
Ann Inst Stat Math (2012) 64:911–918
DOI 10.1007/s10463-011-0345-6

Asymptotically distribution free test for parameter
change in a diffusion process model

Ilia Negri · Yoichi Nishiyama

Received: 7 January 2011 / Revised: 16 May 2011 / Published online: 13 November 2011
© The Institute of Statistical Mathematics, Tokyo 2011

Abstract A test procedure to detect a change in the value of the parameter in the
drift of a diffusion process is proposed. The test statistic is asymptotically distribution
free under the null hypothesis that the true parameter does not change. Also, the test
is shown to be consistent under the alternative that there exists a change point.

Keywords Asymptotically distribution free test · Consistent test · Change point
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1 Introduction

Testing on structural change problems has been an important issue in statistics. It
originally starts in quality control context, where one is concerned about the output
of a production line and wants to find any departure from an acceptable standard of
the products. Rapidly the problem of abrupt changes moved to various fields such as
economics, finance, biology and environmental sciences. From the statistical point of
view, the problem consists in testing whether there is a statistically significant change
point in a sequence of chronologically ordered data. The problem for an i.i.d. sample
was first considered in the paper of Page (1955); see also Hinkley (1970), and for
a general survey of the change point detection and estimation, see Chen and Gupta
(2001). The parameter change point problem became very popular in regression and
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time series models. This is because these models can be used to describe structural
changes that often occur in financial and economic phenomena (due, for example,
to a change of political situation or to a change of economic policy) or in environ-
mental phenomena (due to sudden changes in weather situation or the occurrence of
catastrophic natural events). In such kind of phenomena the first problem one has
to deal with is to test if a change of parameter has occurred in the factor of inter-
est. For regression models see for example, Hinkley (1969); Quandt (1960); Brown
et al. (1975) and Chen (1998). Refer to Brodsky and Darkhovsky (2000) for a com-
plete review on methods to identify change points for sequential random sequence.
For time series models, Picard (1985) considers the problem of detecting a change-
point occurring in the mean or in the covariance of an autoregressive process. Ling
(2007) deals with detecting structural changes in a general time series framework that
includes ARMA and GARCH models among others. For a general review we refer also
to Csörgő and Horváth (1997) and to Chen and Gupta (2000) for parametric methods
and analysis.

Diffusion process can be considered as the most popular continuous time stochastic
process and it has been playing a central role in modeling phenomena in many fields,
not only in finance and more generally in economics science, but also in other fields
such as biology, medicine, physics and engineering. Despite the fact of their impor-
tance in applications, few works are devoted to testing change point in parameter for
diffusions. For a complete reference on statistical problems for ergodic diffusions
based on continuous time observations see Kutoyants (2004). In Lee et al. (2006), the
cusum test based on one-step estimator is considered and up to our knowledge there
are no existing literature on this subject and on this framework.

In this work a test for detecting if a change of the parameter in the drift of a diffusion
process takes place is proposed. The test is based on the continuous observation of
the process up to time T . Our idea to construct the test is based on the Fisher-score
process introduced in the independent data case by Horváth and Parzen (1994). The
interest for this test is that it may be used for the most common family of diffusion
process because the conditions on the coefficients of the diffusion process are very
general. Moreover the asymptotic distribution of the test statistics does not depend on
the unknown parameter, so the test is asymptotically distribution free. It is also proved
that the test is consistent against any alternative where the alternative means that at a
certain instant the parameter specifying the drift coefficient changes.

The rest of the paper is organized as follows. In Sect. 2 the model, the conditions
and some preliminary results needed later are presented. The main result, consisting
of the asymptotic distribution of the test statistic and the construction of an asymptot-
ically distribution free and consistent test, are given in Sect. 3. The proofs are given
in Sect. 4. Finally, a necessary lemma needed to prove one of our lemmas in the main
text is stated in the Appendix.

To close this section, we make some conventions. We denote by A� the trans-
pose of the vector or matrix A. The finite-dimensional Euclidean norm is denoted
by || · ||. The notations →p and →d mean the convergence in probability and the
convergence in distribution (i.e., the weak convergence), respectively, as T → ∞.
We refer to van der Vaart and Wellner (1996) for the weak convergence theory in the
space �∞(T ), the space of bounded functions on T with the uniform metric.
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2 Preliminaries

Consider the stochastic differential equation (SDE) with the state space I = (l, r),
where −∞ ≤ l < r ≤ ∞, given by:

Xt = X0 +
∫ t

0
S(Xs, θ)ds +

∫ t

0
σ(Xs)dWs, (1)

where s � Ws is a standard Wiener process and X0 is an I -valued random variable
which is independent of s � Ws . We suppose that the functions S(·, θ) : I → R and
σ(·) : I → (0,∞) are such that a solution X θ to this SDE exists. We also suppose
that, for every fixed θ , the solution X θ is ergodic with the invariant measure μθ , that
is, it holds for every μθ -integrable function f that

1

T

∫ T

0
f (X θ

s )ds →p
∫

I
f (x)μθ (dx), as T → ∞.

We suppose that the parameter space � to which θ is belonging is a bounded
open subset of R

d . We consider the SDE (1) where θ may change at a certain point
s ∈ [0, T ]. We wish to test:

H0: there exists a certain θ0 ∈ � such that θ = θ0 for all s ∈ [0, T ];
H1: there exist two different values θ0 �= θ1 both belonging to �, and a certain

u∗ ∈ (0, 1), such that θ = θ0 for s ∈ [0, T u∗] and θ = θ1 for s ∈ (T u∗, T ].
We introduce the following regularity conditions on the functions S and σ . We

suppose that θ 	→ S(x, θ) is two times continuously differentiable, and denote by Ṡ
and S̈ the first and the second derivatives. We suppose the following:

∫
I

S(x, θ)2

σ(x)2 μθ0(dx) < ∞, ∀θ, θ0 ∈ �;
∫

I

||Ṡ(x, θ)||2
σ(x)2 μθ0(dx) < ∞, ∀θ, θ0 ∈ �; (2)

∫
I

supθ∈� ||S̈(x, θ)||2
σ(x)2 μθ0(dx) < ∞, ∀θ0 ∈ �;

The matrix

Iθ0(θ) =
∫

I

Ṡ(x, θ)Ṡ(x, θ)�

σ(x)2 μθ0(dx)

is positive definite for every θ, θ0 ∈ �; For every θ0 ∈ �, the function

θ 	→ g(θ, θ0) = 1

2

∫
I

|S(x, θ) − S(x, θ0)|2
σ(x)2 μθ0(dx)
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attains the local and global minimum at θ0 (actually, we suppose that the function

θ 	→ ġ(θ, θ0) =
∫

I

(S(x, θ) − S(x, θ0))Ṡ(x, θ)

σ (x)2 μθ0(dx)

is zero if and only if θ = θ0, assuming hereafter that the order of integration and
differentiation is exchangeable). The function

θ 	→ u∗g(θ, θ0) + (1 − u∗)g(θ, θ1)

attains the local and global minimum at θ∗, where θ0, θ1 and u∗ are the ones given in
H1.

Let θ̂T be the solution to the equation

1

T

∫ T

0

Ṡ(Xs, θ)

σ (Xs)2 (d Xs − S(Xs, θ)ds) = 0.

The following lemma is easy to show, so the proof is omitted.

Lemma 1 (i) Under H0, it holds that
√

T (θ̂T − θ0) →d N (0, Iθ0(θ0)
−1).

(ii) Under H1, it holds that θ̂T →p θ∗.

3 Main result

In this section, we construct a test statistic which is asymptotically distribution free
under H0, and consistent under H1. Hereafter, we suppose that all the conditions stated
in Sect. 2 hold. In order to construct a test statistic for the testing problem, we introduce
the stochastic process t � UT,t given by:

UT,t = 1√
T

∫ t

0

Ṡ(Xs, θ)

σ (Xs)2 (d Xs − S(Xs, θ)ds)

∣∣∣∣
θ=θ̂T

.

We also introduce the random field {VT (u, θ) : (u, θ) ∈ [0, 1] × �} given by

VT (u, θ) = 1√
T

∫ T

0
(1{s ≤ T u} − u)

Ṡ(Xs, θ)

σ (Xs)2 (d Xs − S(Xs, θ)ds).

Then, it holds that UT,T u = VT (u, θ̂T ).
The following lemma plays a key role in our context.

Lemma 2 Under H1 without the assumption θ0 �= θ1, the random field
(u, θ) � MT (u, θ) given by

MT (u, θ) = 1√
T

∫ T

0
(1{s ≤ T u} − u)

Ṡ(Xs, θ)

σ (Xs)
dWs
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converges weakly to a centered Gaussian random field (u, θ) � G(u, θ) in
�∞([0, 1] × �). Moreover, almost all paths of the limit are continuous with respect to
the Euclidean metric on [0, 1] × �. In particular, under H0, the limit can be written
as G(u, θ) = Iθ0(θ)1/2 B◦(u) where B◦(u) = (B◦,1(u), ..., B◦,d(u))� are d-vector
of independent standard Brownian bridges.

There are a few ways to prove this claim, in particular to check the asymptotic tight-
ness. One possible way is to check the Kolmogorov–Chentsov type criterion [see, e.g.,
Corollary 16.9 of Kallenberg (2002)], however, for this purpose we need to strengthen
the condition (2) to

∫
I

||Ṡ(x, θ)||p

σ(x)2 μθ0(dx) < ∞,

for p > d + γ with some γ > 0. Another way is to check the tightness criterion for
�∞-valued continuous martingales developed by Nishiyama (1999), where the con-
dition for p = 2 is sufficient. See also Nishiyama (2000) and van der Vaart and van
Zanten (2005). Since it is easy to check those conditions, we omit the proof. See for
example Negri and Nishiyama (2009).

By combining the above lemma and Lemma 5 in the Appendix, we obtain the
following lemma.

Lemma 3 Under H0, it holds that the random field u � MT (u, θ̂T ) converges weakly
to u � Iθ0(θ0)

1/2 B◦(u) in �∞([0, 1]).
The following lemma is a crucial point in our paper.

Lemma 4 Under H0, it holds that

sup
u∈[0,1]

|VT (u, θ̂T ) − MT (u, θ̂T )| →p 0.

By combining Lemmas 3 and 4, we have that, under H0, u � VT (u, θ̂T ) converges
weakly to u � Iθ0(θ0)

1/2 B◦(u) in �∞([0, 1]). This leads to our idea to propose the
test statistic

ST = sup
t∈[0,T ]

|U�
T,t Î −1

T UT,t |

= sup
u∈[0,1]

|VT (u, θ̂T )� Î −1
T VT (u, θ̂T )|,

where

ÎT = 1

T

∫ T

0

Ṡ(Xs, θ̂T )Ṡ(Xs, θ̂T )�

σ(Xs)2 ds

which is a consistent estimator for Iθ0(θ0) under H0, and for I∗ := u∗ Iθ0(θ∗) +
(1 − u∗)Iθ1(θ∗) under H1. It is clear that ÎT is symmetric and positive definite with
probability tending to 1, under both H0 and H1.
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Theorem 1 (i) Under H0, it holds that

ST →d sup
u∈[0,1]

d∑
i=1

|B◦,i (u)|2,

where B◦,i (u)’s are independent standard Brownian bridges. Hence the test is
asymptotically distribution free.

(ii) Under H1, it holds that

2ST ≥ T (v�∗ I −1∗ v∗ − oP (1)) − OP (1),

where v∗ = −u∗(1 − u∗)(ġ(θ∗, θ0) − ġ(θ∗, θ1)). Moreover, v∗ is not zero.
Hence the test is consistent.

4 Proofs

Proof of Lemma 4. Notice that

VT (u, θ̂T ) − MT (u, θ̂T )

= 1√
T

∫ T

0
(1{s ≤ T u} − u)

Ṡ(Xs, θ̂T )

σ (Xs)2 (S(Xs, θ0) − S(Xs, θ̂T ))ds

= 1

T

∫ T

0
(1{s ≤ T u} − u)

Ṡ(Xs, θ̂T )Ṡ(Xs, θ̃T )�

σ(Xs)2 ds
√

T (θ0 − θ̂T ),

where θ̃T is a point between θ̂T and θ0. Since
√

T (θ̂T − θ0) = OP (1), we deal with

1

T

∫ T

0
(1{s ≤ T u} − u)

Ṡ(Xs, θ̂T )Ṡ(Xs, θ̃T )�

σ(Xs)2 ds

= 1

T

∫ T

0
(1{s ≤ T u} − u)

Ṡ(Xs, θ0)Ṡ(Xs, θ0))
�

σ(Xs)2 ds + OP (||θ̂T − θ0||),

uniformly in u. Showing that the first term on the right hand side converges in proba-
bility to zero uniformly in u is easy (consider the positive and negative parts of each
component of Ṡ(·, θ0)Ṡ(·, θ0)

� separately). The proof is finished. ��
Proof of Theorem 1. The part (i) has already been proved (use the continuous map-
ping theorem). Let us prove the part (ii). In general, for any non-negative definite
matrix � and vectors v,w it holds that 2v��v + 2w��w = (v + w)��(v + w) +
(v − w)��(v − w) ≥ (v − w)��(v − w). Thus we have

2ST ≥ T A�
T Î −1

T AT − 2MT (u∗, θ̂T )� Î −1
T MT (u∗, θ̂T ),
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where

AT = 1√
T

(VT (u∗, θ̂T ) − MT (u∗, θ̂T ))

= 1

T

∫ T

0
(1{s ≤ T u∗} − u∗)

Ṡ(Xs, θ̂T )

σ (Xs)2 (S(Xs, θtrue) − S(Xs, θ̂T ))ds

with the convention that θtrue should be read as θ0 for s ∈ [0, T u∗] and as θ1 for
s ∈ (T u∗, T ]. It is easy to see that

AT = 1

T

∫ T

0
(1{s ≤ T u∗} − u∗)

Ṡ(Xs, θ∗)
σ (Xs)2 (S(Xs, θtrue)

−S(Xs, θ∗))ds + oP (1) →p v∗.

Since ÎT →p I∗ and MT (u∗, θ̂T ) is asymptotically tight, we obtain the first claim of
(ii).

To show the last claim, notice that it follows from our assumption that u∗ġ(θ∗, θ0)+
(1 − u∗)ġ(θ∗, θ1) = 0. If v∗ were zero, it should hold that ġ(θ∗, θ0) = ġ(θ∗, θ1) =
0, but this contradicts the assumption that θi is the unique solution of the equation
ġ(θ, θi ) = 0 for i = 0, 1 and the assumption that θ0 �= θ1. Hence we have proved all
the assertions. ��

Appendix

The following lemma, which was used in the main text, can be proved in the same
way as Lemma 2.2 of Nishiyama (2009).

Lemma 5 Let (S, ρS) and (T, ρT ) be semimetric spaces. Suppose that Zn →d Z in
�∞(S×T ) and that almost all paths of Z are continuous with respect to ρ = ρS ∨ρT . If
T -valued random sequence t̂n satisfies ρT (̂tn, t0) →p 0 for some nonrandom t0 ∈ T ,
then it holds that Zn(·, t̂n) − Zn(·, t0) converges in probability to zero in �∞(S).
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