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Abstract This paper is concerned with nonparametric statistics for the stress release
process. We propose the local time estimator (LTE) for the stationary density and show
that it is unbiased and uniformly consistent. The LTE is used in constructing an esti-
mator for the intensity function. A goodness of fit test for the intensity function is
also presented. In these studies, the local time of the stress release process plays an
important role.

Keywords Stress release process · Local time · Stationary density ·
Uniform consistency · Goodness of fit test

1 Introduction

Consider the stationary ergodic stress release process

Xt = X0 + t − Nt . (1)

Here X0 is an initial random variable distributed according to the stationary probability
density f and Nt is a point process with the conditional intensity defined by:
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992 T. Fujii, Y. Nishiyama

λt = lim
�↓0

P(Nt+� − Nt = 1 | Ft−)
�

= φ(Xt−),

where Ft is the σ -field generated by {Xs; 0 ≤ s ≤ t}. For the intensity function φ, we
suppose that

(i) 0 ≤ φ(x) < ∞ for any x ∈ R,
(ii) there exists a constant c0 > 0 such that φ(x) ≥ c0 for all x > 0,

(iii) lim infx→∞ φ(x) > 1 and lim supx→−∞ φ(x) < 1,
(iv) for any K > 0, there is a positive constant M such that φ(x) ≤ M , for every

x ≤ K .

Then the stress release process (1) is ergodic, so it holds that

1

T

∫ T

0
g(Xt ) dt

p−→
∫

g dμ for every g ∈ L1(μ),

where μ is the probability measure on R given by μ(dx) = f (x) dx (see Hayashi
1986; Vere-Jones 1988). Fujii (2010) showed that the density function f satisfies

f (x) =
∫ x+1

x
φ(y) f (y) dy (2)

with

∫ ∞

−∞
φ(y) f (y) dy = 1. (3)

In this paper, we first consider the nonparametric estimation problem for the stationary
(invariant) density function f of the stress release process (1) in the situation where the
intensity function φ is unknown. We give a formula for the local time estimator (LTE)
which is first introduced in Kutoyants (1996) for the study of the invariant density
estimation of ergodic diffusion processes, see details in Kutoyants (1998, 2004). For
more general stationary processes, Bosq (1998) and Bosq and Davydov (1999) also
provide some important properties of the LTE. In the case of the stress release process
(1), we show that the LTE is unbiased and uniformly consistent. Based on this result,
we propose a uniformly consistent estimator for the unknown intensity function in
terms of the kernel methods and the LTE. The uniform convergence result of the LTE
for the diffusion can be seen in van Zanten (2000).

As another nonparametric statistical problem, we consider a goodness of fit test for
the intensity function φ of the stress release process (1). We propose a test statistic
in terms of the score marked empirical process (see Koul and Stute 1999). Negri and
Nishiyama (2009) also used this statistic in the similar problem for a diffusion pro-
cess. As a related work, Dachian and Kutoyants (2009) studied the problem of testing
Poisson versus stress release.

To close this section, we recall the definition of the bracketing number (see e.g.,
van der Vaart and Wellner 1996). Let� be a class of real functions defined on a space
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Nonparametric inference for the stress release process 993

I on which a seminorm || · || is defined. For every ε > 0, the bracketing number
N[ ](ε,�, || · ||) is the smallest integer N such that there exist N pairs [lk, uk], k =
1, . . . , N , of functions on I , where each lk and uk may not belong to �, such that for
everyψ ∈ � the inequality lk ≤ ψ ≤ uk holds for some k and that ||uk − lk || < ε. We
refer to van der Vaart and Wellner (1996) for the weak convergence theory in 	∞(�)
space, the space of bounded functions on�. We denote by

p→ and
d→ the convergence

in probability and the convergence in distribution, respectively. The limit notations
always mean to take a limit as T → ∞. In Appendix, we prepare some limit theorems
for more general point processes via the bracketing method.

2 Local time

We define the local time 
T (x) of the stress release process (1) in a similar manner
of Shorack and Wellner (1986, Section 9.8), who studied the empirical process.

Definition 1 The local time 
T (x) of the stress release process (1) is defined by


T (x) = #{t : Xt = x, 0 ≤ t ≤ T }, (4)

where # A denotes the number of elements in the set A.

Let τn, n ≥ 1 be the time of the nth jump of the stress release process (1) and
τ0 = 0. Then for any bounded measurable function g(x),

∫ T

0
g(Xt ) dt =

∞∑
n=1

∫
[τn−1∧T,τn∧T )

g(Xt ) dt

=
∞∑

n=1

∫
[τn−1∧T,τn∧T )

g(Xτn−1 + (t − τn−1)) dt

=
∞∑

n=1

∫
[Xτn−1∧T ,Xτn∧T )

g(x) dx

=
∫

R
g(x) ·
T (x) dx .

Therefore the local time 
T (x) is thought as the occupation density.

Remark The local time defined by (4) corresponds to the so-called Banach indicatrix,
introduced in Banach (1925). In addition, the last equation above is a consequence of
the Banach theorem.

We note that for all T > 0, the local time 
T (x) is right continuous and has left
limit in x . Let us denote the local time 
̃T (x) for the left limit process Xt− as in (4),
then we have:
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994 T. Fujii, Y. Nishiyama

∫ T

0
g(Xt−) dt =

∫ ∞

−∞
g(x)
̃T (x) dx

=
∫ ∞

−∞
g(x)
T (x) dx +

∫ ∞

−∞
g(x)

(

̃T (x)−
T (x)

)
dx

=
∫ ∞

−∞
g(x)
T (x) dx, (5)

since 
T (x) = 
̃T (x) for almost all x . Thus the local time 
T (x) for the stress
release process (1) can be used as the occupation density of its left limit process.

We represent the local time
T (x) by the stochastic integral in the following theo-
rem, since the representation (4) is not suitable for studying some statistical properties
concerning the local time 
T (x). Note that this result corresponds to the Tanaka–
Meyer formula for semimartingales.

Theorem 1 The local time (4) is represented as:


T (x) = 1{XT>x} − 1{X0>x} +
∫ T

0
1{x<Xt−≤x+1} dNt , (6)

where 1A is the indicator function of a set A.

Proof Let g(u) be a non-negative differentiable function with support [0, 1] satisfying
that

∫ 1

0
g(u) du = 1.

Introduce the function

ψn(y, x) = n
∫ y

−∞
g(n(z − x)) dz,

which approximates the indicator function, i.e., ψn(y, x) → 1{y>x} as n → ∞. By
Ito’s formula and (5), we have:

ψn(XT , x)−ψn(X0, x) =
∫ T

0
ψ ′

n(Xt−, x) dt+
∫ T

0
ψn(Xt−−1, x)−ψn(Xt−, x) dNt

=
∫ ∞

−∞
ψ ′

n(y, x) ·
T (y) dy +
∫ T

0
ψn(Xt− − 1, x)

−ψn(Xt−, x) dNt .
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Nonparametric inference for the stress release process 995

Fig. 1 Relation between the visiting at x and the jump

For the first term on the right hand side, it follows that

∫ ∞

−∞
ψ ′

n(y, x) ·
T (y) dy = n
∫ x+ 1

n

x
g(n(y − x)) ·
T (y) dy

=
∫ 1

0
g(u) ·
T (x + u

n ) du

→ 
T (x) as n → ∞,

since for all fixed T > 0,
T (x) is right continuous with left limit in x . Therefore, as
n → ∞ we obtain

1{XT>x} − 1{X0>x} = 
T (x)+
∫ T

0
1{Xt−−1>x} − 1{Xt−>x} dNt .

This yields the assertion (6) immediately. 
�
Remark The interpretation of the representation (6) for the local time (4) is as follows:
each jump which occurs in (x, x + 1] corresponds to one visit to x before the occur-
rence time, see Fig. 1. Further note that the first jump in (x, x + 1] does not related to
any crossing if X0 > x , and the last crossing does not too, if XT > x .

3 Stationary density estimation

We consider the nonparametric estimation of the stationary density of the stress release
process (1), in the situation where the intensity function φ is unknown. Here we define
the LTE f ◦

T (x) for the stationary density of the stress release process (1) by:

f ◦
T (x) = 
T (x)

T
. (7)

The unbiasedness is a well-known property of the LTE (see e.g., Bosq and Davydov
1999). Equations (2) and (6) help us to understand this fact in our particular model.
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996 T. Fujii, Y. Nishiyama

Theorem 2 The LTE f ◦
T is unbiased.

Proof By the stationarity, it follows that

E[ f ◦
T (x)] = 1

T
E

[∫ T

0
1{x<Xt−≤x+1}φ(Xt−) dt

]

=
∫ x+1

x
φ(y) f (y) dy

= f (x),

where we use Eqs. (2) and (6). 
�
In order to show the uniform continuity of the LTE, we provide a lemma.

Lemma 1

sup
x∈R

∣∣∣∣ 1

T

∫ T

0
1{x<Xt−≤x+1}φ(Xt−) dt − f (x)

∣∣∣∣ p−→ 0.

Proof Let us consider the class � = {1{x<y≤x+1}, x ∈ R}, then it follows from
Theorem 2.7.5 in van der Vaart and Wellner (1996) that for any ε > 0, the class �
satisfies N[ ](ε,�, L1(φ(x)μ(dx))) < ∞. Hence by using the relation (2), the claim
of this lemma can be proved quite similarly to Theorem 6 in Appendix. 
�
We state our main result in this section.

Theorem 3 The LTE f ◦
T is uniformly consistent, i.e.,

sup
x∈R

| f ◦
T (x)− f (x)| p−→ 0.

Proof It holds that

| f ◦
T (x)− f (x)| ≤

∣∣∣∣1{XT>x} − 1{X0>x}
T

∣∣∣∣ +
∣∣∣∣ 1

T

∫ T

0
1{x<Xt−≤x+1}φ(Xt−) dt − f (x)

∣∣∣∣
+

∣∣∣∣ 1

T

∫ T

0
1{x<Xt−≤x+1} dMt

∣∣∣∣ ,

where Mt = Nt − ∫ t
0 φ(Xs−) ds. By taking the supremum over all x ∈ R, the first

term obviously converges to 0 and the second term is estimated by Lemma 1. Finally,
Theorem 6 yields that

sup
x∈R

∣∣∣∣ 1

T

∫ T

0
1{x<Xt−≤x+1} dMt

∣∣∣∣ p−→ 0.

Hence our claim has been proved. 
�
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Nonparametric inference for the stress release process 997

Fig. 2 The invariant density (left) and its LTE (right)

Remark Bosq and Davydov (1999, Proposition 4.3) give an almost sure convergence
result for the LTE on bounded intervals in rather general settings. However, their setup
implies that there exists a continuous version of the local time [see their assumption
(3.12)]. In contrast, our local time (4) is not continuous, and moreover our result is
concerned with the uniformity on the whole interval. Hence our result is not a spe-
cial case of Bosq and Davydov (1999). On the other hand, a natural question may be
whether it is possible to extend our result to the almost sure convergence one. The
answer is affirmative (use the Borel–Cantelli theorem with help from Burkholder’s
inequality), however, we omit the details here for brevity.

We illustrate a numerical example for the LTE, briefly. Let us consider the case
where the point process Nt is the simple self-correcting point (SSCP) process whose
conditional intensity is given by:

λt = φ(Xt−) =
{

0.1, Xt− < 0,

3.0, Xt− ≥ 0,

that is introduced in Inagaki and Hayashi (1990). For a simulation of Xt on t ∈
[0, 1,000], we construct the LTE (7) at points x = i

100 , i = −400 . . . 400. The result
is shown in Fig. 2.

4 Intensity estimation

We consider the nonparametric estimation problem of the intensity function φ of the
stress release process (1). We suppose in this section that the intensity function φ is
continuous on any compact interval on R. Then by Eq. (2), the stationary density f is
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998 T. Fujii, Y. Nishiyama

so too. In order to estimate the intensity function, we use the following statistic:

φ̂T (x) = ÃT (x)

f ◦
T (x)

, (8)

where f ◦
T (x) is the LTE for the stationary density and

ÃT (x) = 1

T

∫ T

0

1

bT
K

(
Xt− − x

bT

)
dNt ,

where K is the uniform kernel on [− 1
2 ,

1
2 ] and bT is the bandwidth satisfying that

bT → 0 and T b2
T → ∞ as T → ∞.

We need the following auxiliary result for the asymptotic behavior of ÃT .

Lemma 2 For any compact interval [α, β],

sup
x∈[α,β]

| ÃT (x)− φ(x) f (x)| p−→ 0.

Proof We write

ÃT (x) = 1

T

∫ T

0

1

bT
K

(
Xt− − x

bT

)
φ(Xt−) dt + 1

T

∫ T

0

1

bT
K

(
Xt− − x

bT

)
dMt .

For the first term, we have:

1

T

∫ T

0

1

bT
K

(
Xt− − x

bT

)
φ(Xt−) dt = 1

T

∫ x+ bT
2

x− bT
2

1

bT
φ(y)
T (y) dy

=
∫ x+ bT

2

x− bT
2

φ(y) f (y) dy

+
∫ x+ bT

2

x− bT
2

1

bT
φ(y)

(

T (y)

T
− f (y)

)
dy

p→ φ(x) f (x) uniformly in x ∈ [α, β],

where we use Theorem 3 and the fact that both of φ and f are uniformly continuous
on any compact interval.

To show that the second term converges to zero uniformly, we check the condi-
tions in Theorem 3.2 of Nishiyama (2000). For the condition [C2], by the assumption
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T b2
T → ∞ we have:
〈

1

T

∫ ·

0

1

bT
K

(
Xt− − x

bT

)
dMt

〉
T

= 1

T 2

∫ T

0

1

b2
T

K

(
Xt− − x

bT

)
φ(Xt−) dt

≤ 1

T b2
T

· 1

T

∫ T

0
φ(Xt−) dt

p→ 0.

The condition [L2]:
∫ T

0

∣∣W t
∣∣2 · 1{W t>ε}φ(Xt−) dt

p→ 0,

where

W t = sup
x∈[α,β]

{
1

T
· 1

bT
K

(
Xt− − x

bT

)}
= 1

T
· 1

bT
,

is derived from the assumption T b2
T → ∞ as follows:

1

T 2 · 1

b2
T

∫ T

0
1{ 1

T
1

bT
>ε}φ(Xt−) dt ≤ 1

T b2
T

· 1

T

∫ T

0
φ(Xt−) dt

p→ 0.

Finally, we check the condition [PE]. For any ε > 0, choose some finite points α =
x0 < x1 < · · · < xNε = β such that xk − xk−1 ≤ ε2 with Nε ≤ const. · ε−2. Then
the entropy condition

∫ T
0

√
log Nε dε < ∞ also holds. So our proof is finished by

showing that

sup
ε>0

max
1≤k≤Nε

1

ε2

1

(T bT )2

∫ T

0
sup

x,y∈[xk−1,xk ]

∣∣∣∣K
(

Xt− − x

bT

)

−K

(
Xt− − y

bT

)∣∣∣∣
2

φ(Xt−) dt = OP (1). (9)

If ε2 ≤ bT , then

max
1≤k≤Nε

1

T

∫ T

0
sup

x,y∈[xk−1,xk ]

∣∣∣∣K
(

Xt− − x

bT

)
− K

(
Xt− − y

bT

)∣∣∣∣
2

φ(Xt−) dt

≤ max
1≤k≤Nε

∫ ∞

−∞
sup

x,y∈[xk−1,xk ]

∣∣∣∣K
(

z − x

bT

)
− K

(
z − y

bT

)∣∣∣∣
2

φ(z) · 
T (z)

T
dz

≤ sup
z∈[α− bT

2 ,β+ bT
2 ]

{
φ(z) · 
T (z)

T

}
max

1≤k≤Nε

∫ ∞

−∞
1{xk−1− bT

2 ≤z≤xk− bT
2 }

+1{xk−1+ bT
2 ≤z≤xk+ bT

2 } dz

≤ sup
z∈[α− bT

2 ,β+ bT
2 ]

{
φ(z) · 
T (z)

T

}
· 2ε2.
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1000 T. Fujii, Y. Nishiyama

Similarly, if ε2 > bT , then

max
1≤k≤Nε

1

T

∫ T

0
sup

x,y∈[xk−1,xk ]

∣∣∣∣K
(

Xt− − x

bT

)
− K

(
Xt− − y

bT

)∣∣∣∣
2

φ(Xt−) dt

≤ sup
z∈[α− bT

2 ,β+ bT
2 ]

{
φ(z) · 
T (z)

T

}
· max

1≤k≤Nε

∫ ∞

−∞
1{xk−1− bT

2 ≤z≤xk+ bT
2 } dz

≤ sup
z∈[α− bT

2 ,β+ bT
2 ]

{
φ(z) · 
T (z)

T

}
· (ε2 + bT )

< sup
z∈[α− bT

2 ,β+ bT
2 ]

{
φ(z) · 
T (z)

T

}
· 2ε2.

Hence (9) is derived from the fact that supz{
T (z)
T } is bounded in probability. 
�

This lemma and Theorem 3 yield the following theorem.

Theorem 4 For any ε > 0,

sup
x∈Iε

|φ̂T (x)− φ(x)| p−→ 0,

where Iε = {x : f (x) ≥ ε}.
Remark It is possible to use more general kernels. However, it demands more com-
plicated calculation when we control bracketing numbers, so we consider only the
uniform kernel here.

The simulation result is provided in the case that the intensity function is:

φ(x) = exp

{
1

2
x − 1

}
.

This type of the stress release process was studied in Ogata and Vere-Jones (1984).
Now we observe the stress release process Xt , t ∈ [0, 50,000] with this intensity
and construct the estimator (8) with bandwidth bT = 0.15 at points x = i

100 , i =
−150 . . . 450. Figure 3 illustrates the result.

5 Goodness of fit test

In this section, we consider the one sample problem of the intensity function φ of the
stress release process (1), i.e., consider testing hypotheses:

H0 : φ = φ0,

H1 : φ �= φ0,
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Nonparametric inference for the stress release process 1001

Fig. 3 The true intensity function (left) and the estimator (right)

where the hypothesis H1 means that

∣∣∣∣
∫ x0

−∞
(φ(x)− φ0(x)) μφ(dx)

∣∣∣∣ > 0, for some x0.

Here we rewrite the invariant measure μ as μφ for emphasis on the intensity φ. In
the following, the intensity function φ is supposed to be globally bounded, i.e., there
exists a constant C > 0 such that 0 ≤ φ(x) ≤ C for any x ∈ R. For every x ∈ R, let
us introduce the score marked empirical process

VT (x) = 1√
T

∫ T

0
1(−∞,x](Xt−) (dNt − φ0(Xt−) dt)

and define the test statistic

ST = sup
x∈R

|VT |.

Then we have the following:

Theorem 5 For the test statistic ST ,

(i) under the hypothesis H0, it holds that

ST
d−→ sup

s∈[0,1]
|Bs |

where Bs is a standard Brownian motion, i.e., the test is asymptotically distri-
bution-free,
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1002 T. Fujii, Y. Nishiyama

(ii) under the hypothesis H1, it holds that

P(ST ≤ K ) → 0 for any K .

Remark The limit distribution under the null hypothesis is given by:

P

(
sup

s∈[0,1]
|Bs | ≤ x

)
= 4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−π

2(2k + 1)2

8x2

)
.

See e.g., 343 page of Feller (1971) for this formula. Before proving this theorem, we
prepare a technical lemma.

Lemma 3

sup
x∈R

{

T (x)

T
· (1 + x2)

}
= OP (1).

Proof It holds that for all x ≥ 0,

∣∣∣∣
T (x)

T
· (1 + x2)

∣∣∣∣ ≤ 1 + X2
T

T
+ 1 + X2

0

T
+ 1

T

∫ T

0
(1 + X2

t−) dNt .

Markov’s inequality yields

P

{
1

T

∫ T

0
(1 + X2

t−) dNt ≥ a

}
≤ C

a
E[1 + X2

0] → 0, as a → ∞,

since the stationary distribution has finite moments under our assumptions, see Hayashi
(1986) and Vere-Jones (1988). The other terms can be estimated similarly. Therefore
we have:

sup
x≥0

{

T (x)

T
· (1 + x2)

}
= OP (1).

For x < 0, our claim can be proved by noticing that


T (x) = 1{X0≤x} − 1{XT ≤x} +
∫ T

0
1{x<Xt−≤x+1} dNt ,

in the same way. 
�
Proof of Theorem 5 For the proof of the claim (i), notice that by Lemma 3, the class
� = {1(−∞,z]; z ∈ R} satisfies all requirements in Theorem 7 (see Appendix), includ-
ing the bracketing entropy condition (see e.g., Theorem 2.7.5 of van der Vaart and
Wellner 1996) for the finite measure ν(dz) = 1

1+z2 dz on R and the corresponding

local time 
T (z) = 
T (z) · (1 + z2). Therefore, the score marked empirical process
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Nonparametric inference for the stress release process 1003

VT (x) weakly converges to {BS(x); x ∈ R} in 	∞(R), where s � Bs is a standard
Brownian motion and

S(x) =
∫ x

−∞
φ0(z)μφ0(dz). (10)

The continuous mapping theorem leads to

ST = sup
x∈R

|VT (x)| d−→ sup
x∈R

|BS(x)|.

Hence the claim (i) follows from (3) and (10).
To show (i i), observe that

sup
x∈R

∣∣∣∣ 1√
T

∫ T

0
1(−∞,x](Xt−) (dNt − φ0(Xt−) dt)

∣∣∣∣
≥ sup

x∈R

√
T ·

∣∣∣∣ 1

T

∫ T

0
1(−∞,x](Xt−)(φ(Xt−)− φ0(Xt−)) dt

∣∣∣∣
− sup

x∈R

∣∣∣∣ 1√
T

∫ T

0
1(−∞,x](Xt−) (dNt − φ(Xt )dt)

∣∣∣∣ ,

Since by Theorem 7, the process

1√
T

∫ T

0
1(−∞,x](Xt−) (dNt − φ(Xt−)dt)

converges weakly in 	∞(R) to a tight law, the second term on the right hand side is
tight. The first term on the right hand side tends to ∞ in probability because there
exists some x0 ∈ R such that

∫
R

1(−∞,x0](z)(φ(z)− φ0(z)) μφ(dz) �= 0

and for such a x0 it holds that

∣∣∣∣ 1

T

∫ T

0
1(−∞,x0](Xt−)(φ(Xt−)−φ0(Xt−)) dt

∣∣∣∣ p−→
∣∣∣∣
∫ x0

−∞
(φ(z)− φ0(z)) μφ(dz)

∣∣∣∣ > 0.

Thus we have proved the claim (i i). 
�

Appendix A

Suppose that a point process t � Nt defined on a filtered probability space
(�,F , (Ft )t≥0, P) admits the predictable intensity

α(Zt ),
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1004 T. Fujii, Y. Nishiyama

where t � Zt is a predictable process which take values in a measurable space (I, I).
We consider the following two properties:

A1 Ergodicity There exists a probability measure μ on (I, I) such that for every
μ-integrable function ψ on (I, I)

1

T

∫ T

0
ψ(Zt ) dt

p−→
∫

I
ψ(z) μ(dz), as T → ∞.

A2 Existence of a good local time There exists a non-negative predictable processes
t � 
t (z), z ∈ I and a measure ν on (I, I) such that for any measurable
function ψ on (I, I)

∫ T

0
ψ(Zt ) dt =

∫
I
ψ(z)
T (z) ν(dz), almost surely,

provided the integrals on the both sides exist, and that

sup
z∈I


T (z) = OP (T ), as T → ∞.

Theorem 6 Assume A1 Suppose that the class � ⊂ L1(α(z)μ(dz)) satisfies that for
every ε > 0, N[ ](ε,�, L1(α(z)μ(dz))) < ∞. Then it holds that

sup
ψ∈�

1

T

∣∣∣∣
∫ T

0
ψ(Zt ) dNt −

∫ T

0
ψ(Zt )α(Zt ) dt

∣∣∣∣ p−→ 0.

Proof Choose any ε > 0. Then, there exists Nε = N[ ](ε,�, L1(α(z)μ(dz))) brack-
ets [lk, uk], k = 1, . . . , Nε, which cover � such that

εk =
∫

I
|uk(z)− lk(z)|α(z) μ(dz) < ε.

Notice that for any ψ ∈ [lk, uk]

1

T

{∫ T

0
ψ(Zt ) dNt −

∫ T

0
ψ(Zt )α(Zt ) dt

}

≤ 1

T

{∫ T

0
uk(Zt ) (dNt − α(Zt )dt)+

∫ T

0
(uk(Zt )− lk(Zt ))α(Zt ) dt

}
.
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Considering also the lower bound, we finally get

sup
ψ∈�

1

T

∣∣∣∣
∫ T

0
ψ(Zt ) dNt −

∫ T

0
ψ(Zt )α(Zt ) dt

∣∣∣∣

≤ max
1≤k≤Nε

1

T

{∫ T

0
uk(Zt ) (d Nt − α(Zt )dt)

}

+ min
1≤k≤Nε

1

T

{∫ T

0
lk(Zt ) (d Nt − α(Zt )dt)

}

+ max
1≤k≤Nε

1

T

∫ T

0
(uk(Zt )− lk(Zt ))α(Zt ) dt.

The first two terms on the right converges to zero in probability (use Lenglart’s inequal-
ity). As for the third term on the right, since each 1

T

∫ T
0 (uk(Zt ) − lk(Zt ))α(Zt ) dt

converges in probability to εk , by Slutsky’s lemma (see e.g., Example 1.4.7 of van
der Vaart and Wellner 1996) they converge in probability, jointly. So the third term
converges in probability to max1≤k≤Nε εk which is smaller than ε. So we have proved
that

sup
ψ∈�

1

T

∣∣∣∣
∫ T

0
ψ(Zt ) dNt −

∫ T

0
ψ(Zt )α(Zt ) dt

∣∣∣∣ < ε + oP (1).

Since the choice of ε is arbitrary, we may conclude that the left hand side converges
to zero in probability. The proof is finished. 
�
Theorem 7 Assume A1 and A2. Suppose that the class � ⊂ L2(α(z)ν(dz)) has an
envelope function ψ̄ ∈ L2+δ(α(z)ν(dz)) for some δ > 0, i.e., |ψ | ≤ ψ̄ for all ψ ∈ �,
and satisfies the metric entropy condition with L2-bracketing:

∫ 1

0

√
log N[ ](ε,�, L2(α(z)ν(dz))) dε < ∞.

Then, it holds that the random fields YT = {YT (ψ); ψ ∈ �} defined by

YT (ψ) = 1√
T

{∫ T

0
ψ(Zt ) dNt −

∫ T

0
ψ(Zt )α(Zt ) dt

}

converges weakly in 	∞(�) to a zero-mean Gaussian random field G = {G(ψ);
ψ ∈ �} with the covariance

EG(ψ)G(ψ ′) =
∫

I
ψ(z)ψ ′(z)α(z) μ(dz).

Furthermore, almost all paths ofψ � G(ψ) are uniformly ρ-continuous with respect
to the semimetric ρ(ψ,ψ ′) = √

E |G(ψ)− G(ψ ′)|2.
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1006 T. Fujii, Y. Nishiyama

Proof We apply Theorem 3.4 of Nishiyama (2000) to the terminal variables
{MT,ψ

T ;ψ ∈ �} of the martingales t � MT,ψ
t given by:

MT,ψ
t = 1√

T

∫ t

0
ψ(Zs)(dNs − α(Zs) ds).

His condition [C2] is satisfied because

〈MT,ψ ,MT,ψ ′ 〉T = 1

T

∫ T

0
ψ(Zs)ψ

′(Zs)α(Zs) ds
p−→

∫
I
ψ(z)ψ ′(z)α(z) μ(dz).

To check the Lindberg condition [L2], take any ε > 0 and observe that

1

T

∫ T

0
ψ̄(Zs)

21{ 1√
T
ψ̄(Zs )>ε}α(Zs) ds ≤ 1

T

∫ T

0
ψ̄(Zs)

2
∣∣∣∣1

ε
· 1√

T
ψ̄(Zs)

∣∣∣∣
δ

α(Zs) ds

= 1

εδ
· 1

T
δ
2

· 1

T

∫ T

0
ψ̄(Zs)

2+δα(Zs) ds

p→ 0.

To check [PE], for every ε > 0 choose some ε-brackets [lk, uk], k = 1, ..., Nε , where
Nε = N[ ](ε,�, L2(α(z)ν(dz))). Construct the partition � = ⋃Nε

k=1�(ε; k), which
corresponds to Nishiyama’s notation, as

�(ε; k) = {ψ ∈ � : lk ≤ ψ ≤ uk} .

The square of the quadratic modulus is bounded by

sup
ε>0

max
1≤k≤Nε

1

T
· 1

ε2

∫ T

0
|uk(Zs)− lk(Zs)|2α(Zs) ds

= sup
ε>0

max
1≤k≤Nε

1

T
· 1

ε2

∫
I
|uk(z)− lk(z)|2α(z)
T (z) ν(dz)

≤ 1

T
sup
z∈I


T (z) = OP (1).

The proof is finished. 
�
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