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Abstract Stimulated by a study in Bangladesh about the first birth interval, we
propose a semivarying-coefficient model for cluster data analysis. We consider the
estimation procedure for the proposed model and establish the asymptotic results of
the proposed estimators. Furthermore, we employ the cross-validation (CV) to identify
the constant coefficients. The associated asymptotic properties are rigorously exam-
ined. Simulation studies are conducted to investigate the performance of the proposed
estimation and the CV-based model selection procedure for finite sample size. Finally,
our methods are used to analyse the aforementioned data set to explore how several
factors affect the first birth interval in Bangladesh.

Keywords Cluster data · Cross-validation · Local linear modelling ·
Semiparametric inference · Varying-coefficient models

1 Introduction

In a typical analysis for cluster data, researchers usually assume all clusters share the
same regression function. The difference across clusters is accounted for by the within-
cluster correlation modelled by a within-cluster covariance matrix. Many researchers
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836 Y. Sun et al.

have studied how to incorporate the within-cluster covariance matrix into the estima-
tion procedure to improve the estimation of the regression function or how to accurately
estimate the within-cluster covariance matrix (see, Chiou and Müller 2005; Fan and
Li 2004; Fan et al. 2007; Fan and Wu 2008; Sun et al. 2007).

The above approach is essentially to account for the difference across clusters by
random effects only. Whilst this kind of modelling is quite successful in cluster data
analysis, sometimes, it is inappropriate to believe all clusters share the same regression
function. To elaborate this further, let us consider a data set that stimulates this paper.
The data set is from the Bangladesh Demographic and Health Survey 1996–1997. This
survey follows a two-stage design in which clusters were selected at the first stage,
and women were sampled from these clusters at the second stage. The clusters corre-
spond to villages in rural areas and neighbourhoods in urban areas and may loosely
be termed communities. What is of interest is how the factors which are commonly
found to be associated with fertility in Bangladesh affect the first birth interval. The
selected factors in this study are (1) woman’s level of education; (2) type of region
of residence; (3) woman’s religion; (4) year of marriage; and (5) administrative area.
Among these factors, type of region of residence and administrative area pertain to
cluster levels and are called cluster-level variables, and the rest are called individual
level variables.

We use y to denote the length of the first birth interval, X the vector of individ-
ual level variables, Z the vector of cluster-level variables. For j = 1, . . . , ni , i =
1, . . . , m, let yi j and Xi j be the j th observation of y and X in the i th cluster, Zi the
observation of Z at the i th cluster. If we use a linear model to fit the data and random
effects only to account for the difference across clusters, it would imply that all clusters
share the same coefficients in the regression function, which is equivalent to assuming
the impacts of the factors concerned are the same for all clusters. Apparently, this is not
very convincing. For example, it is evident that the impact of education in the cluster
where Muslims predominate would be different to that in the cluster where Hindus
predominate. There must be some deterministic effects taking part in the difference
across clusters. We have to take such effects into account.

Simply allowing regression coefficients to vary over clusters, we would have

yi j = XT
i j ai + ZT

i β + εi j , j = 1, . . . , ni , i = 1, . . . , m, (1)

where εi j ’s are random errors with mean zero and variance σ 2. While it accounts
for the dynamic of the impacts across clusters, (1) is not parsimonious. A sensible
approach is to model the impacts ai by the cluster-level variables.

{
yi j = XT

i j ai + ZT
i β + εi j , j = 1, . . . , ni , i = 1, . . . , m,

ai = α0 + AZi + ei , i = 1, . . . , m,
(2)

where A = (α1, . . . ,αq), and ei ’s are random effects with mean zero and covariance
�. ei and εi j are independent. This achieves the parsimony, and the within-cluster
dependency is also accounted for by both random effects and deterministic pattern.
In fact, the number of unknown coefficients in model (2) is p(q + 1) + q which is
usually much smaller than pm + q.
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Varying-coefficient models for cluster data 837

To incorporate the time effect on the impacts into modelling and take into account
that some impacts may not change over time leads to the following semivarying coef-
ficient models

{
yi j = XT

i j ai (Ui j ) + TT
i β1 + VT

i β2(Ui j ) + εi j ,

ai (Ui j ) = A(Ui j )Zi + ei ,
(3)

j = 1, . . . , ni , i = 1, . . . , m, where Ti is the vector of the cluster-level variables
whose impacts do not change over time, we assume it is k1 dimensional. Vi is the
vector of the cluster-level variables whose impacts change over time; we assume it
is k2 dimensional. Zi = (TT

i , VT
i )T,β1 is a k1-dimensional unknown constant vector,

and β2(·) is a k2 dimensional unknown functional vector. A(Ui j ) is a p × q unknown
matrix. Because the impacts of some individual level variables do not change over
time, some entries of matrix A(Ui j ) may be constant. Without loss of generality, we

assume A(Ui j ) =
(

A1 A2(Ui j )

A3(Ui j ) A4(Ui j )

)
, where A1 is a p1 × q1 unknown constant

matrix, A2(·), A3(·) and A4(·) are p1 × q2, p2 × q1 and p2 × q2 unknown functional
matrix, respectively. εi j ’s are independent of Xi j , Ui j and Zi while ei ’s are indepen-
dent of εi j , Xi j , Ui j and Zi . We assume (XT

i j , Ui j )
T are i.i.d. for all i and j, Zi are

i.i.d. for all i .
As a class of semiparametric models, (3) includes many important models. For

example, the semivarying coefficient models (Fan and Zhang 1999, 2000a,b; Zhang
et al. 2002, 2009; Wang et al. 2009) are a special case of (3) with Zi = 1 and ei = 0;
the functional mixed-effect models of Sun et al. (2007) are (3) with all constant coef-
ficients being zero; and the well-known growth curve models (Demidenko 2004), Ch.
4) are also (3) with all coefficients being constant.

As (3) involves both functional and constant coefficients, in reality, we have to
identify which coefficients are functional, which are constant when using model (3).
In this paper, we will systemically investigate how to use the cross-validation (CV) to
identify the constant coefficients and examine how powerful the CV is on this effect.
It is worth noticing that Xia et al. (2004) and Li and Zhang (2011) applied the CV to
identify the constant components in similar semivarying coefficient models.

2 Estimation procedure

We first estimate the covariance matrix � of the random effect ei and the variance σ 2

of the random error εi j . This is because the estimators of � and σ 2 will be used when
constructing the estimators of the constant coefficients.

2.1 Estimation of σ 2 and �

We treat all coefficients (regardless of constant or functional) in model (3) as functional
when estimating σ 2 and �. The reasons for us to do so are (1) in reality, we do not
know which coefficients are constant. If we mistakenly treat a functional coefficient
as constant, the estimators of σ 2 and � would be very poor and they are not even
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consistent. Although to treat the constant coefficients as functional may cost on the
variance side of the estimators of the constant coefficients, it would have little effect
on the estimators of σ 2 and � as the loss on the variance side of the estimators of
the constant coefficients will be eliminated in the estimation procedure of σ 2 and �.
(2) When using the CV to identify the constant coefficients, we need to compute the
CV, which involves the estimators of σ 2 and �, for each candidate model. To treat all
coefficients as functional will enable us to use the same estimators of σ 2 and � for all
candidate models without paying any price. This will largely reduce the computation
involved.

By the Taylor’s expansion we have Ak(Ui j ) ≈ Ak(u) + Ȧk(u)(Ui j − u), k =
1, 2, 3, 4,βl(Ui j ) ≈ βl(u) + β̇l(u)(Ui j − u), l = 1, 2, when Ui j is in a small neigh-
bourhood of u, which leads to the following local least squares estimation procedure:

L =
m∑

i=1

ni∑
j=1

(yi j − XT
i j [{B + C(Ui j − u)}Zi ] − TT

i {c1 + d1(Ui j − u)}

−VT
i {c2 + d2(Ui j − u)})2 Kh(Ui j − u), (4)

where B =
(

B1 B2
B3 B4

)
, C =

(
C1 C2
C3 C4

)
, Kh(·) = K (·/h)/h, h is bandwidth and

K (·) is a kernel function.
We minimise L with respect to Bi , Ci , i = 1, 2, 3, 4, and cl , dl , l = 1, 2, to get the

minimiser. The initial estimator A∗
i (u) of Ai (u) is the part of the minimiser correspond-

ing to Bi , and the initial estimator β̃l(u) is the part of the minimiser corresponding to
cl , l = 1, 2.

Let xi = (Xi1, . . . , Xini )
T, Ri = (ZT

i ⊗ xi , 1ni ⊗ ZT
i ), R = (RT

1, . . . , RT
m)T,U i =

diag((U11 − u)i , . . . , (U1n1 − u)i , . . . , (Um1 − u)i , . . . , (Umnm − u)i ),

W = diag(Kh(U11 − u), . . . , Kh(U1n1 − u), . . . , Kh(Um1 − u), . . . , Kh(Umnm −
u))Y = (y11, . . . , y1n1 , . . . , ym1, . . . , ymnm ), X = (R,U1 R), where 1d is a d dimen-
sional vector with each component being 1. Further, let Ip be a size p identity matrix,
0p×q be a size p × q matrix with all entries 0, and H1 = (Ip1 , 0p1×p2), H2 =
(0p2×p1 , Ip2), H3 =

(
Iq1

0q2×q1

)
, H4 =

(
0q1×q2

Iq2

)
, n = ∑m

i=1 ni , l1 = (p + 1)q +
q, l2 = (p + 1)q + k2, Di = (0p×((i−1)p), Ip, 0p×((q−i)p)), D = (D1, . . . , Dq). By
simple calculation, we have
⎧⎨
⎩

A∗
1(u) = H1T H3, A∗

2(u) = H1T H4, A∗
3(u) = H2T H3, A∗

4(u) = H2T H4,

β∗
1(u) = (0k1×(pq), Ik1 , 0k1×l2)(X

TW X)−1XTW Y,

β∗
2(u) = (0k2×(pq+k1), Ik2 , 0k2×(pq+q))(XTW X)−1XTW Y,

(5)

where T = D(Iq ⊗ {(Ipq , 0(pq)×l1)(X
TW X)−1XTW Y }).

Let A∗(Ui j ) be the A(Ui j ) with Ai being replaced by A∗
i (Ui j )i = 1, 2, 3, 4,

a∗
i (Ui j ) = A(Ui j )Zi , âi (Ui j ) = A∗(Ui j )Zi , and ri = (ri1, . . . , rini )

T, ri j = yi j −
XT

i j a
∗
i (Ui j ) − TT

i β1 − VT
i β2(Ui j ), r̂i = (r̂i1, . . . , r̂ini )

T, r̂i j = yi j − XT
i j âi (Ui j ) −

TT
i β∗

1(Ui j )−VT
i β∗

2(Ui j ), xi = (Xi1, . . . , Xini )
T, Pi = xi (xT

i xi )
−1xT

i . From model (3),
we have the following synthetic linear model:
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Varying-coefficient models for cluster data 839

ri = xi ei + εi , εi = (εi1, . . . , εini )
T. (6)

The residual sum of squares of this model rssi = rT
i (Ini − Pi )ri would be the raw

material for estimating σ 2. The synthetic degree of freedom of rssi is ni − p since
(6) may be regarded as a linear regression model with ni observations and p predic-
tors. Let RSSi be rssi with ri replaced by r̂i . RSSi is a natural estimator for rssi .
Pooling all RSSi , i = 1, . . . , m, together naturally leads to the estimator of σ 2 as
σ̂ 2 = (n − mp)−1 ∑m

i=1 RSSi . Finally, we estimate �. From (6), we have the least
squares estimator of ei as e∗

i = (xT
i xi )

−1xT
i ri = ei + (xT

i xi )
−1xT

i εi . It is easy to see

m∑
i=1

e∗
i ẽ∗T

i =
m∑

i=1

ei eT
i +

m∑
i=1

(xT
i xi )

−1xT
i εiε

T
i xi (xT

i xi )
−1 +

m∑
i=1

(xT
i xi )

−1xT
i εi eT

i

+
m∑

i=1

eiε
T
i xi (xT

i xi )
−1. (7)

The last two terms are of order OP (m1/2) and negligible. This leads to

m−1
m∑

i=1

ei eT
i ≈ m−1

{
m∑

i=1

e∗
i e∗T

i −
m∑

i=1

(xT
i xi )

−1xT
i εiε

T
i xi (xT

i xi )
−1

}
(8)

≈ m−1

{
m∑

i=1

e∗
i e∗T

i − σ 2
m∑

i=1

(xT
i xi )

−1

}
. (9)

Let êi be e∗
i with ri replaced by r̂i . We obtain

�̂ = m−1
m∑

i=1

êi ê
T
i − m−1σ̂ 2

m∑
i=1

(xT
i xi )

−1 (10)

2.2 Final estimation for the coefficients

We first estimate constant coefficients following the profile likelihood idea (Fan and
Huang 2005). By simple calculation, (3) can be written to

{
y∗

i j = XT
i j a

c
i (Ui j ) + VT

i β2(Ui j ) + εi j ,

ac
i (Ui j ) = Ac(Ui j )Zi + ei ,

j = 1, . . . , ni , i = 1, . . . , m, (11)

where y∗
i j = yi j − XT

i j1 A1 Zi1 − TT
i β1, Ac(Ui j ) =

(
0p1×q1 A2(Ui j )

A3(Ui j ) A4(Ui j )

)
, Xi j1 is

the vector of the first p1 components of Xi j . Pretending both A1 and β1 are known,
we apply the local linear modelling to model (11). As the detail is almost the same as
Sect. 2.1, we present the following results without detailed derivation.

For any matrix M , let vec(M) be the vector by simply stacking the column
vectors of matrix M below one another. Moreover, let xi1 be the matrix of the first p1
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columns of xi , Zi1 the first q1 components of Zi , xi = (xi1, xi2), Zi = (ZT
i1, ZT

i2)
T,

Gi = (ZT
i1 ⊗ xi2, ZT

i2 ⊗ xi , 1ni ⊗ VT
i ), d = p2q1 + pq2 + k2θ(u) = ((vec(A3(u)))T,

(vec((AT
2(u), AT

4(u))T))T,β2(u)T)T. The estimator of θ(u) is

θ∗(u) = (Id , 0d×d)(�TW�)−1�TW Y ∗, (12)

where � = (G,U1G), G = (GT
1, . . . , GT

m)T, Y ∗ = Y − Fb, b = ((vec(A1))
T ,βT

1)
T,

F = (FT
1 , . . . , FT

m)T, Fi = (ZT
i1 ⊗ xi1, 1ni ⊗ TT

i ).
Let �i j and Wi j be the � and W with u being replaced by Ui j , respectively. Replac-

ing the Ac(Ui j ) and β2(Ui j ) by the corresponding components of θ(Ui j ), we have the
following synthetic regression model:

Y − Fb = S(Y − Fb) + r, (13)

where r = (rT
1, . . . , rT

m)T,

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(ZT
11 ⊗ XT

112, ZT
12 ⊗ XT

11, VT
1 )(Id , 0d×d )(�T

11W11�11)
−1�T

11W11
.
.
.

(ZT
11 ⊗ XT

1n12, ZT
12 ⊗ XT

1n1
, VT

1 )(Id , 0d×d )(�T
1n1

W1n1�1n1 )
−1�T

1n1
W1n1

.

.

.

(ZT
m1 ⊗ XT

m12, ZT
m2 ⊗ XT

m1, VT
m)(Id , 0d×d )(�T

m1Wm1�m1)
−1�T

m1Wm1
.
.
.

(ZT
m1 ⊗ XT

mnm 2, ZT
m2 ⊗ XT

mnm
, VT

m)(Id , 0d×d )(�T
mnm

Wmnm �mnm )−1�T
mnm

Wmnm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Xi j2 is the vector of the last p2 components of Xi j . Applying the weighted least
squares estimation to model (13) with weight� = diag(x1�̂xT

1, . . . , xm�̂xT
m)+ σ̂ 2 In,

we obtain the final estimator of b:

b̂ = {FT(In − S)T�−1(In − S)F}−1FT(In − S)T�−1(In − S)Y. (14)

Substituting b̂ for b in (12) and changing the bandwidth h to a slightly larger one h1,
we arrive at the final estimator of θ(u)

θ̂(u) = (Id , 0d×d)(�TW1�)−1�TW1(Y − Fb̂), (15)

where W1 is the W with h being replaced by h1.
From the asymptotic properties presented in Sect. 4, we can see that the optimal

bandwidth for the estimators of constant coefficients is smaller than that for functional
coefficients, and that is why we need to replace h by a slightly larger bandwidth h1
when constructing the estimators of functional coefficients through (12).
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Varying-coefficient models for cluster data 841

3 Model selection

Suppose (3) is the true model. We may delete the i th cluster and estimate the
A(·),β1,β2(·),� and σ 2 based on the remaining m −1 clusters. Denote the resulting

estimators of A(·),β1,β2(·),� and σ 2 by Â
\i

(·), β̂\i
1 , β̂

\i
2 (·), �̂\i and σ̂ 2\i , respec-

tively. The cross-validation sum of squares is defined as

CV = m−1
m∑

i=1

r∗T
i (xi �̂

\i xT
i + σ̂ 2\i Ini )

−1r∗
i , (16)

where r∗
i = (r∗

i1, . . . , r∗
ini

)T, r∗
i j = yi j − XT

i j Â
\i

(Ui j )Zi − TT
i β̂

\i
1 − VT

i β̂
\i
2 (Ui j ). We

compute the CVs for all candidate models; the selected model is the one with the
smallest CV.

Let L be the number of the coefficients in the model. Denote the vector consisting
of all coefficients in the model by α(·) = (α1(·), . . . , αL(·)), the model with coeffi-
cients αil (·), l = 1, . . . , k, being functional, others being constant by {i1, . . . , ik}. In
the following, we will present the following backward elimination algorithm for the
model selection:

(1) We start with the full model, {1, . . . , L}, and compute its CV by (16). We denote
the full model by ML , its CV by CVL .

(2) Suppose the model is Mk = {i1, . . . , ik} at some step. We define Mk−1 as the
model with the smallest CV among the models {i1, . . . , i j−1, i j+1, . . . , ik}, j =
1, . . . , k. We use CVk to denote the CV of model Mk , which can be computed
by (16). If CVk < CVk−1, the chosen model is Mk , and the model selection is
ended; otherwise, compute Mk−2 and CVk−2, and continue until reaching some
l such that either CVl < CVl−1 or l = 0.

4 Asymptotic properties

Throughout this paper, for any matrix C , we use C > 0 to denote that C is positive
definite, and C ≥ 0 to denote that C is semi-positive definite. Further, denote μ2 =∫

t2 K (t)dt, ν0 = ∫
K 2(t)dt and let f (·) be the density of U11.

Theorem 1 Under the conditions (1)–(7) in Appendix, when nh4 → 0, we have

n
1
2 {b̂ − b} D−→ N (0,	−1

1 + 	−1
1 	2	

−1
1 ), where 	1 > 0,	2 ≥ 0 and are defined

in Appendix.

Theorem 1 implies that we have to choose h = o(n−1/4), which is at a higher order
of the optimal bandwidth for functional estimation, to make the estimators of constant
coefficients achieve the convergence rate of n−1/2.
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Theorem 2 Under the conditions (1)–(8) in Appendix, when h1 = O(n−1/5) and
h/h1 → 0, we have

√
nh1 f (u)

{
θ̂(u) − θ(u) − 1

2
μ2h2

1θ
′′(u)

}

D−→ N (0, ν0{
1(u)−1
2(u)
1(u)−1 + σ 2
1(u)−1}), (17)

where 
i (u) > 0, i = 1, 2, and are defined in Appendix.

Comparing previous asymptotic results (Zhang and Lee 2000) for standard vary-
ing-coefficient estimation with Theorem 2, we note that the asymptotic distributions
of the proposed estimators of the functional coefficients are the same as those obtained
when the constant coefficients are known.

Theorem 3 When the working model is the true model, under the conditions (1)–
(8) in Appendix, if n

1
2 h3

1 → 0, h/h1 → 0, and {nh1} 1
2 h2 → 0, we have CV =

m−1 ∑m
i=1 r T

i �−1
i ri + 1

4μ2
2h4

1π1 + ν0
mh1

{σ 2λ1 + λ2} + oP {h4
1 + 1

mh1
}, where π1 >

0,�i > 0 are defined in Appendix, and λ1 = n−1 ∑m
i=1

∑ni
j=1 E{ f (Ui j )

−1GT
i j


1(Ui j )
−1Gi j [�−1

0i ] j j }, λ2 = n−1 ∑m
i=1

∑ni
j=1 E{ f (Ui j )

−1GT
i j
1(Ui j )

−1
2(Ui j )


1(Ui j )
−1Gi j [�−1

0i ] j j }, with [�−1
0i ] j j being the j th element on the diagonal of �−1

0i =
(xi�xT

i + σ 2 Ini )
−1.

We are now presenting the asymptotic form of the CV when the working model
mistakenly treats some constant coefficients as functional. Without loss of generality,
we assume the first element on the diagonal of A1 is mistakenly treated as functional.

Theorem 4 When the working model mistakenly treats the first element on the diag-

onal of A1 as functional, under the conditions (1)–(8) in Appendix, if n
1
2 h3

1 →
0, h/h1 → 0, and {nh1} 1

2 h2 → 0, we have CV = m−1 ∑m
i=1 rT

i�
−1
i ri + 1

4μ2
2h4

1π1 +
ν0

mh1
{σ 2λ

(1)
1 +λ

(1)
2 }+oP {h4

1+ 1
mh1

}, where λ
(1)
1 = n−1 ∑m

i=1
∑ni

j=1 E{ f (Ui j )
−1(GT

i j ,

Zi11 Xi j11)1(Ui j )
−1(GT

i j , Zi11 Xi j11)
T[�−1

0i ] j j }, λ(1)
2 =n−1 ∑m

i=1
∑ni

j=1 E{ f (Ui j )
−1

(GT
i j , Zi11 Xi j11)

∗(Ui j )(GT
i j , Zi11 Xi j11)

T[�−1
0i ] j j }, and ∗(Ui j ) = 1(Ui j )

−1

2(Ui j )1(Ui j )
−1, 1(u) =

(

1(u) ϒ1(u)

ϒ1(u)T ρ1(u)

)
, 2(u) =

(

2(u) ϒ2(u)

ϒ2(u)T ρ2(u)

)
,

ϒ1(u) = E[G11 Z111 X1111|U11 = u], ρ1(u) = E[{Z111 X1111}2|U11 = u], ϒ2(u) =
E[XT

11�X11G11 Z111 X1111|U11 = u], ρ2(u) = E[XT
11�X11{Z111 X1111}2|U11 = u],

with Z111 and X1111 representing the first component of Z11 and X111.

Remark 1 As we can see, by simple calculation, that

(GT
i j , Zi11 Xi j11)1(Ui j )

−1(GT
i j , Zi11 Xi j11)

T − GT
i j
1(Ui j )

−1Gi j

= ρ3(Ui j )
−1(GT

i j
1(Ui j )
−1ϒ1(Ui j ) − Zi11 Xi j11)

2 (18)
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Varying-coefficient models for cluster data 843

where ρ3(Ui j ) = ρ1(Ui j ) − ϒ1(Ui j )
T
1(Ui j )

−1ϒ1(Ui j ) > 0 since 1(Ui j ) > 0.

Therefore, λ
(1)
1 − λ1 > 0, and λ

(1)
1 − λ1 = O(1). It follows that

(GT
i j , Zi11 Xi j11)1(Ui j )

−12(Ui j )1(Ui j )
−1(GT

i j , Zi11 Xi j11)
T

−GT
i j
1(Ui j )

−1
2(Ui j )
1(Ui j )
−1Gi j

= (GT
i j , Zi11 Xi j11)L(Ui j )(G

T
i j , Zi11 Xi j11)

T + l(Ui j )
T2(Ui j )l(Ui j ), (19)

where L(Ui j ) = ρ3(Ui j )
−1[3(Ui j ) + 3(Ui j )

T], 3(Ui j ) =
(


1(Ui j )
−1 0d×1

01×d 0

)

2(Ui j )ϒ3(Ui j )ϒ3(Ui j )
T, ϒ3(Ui j )

T = (ϒ1(Ui j )
T
1(Ui j )

−1,−1), and l(Ui j )

= ρ3(Ui j )
−1ϒ3(Ui j )ϒ3(Ui j )

T(GT
i j , Zi11 Xi j11)

T.

It can be shown that 3(Ui j )+3(Ui j )
T ≥ 0, hence λ

(1)
2 −λ2 > 0, and λ

(1)
2 −λ2 =

O(1). Therefore, λ
(1)
1 − λ1 > 0 and λ

(1)
2 − λ2 > 0. This together with Theorems 3

and 4 indicates that the increment in the CV is detectable up to O({mh1}−1) when the
working model mistakenly treats a constant coefficient as functional.

We next give the asymptotic form of the CV when we mistakenly treat some func-
tional coefficients as constant. Without loss of generality, we assume that the (1, 1)th
element of A2(·) is mistakenly treated as constant.

Theorem 5 When the working model mistakenly treats the (1, 1)th element of
A2(·) as constant, under the conditions (1)–(8) in Appendix, we have CV=m−1 ∑m

i=1
r T

i �−1
i ri+π2 + oP (1), where π2 > 0, π2 = O(1), and is defined in Appendix.

Remark 2 Comparing Theorem 5 with Theorem 3, we can see that the increment in
the CV is detectable up to O(1) when the working model mistakenly treats some
functional coefficients as constant.

5 Simulation study

The kernel function involved in the estimation is taken to be the Epanechnikov kernel
K (t) = 0.75(1 − t2)+. The bandwidth h is selected by the cross validation when all
coefficients are assumed to be functional. The selection is among a set of 20 equally
spaced grid points over the support of U . The h that minimizes CV is taken for the
estimation of constant coefficients as described in 2.2. To estimate the final functional
coefficients, we set h1 = 1.25h. It has been shown in Li et al. (2011) that CV can pro-
vide optimal bandwidth that satisfies the order requirements in general semiparametric
regression models.

We generate data from Model (3) with p1 = p2 = q1 = q2 = k1 = k2 = 1, A1 =
5, A2(U ) = −9U (1 − U ), A4(U ) = 3 sin(2πU ), A3(U ) = 3.5[exp{−(3U − 1)2} +
exp{−(4U − 3)2}] − 1.5, and β1 = 3, β2(U ) = 3 sin(6π(U − .5)2).

We set the number of clusters to be m = 120. For each cluster, the cluster size, ni ,
is generated through 3 plus a random variable with binomial distribution B(5, 0.5).
Ui j are generated from uniform distribution U [0, 1]. Components of Xi j and Zi are
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Table 1 The MSEs and MISEs of the estimators

Parameter TRUE EST MSE Function MISE

A1 5 4.98 1.6 × 10−4 A2(·) 0.45

β1 3 3.01 1.0 × 10−5 A3(·) 0.45

σ 2 1 1.04 1.14 × 10−5 A4(·) 0.46

σ11 3 2.59 6.96 × 10−4 β2(·) 0.35

σ22 2.5 2.12 5.67 × 10−4

σ12 1 0.73 2.59 × 10−4

The parameter column is the unknown parameters, the TRUE column is the true values of the unknown
parameters, the EST column is the estimators of the unknown parameters obtained from the simulation
with median performance, the MSE column is the MSEs of the estimators of the unknown parameters, the
Function column is the unknown functions, and the MISE column is the MISEs of the estimators of the
unknown functions

independently generated from uniform distribution [−1, 1]. The random effects ei are
generated from bivariate normal distribution with mean zero and covariance matrix
�. The random errors εi j are generated from normal distribution N (0, σ 2). We set

σ 2 = 1 and � =
(

σ11 σ12
σ12 σ22

)
=

(
3 1
1 2.5

)
.

We conduct 100 simulations and use the mean squared error (MSE) and mean
integrated squared error (MISE) to assess the accuracy of the estimator of a constant
parameter and the estimator of a functional coefficient, respectively. The MSEs of
the estimators of A1, σ

2 and � are presented in Table 1, which shows our estimators
are very accurate. We have also computed the MISEs of the functional coefficients
A j (·), j = 2, 3, 4, and β2(·), and presented them in Table 1. From Table 1, we can
see our estimators of functional coefficients are also doing very well.

To give a more visible picture about how well our estimation is, we single out the
one with median performance among the 100 simulations and report the estimators
of constant parameters in Table 1 and estimators of functional coefficients in Fig. 1.
From Fig. 1 and Table 1, we can see the estimators are indeed very good.

We have also examined how well the proposed CV coupled with the backward
elimination algorithm for the model selection works. It turns out, out of 100 simula-
tions, 92 times the CV picks the correct model, which suggests the CV coupled with
the backward elimination works reasonably well.

6 Analysis of the first birth interval in Bangladesh

The data come from the BDHS of 1996–1997 (Mitra et al. 1997), which is a cross-
sectional, nationally representative survey of ever-married women aged between 10
and 49. The analysis is based on a sample of 8,189 women nested within 296 primary
sampling units or clusters, with sample sizes ranging from 16 to 58. We allow for
the hierarchical structure of the data by fitting a two-level model with women at level
1 nested within clusters at level 2. A further hierarchical level is the administrative
division; Bangladesh is divided into six administrative divisions which are Barisal,
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Fig. 1 Nonparametric estimates for functional coefficients in simulations

Chittagong, Dhaka, Kulna, Rajshahi and Sylhet. Effects at this level are represented
in the model by fixed effects since there are only six divisions.

The dependent variable, yi j , is the duration in months between marriage and the
first birth for the j th woman in the i th cluster. We consider several covariates which are
commonly found to be associated with fertility in Bangladesh. The selected individual-
level categorical covariates include the woman’s level of education (xi j1) (none coded
by 0, primary or secondary plus coded by 1), religion (xi j2) (Muslim coded by 1, Hindu
or other coded by 0). Another individual-level covariate is year of marriage (Ui j ). We
also consider two cluster-level variables, administrative division and type of region
of residence. We take rural as the reference and the differences between urban and
rural clusters is modeled by a dummy variables (zi2). We take Barisal as the reference
and the differences between Barisal and Chittagong, Barisal and Dhaka, Barisal and
Kulna, Barisal and Rajshahi, and Barisal and Sylhet are modelled by dummy variables
zi3, . . . , zi7, respectively. We set zi1 = 1 to include the intercept into the model.

The proposed model (3) with Xi j = (xi j1, xi j2)
T and Zi = (zi1, . . . , zi7)

T is used
to fit the data set. The kernel function involved in the estimation is still taken to
be the Epanechnikov kernel. The bandwidth is selected by cross-validation when all
coefficients are assumed to be functional.
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We first use the proposed algorithm to identify which coefficients are constant and
end up with the following choice:

A(Ui j ) =
(

α11 α12 α13(Ui j ) α14(Ui j ) α15 α16(Ui j ) α17
α21(Ui j ) α22(Ui j ) α23(Ui j ) α24(Ui j ) α25(Ui j ) α26(Ui j ) α27(Ui j )

)

and β(Ui j ) = (β1(Ui j ), β2, β3, β4, β5(Ui j ), β6, β7(Ui j ))
T.

The proposed estimation is applied to obtain the estimators of the unknown con-
stant or functional coefficients. The estimated functional coefficients are displayed in
Figs. 2 and 3, and the estimated constant coefficients are reported in Table 2.
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Fig. 2 The estimated functional coefficients for the first birth interval data in Bangladesh
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Fig. 3 The estimated functional coefficients for the first birth interval data in Bangladesh (continued)

Table 2 The estimated constant
coefficients for the first birth
interval data in Bangladesh

Coefficients Estimates Standard
errors

α11 0.053 0.109

α12 −0.036 0.084

α15 −0.067 0.107

α17 0.050 0.103

β2 −0.069 0.112

β3 −0.015 0.044

β4 0.026 0.056

β6 0.034 0.102

From Fig. 3, we can see the estimator of the function β1(·), which is the intercept
and corresponding to the trend of the length of the first birth interval, is decreasing
over time. This is largely due to an increase in the age at first marriage in Bangladesh;
a nationally representative survey of women in 1996–1997 (Mitra et al. 1997) found
that the median age at marriage was 13.3 years among respondents who were aged
45–49 years at the time of survey, compared with 15.3 years for respondents aged
20–24 years. There has been a slower increase in the age at first birth; the median
age at first birth was 16.9 years among women who were aged 45–59 and 18.4 years
among the younger cohort. These trends in age at marriage and age at first birth imply
that the length of the first birth interval has become shorter over time.
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Table 2 shows the estimator of β2 is negative which suggests the women in rural
areas have longer first birth interval than those in urban areas. We notice that the esti-
mator of β3 is negative, which suggests the intervals are shorter in Chittagong than in
the other divisions. This regional effect is as expected and is most probably explained
by lower use of contraceptives in Chittagong (the most religiously conservative part of
Bangladesh) compared with other divisions. The estimators of β4 and β6 are positive,
which indicates the intervals are longer in Dhaka and Rajshahi than in Barisal. The
estimate of β6 also suggests the first birth intervals in Rajshahi are longer than in the
other divisions. The regional effect (β5(·)) of Kulna is changing over time, so does
the Sylhet’s (β7(·)). We can see clearly the dynamic patterns of the changes in Fig. 3.
The standard errors in Table 2 may be used to construct asymptotic significance tests
for the regression coefficients. We notice that none of the coefficients is significantly
different from zero in this case.

Let Â(u) be the A(u) with each entry replaced by its estimator. The estimated
impacts of the individual-level covariates on the length of the first birth interval in
a specific cluster, say the i th cluster, can be obtained through âi (u) = Â(u)Zi . For
example, the estimated impact of a woman’s education in a rural area in Chittagong is
α̂11 + α̂13(u), u is the time. Notice that we take Barisal as reference when modelling
the regional effect. It is interesting to note, from Fig. 3, that the function α̂13(u) is
mainly negative, which suggests that education has less impact in Chittagong than in
Barisal.

Appendix

Conditions

(1) The function K (t) is a symmetric bounded density function with a compact
support.

(2) Eε4
11 < ∞, E‖e1‖4 < ∞, E‖Z1‖2(2+s) < ∞, E‖X11‖2(2+s) < ∞,

E(‖Z1‖2(2+s)‖X11‖2(2+s)) < ∞, and max1≤i≤m E‖�−1
0i ‖2(2+s) < ∞, for some

s > 0, where �0i = xi�xT
i + σ 2 Ini , and ‖d‖ denotes Euclidean norm if d is a

vector and Frobenius norm if d is a matrix.
(3) The marginal density f (·) of U is continuous and positive on its compact support.
(4) Ak(·), k = 2, 3, 4, and β2(·) have continuous second derivatives.
(5) E{R11 RT

11|U11 = u} is continuous, where R11 is the first column of RT
1. Further

assume that E{R11 RT
11|U11 = u} is positive definite.

(6) ni , i = 1, . . . , m, are bounded, n → ∞, h → 0, h1 → 0, and nh2 →
∞, nh2

1 → ∞, nh8 → 0.
(7) E{Ri j RT

il [�−1
0i ] jl |Ui j = u}, j, l = 1, . . . , ni , i = 1, . . . , m, are continuous,

where Ri j is the j th column of RT
i , and [�−1

0i ] jl is the ( j, l)th element of �−1
0i .

(8) E{XT
11�X11 R11 RT

11|U11 = u} is continuous and positive definite. Moreover,
E[XT

il�Xir Ril RT
ir |Uil = u, Uir = v], r, l = 1, . . . , ni , i = 1, . . . , m are con-

tinuous, respectively, for r �= l.
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Notations in Theorem 1 To present the expressions of 	1 and 	2 in Theorem 1
clearly, we first introduce the following notations: 
1(u) = E[G11GT

11|U11 = u],

3(u) = E[G11 FT

11|U11 = u], QT
i j = FT

i j −GT
i j
1(Ui j )

−1
3(Ui j ), QT
i = (Qi1, . . . ,

Qini ), where Fi j is the j th column of FT
i , j = 1, . . . , ni , i = 1, . . . , m.

It is easy to see that conditions (1)–(7) guarantee the following limits exist and
are finite. 	1 = limn→∞ n−1 ∑m

i=1 E[QT
i �

−1
0i Qi ],	2 = limn→∞ n−1 ∑m

i=1 E[�T
i

�0i�i ], where �i = (�i1, . . . , �ini )
T with �T

i j = GT
i j
1(Ui j )

−1�̃(Ui j ), and �̃(u) =
limn→∞ n−1 ∑m

i=1
∑ni

j=1

∑ni
l=1 E{Gi j QT

il [�−1
0i ] jl |Ui j = u}.

Notations in Theorem 2 The 
1(u) is defined in Theorem 1, and 
2(u) = E[XT
11

�X11G11GT
11|U11 = u].

Notations in Theorem 3 �i = xi �̂
\i xT

i + σ̂ 2\i Ini , i = 1, . . . , m, π1 = m−1 ∑m
i=1

E{γT
1i�

−1
0i γ 1i }, where γ 1i = (GT

i1θ
′′(Ui1), . . . , GT

ini
θ ′′(Uini ))

T.

Notations in Theorem 4 Denote the constant which the working model mistakenly
treats the (1, 1)th element of A2(·) as by A2(1,1). Let G∗

i j be the vector of Gi j with

its (p2q1 + 1)th component deleted, F∗
i j = (FT

i j , Zi21 Xi j11)
T with Zi21 being the

first component of Zi2,

∗
1(u) = E[G∗

11G∗T
11|U11 = u],
∗

3(u) = E[G∗
11 F∗T

11 |U11 =
u], ϒ4(u) = E[G∗

11 Zi21 Xi j11|U11 = u], γ 2i = (γ2i1, . . . , γ2ini )
T, where γ2i j =

[Zi21 Xi j11 − G∗T
i j 


∗
1(Ui j )

−1ϒ4(Ui j )]{A2(1,1)(Ui j ) − A2(1,1)}. Moreover, we assume

that the following limits exist and are finite, ϒ5 = plimm→∞m−1 ∑m
i=1 Q∗T

i �−1
0i γ 2i ,

	3 = plimm→∞m−1 ∑m
i=1 Q∗T

i �−1
0i Q∗

i , where d̀enotes convergence in probability,
and Q∗

i is the Qi with Fi j ,
3(·),
1(·) and Gi j replaced by F∗
i j ,


∗
3(·),
∗

1(·) and

G∗
i j , respectively. Let γ 3i = (γ3i1, . . . , γ3ini )

T with

γ3i j = [G∗T
i j 
̃

∗
1(Ui j )

−1
∗
3(Ui j ) − F∗T

i j ]	−1
3 ϒ5

+[Zi21 Xi j11 − G∗T
i j 


∗
1(Ui j )

−1ϒ4(Ui j )]{A2(1,1)(Ui j ) − A2(1,1)}. (20)

The π2 in Theorem 5 is π2 = m−1 ∑m
i=1 E[γT

3i�
−1
0i γ 3i ].

Proofs

For easy description, we write H =
(

1 0
0 h

)
⊗ Id , l3 = p1q1 + k1, γ 1 = (γT

11, . . . ,

γT
1m)T,�i = (GT

i1θ(Ui1), . . . , GT
ini

θ(Uini ))
T, i = 1, . . . , m,� = (�T

1, . . . ,�
T
m)T.

Lemma 1 Let {Ui j } be i.i.d. random variables, {ξi j } be identically distributed random
variables, and ξi j be independent of ξlk for i �= l. Further, assume that E(ξ2

11) < ∞,
and K (·) be a bounded positive function with a bounded support. When nh2 → ∞,
for any nonnegative integer λ, we have
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sup
u

n−1
m∑

i=1

ni∑
j=1

|ηi j,λ(u)Kh(Ui j − u) − E[ηi j,λ(u)Kh(Ui j − u)]| = OP ((nh2)−1/2),

where ηi j,λ(u) = ξi j {h−1(Ui j − u)}λ.

Proof As K (·) is a bounded function with a bounded support, supu |uλK (u)|
is bounded, then it follows by Jensen’s inequality that var(supu Sn,λ) =
O((nh2)−1), where Sn,λ = n−1 ∑m

i=1
∑ni

j=1 ηi j,λ(u)Kh(Ui j − u). Therefore, the
result follows. �
Lemma 2 Under the conditions (1)–8, we have σ̂ 2 = σ 2 + OP (n−1/2), �̂ = � +
OP (n−1/2). Moreover, neither of the asymptotic distributions of σ̂ 2 and �̂ depends
on whether the coefficients in the true model are functional or constant.

Proof The lemma follows from the same arguments as that in Sun et al. (2007) for
the proofs of Theorem 1 and 2 there. �
Lemma 3 Under the conditions (1)–(3), (5) and (6), we have n−1FT(In−S)T�−1(In−
S)F

P−→ 	1.

Proof It follows from Lemma 1 that

H−1�TW�H−1 = n f (u)

(
1 0
0 μ2

)
⊗ 
1(u){1 + oP (1)}, (21)

and

H−1�TW F = n f (u)(1, 0)T ⊗ 
3(u){1 + oP (1)}, (22)

uniformly for u. Combining these two results yields that (Id , 0d×d)(�TW�)−1�T

W F = 
1(u)−1
3(u){1 + oP (1)} uniformly for u.
Equivalently, we have SF = (M11, . . . , M1n1 , . . . , Mm1, . . . , Mmnm )T{1+oP (1)},

where MT
i j = GT

i j
1(Ui j )
−1
3(Ui j ). Therefore, it is easy to show that n−1FT(In −

S)T�−1(In − S)F = n−1 ∑m
i=1 QT

i �
−1
0i Qi {1 + oP (1)} = 	1 + oP (1) by Lemma 2

and the Markov inequality. �
Lemma 4 Under the conditions (1)–(6), we have n−1FT(In − S)T�−1(In − S)� =
OP (h2).

Proof By Taylor’s expansion of θ(v) with respect to v around |v − u| < h, Lemma 1,
(21) and straightforward calculation, we have

(In − S)� = −1

2
h2μ2γ 1{1 + oP (1)}. (23)

Therefore, n−1FT(In − S)T�−1(In − S)� = n−1 ∑m
i=1 QT

i �
−1
0i {− 1

2 h2μ2γ 1i }{1 +
oP (1)} = OP (h2), by Lemma 2 and the Markov inequality. �
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Proof of Theorem 1 It can be seen from Lemmas 3 and 4 that the bias term in
√

n(b̂−b)

is
√

n{FT(In − S)T�−1(In − S)F}−1FT(In − S)T�−1(In − S)� = OP (
√

nh2). Obvi-
ously, it is negligible when nh4 → 0.

It follows from similar straightforward calculation and Lemma 2 that

n−1cov{FT(In − S)T�−1(In − S)r} = 	1 + 	2 + o(1). (24)

Hence the theorem follows from Lemma 3, the Lindeberg Feller Theorem and
Slutsky Theorem. �
Proof of Theorem 2 Since

√
nh1 f (u)(θ̂(u) − θ(u))

= √
nh1 f (u)(Id , 0d×d)(�TW1�)−1�TW1F(b − b̂)

+√
nh1 f (u)(Id , 0d×d)(�TW1�)−1�TW1

(
� − �

(
θ(u)

θ ′(u)

))

+√
nh1 f (u)(Id , 0d×d)(�TW1�)−1�TW1r ≡ Ln1 + Ln2 + Ln3,

by (21), (22) and the proof of Theorem 1, we have Ln1 = √
nh1 f (u)
1(u)−1
3(u)1l3

OP (h2 + n−1/2) = oP (1) when nh5
1 = O(1) and h/h1 → 0.

Using the same arguments as establishing (23), we can show that Ln2 =
1
2

√
nh1 f (u)μ2h2

1θ
′′(u){1 + oP (1)}. Further, by (21) and straightforward calculation,

we get Ln3 = {[n f (u)]−1h1}1/2
1(u)−1 ∑m
i=1

∑ni
j=1 Gi jri j Kh1(Ui j −u){1+oP (1)}.

It can be shown that E{√[n f (u)]−1h1
∑m

i=1
∑ni

j=1 Gi jri j Kh1(Ui j − u)} = 0, and

var{√[n f (u)]−1h1
∑m

i=1
∑ni

j=1 Gi jri j Kh1(Ui j −u)} = ν0{
2(u)+σ 2
1(u)}+o(1).

Therefore, by the Lindeberg Feller Theorem and Slutsky Theorem, we have Ln3
D−→

N (0, ν0{
1(u)−1
2(u)
1(u)−1 + σ 2
1(u)−1}).
Combining the results on Ln1, Ln2 and Ln3 leads to the theorem. �

Proof of Theorem 3 Let �
\i
i j , W \i

1i j be the �, W1 obtained when the i th cluster is

deleted and u replaced by Ui j , respectively, and Y \i , F\i be the Y and F obtained when

the i th cluster is deleted, b̂
\i = ((vec( Â\i

1 ))T, β̂
\iT
1 )T, and θ̂

\i
(u) = ((vec( Â\i

3 (u)))T,

(vec(( Â\iT
2 (u), Â\iT

4 (u))T))T, β̂
\i
2 (u)T)T. It can be seen that

r∗
i j = yi j − FT

i j b − GT
i j θ̂

\i
0 (Ui j ) + {FT

i j − GT
i jη(Ui j )}(b − b̂

\i
) (25)

where θ̂
\i
0 (·) is θ̂

\i
(·) with b̂

\i
replaced by b, and

η(Ui j ) = (Id , 0d×d)(�
\iT
i j W \i

1i j�
\i
i j )

−1�
\iT
i j W \i

1i j F
\i

= 
1(Ui j )
−1
3(Ui j ){1 + oP (1)} (26)
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uniformly; therefore,

CV = m−1
m∑

i=1

ŷT
i �

−1
i ŷi + m−1

m∑
i=1

(b − b̂
\i

)T R∗T
i �−1

i R∗
i (b − b̂

\i
)

+ 2m−1
m∑

i=1

(b − b̂
\i

)T R∗T
i �−1

i ŷi , (27)

where ŷi = (ŷi1, . . . , ŷini )
T with ŷi j = yi j − FT

i j b − GT
i j θ̂

\i
0 (Ui j ), and R∗

i =
(R∗

i1, . . . , R∗
ini

)T with R∗T
i j = FT

i j − GT
i jη(Ui j ).

It can be seen, from the proof of Theorem 1, that (b̂ − b) is of convergence rate

{h2 + n−1/2}. When n
1
2 h3

1 → 0, h/h1 → 0 and {nh1} 1
2 h2 → 0, the asymptotic form

of the CV is the same as that when b is known. Thus, we only need to consider the
first term in (27) in detail, and we denote it by CV1.

Let θ̂0(·) be the θ̂(·) with b̂ replaced by b. For two matrices A and B, it is easy to see

(A+h B)−1 = A−1 −h A−1 B A−1 + O(h2). Also, θ̂0(u)−θ(u) = oP (1), h1[θ̂ ′
0(u)−

θ ′(u)] = oP (1), uniformly for u by Lemma 1 and straightforward calculation, where

θ̂
′
0(u) = (0d×d , Id)(�TW1�)−1�TW1(Y − Fb). So, we have

θ̂
\i
0 (Ui j ) − θ̂0(Ui j ) = −
1(Ui j )

−1

n f (Ui j )

ni∑
l=1

Gil Kh1(Uil − Ui j )ril + oP ({nh1}−1) (28)

holds uniformly. Let �̂i and �̂
\i
i be the �i with θ(·) replaced by θ̂0(·) and θ̂

\i
0 (·),

respectively; we have

CV1 = m−1
m∑

i=1

{Yi − Fi b − �̂i }T�−1
i {Yi − Fi b − �̂i }

+ m−1
m∑

i=1

{�̂i − �̂
\i
i }T�−1

i {�̂i − �̂
\i
i }

+ 2m−1
m∑

i=1

{Yi − Fi b − �̂i }T�−1
i {�̂i − �̂

\i
i }

≡ Jn1 + Jn2 + 2Jn3. (29)

It is easy to see

Jn1 = m−1�T(In − S1)
T(�\i )−1(In − S1)�

+ m−1rT(In − S1)
T(�\i )−1(In − S1)r

+ 2m−1�T(In − S1)
T(�\i )−1(In − S1)r

≡ Jn11 + Jn12 + 2Jn13, (30)
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where S1 is the S with h replaced by h1 and �\i = diag(�1, . . . , �m). It follows
from Lemma 2 and (23) that Jn11 = 1

4 h4
1μ

2
2m−1 ∑m

i=1 γT
1i�

−1
0i γ 1i {1 + oP (1)} =

1
4 h4

1μ
2
2π1 + oP (h4

1), and Jn13 = − 1
2 h2

1μ2m−1γT
1�

−1
0 (In − S1)r{1 + oP (1)}. Since

E[m−1γT
1�

−1
0 (In − S1)r] = 0, and var[m−1γT

1�
−1
0 (In − S1)r] = O(m−1), we have

Jn13 = OP (h2
1m− 1

2 ) = oP ({mh1}−1). With regard to Jn12, Jn12 = m−1rT(�\i )−1r+
m−1rTST

1(�
\i )−1S1r − 2m−1rT(�\i )−1S1r. By Lemma 2, (21), and the Markov

inequality, we have

m−1rT(�\i )−1S1r

= 1

mn

m∑
i=1

ni∑
j=1

ni∑
t=1

ni∑
l=1

GT
i t
1(Uit )

−1Gil

f (Uit )
Kh1(Uil − Uit )ri j ril [�−1

0i ] j t

+ oP ({mh1}−1).

Also,

m−1rTST
1(�

\i )−1S1r

=
⎡
⎣ 1

n2m

m∑
i=1

ni∑
j=1

ni∑
t=1

m∑
k=1

nk∑
l=1

nk∑
s=1

GT
i j
1(Ui j )

−1Gkl

f (Ui j )

GT
ks
1(Uit )

−1Git

f (Uit )
rklrks

×Kh1(Ukl − Ui j )Kh1(Uks − Uit )[�−1
0i ] j t

+ 2

n2m

m∑
k=1

nk∑
l=1

nk∑
j=1

nk∑
t=1

m∑
v>k

nv∑
s=1

GT
k j
1(Ukj )

−1Gkl

f (Ukj )

GT
vs
1(Ukt )

−1Gkt

f (Ukt )
rklrvs

×Kh1(Ukl − Ukj )Kh1(Uvs − Ukt )[�−1
0k ] j t

+ 2

n2m

m∑
k=1

nk∑
l=1

m∑
v>k

nv∑
s=1

nv∑
j=1

nv∑
t=1

GT
v j
1(Uv j )

−1Gkl

f (Uv j )

GT
vs
1(Uvt )

−1Gvt

f (Uvt )
rklrvs

×Kh1(Ukl − Uv j )Kh1(Uvs − Uvt )[�−1
0v ] j t + 2

n2m

m∑
k=1

nk∑
l=1

m∑
v>k

nv∑
s=1

rklrvs

×GT
kl

m∑
i �=k,v

ni∑
j=1

ni∑
t=1

{Nklvs,i j t − E(Nklvs,i j t |Ukl , Uvs)}Gvs

+ 2

n2m

m∑
k=1

nk∑
l=1

m∑
v>k

nv∑
s=1

rklrvs GT
kl

m∑
i �=k,v

ni∑
j=1

ni∑
t=1

E(Nklvs,i j t |Ukl , Uvs)Gvs

⎤
⎦

×{1 + oP (1)} ≡ {Ln1 + 2Ln2 + 2Ln3 + 2Ln4 + 2Ln5}{1 + oP (1)}

where Nklvs,i j t is [ f (Ui j ) f (Uit )]−1
1(Ui j )
−1Gi j GT

i t
1(Uit )
−1 Kh1(Ukl −Ui j )Kh1

(Uvs − Uit )[�−1
0i ] j t . By straightforward calculations and the Markov inequality, we

obtain Ln1 = ν0
mh1

{σ 2λ1 + λ2} + oP ({mh1}−1).
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By simple calculation, we get E Ln2 = 0, and var(Ln2) = OP ({nh1}−4); there-
fore, Ln2 = oP ({mh1}−1). Similarly Ln3 = oP ({mh1}−1). Obviously,

E

⎡
⎣n−1GT

kl

m∑
i �=k,v

ni∑
j=1

ni∑
t=1

{Nklvs,i j t − E(Nklvs,i j t |Ukl , Uvs)}Gvs

⎤
⎦

2

≤ tr

⎧⎨
⎩n−2

m∑
i �=k,v

n2
i

ni∑
j=1

ni∑
t=1

E[Nklvs,i j t Gvs GT
vs Nklvs,i j t Gkl G

T
kl ]

⎫⎬
⎭ = O(n−1h−2

1 ).

Hence, var(Ln5) = O(n−3h−2
1 ), this together with E Ln4 = 0 leads to Ln4 =

oP ({mh1}−1). Further, it can be easily shown that E Ln5 = 0, and var(Ln5) =
O(n−2h−1

1 ), which implies Ln5 = oP ({mh1}−1). Combining all the above results
relating Jn1, we have that

Jn1 = m−1
m∑

i=1

rT
i �

−1
i ri + 1

4
μ2

2h4
1π1 + ν0

mh1
{σ 2λ1 + λ2}

− 2

mn

m∑
i=1

ni∑
j=1

ni∑
t=1

ni∑
l=1

GT
i t
1(Uit )

−1Gil

f (Uit )
Kh1(Uil − Uit )ri j ril [�−1

0i ] j t

+ oP (h4
1 + {mh1}−1). (31)

Next, we consider Jn2 and Jn3. It follows from Lemma 2, (28) and the Markov
inequality that Jn2 = oP ({mh1}−1). Moreover, Jn3 = 1

mn

∑m
i=1

∑ni
j=1

∑ni
t=1

∑ni
l=1

GT
i t 
1(Uit )

−1Gil
f (Uit )

Kh1(Uil − Uit )ri j ril [�−1
0i ] j t + oP ({mh1}−1). This together with the

result about Jn1 leads to CV1 = m−1 ∑m
i=1 rT

i �
−1
i ri + 1

4μ2
2h4

1π1 + ν0
mh1

{σ 2λ1 +λ2}+
oP {h4

1 + 1
mh1

}. Therefore, when n
1
2 h3

1 → 0, h/h1 → 0 and {nh1} 1
2 h2 → 0, we have

CV = m−1 ∑m
i=1 rT

i �
−1
i ri + 1

4μ2
2h4

1π1 + ν0
mh1

{σ 2λ1 + λ2} + oP {h4
1 + 1

mh1
}. �

Proof of Theorem 4 The working model mistakenly treated the first element on the
diagonal of A1, denoted by A1(1,1), as functional A1(1,1)(·). That is, the working
model is yi j = F∗T

i j b∗ + Zi11 Xi j11 A1(1,1)(Ui j ) + GT
i jθ(Ui j ) + ri j where F∗

i j , b∗
are Fi j , b with their first component deleted, respectively, while the true model is
yi j = FT

i j b + GT
i jθ(Ui j ) + ri j .

Then by similar standard arguments as the proof of Theorems 1, 2 and 3, we
get that CV = m−1 ∑m

i=1 rT
i �

−1
i ri + 1

4μ2
2h4

1π1 + ν0
mh1

{σ 2λ
(1)
1 + λ

(1)
2 } + oP {h4

1

+ 1
mh1

}. �
Proof of Theorem 5 The working model is

yi j = FT
i j b + Zi21 Xi j11 A2(1,1) + G∗T

i j θ
∗∗(Ui j ) + ri j , (32)

where θ∗∗(u) is the θ(u) with its (p2q1 + 1)th functional coefficient deleted, while
the true model is yi j = F∗T

i j b∗∗ + G∗T
i j θ

∗∗(Ui j ) + ri j + Zi21 Xi j11{A2(1,1)(Ui j ) −
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A2(1,1)}, where b∗T = (bT, A2(1,1)). By the same arguments as that in the proof of

Theorem 1, it can be shown that b̂
∗∗ − b∗∗ − δ1 = OP (h2 + n−1/2), where δ1 =

{F∗∗T(In − S∗∗)T�−1(In − S∗∗)F∗∗}−1F∗∗T(In − S∗∗)T�−1(In − S∗∗)v, with v =
(v11, . . . , v1n1 , . . . , vm1, . . . , vmnm )T, vi j = Zi21 Xi j11[A2(1,1)(Ui j ) − A2(1,1)], and
F∗∗, S∗∗,�∗∗ are defined in the same way as F, S,� but based on the working model
(32). It is easy to see θ̂

∗∗
(u) − θ∗∗(u) = δ2(u) + OP (h2

1 + {nh2
1}−1/2) uniformly for

u, where �∗∗ is defined in the same way as � but based on the working model (32),
and δ2(u) = (Id−1, 0(d−1)×(d−1))(�

∗∗TW1�
∗∗)−1�∗∗TW1{v−F∗∗δ1}. The estimated

residual r∗
i j defined in (16) based on the working model (32) is r∗

i j = r∗∗
i j +vi j−F∗T

i j δ
\i
1 −

G∗T
i j δ

\i
2 (Ui j ), where r∗∗

i j = F∗T
i j (b∗∗ − b̂

∗∗\i + δ
\i
1 ) + G∗T

i j [θ∗∗(Ui j ) − θ̂
∗∗\i

(Ui j ) +
δ
\i
2 (Ui j )] + ri j is the estimated residual when the working model (32) is the true

model, and δ
\i
1 , δ

\i
2 (Ui j ) are, respectively, the δ1, δ2(Ui j ) obtained when the i th clus-

ter is deleted. It can be shown that δ1−δ
\i
1 = op(1), δ1

P−→ 	−1
3 ϒ5, δ2(u)−δ

\i
2 (u) =

oP (1), and δ2(u)
P−→ 
∗

1(u)−1ϒ4(u){A2(1,1)(u)− A2(1,1)}−
∗
1(u)−1
∗

3(u)	−1
3 ϒ5

uniformly with respect to u by the straightforward calculation and Lemma 1, hence
r∗

i j = r∗∗
i j + γ3i j + oP (1). By Theorem 3, Lemma 2 and the Markov inequality, we

have

CV = m−1
m∑

i=1

r∗∗T
i �−1

i r∗∗
i + m−1

m∑
i=1

γT
3i�

−1
i γ 3i + 2m−1

m∑
i=1

γT
3i�

−1
i r∗∗

i + oP (1)

= m−1
m∑

i=1

rT
i �

−1
i ri + π2 + oP (1), (33)

where r∗∗
i = (r∗∗

i1 , . . . , r∗∗
ini

)T. �
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