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Abstract In the paper of Akahira (Ann Inst Statist Math 48:349–364, 1996), it was
shown that the second order asymptotic loss of information in reducing to a statistic
consisting of extreme values and an asymptotically ancillary statistic vanished for a
family of non-regular distributions whose densities have the same values and the sum
of differential coefficients at the endpoints of the bounded support is equal to zero. In
this paper, the result can be shown to be extended to the case of a family of non-regular
distributions without the above restriction.

Keywords Rényi measure · Loss of information · Non-regular case · Extreme
statistics · Asymptotically ancillary statistic · Truncated distributions

1 Introduction

Under regularity conditions, the amounts of information like Fisher, Kullback–Leibler
etc are useful in statistical estimation. But, in the non-regular case when the regular-
ity conditions do not hold, such informations do not necessarily work well. In the
previous paper of Akahira (1996), the amount of information extended to as Rényi
measure is introduced and the second order asymptotic loss of information associated
with a statistic is defined. Further, it is shown that the second order asymptotic loss of
information of a statistic consisting of extreme values and an asymptotically ancillary
statistic vanishes for a family of non-regular distributions whose densities have the
same values and the sum of differential coefficients at the endpoints of the bounded
support is equal to zero. In a non-regular location shift family, the limiting behavior
of relative Rényi entropy is discussed by Hayashi (2000, 2010). On the other hand,
in non-regular cases, the asymptotic most accuracy of estimators with the asymptotic
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1122 M. Akahira et al.

distributions is investigated by Akahira (1975b), and the two-sided asymptotic effi-
ciency of asymptotically median unbiased estimators in sense of the concentration
probability around the true parameter is also done by Akahira (1982, 1988, 1991a).
Further, related results can be found in Papaioannou and Kempthorne (1971), Akahira
(1995), Akahira and Takeuchi (1990, 1995), Haussler and Opper (1997) and Akahira
et al. (2007).

In this paper, without the above conditions on the density, we consider the amounts
of information of data and the statistic. It is shown that the second order asymptotic
loss of information associated with the statistic still vanishes in such a situation.

2 The amounts of information

Suppose that X1, X2, . . . , Xn, . . . is a sequence of independent and identically dis-
tributed (i.i.d.) real random variables with a density function f (x, θ) with respect to
a σ -finite measure μ, where θ belongs to a parameter space �. Akahira and Takeuchi
(1991) define as an amount of information on X1 between f (·, θ1) and f (·, θ2) for
any points θ1 and θ2 in �

IX1(θ1, θ2) = −8 log
∫

{ f (x, θ1) f (x, θ2)}1/2 dμ(x). (1)

It is remarked in (1) that the integral of the right-hand side is called affinity between
f (·, θ1) and f (·, θ2) (see, e.g. Matusita (1955) and also LeCam (1990)). Further,
Akahira (1996) extends the amount (1) of information to as Rényi measure:

I (α)
X1

(θ1, θ2) = − 8

1 − α2 log
∫

f (x, θ1)
(1−α)/2 f (x, θ2)

(1+α)/2dμ(x) (2)

for |α| < 1. If α = 0, then (1) follows from (2). Let T1 = T1(X) and T2 = T2(X)

be statistics based on a sample X := (X1, . . . , Xn) of size n. Let fθ (t1, t2) be a joint
density of T1 and T2 with respect to a direct product measure μT1 ⊗ μT2 , fθ (t1|t2) be
a conditional density of T1, given T2, with respect to the measure μT1 , and gθ (t2) be a
marginal density of T2 with respect to μT2 . Here, the amount IT1|T2(θ1, θ2) of condi-
tional information of T1, given T2, between fθ1(t1|t2) and fθ2(t1|t2) for any points θ1
and θ2 in � is defined by

I (α)
T1|T2

(θ1, θ2) = − 8

1 − α2 log
∫

fθ1(t1|t2)(1−α)/2 fθ2(t1|t2)(1+α)/2dμT1(t1). (3)

Then we have the following.

Lemma 1 (Akahira (1996)) For any θ1, θ2 in � and |α| < 1,

I (α)
T1,T2

(θ1, θ2) = − 8

1 − α2 log
∫ [

exp

{
−1 − α2

8
I (α)
T1|T2

(θ1, θ2)

}]

· gθ1(t2)
(1−α)/2gθ2(t2)

(1+α)/2dμT2(t2)

123



Loss of information of a statistic, II 1123

= − 8

1 − α2 log E

[
exp

{
−1 − α2

8
I (α)
T1|T2

(θ1, θ2)

}]

+I (α)
T2

(θ1, θ2), (4)

where the expectation E[ · ] is taken under the density

gθ1(t2)
(1−α)/2gθ2(t2)

(1+α)/2
/∫

gθ1(t2)
(1−α)/2gθ2(t2)

(1+α)/2dμT2(t2).

For the proof, see Akahira (1996). Since X1, . . . , Xn are i.i.d., it follows that the
amount (2) of information on X between f (·, θ1) and f (·.θ2) for any points θ1, θ2 in
� is given by

I (α)
X (θ1, θ2) = nI (α)

X1
(θ1, θ2) (5)

for |α| < 1. It can be also shown that

I (α)
T1,T2

(θ1, θ2) ≤ I (α)
X (θ1, θ2) (6)

for |α| < 1 (see Akahira and Takeuchi (1991) for α = 0). Further, for each α with |α| <

1 we can consider the loss of information of any statistic T = T (X) as I (α)
X (θ1, θ2) −

I (α)
T (θ1, θ2), and, in the next section, discuss the asymptotic loss of information up to

the second order, i.e. the order o(n−1) when |θ1 − θ2| = O(n−1).
The relationship between the amount I (α)

X1
of information and that of Fisher infor-

mation is given as follows. Under suitable regularity conditions,

I (α)
X1

(θ, θ + �) = IX1(θ)�2 + o(�2),

as � → 0, for any fixedα, where IX1(θ) := Eθ [{(∂/∂θ) log f (X, θ)}2] which is called
the amount of Fisher information (see Akahira (1996)). Under regularity conditions,
the loss of information associated with statistics is investigated by Fisher (1925), Rao
(1961), Ghosh and Subramanyam (1974), and others. In the double exponential case
as a typical example of non-regular situation, the loss of information associated with
the order statistics and related estimators is discussed by Akahira and Takeuchi (1990).

3 The calculation of the amount of information

Suppose that X1, X2, . . . , Xn, . . . is a sequence of i.i.d. random variables with a den-
sity with respect to the Lebesgue measure and consider a location parameter family
f (x, θ), θ ∈ R1, defined by f (x, θ) = f0(x − θ) for x ∈ R1. We assume the
following conditions:

(A.1) f0(x) > 0 for a < x < b
f0(x) ≤ 0 for x ≤ a, x ≥ b,

where both a and b are finite.
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(A.2) f0(·) is twice continuously differentiable in the open interval (a, b), and there
exist

c1 := lim
x→a+0

f0(x) = f0(a + 0) > 0, c2 := lim
x→b−0

f0(x) = f0(b − 0) > 0,

c′
1 := lim

x→a+0
f ′
0(x) = f ′

0(a + 0), c′
2 := lim

x→b−0
f ′
0(x) = f ′

0(b − 0).

Under the above conditions, it is known that the order of consistency is equal to n
(see Akahira (1975a)).

Remark 1 In Akahira (1996), in addition to the above conditions, we assume

(A.3) c := c1 = c2, h := c′
2 = −c′

1.

The condition is assumed to simplify the calculation on the amount of information,
but it seems to be restrictive. Indeed, an extension of the result to the case when the
condition (A.3) is excluded is suggested in Remark 3.2 in Akahira (1996). Since the
conclusion without the condition is interesting, the condition (A.3) is removed mainly
in this paper. Here, let I0 := ∫ b

a { f ′
0(x)}2/ f0(x)dx .

Then we have the following.

Theorem 1 Assume that the conditions (A.1) and (A.2) hold. Then, for |α| < 1 and
a small |�|,

I (α)
X1

(θ, θ + �) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4
(

c1
1+α

+ c2
1−α

)
� +

[
4

1−α2 (c′
1 + c2

1) − 2
1−α

{(c′
1 + c′

2)

+(c2
1 − c2

2)} + I0 − (c1 − c2)
2
]
�2 + o(�2) f or � > 0,

−4
(

c1
1−α

+ c2
1+α

)
� +

[
− 4

1−α2 (c′
2 − c2

2) + 2
1−α

{(c′
1 + c′

2)

+(c2
1 − c2

2)} + I0 − (c1 − c2)
2
]
�2 + o(�2) f or � < 0.

(7)

Proof Without loss of generality, we assume that θ = 0. Let � > 0. Put l(x) =
log f0(x) and let α be any fixed in (−1, 1). In a similar way to the proof of Theorem 1
in Akahira (1996), we have for a small �

∫ b

a+�

f0(x)(1−α)/2 f0(x − �)(1+α)/2dx

=
∫ b

a+�

f0(x)dx − 1 + α

2
�

∫ b

a+�

l ′(x) f0(x)dx + 1 + α

4
�2

∫ b

a+�

l ′′(x) f0(x)dx

+ (1 + α)2

8
�2

∫ b

a+�

{l ′(x)}2 f0(x)dx + o(�2). (8)
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From (A.2) we obtain

I (α)
X1

(0,�) = − 8

1 − α2 log
∫ b

a+�

f (x)(1−α)/2 f (x − �)(1+α)/2dx

= − 8

1 − α2 log

[
1 − 1

2
{(1 − α)c1 + (1 + α)c2} �

−1

4

{
(1 − α)c′

1 − (1 + α)c′
2

}
�2 − 1 − α2

8
I0�

2 + o(�2)

]

= − 8

1 − α2

[
−1

2
{(1 − α)c1 + (1 + α)c2} �

−1

4

{
(1 − α)c′

1 − (1 + α)c′
2

}
�2 − 1 − α2

8
I0�

2

−1

8
{(1 − α)c1 + (1 + α)c2}2 �2 + o(�2)

]

= 4

(
c1

1 + α
+ c2

1 − α

)
� + 1

1 − α2

[
{(1 − α)c1 + (1 + α)c2}2

+2(c′
1 − c′

2) − 2α(c′
1 + c′

2)
]
�2 + I0�

2 + o(�2). (9)

Since

{(1 − α)c1 + (1 + α)c2}2 + 2(c′
1 − c′

2) − 2α(c′
1 + c′

2)

= 4(c′
1 + c2

1) − 2(1 + α)(c′
1 + c′

2) − 2(1 + α)(c2
1 − c2

2) − (1 − α2)(c1 − c2)
2,

it follows from (9) that

IX1(0, θ) = 4

(
c1

1 + α
+ c2

1 − α

)
� +

[
4

1 − α2 (c′
1 + c2

1)

− 2

1 − α

{
(c′

1 + c′
2) + (c2

1 − c2
2)

}
+ I0 − (c1 − c2)

2
]

�2 + o(�2).

Next, in the case when � < 0, we have

∫ b+�

a
f (x)(1−α)/2 f (x − �)(1+α)/2dx

=
∫ b

a
f (x)dx − 1 + α

2
�

∫ b+�

a
l ′(x) f (x)dx + 1 + α

4
�2

∫ b+�

a
l ′′(x) f (x)dx

+ (1 + α)2

8
�2

∫ b+�

a
{l ′(x)}2 f (x)dx + o(�2).

In a similar way to the case � > 0, we obtain (7). This completes the proof. �	
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Remark 2 The relative Rényi entropy is asymptotically obtained by Hayashi (2000)
as the third form of (9) for � > 0, and is also done by Hayashi (2010) asymptotically
and uniformly in α up to the order o(�). The another expression on I (α)

X1
(θ, θ +�) of

(7) is given by

I (α)
X1

(θ, θ + �) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
1−α2 {(1 − α)c1 + (1 + α)c2}�
+ 1

1−α2

[
2{(1 − α)c′

1 − (1 + α)c′
2}

+{(1 − α)c1 + (1 + α)c2}2
]
�2 + I0�

2 + o(�2) for � > 0,

− 4
1−α2 {(1 + α)c1 + (1 − α)c2}�
+ 1

1−α2

[
2{(1 + α)c′

1 − (1 − α)c′
2}

+{(1 + α)c1 + (1 − α)c2}2
]
�2 + I0�

2 + o(�2) for � < 0.

Corollary 1 (Akahira (1996)) Assume that the conditions (A.1) to (A.3) hold. Then,
for |α| < 1 and a small |�|

I (α)
X1

(θ, θ + �) = 8c

1 − α2 |�| +
{

4

1 − α2 (c2 − h) + I0

}
�2 + o(�2).

The proof is straightforward from Theorem 1 and the condition (A.3). Now we
consider the extreme statistics θ and θ̄ defined by

θ := max
1≤i≤n

Xi − b, θ̄ := min
1≤i≤n

Xi − a.

Let θ0 be a true parameter and put θ̂∗ = (θ + θ̄ )/2. Then it is seen that θ̂∗ is a {n}·con-
sistent estimator (see Akahira (1975a, 1995)). Put U := n(θ̄ −θ0) and V := n(θ −θ0).
From the joint density function of (min1≤i≤n Xi , max1≤i≤n Xi ), we can derive the
second order asymptotic joint density function

fU,V (u, v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c1c2ec2v−c1u
[
1 + 1

n

{
− 1 + 2(c1u − c2v)

+ 1
2 (c′

2v
2 − c′

1u2 − (c1u − c2v)2) +
(

c′
1

c1
u + c′

2
c2

v
)}

+ o
( 1

n

)]
for v < 0 < u,

0 otherwise,

(10)

since b1+ = c1, b1− = −c2, b2+ = c′
1/2 and b2− = −c′

2/2 in Theorem 3.2 in
Akahira (1993). In particular, under the condition (A.3), we have

fU,V (u, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c2ec(v−u)
[
1 + 1

n

{ − 1 + 2c(u − v)

+ 1
2 (h(u2 + v2) − c2(u − v)2) − h

c (u − v)
} + o( 1

n )
]

for v < 0 < u,

0 otherwise,

(11)

123



Loss of information of a statistic, II 1127

which coincides with (10) in Akahira (1996) (see Akahira (1991a, 1993)). It is seen
from (10) and (11) that U and V are asymptotically independent but not up to the
second order, i.e. the order o(1/n).

Lemma 2 Assume that the conditions (A.1) and (A.2) hold. Then, for |α| < 1 and
any sufficiently small �2/n

∫ ∞

−∞

∫ ∞

−∞
fU,V (u − θ0, v − θ0)

(1−α)/2 fU,V (u − θ0 − �, v − θ0 − �)(1+α)/2dudv

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
exp

{− 1
2 ((1 − α)c1 + (1 + α)c2)�

}] [
1 − c′

1+c2
1

2n �2

+ 1+α
4n

{
(c′

1 + c′
2) + (c2

1 − c2
2)

}
�2

]
+ o

(
�2

n

)
f or � > 0,

[
exp

{ 1
2 ((1 + α)c1 + (1 − α)c2)�

}] [
1 + c′

2−c2
2

2n �2

− 1+α
4n

{
(c′

1 + c′
2) + (c2

1 − c2
2)

}
�2

]
+ o

(
�2

n

)
f or � < 0,

(12)

and

I (α)

nθ̄ ,nθ
(θ0, θ0 + �) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
(

c1
1+α

+ c2
1−α

)
� + 4(c′

1+c2
1)

(1−α2)n
�2

− 2
(1−α)n

{
(c′

1 + c′
2) + (c2

1 − c2
2)

}
�2 + o

(
�2

n

)

f or � > 0,

−4
(

c1
1−α

+ c2
1+α

)
� − 4(c′

2−c2
2)

(1−α2)n
�2

+ 2
(1−α)n

{
(c′

1 + c′
2) + (c2

1 − c2
2)

}
�2 + o

(
�2

n

)

f or � < 0.

(13)

Proof Without loss of generality, we assume that θ0 = 0. Let α be any fixed in (−1, 1).
Let � > 0. From (10), we have

∫ ∞

−∞

∫ ∞

−∞
fU,V (u, v)(1−α)/2 fU,V (u − �, v − �)(1+α)/2dudv

=
∫ 0

−∞

∫ ∞

�

c1c2

[
exp

{
1 + α

2
(c1 − c2)�

}] [
1 + 1

n

{
− 1 + 2(c1u − c2v)

−1

2

(
c′

1u2 − c′
2v

2 + (c1u − c2v)2
)

+
(

c′
1

c1
u + c′

2

c2
v

)}

−1 + α

2n

{
2(c1 − c2)� +

(
c′

1

c1
+ c′

2

c2

)
� − (c′

1u − c′
2v)�

123



1128 M. Akahira et al.

−(c1 − c2)(c1u − c2v)� + 1

2

(
c′

1 − c′
2 + (c1 − c2)

2
)

�2
}]

dudv

+o

(
�2

n

)
. (14)

Since

∫ 0

−∞

∫ ∞

�

ec2v−c1ududv = 1

c1c2
e−c1�,

∫ 0

−∞

∫ ∞

�

uec2v−c1ududv = 1

c1c2

(
� + 1

c1

)
e−c1�,

∫ 0

−∞

∫ ∞

�

vec2v−c1ududv = − 1

c1c2
2

e−c1�,

∫ 0

−∞

∫ ∞

�

u2ec2v−c1ududv = 1

c1c2

(
�2 + 2

c1
� + 2

c2
1

)
e−c1�,

∫ 0

−∞

∫ ∞

�

v2ec2v−c1ududv = 2

c1c3
2

e−c1�,

∫ 0

−∞

∫ ∞

�

uvec2v−c1ududv = − 1

c1c2
2

(
� + 1

c1

)
e−c1�,

it follows from (14) that

∫ ∞

−∞

∫ ∞

−∞
fU,V (u, v)(1−α)/2 fU,V (u − �, v − �)(1+α)/2dudv

=
[

exp

{
−1

2
((1 − α)c1 + (1 + α)c2)

}
�

]

×
[

1 − c′
1 + c2

1

2n
�2 + 1 + α

4n

{
(c′

1 + c′
2) + (c2

1 − c2
2)

}
�2

]
+ o

(
�2

n

)
.

(15)

We also have from (15)

I (α)

nθ̄ ,nθ
(0,�)

= − 8

1 − α2 log
∫ ∞

−∞

∫ ∞

−∞
fU,V (u, v)(1−α)/2 fU,V (u − �, v − �)(1+α)/2du dv

= 4

(
c1

1 + α
+ c2

1 − α

)
� + 4(c′

1 + c2
1)

(1 − α2)n
�2

− 2

(1 − α)n

{
(c′

1 + c′
2) + (c2

1 − c2
2)

}
�2 + o

(
�2

n

)
.
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Next, in the case when � < 0, we have

∫ ∞

−∞

∫ ∞

−∞
fU,V (u, v)(1−α)/2 fU,V (u − �, v − �)(1+α)/2dudv

=
∫ �

−∞

∫ ∞

0
c1c2

[
exp

{
1 + α

2
(c1 − c2)�

}] [
1 + 1

n

{
− 1 + 2(c1u − c2v)

−1

2

(
c′

1u2 − c′
2v

2 + (c1u − c2v)2
)

+
(

c′
1

c1
u + c′

2

c2
v

)}

−1 + α

2n

{
2(c1 − c2)� +

(
c′

1

c1
+ c′

2

c2

)
� − (c′

1u − c′
2v)�

−(c1 − c2)(c1u − c2v)� + 1

2
(c′

1 − c′
2 + (c1 − c2)

2)�2
}]

dudv

+o

(
�2

n

)
.

In a similar way to the case � > 0, we obtain (12) and (13). Thus we complete the
proof. �	
Remark 3 In Lemma 2, we further assume that the condition (A.3) holds. Then

I (α)

nθ̄ ,nθ
(θ0, θ0 + �) = 8

1 − α2 c|�| + 4

(1 − α2)n
(c2 − h)�2 + o

(
�2

n

)
,

which coincides with the result in Akahira (1996).

4 Loss of information associated with the statistic

First, let

Z1(θ) = − 1√
n

n∑
i=1

f ′
0(Xi − θ)

f0(Xi − θ)
− √

n(c1 − c2)

for θ < θ < θ̄ . Let Z∗
1 = Z1(θ̂

∗). Then it is noted that Z∗
1 is an asymptotically

ancillary statistic. Let C := I0 − (c1 − c2)
2. Since, by the Schwarz inequality

I0 =
∫ b

a

(
f ′
0(x)

f0(x)

)2

f0(x)dx ≥
(∫ b

a
f ′
0(x)dx

)2

= (c2 − c1)
2, (16)

it is seen that C ≥ 0. Then we have the following.
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Lemma 3 Assume that the conditions (A.1) and (A.2) hold, C > 0 and � = O(1/n).
Then the amount of conditional information of Z∗

1/(C
√

n) given θ̄ and θ is obtained
by

I (α)

Z∗
1/(C

√
n)|θ̄ ,θ

(θ0, θ0 + �) = Cn�2 + o

(
1

n

)
(17)

as n → ∞ for |α| < 1.

Proof Without loss of generality we assume that θ0 = 0. Put Z0
1 = Z1(0). Then the

asymptotic conditional cumulants Z0
1/

√
C given U = u and V = v, under θ0 = 0,

are obtained by

E0

[
Z0

1√
C

∣∣∣∣u, v

]
= − 1√

Cn

(
c′

1

c1
+ c′

2

c2
− 2c12

)
+ 1√

Cn
(c1c12 + c′

1)u

− 1√
Cn

(c2c12 + c′
2)v + Op

(
1

n
√

n

)
,

V0

(
Z0

1√
C

∣∣∣∣u, v

)
= 1 − u

Cn

(
c′

1
2

c1
+ 2c12(c1c12 + c′

1) − c1 I0

)

+ v

Cn

(
c′

2
2

c2
+ 2c12(c2c12 + c′

2) − c2 I0

)

−2

n
+ Op

(
1

n2

)
,

k3,0

(
Z0

1√
C

∣∣∣∣u, v

)
= 1

C
√

Cn

{
−K + c12(2c2

12 − 3I0)
}

+ Op

(
1

n
√

n

)
,

k4,0

(
Z0

1√
C

∣∣∣∣u, v

)
= 1

C2n

{
H + 4c12 K + 6c2

12(2I0 − c2
12)

}
+ Op

(
1

n2

)
,

where c12 := c1 − c2,

K :=
∫ b

a

( f ′
0(x))3

f 2
0 (x)

dx, H :=
∫ b

a

( f ′
0(x))4

f 3
0 (x)

dx − 3I 2
0 .

Hence the Edgeworth expansion of the conditional distribution of Z0
1/

√
C given

U = u and V = v is obtained by

FZ0
1/

√
C (z|u, v)=�(z)+ 1√

Cn

{
c′

1

c1
+ c′

2

c2
−2c12−(c1c12+c′

1)u+(c2c12+c′
2)v

}
φ(z)

+ 1

6C
√

Cn

{
K − c12(2c2

12 − 3I0)
}

(z2 − 1)φ(z)
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− 1

24C2n

{
H + 4c12 K + 6C2

12(2I0 − c2
12)

}
(z3 − 3z)φ(z)

− 1

72C3n

{
K − c12(2c2

12 − 3I0)
}2

(z5 − 10z3 + 15z)φ(z)

+ 1

2Cn

{
2C +

(
c′

1
2

c1
+ 2c12(c1c12 + c′

1) − c1 I0

)
u

−
(

c′
2

2

c2
+ 2c12(c2c12 + c′

2) − c2 I0

)
v

−
(

c′
1

c1
+ c′

2

c2
− 2c12 − (c1c12 + c′

1)u + (c2c12 + c′
2)v

)2
}

zφ(z)

− 1

6C2n

(
K −c12(2c2

12 − 3I0)
) {

c′
1

c1
+ c′

2

c2
− 2c12−(c1c12 + c′

1)u

+(c2c12 + c′
2)v

}
z(z2 − 1)φ(z) + o

(
1

n

)
, (18)

where �(z) = ∫ z
−∞ φ(u)du with φ(u) = (1/

√
2π)e−u2/2. Then it follows from (18)

that the asymptotic conditional density of Z0
1/

√
C given U = u and V = v is obtained

by

fZ0
1/

√
C (z|u, v) = φ(z)− 1√

Cn

{
c′

1

c1
+ c′

2

c2
−2c12−(c1c12+c′

1)u+(c2c12+c′
2)v

}
zφ(z)

− 1

6C
√

Cn

{
K − c12(2c2

12 − 3I0)
}
(z3 − 3z)φ(z)

+ 1

24C2n

{
H + 4c12 K + 6c2

12(2I0 − c2
12)

}
(z4 − 6z2 + 3)φ(z)

+ 1

72C3n

{
K − c12(2c2

12 − 3I0)
}2

(z6 − 15z4 + 45z2 − 15)φ(z)

+ 1

2Cn

[
−

{
2C +

(
c′

1
2

c1
+ 2c12(c1c12 + c′

1) − c1 I0

)
u

−
(

c′
2

2

c2
+2c12(c2c12+c′

2)−c2 I0

)
v

−
(

c′
1

c1
+ c′

2

c2
−2c12−(c1c12+c′

1)u+(c2c12+c′
2)v

)2
}]

(z2−1)φ(z)

+ 1

6C2n

(
K − c12(2c2

12 − 3I0)
) {

c′
1

c1
+ c′

2

c2
− 2c12 − (c1c12 + c′

1)u

+(c2c12 + c′
2)v

}
(z4 − 4z2 + 1)φ(z) + o

(
1

n

)

=: φ(z) − 1√
Cn

a0zφ(z) − 1

6C
√

Cn
a1(z

3 − 3z)φ(z)
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+ 1

24C2n
a2(z

4−6z2+3)φ(z)+ 1

72C3n
a3(z

6−15z4+45z2−15)φ(z)

+ 1

2Cn
a4(z

2−1)φ(z)+ 1

6C2n
a5(z

4−4z2+1)φ(z)+o

(
1

n

)
(say).

(19)

Since Z∗
1 = Z0

1 + op(1), it follows from (18) that

fZ∗
1/

√
C (z|u, v)(1−α)/2 fZ∗

1/
√

C (z − √
Cn�|u, v)(1+α)/2

= φ(z)

{
1 + 1 + α

2

√
Cn�z + 1 + α

4
Cn�2(z2 − 1) − 1 − α2

8
Cn�2z2

− a0z√
Cn

− (1 + α)a0

2
�z2 − a1

6C3/2
√

n
(z3 − 3z) − (1 + α)a1

12C
√

n
�z(z3 − 3z)

+ (1 − α2)a0a1

12C2n
z(z3 − 3z) + a2

24C2n
(z4 − 6z2 + 3)

+ a3

72C3n
(z6 − 15z4 + 45z2 − 15) + a4

2Cn
(z2 − 1)

+ a5

6C2n
(z4 − 4z2 + 1) + (1 + α)a0

2
� + (1 + α)a1

4C
�(z2 − 1) + op

(
1

n

)}
,

hence

I (α)

Z∗
1/

√
C |u,v

(0,
√

Cn�)

= − 8

1 − α
log

∫ ∞

−∞
fZ∗

1/
√

C (z|u, v)(1−α)/2 fZ∗
1/

√
C (z − √

Cn�|u, v)(1+α)/2dz

= − 8

1 − α2 log

(
1 − 1 − α2

8
Cn�2 + o

(
1

n

))

= Cn�2 + o

(
1

n

)
.

Since

I (α)

Z∗
1/

√
C |u,v

(0,
√

Cn�) = I (α)

Z∗
1/(C

√
n)|θ̄ ,θ

(0,�),

we obtain (17). Thus we complete the proof. �	

From Lemmas 2 and 3, we have the following.

Theorem 2 Assume that the conditions (A.1) and (A.2) hold, C > 0 and � =
O(1/n). Then the amount of information of the statistic (Z∗

1/(C
√

n), θ̄ , θ) is given by
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I (α)

Z∗
1/(C

√
n),θ̄ ,θ

(θ0, θ0 + �)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4
(

c1
1+α

+ c2
1−α

)
n� +

[
4

1−α2 (c′
1 + c2

1) − 2
1−α

{
(c′

1 + c′
2) + (c2

1 − c2
2)

}
+I0 − (c1 − c2)

2
]
n�2 + o(n�2) f or � > 0,

−4
(

c1
1−α

+ c2
1+α

)
n�+

[
− 4

1−α2 (c′
2−c2

2) + 2
1−α

{
(c′

1 + c′
2) + (c2

1−c2
2)

}
+I0 − (c1 − c2)

2
]
n�2 + o(n�2) f or � < 0

(20)

as n → ∞ for |α| < 1.

Proof Without loss of generality we assume that θ0 = 0. Let α be any fixed in (−1, 1).
From Lemma 2, we have

∫ ∞

−∞

∫ ∞

−∞
fU,V (u, v)(1−α)/2 fU,V (u − n�, v − n�)(1+α)/2du dv

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
exp

{− 1
2 ((1 − α)c1 + (1 + α)c2) n�

}]
×

[
1 − c′

1+c2
1

2 n�2 + 1+α
4

{
(c′

1 + c′
2) + (c2

1 − c2
2)

}
n�2

]

+o
(
n�2

)
for � > 0,[

exp
{ 1

2 ((1 + α)c1 + (1 − α)c2) n�
}]

×
[

1 + c′
2−c2

2
2 n�2 − 1−α

4

{
(c′

1 + c′
2) + (c2

1 − c2
2)

}
n�2

]

+o(n�2) for � < 0

=: k(n�) (say),

and

I (α)

θ̄ ,θ
(0,�) = I (α)

nθ̄ ,nθ
(0, n�)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4
(

c1
1+α

+ c2
1−α

)
n� + 4(c′

1+c2
1)

1−α2 n�2

− 2
1−α

{(c′
1 + c′

2) + (c2
1 − c2

2)}n�2 + o(n�2) for � > 0,

−4
(

c1
1−α

+ c2
1+α

)
n� − 4(c′

2−c2
2)

1−α2 n�2

+ 2
1−α

{(c′
1 + c′

2) + (c2
1 − c2

2)}n�2 + o(n�2) for � < 0.

(21)

From Lemma 3, we also obtain

I (α)

Z∗
1/(C

√
n)|θ̄ ,θ

(0,�) = Cn�2 + o(n�2),

hence, by Lemma 1
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I (α)

Z∗
1/(C

√
n),θ̄ ,θ

(0,�)

= − 8

1 − α2 log E

[
exp

{
−1 − α2

8
Cn�2 + o(n�2)

}]
+ I (α)

θ̄ ,θ
(0,�). (22)

Since, by Lemma 1,

E

[
exp

{
−1 − α2

8
Cn�2 + o(n�2)

}]

=
∫ ∞

−∞

∫ ∞

−∞

[
exp

{
−1 − α2

8
Cn�2 + o(n�2)

}]

× 1

k(n�)
fU,V (u, v)(1−α)/2 fU,V (u − n�, v − n�)(1+α)/2du dv

=
[

exp

{
−1 − α2

8
Cn�2

}]
(1 + o(n�2)),

and C = I0 − (c1 − c2)
2, it follows from (21) and (22) that (20) holds. This completes

the proof. �	
Now, the second order asymptotic loss of information of any statistic T = T (X)

is defined as

L(α)
n (T ) = 1

n�2

{
I (α)

X (θ, θ + �) − I (α)
T (θ, θ + �)

}
+ o(1) (23)

for |α| < 1, where � = O(1/n) (see Akahira (1996)). Then we have the following.

Theorem 3 Assume that the conditions (A.1) and (A.2) hold and � = O(1/n). Then
the second order asymptotic loss of information of the statistic

T ∗
n := (Z∗

1/(C
√

n), θ̄ , θ)

vanishes, that is,

L(α)
n (T ∗

n ) = o(1)

as n → ∞ for |α| < 1.

The proof is straightforward from Theorems 1 and 2, since

1

n�2

{
I (α)

X (0,�) − I (α)
T ∗

n
(0,�)

}
= 1

n�2

{
nI (α)

X1
(0,�) − I (α)

T ∗
n

(0,�)
}

= o(1)

as n → ∞ for |α| < 1. Here, it follows from (16) that C = 0, i.e. I0 = (c1 − c2)
2 if

only if f0 is the uniform density or the truncated exponential density. From Corollary 1
and Remark 3, we easily see that L(α)

n (θ̄ , θ) = o(1) as n → ∞ for |α| < 1. Hence,
in the case when C = 0, the second order asymptotic loss of information of (θ̄ , θ)
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Loss of information of a statistic, II 1135

vanishes, which coincides with the fact that (θ̄ , θ) is a sufficient statistic for θ for a
fixed n in the uniform and truncated exponential cases.

Remark 4 From (7), (21) and (23) it is seen that the second order asymptotic loss of
information of the extreme statistic (θ̄ , θ) is given by

L(α)
n (θ̄ , θ) = 1

n�2

{
nI (α)

X1
(θ, θ + �) − I (α)

θ̄ ,θ
(θ, θ + �)

}

= I0 − (c1 − c2)
2 + o(1) = C + o(1) (24)

as n → ∞ for |α| < 1. Further, it follows from (16) that I0 = (c1 − c2)
2 if and only

if f0(·) is a density of truncated exponential distribution. In the case, it is seen from
(24) that L(α)

n (θ̄ , θ) = o(1).

Remark 5 The result of Theorem 3 corresponds to the fact that the statistic T ∗
n is sec-

ond order asymptotically sufficient in Akahira (1991b). This means that, in T ∗
n , the

extreme statistic (θ̄ , θ) has the information on the endpoints a + θ and b + θ and also
the amount of conditional information of Z∗

1/(C
√

n) given θ̄ and θ consists of the
information on the inside of the interval (a + θ, b + θ) and the difference between
the values of the density at the endpoints. Further, imposing the condition (A.3), we
see that C = I0 since c1 = c2, hence, as is seen from (17), the information at the
endpoints of the support of f0 in the conditional information of Z∗

1/(C
√

n) given θ̄

and θ disappears. This fact shows that we are blind to the real non-regular structure
all the better for such a specialization, hence it is meaningful to consider the loss of
information of the statistic without the condition (A.3).

5 Examples

In the previous setup, we now give some examples on similar truncated distributions
to what are treated in Akahira (1996).

Example 1 (truncated normal distribution) Let X1, . . . , Xn be i.i.d. random variables
with a density function

f0(x − θ) =
{

ce−(x−θ)2/2 for a < x − θ < b,

0 otherwise,

where c is a normalizing constant depending on a and b, a < b and −∞ < θ < ∞.
Then it is easily seen that

c1 = lim
x→a+0

f0(x) = ce−a2/2, c2 = lim
x→b−0

f0(x) = ce−b2/2,

c′
1 = lim

x→a+0
f ′
0(x) = −ace−a2/2, c′

2 = lim
x→b−0

f ′
0(x) = −bce−b2/2,

I0 = 1 − c(be−b2/2 − ae−a2/2)
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1136 M. Akahira et al.

since f0(x) = ce−x2/2 and f ′
0(x) = −cxe−x2/2 for a < x < b. Since the conditions

(A.1) and (A.2) are satisfied, it follows from Theorem 3 that the second order asymp-
totic loss of information of the statistic (Z∗

1/(C
√

n), θ̄ , θ) vanishes, where Z∗
1 =√

n{X̄ − θ̂∗ − c(e−a2/2 − e−b2/2)}, X̄ = ∑n
i=1 Xi/n, θ̂∗ = (θ + θ̄ )/2, C = 1 −

c(be−b2/2 − ae−a2/2) − c2(e−a2/2 − e−b2/2)2 with θ = max1≤i≤n Xi − b and θ̄ =
min1≤i≤n Xi − a. Further, it is seen from Remark 4 that the second order asymptotic
loss of information of the statistic (θ̄ , θ) is given by L(α)

n (θ̄ , θ) = C +o(1) as n → ∞.

Example 2 (truncated Cauchy distribution) Let X1, · · · , Xn be i.i.d. random variables
with a density function

f0(x − θ) =
{

c
1+(x−θ)2 for a < x − θ < b,

0 otherwise,

where c is a normalizing constant depending on a and b, a < b and −∞ < θ < ∞.
Then it is easily seen that

c1 = lim
x→a+0

f0(x) = c/(1 + a2), c2 = lim
x→b−0

f0(x) = c/(1 + b2),

c′
1 = lim

x→a+0
f ′
0(x) = −2ac/(1 + a2)2, c′

2 = lim
x→b−0

f ′
0(x) = −2bc/(1 + b2)2,

I0 = 4c
∫ b

a

x2

(1 + x2)3 dx,

since f0(x) = c/(1+ x2) and f ′
0(x) = −2cx/(1+ x2)2 for a < x < b. Since the con-

ditions (A.1) and (A.2) are satisfied, it follows from Theorem 3 that the second order
asymptotic loss of information of the statistic (Z∗

1/(C
√

n), θ̄ , θ) vanishes, where

Z∗
1 = 2√

n

n∑
i=1

Xi − θ̂∗

1 + (Xi − θ̂∗)2
− c

√
n

(
1

1 + a2 − 1

1 + b2

)
, θ̂∗ = 1

2
(θ + θ̄ ),

C = I0 − c2
(

1

1 + a2 − 1

1 + b2

)2

with θ = max1≤i≤n Xi −b and θ̄ = min1≤i≤n Xi −a. Further, it is seen from Remark
4 that the second order asymptotic loss of information of the statistic (θ̄ , θ) is given
by L(α)

n (θ̄ , θ) = C + o(1) as n → ∞.

Example 3 Let X1, . . . , Xn be i.i.d. random variables with a density function

f0(x − θ) =
{

c exp
[{1 − (x − θ)2}p

]
for a < x − θ < b,

0 otherwise ,
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where c is a normalizing constant depending on a and b, a < b and −∞ < θ < ∞.
Then it is seen that

c1 = lim
x→a+0

f0(x) = c exp{(1 − a2)p}, c2 = lim
x→b−0

f0(x) = c exp{(1 − b2)p},

c′
1 = lim

x→a+0
f ′
0(x) = −2cpa(1 − a2)p−1e(1−a2)p

,

c′
2 = lim

x→b−0
f ′
0(x) = −2cpb(1 − b2)p−1e(1−b2)p

,

I0 = 4p2
∫ b

a
x2(1 − x2)2(p−1)ce(1−x2)p

dx,

since f0(x) = c exp{(1 − x2)p} and f ′
0(x) = −2cpx(1 − x2)p−1e(1−x2)p

for a <

x < b. Since the conditions (A.1) and (A.2) are satisfied, it follows from Theorem 3
that the second order asymptotic loss of information of the statistic (Z∗

1/(C
√

n), θ̄ , θ)

vanishes, where

Z∗
1 = 1√

n

n∑
i=1

2p(Xi − θ̂∗)
{

1 − (Xi − θ̂∗)2
}p−1

−c
√

n
[
exp{(1 − a2)p} − exp

{
(1 − b2)p}] ,

θ̂∗ = 1

2
(θ + θ̄ ), C = I0 − c2

[
exp

{
(1 − a2)p} − exp

{
(1 − b2)p}]2

with θ = max1≤i≤n Xi −b and θ̄ = min1≤i≤n Xi −a. Further, it is seen from Remark 4
that the second order asymptotic loss of information of the statistic (θ̄ , θ) is given by
L(α)

n (θ̄ , θ) = C + o(1) as n → ∞.

6 Conclusion

The condition (A.3) that the density has the same values and the same absolute ones of
differential coefficient at the endpoints of the bounded support is assumed in Akahira
(1996). But it may not be an essential condition. Indeed, in this paper, the result is
extended to the case when the condition (A.3) does not necessarily hold. This is also an
answer to Remark 3.2 in Akahira (1996), and brings a wider application to statistical
inference.
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