sd : min
i∈K

ui > 0

})

= 0

⇐⇒ ν
(×k∈K (−∞, 0] ×i �∈K [−∞, 0]) = 0,

i.e., the projection νK := ν ∗ (πi , i ∈ K ) of the exponent measure ν onto its compo-
nents i ∈ K is the null measure on (−∞, 0]|K |.

While in the (bivariate) case K = {k1, k2} the condition

∑

T ⊂K

(−1)|T |−1

∥
∥
∥
∥
∥

∑

i∈T

ei

∥
∥
∥
∥
∥

D

= 0

⇐⇒ ∥
∥ek1

∥
∥

D + ∥
∥ek2

∥
∥

D − ∥
∥ek1 + ek2

∥
∥

D = 0

⇐⇒ ∥
∥ek1 + ek2

∥
∥

D = 2 = ∥
∥ek1 + ek2

∥
∥

1
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implies by Takahashi’s Theorem (1988) independence of the marginal distributions
k1, k2 of the EVD G(x) = exp(−‖x‖D), x ≤ 0 ∈ R

d , this is no longer true for
|K | ≥ 3. Take, for example, a rv ξ that attains only the values 1; 2; 3 with probability
1/6; 1/3; 1/2 and put

Z1 :=
{

0 if ξ = 1
6
5 elsewhere

, Z2 :=
{

0 if ξ = 2
3
2 elsewhere

, Z3 :=
{

0 if ξ = 3

2 elsewhere
.

Then E(Zi ) = 1, i = 1, 2, 3, min1≤i≤3 Zi = 0, E(max1≤i≤3 Zi ) < 3 as well as
E(max(Zi , Z j )) < 2 for all 1 ≤ i �= j ≤ 3, i.e., there is no marginal independence
among Z1, Z2, Z3.

Proof We have by Theorem 1 and Lemma 1

d∑

k=m

pk = 0

⇐⇒ lim
s↑ω∗

P(Ns ≥ m)

1 − Fκ(s)
= 0

⇐⇒ lim
s↑ω∗

P

(
⋃

K⊂{1,...,d}
|K |≥m

{Xk > s, k ∈ K }
)

1 − Fκ(s)
= 0

⇐⇒ lim
s↑ω∗

P(Xk > s, k ∈ K )

1 − Fκ(s)
= 0 for any K ⊂ {1, . . . , d} with |K | ≥ m

⇐⇒ lim
s↑ω∗

P(Xk > s, k ∈ K )

1 − Fκ(s)
= 0 for any K ⊂ I � with |K | ≥ m,

which is equivalence (3). Note that
∑

T ⊂K (−1)|T |−1 maxi∈T ai = mink∈K ak for any
set {ak : k ∈ K } of real numbers, which can be seen by induction. We, consequently,
have

∑

T ⊂K

(−1)|T |−1

∥
∥
∥
∥
∥

∑

i∈T

ei

∥
∥
∥
∥
∥

D

=
∑

T ⊂K

(−1)|T |−1 E

(

max
i∈T

Zi

)

= E

(

min
i∈T

Zi

)

and, thus,

∑

T ⊂K

(−1)|T |−1

∥
∥
∥
∥
∥

∑

i∈T

ei

∥
∥
∥
∥
∥

D

= 0 ⇐⇒ E

(

min
i∈T

Zi

)

= 0 ⇐⇒ min
k∈K

Zk = 0 a.s.

The other equivalences follow from Proposition 5.2 in Falk and Tichy (2012). ��
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5 Exceedance cluster lengths

The total number of sequential time points at which a stochastic process exceeds a
high threshold is an exceedance cluster length. The mathematical tools developed in
the preceding sections enable the computation of its distribution as well. Precisely,
denote by Lκ(s) the number of sequential exceedances above the threshold s, if we
have an exceedance at κ ∈ {1, . . . , d}, i.e.

Lκ(s) :=
d−κ∑

k=0

k1 (Xκ > s, . . . , Xκ+k > s, Xκ+k+1 ≤ s) .

We have, in particular, Ld(s) = 0 = Lκ(s), if Xκ+1 ≤ s. We suppose throughout this
section that condition (C) holds for the index κ ∈ {1, . . . , d}. The following auxiliary
result will be crucial.

Lemma 3 Assume the conditions of Corollary 1. Then we obtain for κ ∈ {1, . . . , d}
as s ↗ ω∗

P (Lκ(s) ≥ k | Xκ > s) = P (Xκ > s, . . . , Xκ+k > s | Xκ > s)

=
∑

∅�=T ⊂{κ,...,κ+k}
(−1)|T |+1

∥
∥
∥
∥
∥

∑

i∈T

γi ei

∥
∥
∥
∥
∥

D

+ o(1)

=: sκ(k) + o(1), 0 ≤ k ≤ d − κ.

Proof From the additivity formula we obtain

P (Xκ > s, . . . , Xκ+k > s | Xκ > s)

= 1 − P
(⋃

0≤i≤k {Xκ+i ≤ s})
1 − Fκ(s)

= 1 − ∑
∅�=T ⊂{κ,...,κ+k}(−1)|T |+1 P (Xi ≤ s, i ∈ T )

1 − Fκ(s)

= 1 − ∑
∅�=T ⊂{κ,...,κ+k}(−1)|T |+1

(
1 − c

∥
∥
∑

i∈T γi ei
∥
∥

D

) + o(1 − Fκ(s))

1 − Fκ(s)

=
∑

∅�=T ⊂{κ,...,κ+k}
(−1)|T |+1

∥
∥
∥
∥
∥

∑

i∈T

γi ei

∥
∥
∥
∥
∥

D

+ o(1).

��
Corollary 2 Suppose in addition to the assumptions in Corollary 1 that Z is a gen-
erator of the D-norm ‖·‖D. Then we obtain for κ ∈ {1, . . . , d} as s ↗ ω∗

P(Xκ > s, . . . , Xκ+k > s | Xκ > s) = E

(

min
κ≤i≤κ+k

(γi Zi )

)

+ o(1),

for 0 ≤ k ≤ d − κ .
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1082 M. Falk, D. Tichy

Though the distribution of a generator of a D-norm is not uniquely determined, the
preceding result entails that the numbers E(minκ≤i≤κ+k(γi Zi )), 0 ≤ k ≤ d − κ , are
uniquely determined by the D-norm.

The asymptotic distribution of the exceedance cluster length, conditional on the
assumption that there is an exceedance at time point κ ∈ {1, . . . , d}, is an immediate
consequence of Lemma 3. It follows from the equation

P(Lκ(s) = k | Xκ > s) = P(Lκ(s) ≥ k | Xκ > s) − P(Lκ(s) ≥ k + 1 | Xκ > s).

Note, moreover, that P(Lκ(s) = 0 | Xκ > s) = 1 for κ = d.

Proposition 3 Assume the conditions of Corollary 1. Then we have for κ < d as
s ↗ ω∗

P(Lκ(s) = k | Xκ > s)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
∅�=T ⊂{κ,...,d}(−1)|T |+1

∥
∥∑

i∈T γi ei
∥
∥

D + o(1),

k = d − κ,
∑

T ⊂{κ,...,κ+k}(−1)|T |+1
∥
∥γκ+k+1eκ+k+1 + ∑

i∈T γi ei
∥
∥

D + o(1),

0 ≤ k < d − κ.

We obtain, for example, for κ < d

P(Lκ(s) = 0 | Xκ > s) = ‖eκ + γκ+1eκ+1‖D − 1 + o(1),

which converges to γκ+1 if ‖·‖D = ‖·‖1. Recall that γκ = 1.
In terms of a generator Z of a D-norm, Proposition 3 becomes the following result.

Corollary 3 Assume in addition to the conditions of Corollary 1 that Z is a generator
of the D-norm ‖·‖D. Then we have for κ < d as s ↗ ω∗

(i) P(Lκ(s) = k | Xκ > s)

=
{

E
(
minκ≤i≤d(γi Zi )

) + o(1), k = d − κ

E
(
minκ≤i≤κ+k(γi Zi ) − minκ≤i≤κ+k+1(γi Zi )

) + o(1), 0≤k <d − κ.

(ii) P(Lκ(s) ≤ k | Xκ > s)

=
{

1, k = d − κ

1 − E
(
minκ≤i≤κ+k+1(γi Zi )

) + o(1), 0 ≤ k < d − κ.

We, thus, obtain the limit distribution of the exceedance cluster length:

Qκ([0, k]) := lim
s↗ω∗ P(Lκ(s) ≤ k | Xκ > s)

=
{

1, k = d − κ

1 − E
(
minκ≤i≤κ+k+1(γi Zi )

)
, 0 ≤ k < d − κ.
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Take, for example, the generator Z = 2(U1, . . . , Ud), where the Ui are independent
and uniformly on (0, 1) distributed rv. If, in addition, γi = 1, κ ≤ i ≤ d, then we
obtain

Qκ([0, k]) =
{

1, k = d − κ

1 − 2
k+3 , 0 ≤ k < d − κ.

Next we compute the asymptotic mean exceedance cluster length.

Proposition 4 Assume the conditions of Corollary 1 and let Z be a generator of the
D-norm ‖·‖D. Then we have for 1 ≤ κ ≤ d

E (Lκ(s) | Xκ > s) =
{

0, if κ = d
∑d−κ

k=1 sκ(k) + o(1) else

=
{

0, if κ = d
∑d−κ

k=1 E
(
minκ≤i≤κ+k(γi Zi )

) + o(1) else.

Proof Since Lκ(s) attains only nonnegative values, we have for κ < d

E (Lκ(s) | Xκ > s) =
∫ ∞

0
P (Lκ(s) ≥ t | Xκ > s) dt

=
d−κ∑

k=1

P (Lκ(s) ≥ k | Xκ > s)

=
d−κ∑

k=1

P (Xκ > s, . . . , Xκ+k > s | Xκ > s)

=
d−κ∑

k=1

sκ(k) + o(1).

��
Corollary 4 Under the conditions of the preceding result we have for κ < d, if
γk > 0, 1 ≤ k ≤ d,

lim
s↑ω∗ E(Lκ(s) | Xκ > s) = 0

if and only if ‖xeκ + yeκ+1‖D = ‖xeκ + yeκ+1‖1 = x + y, x, y ≥ 0.

Proof Note that sκ(1) ≥ · · · ≥ sκ(d − κ). We, thus, obtain from Proposition 4

lim
s↑ω∗ E(Lκ(s) | Xκ > s) = 0 ⇐⇒ sκ(1) = 0.

The assertion is now a consequence of Proposition 6.1 in Falk and Tichy (2012). ��
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Suppose in addition to the assumptions of Corollary 1 that the components X1, . . . ,

Xd of the rv X are exchangeable. Then we have γ1 = · · · = γd = 1, as well as
‖∑i∈T ei‖D = ‖∑|T |

i=1 ei‖D for any nonempty subset T ⊂ {1, . . . , d}. As a conse-
quence we obtain

sκ(k) =
k+1∑

j=1

(−1) j+1
(

k + 1

j

)
∥
∥
∥
∥
∥
∥

j∑

i=1

ei

∥
∥
∥
∥
∥
∥

D

, 0 ≤ k ≤ d − κ,

and, thus, by rearranging sums,

lim
s↗ E (Lκ(s) | Xκ > s) =

d−κ∑

k=1

sκ(k)

=
d−κ+1∑

j=1

(−1) j+1

∥
∥
∥
∥
∥
∥

j∑

i=1

ei

∥
∥
∥
∥
∥
∥

D

d−κ∑

k=max(1, j−1)

(
k + 1

j

)

= −1 +
d−κ+1∑

j=1

(−1) j+1
(

d − κ + 2

j + 1

)
∥
∥
∥
∥
∥
∥

j∑

i=1

ei

∥
∥
∥
∥
∥
∥

D

, (5)

where the final equality follows from the general equation
∑N

r=n

(r
n

) = (N+1
n+1

)
.

Example 3 (Marshall-Olkin D-norm) The Marshall-Olkin D-norm is the convex com-
bination of the maximum-norm and the L1-norm:

‖x‖MO = ϑ ‖x‖1 + (1 − ϑ) ‖x‖∞ , x ∈ R
d , ϑ ∈ [0, 1],

see Falk et al. (2010, Example 4.3.4). In this case we obtain from Eq. (5)

lim
s↗ E (Lκ(s) | Xκ > s) = (1 − ϑ)(d − κ),

where we have used the general equation
∑m

j=0(−1) j
(m

j

) = 0.
In the case ϑ = 0 of complete tail dependence of the margins we, therefore, obtain

lims↗ E(Lκ(s) | Xκ > s) = d − κ, which is the full possible length, whereas in the
tail independence case ϑ = 1 we obtain the shortest length lims↗ E(Lκ(s) | Xκ >

s) = 0, which is in complete accordance with Corollary 4.
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