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Abstract In the common nonparametric regression model, we consider the problem
of testing the hypothesis that the coefficient of the scale and location function is con-
stant. The test is based on a comparison of the standardized (by a local linear estimate
of the scale function) observations with their mean. We show weak convergence of a
centered version of this process to a Gaussian process under the null hypothesis and
the alternative and use this result to construct a test for the hypothesis of a constant
coefficient of variation in the nonparametric regression model. A small simulation
study is also presented to investigate the finite sample properties of the new test.

Keywords Nonparametric regression · Test for constant coefficient of variation ·
Empirical process

1 Introduction

Let (X1,Y1), . . . , (Xn,Yn) denote a bivariate sample of independent identically dis-
tributed observations corresponding to the nonparametric regression model

Yi = m(Xi )+ σ(Xi )εi , i = 1, . . . , n, (1)

where ε1, . . . , εn are independent identically distributed random variables with E[εi |
Xi = t] = 0 and E[ε2

i | Xi = t] = 1 for all t . The functions m(t) = E[Yi | Xi = t]
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1046 H. Dette et al.

and σ 2(t) = E[(Yi − m(Xi ))
2 | Xi = t] are called regression and variance function,

respectively. Throughout this paper we assume that the function σ in (1) is positive.
We are interested in the problem of testing for a constant coefficient of variation in
the nonparametric regression model (1), that is

H0 : m(t) = cσ(t) a.e. (2)

for some positive constant c. Several authors have discussed the problem of sta-
tistical inference under the assumption of a constant coefficient of variation. For
example McCullagh and Nelder (1989) considered generalized linear models,
Carroll and Ruppert (1988) investigated a parametric model with a constant coef-
ficient of variation, while Eagleson and Müller (1997) considered the problem of
nonparametric estimation of the regression function in a model where the standard
deviation function is proportional to the regression function. The problem of testing
the hypothesis (2) in a general nonparametric regression model has been recently
discussed in Dette and Wieczorek (2009) and Dette et al. (2009). The last named
authors investigated the difference between two empirical processes under the null
hypothesis and the alternative and showed weak convergence. Because the distri-
bution of the limiting process depends in a complicated way on the distribution
of the random variable (X1,Y1) a bootstrap procedure is used to obtain critical
values for the corresponding test. This test can detect alternatives converging to
the null hypothesis with the rate 1/

√
n. Dette and Wieczorek (2009) proposed a

test which is based on an L2-distance between an estimate of m(t)/σ (t) under the
null hypothesis and the alternative. The limiting distribution is a normal distribu-
tion, but the test is not able to detect alternatives converging to the null at the rate
1/

√
n.

The purpose of the present paper is to propose a third test for the hypothesis (2)
which on the one hand is based on a test statistic which has a simple limiting distri-
bution in many important cases and on the other hand is able to detect alternatives
converging to the null hypothesis at a parametric rate. Our approach is based on the
fact that under the null hypothesis the conditional expectation of the random variables
Y1/σ(X1), . . . ,Yn/σ(Xn) is constant and therefore equal to their mean. Consequently,
we propose to consider an empirical process of the random variables Ui − Ū as the
basis for our test, where Ui = Yi/σ̂ (Xi ) and σ̂ is the local linear estimate of the
scale function. The test statistic is carefully defined in Sect. 2 where we also state
the necessary assumptions for the asymptotic theory, which is presented in Sect. 3.
Finally, a simulation study, which investigates the finite sample properties of the new
test is presented in Sect. 4, while some of the very technical details are deferred to an
Appendix in Sects. 5, 6 and 7.
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Testing the coefficient of variation 1047

2 Preliminaries and a new test statistic

We propose to base a test for the hypothesis (2) on the process

Hn(t) = 1

n

n∑

j=1

ω(X j )I {X j ≤ t}(U j − Ū ), (3)

where the random variables U j and Ū are defined by U j = Y j

σ̂ (X j )
and Ū = 1

n

∑n
i=1 Ui ,

respectively and ω(·) denotes a weight function. The definition of Hn in (3) requires
the specification of an estimate of the variance function σ̂ and throughout this paper
we use the local linear estimate

σ̂ 2(t) = 1

n

n∑

i=1

Wi (t)(Yi − m̂(Xi ))
2, (4)

where m̂ is the local linear estimate of the regression function, i.e.

m̂(t) = 1

n

n∑

i=1

Wi (t)Yi ,

the weights Wi (t) are defined by

Wi (t) = Kh(Xi − t)
[
sn,2(t)− (t − Xi )sn,1(t)

]

1
n

∑n
j=1 Kh(X j − t)

[
sn,2(t)− (t − X j )sn,1(t)

] ,

sn, l(t) =
n∑

i=1

Kh(Xi − t)(t − Xi )
l , l = 1, 2,

and Kh(·) = 1
h K ( ·

h ) [see Fan and Gijbels (1996)]. Here h and K (·) denote a band-
width converging to 0 with increasing sample size and a kernel function with compact
support, respectively. Note that we use the same bandwidth in the weights for the esti-
mates of the variance and regression function to keep the technical arguments simple.
However, the results presented in this paper are correct for estimates σ̂ 2 and m̂ with
different bandwidths [see Ruppert et al. (1997) or Yu and Jones (2004) among others].

It was pointed out by a referee and the associate editor that the process Hn defined
in (3) can be motivated by general methods based on the integrated regression func-
tion. To be precise, note that for a check of a parametric model H0 : m = mθ with
a finite dimensional parameter θ Stute (1997) proposed to use test statistics based on
the empirical process

R1
n(t) = 1√

n

n∑

j=1

I {X j ≤ t}(Y j − m θ̂ (X j )),
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1048 H. Dette et al.

Fig. 1 The process {Hn(t)}t∈[0,1] under the null hypothesis (left panel) and alternative (right panel)

where θ̂ denotes an estimate of the parameter θ . For the present hypothesis (2), the
corresponding analogue is given by

R1
n(t) = 1√

n

n∑

j=1

I {X j ≤ t}(Y j − ĉ σ̂ (X j )) (5)

where ĉ is an estimator of the factor c. However, the process defined in (5) is not scale
invariant. Thus the empirical process

R̃n(t) = 1√
n

n∑

j=1

I {X j ≤ t}(U j − ĉ ) (6)

based on (X j ,U j ) j=1,...,n seems to be worth to consider. The process
√

nHn intro-
duced in (3) is simply a weighted version of the process R̃n defined in (6), where U
is used as an estimator of the factor c. However, the results of Stute (1997) cannot be
applied directly, because the random variables U j ( j = 1, . . . , n) are no longer inde-
pendent or identically distributed if a reasonable estimator of the conditional variance
function σ is used in the calculation of the quantities U j .

We illustrate our approach in Fig. 1 showing the process {Hn(t)}t∈[0,1] under the
null hypothesis m(x) = σ(x) = 0.5(1 + 0.1x) and alternative m(x) = 0.5(1 +
0.1x), σ (x) = (1 + 0.1x + 2

√
x), where the sample size is n = 200 and the band-

width of the estimators have been chosen by cross validation.
In order to prove our asymptotic theory we will require the following basic assump-

tions, where C denotes a generic constant which may have different values in different
contexts. Here and throughout the whole article let f denote the marginal density
of X1.

(A1) The bandwidth h satisfies for n → ∞

nh2 −→ ∞, nh4 −→ 0.
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Testing the coefficient of variation 1049

(A2) The density f of the predictors Xi has compact support, say [0, 1], is twice
continuously differentiable on (0, 1) and f (t) ≥ C > 0 for all t ∈ [0, 1].

(A3) The regression function m : [0, 1] −→ R is twice continuously differentiable.
(A4) The variance function σ 2 : [0, 1] −→ R is twice continuously differentiable

and mint∈[0,1] σ 2(t) ≥ C > 0.
(A5) The weight function ω is twice continuously differentiable and has compact

support [0, 1].
(A6) The kernel K is of order 2, Lipschitz continuous and has compact support, say

[−1, 1].
(A7) The conditional expectations m j (t) = E[ε j

1 | X1 = t] exist, are continuous for
j = 3, 4 and for all 1 ≤ j ≤ 8 bounded, that is

∣∣∣E[ε j
i | Xi = t]

∣∣∣ ≤ C < ∞, 1 ≤ j ≤ 8.

We will show in Sects. 5 and 7 that

Hn(t)− H(t)
P−→ 0

for any t ∈ [0, 1], where {H(t)}t∈[0,1] denotes a deterministic function defined by

H(t) =
∫ t

0
f (x1)ω(x1)

(
m(x1)

σ (x1)
−
∫ 1

0
f (x2)

m(x2)

σ (x2)
dx2

)
dx1. (7)

The following Lemma shows that the process {H(t)}t∈[0,1] vanishes if and only if the
null hypothesis (2) of a constant coefficient of variation is satisfied.

Lemma 1 If the assumptions (A2) and (A5) are satisfied, then the null hypothesis
(2) of a constant coefficient of variation is satisfied if and only if H(t) = 0 almost
everywhere on the interval [0, 1].
Proof of Lemma 1 If the null hypothesis (2) is satisfied then there exists a c > 0, such
that m(t) = cσ(t) and

H(t) = 0

almost everywhere on the interval [0, 1]. For the converse assume that H(t) = 0
almost everywhere on the interval [0, 1]. This yields H ′(t) = 0 almost everywhere on
[0, 1], i.e.

0 = ∂

∂t
H(t) = f (t)ω(t)

(
m(t)

σ (t)
−
∫ 1

0
f (x2)

m(x2)

σ (x2)
dx2

)

almost everywhere on [0, 1].
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1050 H. Dette et al.

Observing that the functions f and ω do not vanish on the interval [0, 1] we obtain

m(t)

σ (t)
−
∫ 1

0
f (x2)

m(x2)

σ (x2)
dx2 = 0

almost everywhere on the interval [0, 1], which proves the assertion of Lemma 1. 	


Lemma 1 suggests to construct a statistical test for the hypothesis (2) on the basis
of the process {Hn(t)}t∈[0,1]. More precisely, we propose to reject the null hypothesis
of a constant coefficient of variation for large values of the Kolmogorov–Smirnov
statistic

K̂n = sup
t∈[0,1]

| Hn(t) |

or the Cramér–von-Mises statistic

Ĉn =
∫ 1

0
H2

n (t)d F̂n(t),

where F̂n(t) = 1
n

∑n
j=1 I {X j ≤ t} denotes the empirical distribution function of

X1, . . . , Xn . In the following section we will study the asymptotic properties of the
process {Hn(t)}t∈[0,1], which will be used to derive critical values for these tests.

3 Asymptotic properties

Throughout this paper D[0, 1] denotes the space of cadlag functions defined on the
interval [0, 1] [see Billingsley (1999)]. Then the following result establishes weak
convergence of the process {√n(Hn(t)− H(t))}t∈[0,1] in D[0, 1]. A proof is given in
Sect. 5.

Theorem 1 If the assumptions (A1)–(A7) are satisfied, then

{√n(Hn(t)− H(t))}t∈[0,1] ⇒ {A(t)}t∈[0,1]

in D[0, 1], where {A(t)}t∈[0,1] denotes a centered Gaussian process with covariance
kernel

k(t, s) =
∫ s∧t

0
ω2(u) f (u)du −

∫ s

0
ω(u) f (u)du

∫ t

0
ω(u) f (u)du

+κ(s, t)+ 2ν(s, t)+ μ(s, t) (8)

and the functions κ(s, t), ν(s, t) and μ(s, t) are defined by
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Testing the coefficient of variation 1051

κ(s, t) = Cov(ct (X1)h(X1), cs(X1)h(X1))

+ Cov(ct (X1)h(X2), cs(X1)h(X3))+ Cov(ct (X1)h(X2), cs(X2)h(X3))

+ Cov(ct (X1)h(X2), cs(X3)h(X1))+ Cov(ct (X1)h(X2), cs(X3)h(X2))

− Cov(ct (X1)h(X2), cs(X1)h(X1))− Cov(ct (X1)h(X2), cs(X2)h(X2))

− Cov(ct (X1)h(X1), cs(X1)h(X2))− Cov(ct (X1)h(X1), cs(X2)h(X1)), (9)

ν(s, t) = −1

2

∫ s∧t

0
ω2(u) f (u)h(u)m3(u)du

+ 1

2

∫ t

0
ω(u) f (u)du

∫ s

0
ω(u) f (u)h(u)m3(u)du

+ 1

2

∫ s

0
ω(u) f (u)du

∫ t

0
ω(u) f (u)h(u)m3(u)du

− 1

2

∫ s

0
ω(u) f (u)du

∫ t

0
ω(u) f (u)du

∫ 1

0
f (u)h(u)m3(u)du, (10)

μ(s, t) = 1

4

∫ s∧t

0
ω2(u) f (u)h2(u)(m4(u)− 1)du

− 1

4

∫ t

0
ω(u) f (u)du

∫ s

0
ω(u) f (u)h2(u)(m4(u)− 1)du

− 1

4

∫ s

0
ω(u) f (u)du

∫ t

0
ω(u) f (u)h2(u)(m4(u)− 1)du

+ 1

4

∫ s

0
ω(u) f (u)du

∫ t

0
ω(u) f (u)du

∫ 1

0
f (u)h2(u)(m4(u)− 1)du, (11)

respectively. Here the notation ct (x) = ω(x)I {x ≤ t} and h(x) = m(x)/σ (x) is used.

Note that Theorem 1 holds under the null hypothesis and the alternative. Moreover,
in the case of a constant third and fourth moment and a constant weight function the
limiting process simplifies substantially under the null hypothesis because in that case
κ(s, t) = 0 holds.

Corollary 1 If the assumptions of Theorem 1 and the null hypothesis (2) are satisfied
with coefficient of variation c > 0, then, under the additional assumption of constant
conditional moments m3(t) ≡ m3 and m4(t) ≡ m4 and ω(t) ≡ 1, we have

{√nHn(t)}t∈[0,1] ⇒
√

1 − cm3 + c2

4
(m4 − 1){B ◦ F}t∈[0,1]

in D[0, 1], where F denotes the distribution function of X1 and B is a standard
Brownian bridge.
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1052 H. Dette et al.

Under the assumptions of Corollary 1, we obtain by the continuous mapping theo-
rem for the corresponding Kolmogorov–Smirnov and Cramér–von-Mises statistic

√
nK̂n√

1 − cm3 + c2

4 (m4 − 1)

D−→ sup
t∈[0,1]

| B(t) |, (12)

nĈn

1 − cm3 + c2

4 (m4 − 1)

D−→
∫ 1

0
B2(t)dt . (13)

This yields a simple asymptotic level α test by rejecting the null hypothesis of a
constant coefficient of variation if

√
nK̂n >

√

1 − ĉm̂3 + ĉ2

4
(m̂4 − 1)k1−α or

nĈn >

(
1 − ĉm̂3 + ĉ2

4
(m̂4 − 1)

)
c1−α,

(14)

where σ̂ , m̂3 and m̂4 are appropriate consistent estimates of the quantities c,m3 and
m4, respectively, and k1−α and c1−α denote the (1−α)-quantiles of the corresponding
limiting distributions in (12) and (13), respectively. If the conditions of Corollary 1 are
not satisfied resampling methods have to be applied to obtain critical values because
the variance of the limiting process is hard to estimate. Note that the consistency of
the tests follows from Lemma 1 and Theorem 1 which shows that under the alternative
we have

√
nK̂n

P→ ∞ and nĈn
P→ ∞. Moreover, the test is able to detect alternatives

converging to the null hypothesis with a rate 1/
√

n.
We conclude this section by presenting a corresponding result for the case of a fixed

design. For this purpose, we consider a triangular array of random variables

Yi,n = m(xi,n)+ σ(xi,n)εi,n, i = 1, . . . , n, (15)

where E[εi,n] = 0 and E[ε2
i,n] = 1. In the model (15) xi,n, . . . , xn,n denote fixed

design points defined by

i − 0.5

n
=
∫ xi,n

0
f (t)dt = F(xi,n), (16)

where F is a distribution function with a positive density f on the interval [0, 1] which
is Hölder continuous of order γ > 1/2 [see Sacks and Ylvisaker (1966)]. The defini-
tion of the process Hn(t) is given in (3), where the random variables Xi are replaced
by xi,n, (i = 1, . . . , n). In this case we also obtain weak convergence of the process
{√n(Hn(t)− H(t))}t∈[0,1] but with a different limiting process. The proof is similar
to the proof of Theorem 1 and some details are indicated in the Appendix (see Sect. 6).
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Testing the coefficient of variation 1053

Theorem 2 Consider the model (15). If the assumptions (A1)–(A7) and additionally
the condition

(A8) The functions f, ω, K are Hölder continuous of order γ > 1/2,

are satisfied (with the obvious modifications for a fixed design case), then we have as
n → ∞

{√n(Hn(t)− H(t))}t∈[0,1] ⇒ {G(t)}t∈[0,1]

in D[0, 1], where {G(t)}t∈[0,1] is a Gaussian process with covariance kernel

k̄(t, s)=
∫ s∧t

0
f (u)ω2(u)du−

∫ s

0
f (u)ω(u)du

∫ t

0
f (u)ω(u)du+2ν(t, s)+μ(t, s).

Note that if the nullhypothesis (2) is satisfied this yields the same limiting pro-
cess as in the random design case, as the additional term κ(t, s) which appears in the
covariance kernel k(t, s) of Theorem 1 vanishes under the null hypothesis.

4 Finite sample properties

4.1 Simulation study

In this section, we will study the finite sample properties of the Cramér–von-Mises
test (14) and will also compare the new test with the method which has recently been
proposed by Dette and Wieczorek (2009) by means of a simulation study. Following
these authors, we have considered the model

m(t) = c(1 + 0.1t), σ (t) = (1 + 0.1t + γ
√

t),

with c = 0.5, 1, 1.5 and γ = 0, 1, 2, where the case γ = 0 corresponds to the null
hypothesis (2) of a constant coefficient of variation. The variables Xi are independently
uniformly distributed on the interval [0, 1] while the errors εi have a standard normal
distribution. The smoothing parameter h in the local linear estimates was chosen by
least squares cross validation. As kernel K we used the Epanechnikov kernel and the
weight function is given by ω ≡ 1. To calculate the critical values we estimated the
squared coefficient of variation by the least squares estimate

ĉ =
(

n∑

i=1

(m̂(Xi ))
2(Yi − m̂(Xi ))

2ω(Xi )

)1/2/(
n∑

i=1

(σ̂ 2(Xi ))
2ω(Xi )

)1/2

(17)

123



1054 H. Dette et al.

[see Dette and Wieczorek (2009)]. Alternatively, one can use the—at a first glance—
simpler estimator c̃ = U . However, it turned out in the simulation study that this
estimator yields to a less precise approximation of the nominal level and to a less
powerful test. Therefore only simulation results for the estimator defined by (17) will
be displayed in this section.

The third and fourth moments of the error variables were estimated according to
Dette and Munk (1998) by

m̂3 = Â4,n · (Ŝ4,n)
−1 − 3, (18)

m̂4 =
(

Â5,n · (Ŝ6,n)
−1
)1/2

(19)

with

Â4,n = 1

2(n − 1)

n∑

j=2

R4
j ,

Â5,n = 1

36(n − 5)

n−3∑

j=3

(R j − R j−1)
3(R j+3 − R j+2)

3,

Ŝ2k,n = 1

2k(n − 2k + 1)

n−2k+2∑

j=2

R2
j . . . R2

j+2k−2, k = 2, 3,

R j = Y ∗
j − Y ∗

j−1,

where Y ∗
j is the observation belonging to X( j) and X(1) ≤ · · · ≤ X(n) denotes the

order statistic of X1, . . . , Xn . In Table 1, we show the rejection probability of the
Cramér–von-Mises test (14) for the sample sizes n = 50, 100, 200 on the basis of
1000 simulation runs. The numbers in brackets show the rejection probabilities of the
bootstrap test suggested by Dette and Wieczorek (2009).

The first part of Table 1 (γ = 0) shows the approximation of the nominal level
of the test (14), which is rather good for sample sizes n = 100 and n = 200, while
for the smaller sample size n = 50 the nominal level is slightly overestimated. The
results for the power of the test are shown in the remaining part of Table 1 (γ = 1, 2).
Although the deviation from the multiplicative structure is extremely small for γ = 1,
because the predictor varies in the interval [0, 1], we observe good results for all three
coefficients c we studied. A visible increase in power is recognizable for increasing
sample sizes n and increasing γ .

Comparing the results depicted in Table 1 with those of the bootstrap test presented
by Dette and Wieczorek (2009), we see that both testing procedures yield similar
results for the approximation of the nominal level. For the alternatives, however, the
test developed in this paper yields higher relative rejection probabilities in almost all
cases under consideration.
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Table 1 Rejection probabilities of the Cramér–von-Mises test (14)

γ c n = 50 n = 100 n = 200

2.5% 5% 10% 20% 2.5% 5% 10% 20% 2.5% 5% 10% 20%

0 0.5 0.039 0.072 0.119 0.224 0.028 0.066 0.105 0.198 0.024 0.046 0.109 0.208
(0.038) (0.067) (0.123) (0.227) (0.035) (0.055) (0.092) (0.176) (0.025) (0.046) (0.096) (0.204)

1 0.043 0.072 0.114 0.213 0.036 0.067 0.112 0.210 0.033 0.057 0.103 0.192
(0.040) (0.059) (0.092) (0.181) (0.026) (0.049) (0.093) (0.195) (0.029) (0.053) (0.089) (0.184)

1.5 0.042 0.071 0.121 0.204 0.041 0.061 0.112 0.200 0.029 0.058 0.099 0.206
(0.033) (0.050) (0.079) (0.183) (0.021) (0.041) (0.096) (0.196) (0.026) (0.044) (0.092) (0.194)

1 0.5 0.081 0.093 0.163 0.269 0.056 0.092 0.161 0.267 0.072 0.109 0.167 0.290
(0.054) (0.100) (0.149) (0.245) (0.046) (0.088) (0.144) (0.253) (0.064) (0.099) (0.171) (0.297)

1 0.094 0.133 0.204 0.298 0.108 0.152 0.230 0.337 0.151 0.214 0.291 0.419
(0.085) (0.123) (0.193) (0.290) (0.096) (0.147) (0.224) (0.328) (0.135) (0.201) (0.282) (0.393)

1.5 0.168 0.221 0.284 0.390 0.169 0.229 0.318 0.431 0.263 0.356 0.469 0.587
(0.107) (0.152) (0.209) (0.301) (0.135) (0.191) (0.281) (0.360) (0.209) (0.297) (0.393) (0.532)

2 0.5 0.071 0.107 0.172 0.292 0.074 0.124 0.178 0.300 0.087 0.139 0.192 0.318
(0.067) (0.092) (0.137) (0.253) (0.066) (0.113) (0.164) (0.331) (0.075) (0.194) (0.181) (0.292)

1 0.128 0.173 0.264 0.372 0.126 0.185 0.270 0.392 0.182 0.252 0.371 0.502
(0.106) (0.149) (0.204) (0.305) (0.119) (0.174) (0.237) (0.381) (0.159) (0.222) (0.330) (0.463)

1.5 0.199 0.252 0.340 0.439 0.215 0.284 0.378 0.491 0.341 0.441 0.568 0.679
(0.138) (0.186) (0.249) (0.342) (0.210) (0.277) (0.353) (0.469) (0.319) (0.424) (0.528) (0.640)

4.2 Data examples

Finally we apply our method to two datasets. The first dataset consists of 235 obser-
vations of the income and the food expenditure of Belgian households. This dataset
originally stems from Engel (1897) and was for example analyzed in Perthel (1975)
or in Koenker and Bassett (1982) in the context of linear quantile regression. The plot
of the data in the left panel of Fig. 2 suggests that there might be a relatively simple
relationship between the conditional mean of the food expenditure and its conditional
variance. Thus, we use the Cramér–von-Mises test (14) with weight function given
by ω ≡ 1 to investigate if this relationship is linear, that is the coefficient of variation
is constant. The bandwidth h is chosen by cross-validation and as kernel K we use
the Epanechnikov kernel. The test yields a p value of 0.023 thus rejecting the null
hypothesis of a constant coefficient of variation at level 5%.

The second dataset consists of 4,177 observations of the age (or more exactly the
number of rings which gives the age) and the shell weight of abalones (sea snails)
and originally stems from Nash et al. (1994). The goal is to predict the age of the
abalone by its shell weight, because the counting of rings under a microscope is a
time consuming task. The dataset was for example analyzed in Dette and Pilz (2009)
where the monotocity of the conditional variance function was tested. The plot of the
data in the right panel of Fig. 2 again suggests a dependence between the conditional
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Fig. 2 Left panel Engel’s food expenditure data. Right panel Abalone weight data

variance and the conditional mean. The test (14) also rejects a linear relationship, that
is a constant coefficient of variation, in this dataset (the p value is 0.0031).

5 Appendix: proof of Theorem 1

In Sect. 7, we will show that the stochastic expansion

Hn(t) = H̃n(t)+ H̄n(t)+ op(n
−1/2) (20)

holds uniformly with respect to t ∈ [0, 1], where the processes {H̃n(t)}t∈[0,1] and
{H̄n(t)}t∈[0,1] are defined by

H̃n(t) = n − 1

n2

n∑

j=1

ct (X j )
Y j

σ(X j )
− 1

n2

n∑

j=1

ct (X j )
∑

i �= j

Yi

σ(Xi )

and

H̄n(t) = −n − 1

2n3

n∑

j=1

n∑

k �= j

ct (X j )h(X j )ψ(Xk, X j )(ε
2
k − 1)

+ 1

2n3

n∑

j=1

n∑

i �= j

n∑

k �=i, j

ct (X j )h(Xi )ψ(Xk, Xi )(ε
2
k − 1),

with

ct (x) = ω(x)I {x ≤ t}, h(x) = m(x)

σ (x)
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Testing the coefficient of variation 1057

and

ψ(x, y) = σ 2(x)Kh(x − y)

σ 2(y) f (y)
.

It is easy to see that

E[H̃n(t)] = H∗
n (t) and E[H̄n(t)] = 0,

where

H∗
n (t) = n − 1

n

∫ 1

0
f (x1)ct (x1)

(
m(x1)

σ (x1)
−
∫ 1

0
f (x2)

m(x2)

σ (x2)
dx2

)
dx1

= H(t)+ o(n−1/2).

Consequently, it is sufficient to establish the weak convergence

{√n(H̃n(t)− H∗
n (t)+ H̄n(t))}t∈[0,1] ⇒ {A(t)}t∈[0,1]

in D[0, 1]. For the calculation of the asymptotic covariances, we introduce the notation

Aε(t) = 1

n
√

n

n∑

i, j=1

ct (X j )(ε j − εi ),

Am,σ (t) = 1

n
√

n

n∑

i, j=1

ct (X j )(h(X j )− h(Xi ))

and obtain by straightforward algebra the decomposition

Cn(t)=√
n(H̃n(t)−H∗

n (t)+ H̄n(t)) = Aε(t)+ Am,σ (t)− √
nH∗

n (t)+ √
nH̄n(t).

(21)

In the following discussion, we will determine the covariance of Cn(s) and Cn(t).
Straightforward calculations yield

Cov(Aε(s), Aε(t)) = E[Aε(s)Aε(t)] = n − 1

n
(E[cs(X1)ct (X1)]

− E[cs(X1)]E[ct (X1)])
=
(∫ s∧t

0
ω2(u) f (u)du

−
∫ s

0
ω(u) f (u)du

∫ t

0
ω(u) f (u)du

)
(1 + o(1)),
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1058 H. Dette et al.

Cov(Am,σ (s), Am,σ (t)) = 1

n3

n∑

i=1

n∑

j �=i

n∑

k=1

n∑

l �=k

{
Cov(ct (Xi )h(Xi ), cs(Xk)h(Xk))

+ Cov(ct (Xi )h(X j ), cs(Xk)h(Xl))

− Cov(ct (Xi )h(X j ), cs(Xk)h(Xk))

− Cov(ct (Xi )h(Xi ), cs(Xk)h(Xl))
}

= κ(s, t)(1 + o(1)),

where the function κ(s, t) is defined in (9). Finally, we obtain for the remaining covar-
iances

Cov(Aε(t),
√

nH̄n(s))

= −1

2
E[ct (X1)cs(X2)h(X2)ψ(X1, X2)ε1(ε

2
1 − 1)]

+ 1

2
E[ct (X1)cs(X3)h(X3)ψ(X2, X3)ε2(ε

2
2 − 1)]

+ 1

2
E[ct (X1)cs(X2)h(X3)ψ(X1, X3)ε1(ε

2
1 − 1)]

− 1

2
E[ct (X1)cs(X3)h(X4)ψ(X2, X4)ε2(ε

2
2 − 1)] + O(n−1)

=
(

− 1

2

∫ s∧t

0
ω2(u) f (u)h(u)m3(u)du

+ 1

2

∫ t

0
ω(u) f (u)du

∫ s

0
ω(u) f (u)h(u)m3(u)du

+ 1

2

∫ s

0
ω(u) f (u)du

∫ t

0
ω(u) f (u)h(u)m3(u)du

−1

2

∫ s

0
ω(u) f (u)du

∫ t

0
ω(u) f (u)du

∫ 1

0
f (u)h(u)m3(u)du

)
(1 + o(1))

= ν(s, t)(1 + o(1)),

nCov(H̄n(t), H̄n(s))

= 1

4
E[ct (X1)h(X1)ψ(X3, X1)(ε

2
3 − 1)2cs(X2)h(X2)ψ(X3, X2)]

− 1

4
E[ct (X1)h(X1)ψ(X4, X1)(ε

2
4 − 1)2cs(X2)h(X3)ψ(X4, X3)]

− 1

4
E[ct (X1)h(X3)ψ(X4, X3)(ε

2
4 − 1)2cs(X2)h(X2)ψ(X4, X2)]

+ 1

4
E[ct (X1)h(X3)ψ(X5, X3)(ε

2
5 − 1)2cs(X2)h(X4)ψ(X5, X4)]

+ O((nh)−1)
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Testing the coefficient of variation 1059

=
(

1

4

∫ s∧t

0
ω2(u) f (u)h2(u)(m4(u)− 1)du

− 1

4

∫ t

0
ω(u) f (u)du

∫ s

0
ω(u) f (u)h2(u)(m4(u)− 1)du

− 1

4

∫ s

0
ω(u) f (u)du

∫ t

0
ω(u) f (u)h2(u)(m4(u)− 1)du

+ 1

4

∫ s

0
ω(u) f (u)du

∫ t

0
ω(u) f (u)du

∫ 1

0
f (u)h2(u)(m4(u)− 1)du

)
(1+o(1))

= μ(s, t)(1+o(1)).

All other terms appearing in Cov(Cn(t),Cn(s)) vanish. Combining these results yields
for the covariance kernel of the process Cn(t) defined in (21)

Cov(Cn(t),Cn(s)) = k(t, s)(1 + o(1)),

where the kernel k is defined in (8). In order to prove weak convergence of the finite
dimensional distributions

(Cn(t1), . . . ,Cn(t j ))
T D−→ (A(t1), . . . , A(t j ))

T, (22)

we restrict ourselves to the case j = 2. For this purpose, we use Theorem 1 in de
Jong (1996), the Cramér–Wold device and introduce for a1, a2 ∈ R, t1, t2 ∈ [0, 1]
the notation

b(Xi ) = a1ct1(Xi )+ a2ct2(Xi ),

Z1,i = b(Xi )
Yi

σ(Xi )
− E

[
b(Xi )

Yi

σ(Xi )

]
,

Z2,i = b(Xi )− E[b(Xi )],
Z3,i = Yi

σ(Xi )
− E

[
Yi

σ(Xi )

]
,

Z4,i, j = 1

2
b(Xi )h(Xi )ψ(X j , Xi )− E

[
1

2
b(Xi )h(Xi )ψ(X j , Xi ) | X j , ε j

]
,

Z5,i = ε2
i − 1,

Z6,i, j = h(Xi )ψ(X j , Xi )− E
[
h(Xi )ψ(X j , Xi ) | X j , ε j

]
,
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1060 H. Dette et al.

N1, j = n − 2

n
E
[
h(Xi )ψ(X j , Xi ) | X j , ε j

]
, i �= j,

N2, j = n − 1

n
E

[
1

2
b(Xi )h(Xi )ψ(X j , Xi ) | X j , ε j

]
, i �= j.

We consider for v = (a1, a2)
T ∈ R

2 the random variable

V (n) = vT(Cn(t1),Cn(t2))
T/τt1,t2 =

∑

I⊂{1,...,n},|I |≤3

WI , (23)

where τ 2
t1,t2 = limn→∞ vTCov(Cn(t1),Cn(t2))v denotes the asymptotic variance of

the random variable a1Cn(t1) + a2Cn(t2) and the last identity follows by a straight-
forward calculation using the notation

WI =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−1
τt1,t2 n3/2

(
Z1,i − Z2,i E[h(X1)] − Z3,i E[b(X1)] − Z5,i N2,i

+ 1
2 Z5,i N1,i E[b(X1)]

)
, I = {i}

−1
τt1,t2 n3/2

(
Z2,i Z3, j + Z2, j Z3,i + n−1

n (Z4,i, j Z5, j + Z4, j,i Z5,i )

− n−2
2n E[b(X1)](Z6,i, j Z5, j +Z6, j,i Z5,i )− 1

2 (Z2,i Z5, j N1, j +Z2, j Z5,i N1,i )
)
, I = {i, j}

1
2τt1,t2 n5/2

(
Z2,i Z6, j,k Z5,k + Z2,i Z6,k, j Z5, j + Z2, j Z6,i,k Z5,k + Z2, j Z6,k,i Z5,i

+Z2,k Z6,i, j Z5, j + Z2,k Z6, j,i Z5,i

)
, I = {i, j, k}.

For a set I , let FI := σ {(Xi , εi ), i ∈ I } denote the sigma field generated by
{(Xi , εi )| i ∈ I }, then a straightforward calculation shows E[WI | FJ ] = 0 whenever
I �⊆ J . If the index set I contains only one element, say I = {i}, we have

Var(W{i})

= (n − 1)2

τ 2
t1,t2 n3

E
[

Z2
1,i + Z2

2,i E2 [h(X1)] + Z2
3,i E2[b(X1)] + Z2

5,i N 2
2,i

+ 1

4
Z2

5,i N 2
1,i E2[b(X1)] − 2Z1,i Z2,i E [h(X1)] − 2Z1,i Z3,i E[b(X1)]

− 2Z1,i Z5,i N2,i + Z1,i Z5,i N1,i E[b(X1)] + 2Z2,i Z3,i E [h(X1)] E[b(X1)]
+ 2Z2,i Z5,i N2,i E[h(X1)] − Z2,i Z5,i N1,i E[h(X1)]E[b(X1)]
+ 2Z3,i Z5,i N2,i E[b(X1)] − Z3,i Z5,i N1,i E2[b(X1)]

− Z2
5,i N2,i N1,i E[b(X1)]

]

= O(n−1).
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Testing the coefficient of variation 1061

Similarly, if I = {i, j} contains two elements it follows

Var(W{i, j})

= 2

τ 2
t1,t2 n3

E

[
Z2

2,i Z2
3, j + (n − 1)2

n2 Z2
4,i, j Z2

5, j + (n − 2)2

4n2 Z2
6, j,i Z2

5,i E2[b(X1)]

+1

4
Z2

2,i Z2
5, j N 2

1, j + 2Z2,i Z3,i Z2, j Z3, j − (n − 1)(n − 2)

n2 Z4,i, j Z6,i, j Z2
5, j E[b(X1)]

−n − 1

n
Z4,i, j Z2,i Z2

5, j N1, j + n − 2

2n
Z6,i, j Z2,i Z2

5, j N1, j E[b(X1)]

+n − 2

2n
Z6, j,i Z2, j Z2

5,i N1,i E[b(X1)] + 2
n − 1

n
Z2,i Z3, j Z4,i, j Z5, j

−n − 2

n
Z2,i Z3, j Z6,i, j Z5, j E[b(X1)] − Z2

2,i Z3, j Z5, j N1, j

]

= O(n−3),

and if I = {i, j, k} contains three elements we obtain

Var(W{i, j,k}) = 3

2τ 2
t1,t2 n5

E
[

Z2
2,i Z2

6, j,k Z2
5,k + Z2,i Z6, j,k Z2, j Z6,i,k Z2

5,k

]
= O(n−5).

This yields

max
1≤i≤n

{
∑

I

Var(WI ) | i ∈ I

}
→ 0

as n → ∞ and establishes the first condition of de Jong (1996) theorem. We will show
in Sect. 7 that the second condition of this theorem

∑

(I,J,K ,L)

|E[WI WJ WK WL ]| → 0 (24)

is also satisfied, where the summation is performed over all index sets I, J, K , L of
{1, . . . , n} which are connected. By Theorem 1 of de Jong (1996) we therefore obtain
for the statistic V (n) defined in (23) weak convergence, i.e.

V (n)
D−→ N (0, 1)

as n → ∞, and the Cramér–Wold device yields assertion (22).
The proof of Theorem 1 will be completed by showing tightness of the process

{Cn(t)}t∈[0,1]. For this property we use Theorem 13.5 in Billingsley (1999) and prove
that the condition

E[(Cn(t)− Cn(s))
2(Cn(r)− Cn(t))

2] ≤ C(r − s)2 (25)
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holds for all 0 ≤ s < t < r ≤ 1 and some positive constant C > 0. The assertion
of Theorem 1 then follows, because the processes {Cn(t)}t∈[0,1] and {√n(Hn(t) −
H(t))}t∈[0,1] have the same asymptotic distribution by (20).

For a proof of (25), we use the representation

Cn(t)− Cn(s) = n − 1

n
√

n

n∑

j=1

Zt,s, j + 1√
n

n∑

j=1

Mt,s, j

with

Zt,s, j = Lt,s(X j )− E[Lt,s(X j )]

Lt,s(X j ) = ct,s(X j )

⎛

⎝ Y j

σ(X j )
− 1

n − 1

∑

i �= j

Yi

σ(Xi )

⎞

⎠ ,

Mt,s, j = ct,s(X j )

⎛

⎝ 1

2n2

∑

i �= j

∑

k �=i, j

h(Xi )ψ(Xk, Xi )(ε
2
k − 1)

−n − 1

2n2

∑

k �= j

h(X j )ψ(Xk, X j )(ε
2
k − 1)

⎞

⎠ ,

ct,s(X j ) = ω(X j )I {s < X j ≤ t} 0 ≤ s, t ≤ 1.

Note that E[Zt,s, j ] = E[Mt,s, j ] = 0 and that the random variables Zt,s, j and Mt,s, j

( j = 1, . . . , n) are not independent. For 0 ≤ s < t < r ≤ 1, we have

E
[
(Cn(t)− Cn(s))

2(Cn(r)− Cn(t))
2
]

= 1

n2

n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

E
[
Zt,s,i Zt,s, j Zr,t,k Zr,t,l + 2Zt,s,i Zt,s, j Zr,t,k Mr,t,l

+ Zt,s,i Zt,s, j Mr,t,k Mr,t,l

+ 2Zt,s,i Mt,s, j Zr,t,k Zr,t,l + 4Zt,s,i Mt,s, j Zr,t,k Mr,t,l + 2Zt,s,i Mt,s, j Mr,t,k Mr,t,l

+ Mt,s,i Mt,s, j Zr,t,k Zr,t,l +2Mt,s,i Mt,s, j Zr,t,k Mr,t,l +Mt,s,i Mt,s, j Mr,t,k Mr,t,l
]
.

(26)

A straightforward but tedious calculation shows that the expression above is a sum
over O(n2) nonzero summands. The non-zero summands are products of expectations
of the form

E
[
ci

t,s(X1)c
k
r,t (X1)(h(X1))

j (ψ(X1, X2))
lε

q
2

]
(i, k = 0, 1, j, l = 0, 1, 2, 3, 4, q = 2, . . . , 8)
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with bounded coefficients. Moreover, both terms ct,s(X1) and cr,t (X1) appear in each
product but not in the same expectation because these products are zero. Typical prod-
ucts are of the form

E
[
ct,s(X1)h(X1)

]
E
[
cr,t (X1)ψ(X1, X2)

]
.

By the continuity of f (·), K (·),m(·) and σ(·) all expectations of the form

E
[
(h(X1))

k(ψ(X1, X2))
l
]

yield a rate O(g−l+1) if l = 2, 3, 4 or O(1) if l = 0, 1. In the cases where l = 2, 3, 4
we obtain by the equality of indices an additional factor 1/nl−1. An easy calculation
yields

∣∣∣E
[
ct,s(X1)(h(X1))

j (ψ(X1, X2))
l
]∣∣∣ ≤ C(t − s) ≤ C(r − s)

for some positive constant C( j, l = 0, . . . , 4). Because in each of these products there
exists a second factor this yields the estimate C(r − s)2 and every summand in (26)
can be bounded by C(r − s)2, which proves tightness of the process {Cn(t)}t∈[0,1] and
completes the proof of Theorem 1. 	


6 Appendix: proof of Theorem 2

Note that similar arguments as given in the proof of Theorem 1 yield a stochastic
expansion

√
n(Hn(t)− H(t)) = Aε(t)+ √

nH̄n(t)+ op(1)

= √
n

⎛

⎝n − 1

n2

n∑

j=1

ct (x j,n)

⎛

⎝ε j,n − 1

n − 1

∑

i �= j

εi,n

⎞

⎠

⎞

⎠

+√
n

⎛

⎝ 1

n

n∑

j=1

ct (x j,n)

⎛

⎝ 1

2n2

n∑

i �= j

n∑

k �=i, j

h(xi,n)ψ(xk,n, xi,n)(ε
2
k,n − 1)

−n − 1

2n2

n∑

k �= j

h(x j,n)ψ(xk,n, x j,n)(ε
2
k,n − 1)

⎞

⎠

⎞

⎠+ op(1),

uniformly with respect to t ∈ [0, 1]. Therefore, it follows for the covariance of Cn(s)
and Cn(t)

Cov(Cn(s),Cn(t)) = Cov(Aε(s), Aε(t))+ Cov(Aε(s),
√

nH̄n(t))

+ Cov(
√

nH̄n(s), Aε(t))+ nCov(H̄n(s), H̄n(t)),

and similar calculations as given for the proof ofTheorem 1 yield
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Cov(Aε(s), Aε(t))

= 1

n

n∑

j=1

cs(x j,n)ct (x j,n)− 1

n2

n∑

j=1

n∑

k �= j

cs(x j,n)ct (xk,n)+ o(1)

=
∫ s∧t

0
f (u)ω2(u)du −

∫ s

0
f (u)ω(u)du

∫ t

0
f (u)ω(u)du + o(1),

Cov(
√

nH̄n(s), Aε(t))

= −1

2n2

n∑

j=1

n∑

i �= j

ct (x j,n)cs(xi,n)h(xi,n)ψ(x j,n, xi,n)E[ε3
j,n]

+ 1

2n3

n∑

j=1

n∑

k �= j

n∑

i �= j

ct (x j,n)cs(xk,n)h(xi,n)ψ(x j,n, xi,n)E[ε3
j,n]

+ 1

2n3

n∑

j=1

n∑

i=1

n∑

k �=i

ct (x j,n)cs(xk,n)h(xk,n)ψ(xi,n, xk,n)E[ε3
i,n]

− 1

2n4

n∑

j=1

n∑

i=1

n∑

k �=i

n∑

l �=i

ct (x j,n)cs(xk,n)h(xl,n)ψ(xi,n, xl,n)E[ε3
i,n]

= ν(t, s)+ o(1),

nCov(H̄n(s), H̄n(t)) = 1

4n3

n∑

j=1

n∑

k �= j

n∑

i �=k

ct (x j,n)cs(xi,n)h(x j,n)h(xi,n)

×ψ(xk,n, x j,n)ψ(xk,n, xi,n)(E[ε4
k,n] − 1)

− 1

4n4

n∑

j=1

n∑

k �= j

n∑

l,i �=k

ct (x j,n)cs(xl,n)h(x j,n)h(xi,n)ψ(xk,n, x j,n)

×ψ(xk,n, xi,n)(E[ε4
k,n] − 1)

− 1

4n4

n∑

j=1

n∑

k �= j

n∑

l,i �=k

ct (xl,n)cs(x j,n)h(x j,n)h(xi,n)ψ(xk,n, x j,n)

×ψ(xk,n, xi,n)(E[ε4
k,n] − 1)

+ 1

4n5

n∑

j,i=1

n∑

k �=i, j

n∑

l,q �=k

ct (x j,n)cs(xl,n)h(xi,n)h(xq,n)ψ(xk,n, xi,n)

×ψ(xk,n, xq,n)(E[ε4
k,n] − 1)

= μ(t, s)+ o(1),

where we have used (16) in the last steps, and ν and μ are defined in (10) and (11),
respectively. The proof now follows by similar arguments as given in Sect. 5, which
are omitted for the sake of brevity. 	
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7 Appendix: auxiliary results

7.1 Proof of the stochastic expansion (20)

Recall the definition h(x) = m(x)/σ (x). A Taylor expansion of the function

1/
√
σ̂ 2(X j ) yields

Hn(t) =
12∑
=1

Hn,(t),

where the quantities Hn,(t) are defined by

Hn,1(t) = n − 1

n2

n∑

j=1

ct (X j )h(X j ), Hn,2(t) = −1

n

n∑

j=1

ct (X j )
1

n

n∑

i �= j

h(Xi )

Hn,3(t) = n − 1

n2

n∑

j=1

ct (X j )ε j , Hn,4(t) = −1

n

n∑

j=1

ct (X j )
1

n

n∑

i �= j

εi

Hn,5(t) = −n − 1

2n2

n∑

j=1

ct (X j )
m(X j )

σ 3(X j )
(σ̂ 2(X j )− σ 2(X j ))

Hn,6(t) = 1

2n2

n∑

j=1

ct (X j )

n∑

i �= j

m(Xi )

σ 3(Xi )
(σ̂ 2(Xi )− σ 2(Xi ))

Hn,7(t) = −n − 1

2n2

n∑

j=1

ct (X j )
ε j

σ 2(X j )
(σ̂ 2(X j )− σ 2(X j ))

Hn,8(t) = 1

2n2

n∑

j=1

ct (X j )

n∑

i �= j

εi

σ 2(Xi )
(σ̂ 2(Xi )− σ 2(Xi ))

Hn,9(t) = 3(n − 1)

8n2

n∑

j=1

ct (X j )
m(X j )

ξ
5/2
j

(σ̂ 2(X j )− σ 2(X j ))
2

Hn,10(t) = − 3

8n2

n∑

j=1

ct (X j )

n∑

i �= j

m(Xi )

ξ
5/2
i

(σ̂ 2(Xi )− σ 2(Xi ))
2

Hn,11(t) = 3(n − 1)

8n2

n∑

j=1

ct (X j )
σ (X j )ε j

ξ
5/2
j

(σ̂ 2(X j )− σ 2(X j ))
2

Hn,12(t) = − 3

8n2

n∑

j=1

ct (X j )

n∑

i �= j

σ(Xi )εi

ξ
5/2
i

(σ̂ 2(Xi )− σ 2(Xi ))
2,

and the random variables ξi satisfy | ξi − σ 2(Xi ) |≤| σ̂ 2(Xi ) − σ 2(Xi ) | (i =
1, . . . , n). In the following we show that all terms Hn,i , i = 7, . . . , 12, in this stochas-
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tic expansion are of order op(n−1/2), where we restrict ourselves exemplarily to the
random variable Hn,7(t). The other terms Hn,8, . . . , Hn,12 can be treated by similar
(but sometimes tedious) arguments.

Observing the definition of the local linear estimate of the variance function in (4)
we have

Hn,7(t) = −n − 1

2n3

n∑

j=1

ct (X j )
ε j

σ 2(X j )

n∑

k=1

Wk(X j )(m(Xk)− m̂(Xk))
2

−n − 1

n3

n∑

j=1

ct (X j )
ε j

σ 2(X j )

n∑

k=1

Wk(X j )σ (Xk)εk(m(Xk)− m̂(Xk))

−n − 1

2n2

n∑

j=1

ct (X j )
ε j

σ 2(X j )

(
1

n

n∑

k=1

Wk(X j )σ
2(Xk)ε

2
k − σ 2(X j )

)

= Hn,71(t)+ Hn,72(t)+ Hn,73(t), (27)

where the last identity defines the terms Hn,7i (x) in an obvious manner (i = 1, 2, 3).
From the estimate maxi=1,...,n | m̂(Xi )− m(Xi ) |= Op((nh)−1/2 + h2) [see Yao and
Tong (2000)] we get

| Hn,71(t) | ≤ max
i=1,...,n

(
m̂(Xi )− m(Xi )

)2 1

n2

n∑

j=1

n∑

k=1

∣∣∣∣ct (X j )
ε j

σ 2(X j )
Wk(X j )

∣∣∣∣

= Op

(
(nh)−1 + h2

√
nh

+ h4
)

= op

(
n−1/2

)

uniformly with respect to t ∈ [0, 1]. Similarly, using the definition of the local linear
estimate for the regression function it follows

Hn,72(t) = −n − 1

n3

n∑

j=1

ct (X j )
ε j

σ 2(X j )

n∑

k=1

Wk(X j )σ (Xk)εk

(
m(Xk)− 1

n
×

n∑

l=1

Wl(Xk)m(Xl)

)

+n − 1

n4

n∑

j=1

ct (X j )
ε j

σ 2(X j )

n∑

k=1

Wk(X j )σ (Xk)εk

n∑

l=1

Wl(Xk)σ (Xl)εl

= Hn,721(t)+ Hn,722(t)
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with an obvious definition of Hn,72 ( = 1, 2). For the second moments of these
random variables, we have

E[H2
n,721(t)] = (n − 1)2

n6

n∑

i=1

n∑

j=1

E

⎡

⎣ct (Xi )ct (X j )
εi ε j

σ 2(Xi )σ
2(X j )

×
n∑

k=1

n∑

q=1

Wk(Xi )Wq (X j )σ (Xk)εkσ(Xq )εq

×
⎛

⎝m(Xk)− 1

n

n∑

l=1

Wl (Xk)m(Xl )

⎞

⎠

⎛

⎝m(Xq )− 1

n

n∑

l=1

Wl (Xq )m(Xl )

⎞

⎠

⎤

⎦

= O(n−2h2) = o(n−1),

E[H2
n,722(t)] = (n − 1)2

n8

n∑

i=1

n∑

j=1

E

⎡

⎣ct (Xi )ct (X j )
εi ε j

σ 2(Xi )σ
2(X j )

×
n∑

k=1

n∑

q=1

Wk(Xi )Wq (X j )σ (Xk)σ (Xq )εkεq

×
n∑

l=1

n∑

p=1

Wl (Xk)Wp(Xq )σ (Xl )σ (X p)εlεp

⎤

⎦

= O(n−3h−2) = o(n−1),

uniformly with respect to t ∈ [0, 1], where we used the facts

∣∣∣∣∣m(Xk)− 1

n

n∑

l=1

Wl(Xk)m(Xl)

∣∣∣∣∣ = O(h2),

|Wk(Xk)| = O(h−1) (almost surely) and nh2 → ∞, as n → ∞. This yields
Hn,72(t) = op(n−1/2) uniformly with respect to t ∈ [0, 1]. Finally, we provide a
corresponding estimate for the remaining term Hn,73 in the decomposition (27). For
this purpose, we consider its second moment

E[H2
n,73(t)]

= (n − 1)2

4n3 E

⎡

⎣ct (X1)
ε2

1

σ 4(X1)

(
1

n

n∑

k=2

Wk(X1)σ
2(Xk)ε

2
k − σ 2(X1)

)2
⎤

⎦

+ (n − 1)2

2n4 E

[
ct (X1)

ε4
1

σ 2(X1)
W1(X1)

(
1

n

n∑

k=2

Wk(X1)σ
2(Xk)ε

2
k − σ 2(X1)

)]

+ (n − 1)2

4n5
E
[
ct (X1)ε

6
1 W 2

1 (X1)
]
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+ (n − 1)3

4n5
E
[
ct (X1)ct (X2)ε

3
1ε

3
2 W1(X1)W2(X2)

]

= O(n−1h2 + (nh)−2) = o(n−1),

using the fact

∣∣∣∣∣σ
2(Xk)− 1

n

n∑

l=1

Wl(Xk)σ
2(Xl)ε

2
l

∣∣∣∣∣ = O(h2)

(almost surely). This gives Hn,73(t) = op(n−1/2) uniformly with respect to t ∈ [0, 1],
and shows that the random variable Hn,7(t) is of order op(n−1/2). For the terms Hn,5(t)
and Hn,6(t), we use the decomposition

σ̂ 2(X j )− σ 2(X j )

= 1

n f (X j )

n∑

i=1

Kh(Xi − X j ){σ 2(Xi )(ε
2
i − 1)− 2σ(Xi )εi (m̂(Xi )− m(Xi ))

+ (m̂(Xi )− m(Xi ))
2} + h2k2

2
(σ 2)′′(X j )+ R(X j )

where R(X j ) = O(hn−1/2) (almost surely) and k2 = ∫ u2 K (u)du [see Fan and Yao
(1998)]. This yields by similar arguments as used for the term Hn,7(t)

Hn,5(t) = −n − 1

2n3

n∑

j=1

n∑

k �= j

ct (X j )
m(X j )σ

2(Xk)

σ 3(X j )

Kh(Xk − X j )

f (X j )
(ε2

k − 1)+op(n
−1/2)

and

Hn,6(t)= 1

2n3

n∑

j=1

n∑

i �= j

n∑

k �=i, j

ct (X j )
m(Xi )σ

2(Xk)

σ 3(Xi )

Kh(Xk −Xi )

f (Xi )
(ε2

k − 1)+op(n
−1/2),

which completes the proof of the stochastic expansion (20). 	


7.2 Proof of (24)

For a proof, we essentially have to distinguish 15 different cases of connected subsets
of {1, . . . , n}, where there are no elements contained in only one set among I, J, K , L
(otherwise the independence would yield E[WI WJ WK WL ] = 0). We begin with the
case where all sets I, J, K , L are singletons, which implies I = J = K = L = {i}
for some i ∈ {1, . . . , n}. This yields
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E
[
W 4{i}

]
= (n − 1)4

τ 4
t1,t2 n6

E
[(

Z1,i − Z2,i E
[
h(X1)

]
− Z3,i E

[
b(X1)

]
− Z5,i N2,i

+1

2
Z5,i N1,i E

[
b(X1)

])4] = O(n−2).

If there is exactly one set, say L , with two elements, the sets are connected if and
only if I, J, K ⊂ L . In this case, there exist two cases of the type L = {i, j} and
I = J = K = {i} or L = {i, j}, I = J = {i} and K = { j}. We only consider the
last named case (the other one yields E[WI WJ WK WL ] = 0, as the index j is only
contained in one of the sets), which gives

E
[
W 2{i}W{ j}W{i, j}

]

= −(n − 1)3

τ 4
t1,t2 n6

E
[(

Z1,i −Z2,i E[h(X1)]−Z3,i E[b(X1)] − Z5,i N2,i + 1

2
Z5,i N1,i E[b(X1)]

)2

×
(

Z1, j − Z2, j E[h(X1)] − Z3, j E[b(X1)] − Z5, j N2, j + 1

2
Z5, j N1, j E[b(X1)]

)

×
(

Z2,i Z3, j + Z2, j Z3,i + n − 1

n
(Z4,i, j Z5, j + Z4, j,i Z5,i )

−n − 2

2n
E[b(X1)](Z6,i, j Z5, j + Z6, j,i Z5,i )

−1

2
(Z2,i Z5, j N1, j + Z2, j Z5,i N1,i )

)]

= O(n−3).

In the case of exactly one set with three elements and all other sets containing only
one element, we just have to consider the case L = {i, j, k}, I = {i}, J = { j} and
K = {k}, which yields E[W{i}W{ j}W{k}W{i, j,k}] = O(n−4). The case of exactly two
sets with two elements and two sets with one element also gives the rate O(n−4).
If two sets are singletons, one set contains two and one set three elements, we con-
sider exemplarily the case L = {i, j, k}, K = {i, j}, I = J = {k}, which gives
E[W{i, j,k}W{i, j}W 2{k}] = O(n−5). All other scenarios of this case yield the same rate.
The case where two sets are singletons and two sets contain three elements and the
case where one set is a singleton, two sets contain two elements and one set contains
three elements both give a rate O(n−6). If one set is a singleton, one set contains two
and two sets contain three elements, the rate is O(n−7), and if two sets contain two
elements and two sets contain three elements we get the rate O(n−8). In the case where
there exist precisely three or four sets with two elements and the remaining set is a
singleton we obtain by similar arguments the rates O(n−5) and O(n−6), respectively.
When three sets contain two elements and one set contains three elements the rate is
O(n−7). Finally, when there exist exactly three or four sets with three elements, we
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1070 H. Dette et al.

get a rate O(n−8) if the remaining set is a singleton, or O(n−9) if the remaining set
contains two elements, and O(n−10), respectively. Counting the number of nonzero
summands in each case completes the proof of the assertion (24). 	
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