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Abstract Gompertz functions have been widely used in characterizing biological
growth curves. In this paper we consider D-optimal designs for Gompertz regression
models. For homoscedastic Gompertz regression models with two or three param-
eters, we prove that D-optimal designs are minimally supported. Considering that
minimally supported designs might not be applicable in practice, alternative designs
are proposed. Using the D-optimal designs as benchmark designs, these alternative
designs are found to be efficient in general.

Keywords D-optimality · Local optimality · Minimally supported designs ·
Sigmoid growth curve · Tchebycheff system

1 Introduction

Sigmoid growth curves are found in a wide range of disciplines, such as agriculture,
biology, and microbiology. Sigmoid growth consists of three distinct phases: the initial
exponential phase, the linear phase and the final plateau. Among other sigmoid func-
tions, the Gompertz function has gained wide acceptance as an applicable function in
a number of biological systems.

The Gompertz function (Gompertz 1825), μ1(x) = βe−e−γ (x−τ )
, has three param-

eters, where β is the upper asymptote, γ is the growth rate. The parameter τ is the
point of inflection at which point the maximum growth rate, βγ/e, occurs; see Fig. 1.
Compared with other sigmoid models such as logistic models, the Gompertz function
provides a better approximation to tumor growth curves (Laird 1965; Marusic and
Vuk-Pavlovic 1993). When the upper asymptote β is known, the Gompertz function
can be simplified to a two-parameter function μ2(x) = e−e−γ (x−τ )

.
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946 G. Li

Fig. 1 Plot of Gompertz function

The choice of the experimental design is very important in order to accurately esti-
mate the unknown model parameters and efficiently improve the quality of statistical
inferences. The methodology based on the design of experiments is a useful tool that
could be employed for choosing the best experimental design. Consider a vector of
observations Y whose joint probability density function, p(Y |x, θ), depends on a vec-
tor of unknown parameters θ and the design variable x , whose values can be controlled
by researchers in the design stage of the experiments. Consider a design region χ and
let H be the set of all probability measures on χ . Let M(x, θ) be the information matrix

of a single observation at point x, M(x, θ) = E
[

∂ log p(Y |x,θ)
∂θ

∂ log p(Y |x,θ)

∂θT

]
, where the

expectation is taken with respect to the distribution of Y . The per observation infor-
mation matrix for the design measure ξ ∈ H is M(ξ, θ) = ∫

χ
M(x, θ) dξ(x).

Unlike linear models, the Fisher information matrix for nonlinear models depends
on at least one of the unknown parameters. A common approach is locally optimal
designs (Chernoff 1953). The locally optimal design maximizes the criterion function
evaluated at the best guess of the unknown parameters. Thus it depends on provi-
sional values for the unknown parameters. To account for the uncertainty about the
parameter values in the local optimal approach, other approaches such as minimax
designs (Fedorov and Hackle 1997) and Bayesian designs (Chaloner and Larntz 1989;
Chaloner and Verdinelli 1995) can be considered. These approaches use different
strategies to take the uncertainty of the unknown parameters into account and con-
sequently the optimization problems are much more computationally intensive than
the local optimality approach. Nevertheless, locally optimal designs remain valuable
and they often serve as benchmark designs to investigate the efficiencies of all other
designs (Ford et al. 1992).

In optimal design theory, optimality criteria are concave functions of the information
matrix. D-optimality is one of the most popular criteria and it has been studied by many
authors, including Ford et al. (1992), Sitter and Wu (1993), Hedayat et al. (1997), Han
and Chaloner (2003), Dette et al. (2006), Melas (2006) and Li and Majumdar (2008);
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Li and Majumdar (2009). The D-optimal criterion function is defined as the logarithm
of |M(ξ, θ)|, the determinant of the information matrix, if M(ξ, θ) is nonsingular,
and −∞ if M(ξ, θ) is singular (Atkinson et al. 2007). An approximate D-optimal
design maximizes this criterion function over H. An important property of a D-opti-
mal design is that it minimizes the volume of the asymptotic confidence region for
θ . It is also notable that D-optimal designs often perform well under other optimality
criteria (Atkinson et al. 2007).

In this paper we consider D-optimal designs for the following two Gompertz regres-
sion models with homoscedastic normal error,

Y = exp
(−e−θ1x+θ2

) + ε, (1)

Y = θ3 exp
(−e−θ1x+θ2

) + ε. (2)

The mean function of these two models are re-parameterized from the previously dis-
cussed two Gompertz functions. A design is locally D-optimal with respect to θ ′s is
also locally D-optimal with respect to the previous parametrization by the transfor-
mation-invariance property of D-optimal designs (Atkinson et al. 2007).

Some preliminary results are given in Sect. 2. D-optimal designs for the homosce-
dastic Gompertz regression models (1) and (2) are studied in Sects. 3 and 4, respec-
tively. We prove theoretically that locally D-optimal designs for the two Gompertz
regression models are minimally supported. In parallel, we propose alternative designs
which are found to be highly efficient.

2 Preliminaries

Let us consider a general homoscedastic regression model

y = f (x, θ) + ε, (3)

with independent ε ∼ N (0, σ 2). If (θT , σ 2)T is the parameter vector of interest, the
per observation Fisher information matrix for a design measure ξ is M̃(ξ, θ, σ 2) =( M(ξ, θ) 0

0 1
2σ2

)
, where M(ξ, θ) = ∫

χ
∂ f (x,θ)

∂θ
∂ f (x,θ)

∂θT dξ(x) is the information matrix for

θ . Since |M̃(ξ, θ, σ 2)| = 1/(2σ 2)|M(ξ, θ)|, the D-optimal design for (θT , σ 2)T is
the same as that for θ .

The equivalence theorem provides an important tool in the theory of optimum
design. Originally established for linear models (Kiefer and Wolfowitz 1960), it was
extended to nonlinear models by White (1973). For model (3), the design ξ∗ is locally
D-optimal at θ = θ0 if and only if d(ξ∗, x) ≤ k for all points x ∈ χ with equality
holding at the support points of ξ∗, where k is the number of the unknown model
parameters and the function d(ξ, x) = ∂ f (x,θ0)

∂θT M−1(ξ, θ0)
∂ f (x,θ0)

∂θ
is the standardized

variance of the model-based predicted response at x .
Assume the design region χ has one of the following forms: χ0 = (−∞,∞), χ1 =

[a,∞), χ2 = (−∞, b] or χ3 = [a, b] with known a and b. It follows from the defini-
tion of the D-optimal criterion that a D-optimal design over H must be a nonsingular
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design, a design with a nonsingular information matrix. Let H be the set of nonsingular
designs in H.

For many nonlinear models it is known that the number of support points of the
D-optimal design is equal to the number of the model parameters (Ford et al. 1992;
Han and Chaloner 2003; Li and Majumdar 2008; Li and Majumdar 2009; Yang and
Stufken 2009; Yang 2010). These designs are called minimally supported designs
or saturated designs. However, there exist models for which D-optimal designs are
not minimally supported (Sitter and Wu 1993). If a D-optimal design is minimally
supported, then it has uniform weights on all support points. As a result, we only
need to determine the k support points and the computation is greatly reduced. Once
a D-optimal design is determined, one may either use it in the experiment, or use it
as a benchmark to evaluate the D-efficiency of any other designs. The D-efficiency

of a design ξ is defined as Deff =
[ |M(ξ,θ)|

|M(ξ∗,θ)|
]1/k

, where ξ∗ is the D-optimal design

(Hedayat et al. 1997).
In general it is rather difficult to technically prove that local D-optimal designs

for nonlinear models are minimally supported designs. However, some sufficient con-
ditions were established in the literature and derived for many important nonlinear
models. By examining the behavior of d(x, ξ) − k in a vertical neighborhood of zero,
Li and Majumdar (2008) provide the following sufficient conditions and applied them
to logistic models.

Theorem 1 (i) For χ0 = (−∞,∞), if ∀ ξ ∈ H, ∃ ε > 0, such that every function
in {d(ξ, x) − k + c : 0 < c < ε} has at most 2k + 1 roots in the design region
and a D-optimal design over H exists, then the D-optimal design must be minimally
supported and unique.
(ii) Let χ be one of the following two forms: χ1 = [a,∞) or χ2 = (−∞, b]. If
∀ ξ ∈ H, ∃ ε > 0, such that every function in {d(ξ, x) − k + c : 0 < c < ε} has at
most 2k roots in the design region χ1 or χ2 and a D-optimal design over H exists,
then the D-optimal design must be minimally supported and unique. In addition, if
∀ ξ ∈ H, ∃ ε > 0, such that every function in {d(ξ, x) − k + c : 0 < c < ε} has at
most 2k − 1 roots in the design region and a D-optimal design over H exists, then a
(for χ1) or b (for χ2) is one of the support points of the D-optimal design.
(iii) For χ3 = [a, b], if ∀ ξ ∈ H, ∃ ε > 0, such that every function in {d(ξ, x)−k +c :
0 < c < ε} has at most 2k − 1 roots in χ3, then the D-optimal design must be mini-
mally supported and unique and at least one of the boundary points is a support point
of the D-optimal design. In addition, if ∀ ξ ∈ H, ∃ ε > 0, such that every function in
{d(ξ, x) − k + c : 0 < c < ε} has at most 2k − 2 roots in χ3, then both a and b are
support points of the D-optimal design.

In another paper, Li and Majumdar (2009) derived another set of sufficient condi-
tions and applied them to the one-compartment pharmacokinetic model and a Poisson
regression model. Although these sufficient conditions were derived under either a
homoscedastic regression model or a generalized linear model, they could be applied to
other types of models as long as the Fisher information matrix for a single observation
M(x, θ) has a rank of 1. Yang and Stufken (2009) provided a unified approach to char-
acterizing the minimally supported D-optimal designs for two-parameter nonlinear

123



Designs for Gompertz models 949

models. Besides D-optimality, their approach can also be applied to other commonly
used criteria. Yang (2010) extended this approach to nonlinear models with an arbitrary
number of parameters.

In this paper we apply Theorem 1 to the Gompertz models. To verify the sufficient
conditions presented in Theorem 1, it is most important to identify the maximum num-
ber of roots for a class of functions. In this aspect, the theory of Tchebycheff systems
(Karlin and Studden 1966) plays a key role. Let u0, . . . , un denote continuous real-
valued functions defined on a closed finite interval I = [a, b]. These functions will
be called a weak Tchebycheff system over I , provided the n + 1st order determinants

U

(
u0, u1, . . . , un

t0, t1, . . . , tn

)
=

∣∣∣∣∣∣∣∣∣

u0(t0) u0(t1) · · · u0(tn)
u1(t0) u1(t1) · · · u1(tn)
...

...
...

un(t0) un(t1) · · · un(tn)

∣∣∣∣∣∣∣∣∣

are nonnegative whenever a ≤ t0 < t1 < · · · ≤ b. If the determinants are strictly pos-
itive, then {u0, . . . , un} is called a Tchebycheff system over I , abbreviated T -system.
If {u0, . . . , un} is a T -system over every finite interval I , then it is a T -system on
(−∞,∞).

If {u0, . . . , un} is a T -system then the maximum number of distinct roots of any
nontrivial linear combination of ui ’s is n; conversely, if the maximum number of dis-
tinct roots of any nontrivial linear combination of ui ’s is n, then either {u0, . . . , un}
or {u0, . . . ,−un} is a T -system. Since the maximum number of the roots is directly
related to the length of the T -system, it is of interest to shorten the length of the
T -system. The following Lemma 1 provides a tool, which is a stronger version than
that in Li and Majumdar (2008). The tool is applied to prove Lemma 2. The proofs
are presented in an Appendix.

Lemma 1 Let {ui j (t), j = 1, . . . , li }s
i=1 be s sequences of functions. If ∀ ji ∈

{1, 2, . . . , li }, i ∈ {1, 2, . . . , s}, {u1 j1 , u2 j2 , . . . , us js } are weak T -systems over I ,
and ci j > 0, i = 1, 2, . . . , s, j = 1, 2, . . . , li . Then

⎧⎨
⎩

l1∑
j=1

c1 j u1 j ,

l2∑
j=1

c2 j u2 j , . . . ,

ls∑
j=1

cs j us j

⎫⎬
⎭ (4)

is also a weak T -system over I . In addition, if at least one of {u1 j1, u2 j2 , . . . , us js } is
a T -system over I , then it is also a T -system over I .

Lemma 2 For any finite interval I =[a, b]and constantα, {1, eαt , e2αt , te2αt , t2e2αt ,

e2eαt } is a T -system.

In addition, the following variant of part (iii) in Theorem 1 will be used in later
sections.

Remark 1 If ∀ ξ ∈ H limx→±∞ d(ξ, x) < k, and ∀ ξ ∈ H, ∃ ε > 0, such that every
function in {d(ξ, x) − k + c : 0 < c < ε} has at most 2k roots, then the D-optimal
design is minimally supported on all four types of design region.
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3 Two-parameter Gompertz regression model

First we consider the two-parameter Gompertz regression model (1), where
θ = (θ1, θ2)

T is the parameter vector of interest. Let ω1 = exp(−e−θ1x+θ2),
ω2 = e−θ1x+θ2 and h(x, θ) = ω1ω2(x,−1)T. Then the per observation infor-
mation matrix for θ is M(ξ, θ) = ∫

χ
h(x, θ)h(x, θ)T dξ(x) and d(ξ, x) =

h(x, θ)TM−1(ξ, θ)h(x, θ). Let mi j denote the (i, j)th element of M−1(ξ, θ). Then
d(ξ, x) = ω2

1ω
2
2(m11x2 − 2m12x + m22). In the next section we will consider locally

D-optimal designs for the model (1) under all four types of design region.

3.1 Locally D-optimal designs

It is easy to verify that limx→±∞ d(ξ, x) = 0. For any constant c, ω−2
1 [d(ξ, x)−2+c]

is a linear combination of {ω2
2, xω2

2, x2ω2
2, ω

−2
1 }. It is noted that ω−2

1 = e2ω2 =
∞

i=0(2
i/ i !)ωi

2. Thus ω−2
1 [d(ξ, x) − 2 + c] is also a linear combination of

{ω2, ω
2
2, xω2

2, x2ω2
2, i=0ori≥2(2

i/ i !)ωi
2}. (5)

It follows by a similar argument to the proof of Lemma 2 that we can show that (5)
is a T -system. Hence d(ξ, x) − 2 + c has at most four roots. From Theorem 1, the
locally D-optimal design is minimally supported for (−∞,∞), [a,∞) and (−∞, b].
Since limx→±∞ d(ξ, x) = 0, it follows from Remark 1 that the locally D-optimal
design is also minimally supported for [a, b].

Consider a two-point uniform design ξ with support x1, x2 and let λi = −θ1xi +θ2.
The determinant of the information matrix is

|M(ξ, θ)| ∝ exp(2λ1 + 2λ2 − 2eλ1 − 2eλ2)(λ1 − λ2)
2. (6)

From (6) we know that the locally D-optimal design depends on the parameters through
the linear combination, λi ’s. Let Λ = {λ : λ = −θ1x + θ2, x ∈ χ} be the induced
design region spanned by λ. The support points of the D-optimal design, expressed
in λ’s, can be determined by maximizing the right hand of (6) in the corresponding
induced design regions. To implement the optimal design, we plug in the initial guess
{θ(0)

1 , θ
(0)
2 } for the unknown parameter and solve for the support points in the original

design region χ , i.e. x∗
i = [λ∗

i − θ
(0)
2 ]/(−θ

(0)
1 ).

The following theorem summarizes D-optimal designs for the model (1) under dif-
ferent design regions and it establishes underlying relationships among support points
of D-optimal designs under these design regions. It takes inspiration from identically
structured results in Ford et al. (1992). Like those authors, for ease of presentation, the
induced design regions are considered and support points are expressed in λ’s. Selected
examples of D-optimal designs are presented in Table 1 for illustration purposes.

Theorem 2 (i) For Λ0 = (−∞,∞), the D-optimal design is supported on {λ∗
1 =

−1.044, λ∗
2 = 0.499}.

(ii) Consider Λ1 = [a,∞). If a ≤ λ∗
1, the D-optimal design is supported on {λ∗

1, λ
∗
2};
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Table 1 D-optimal designs for two-parameter homoscedastic Gompertz regression models

Design region Λ D-optimal design Design region Λ D-optimal design

(−∞,∞) {−1.044, 0.499} [−3, 6] {−1.044, 0.499}
(−∞, 0] {−1.35, 0} [−3, 0] {−1.35, 0}

[0, ∞) {0, 0.806} [0, 6] {0, 0.806}

[−1, 2] {−1, 0.508} [−1, 0] {−1, 0}

[−10, −3] {−4.015, −3} [1, 6] {1, 1.35}

If a > λ∗
1, the D-optimal design is supported on {a, λ∗

a}, where λ∗
a is the only solution

to λ = a + 1/(eλ − 1).
(iii) Consider Λ2 = (−∞, b]. If b ≥ λ∗

2, the D-optimal design is supported on
{λ∗

1, λ
∗
2}; If b < λ∗

2, the D-optimal design is supported on {λ∗
b, b}, where λ∗

b is the only
solution to λ = b + 1/(eλ − 1).
(iv) Consider Λ3 = [a, b]. If a ≤ λ∗

1 and b ≥ λ∗
2, the D-optimal design is supported on

{λ∗
1, λ

∗
2}; if a ≤ λ∗

1 and b < λ∗
2, the D-optimal design is supported on {max(a, λ∗

b), b};
if a > λ∗

1 and b ≥ λ∗
2, the D-optimal design is supported on {a, min(λ∗

a, b)}; if a > λ∗
1

and b < λ∗
2, the D-optimal design is supported on {a, b}.

Note that in part (i) of the theorem we consider (−∞,∞) as a design interval. This
makes sense since our model is equivalent to a weighted linear model for which the
design space or locus is bounded for all λ. This is a feature of all the models considered
by Ford et al. (1992). Moreover the support points of the D-optimal design are finite.
In theory we do not need to impose limits on the design variable λ.

3.2 Efficient designs

Although the use of the D-optimal designs can achieve the best precision in the estima-
tion of the model parameters, it may not be applicable in practice as we may not be so
sure about the appropriateness of the chosen statistical model. However the D-optimal
designs with the same number of support points as that of the model parameters can
not be used to test the goodness of fit for the selected model. In addition, it may be
inconvenient to implement the optimal design logistically. So we now propose some
alternative efficient designs.

Equally spaced and uniformly weighted designs (ESUWDs) are widely adopted
designs in practical situations. An m-point ESUWD has support points {λ + (i −
1)δλ, i = 1, . . . , m} with uniform weight 1/m. Choice of λ and δλ can be dictated
by ease of implementation or for a desired efficiency. A D-optimal m-point ESUWD
maximizes, over λ and δλ, the determinant of the Fisher information matrix among all
the m-point ESUWDs.

It is noted that ESUWDs take equally spaced support points on the x-axis. By sym-
metry we can also take equally spaced points on the y-axis and then project points on
the response curve to the x-axis to obtain the support points. We call such designs as
equally spaced in response and uniformly weighted designs (ESRUWDs). An m-point
ESRUWDs has support points {ln[− ln(y + (i − 1)δy)], i = 1, . . . , m} with uniform
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Fig. 2 Equally spaced in response and uniformly weighted designs (ESRUWD)

Table 2 D-efficiencies of alternative designs for two-parameter homoscedastic Gompertz models

m D-optimal ESUWD D-optimal ESRUWD Naive ESRUWD

(λ∗, δ∗
λ) Efficiency (%) (y∗, δ∗

y ) Efficiency (%) (y∗, δ∗
y ) Efficiency (%)

3 (−1.26, 0.91) 91.8 (0.167, 0.288) 91.6 (0.250, 0.250) 87.1

4 (−1.31, 0.65) 90.0 (0.151, 0.205) 89.3 (0.200, 0.200) 87.5

5 (−1.34, 0.51) 89.4 (0.139, 0.160) 88.4 (0.167, 0.167) 86.9

6 (−1.37, 0.42) 89.1 (0.130, 0.132) 87.9 (0.143, 0.143) 86.1

7 (−1.40, 0.36) 88.9 (0.123, 0.112) 87.6 (0.125, 0.125) 85.3

8 (−1.45, 0.32) 88.8 (0.118, 0.098) 87.4 (0.111, 0.111) 84.6

weight 1/m, where y + (i − 1)δy ∈ (0, 1). See Fig. 2 for an example of 7-point ES-
RUWD. A D-optimal m-point ESRUWD maximizes, over y and δy , the determinant
of the Fisher information matrix among all the m-point ESRUWDs. For models such
as the two-parameter Gompertz models whose mean function is nonlinear in the design
variable, ESRUWDs do not have equally spaced support points. However, a desired
property for ESRUWDs is that the distance of the support points reflects the steepness
of the response curve. In the place of the response curve with sharper steepness the
corresponding support points are closer.

To search for D-optimal ESUWDs and ESRUWDs numerical techniques, such as
the Newton–Raphson method, are needed. In contrast, we can also consider a naive
ESRUWD with support points {ln[− ln(i/(m + 1))], i = 1, . . . , m}. As m increase,
this design provides a good coverage of the response range.

Table 2 provides the efficiencies of these designs for 3 < m < 8. All three alterna-
tives designs have high efficiencies and comparatively the D-optimal ESUWDs have
the highest efficiencies. For m > 3, all three proposed alternative designs have the
flexibility of enabling a check for the goodness of fit for the two-parameter Gompertz
model.
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4 Three-parameter Gompertz regression model

Consider the three-parameter Gompertz regression model (2), where θ = (θ1, θ2, θ3)
T

is the parameter vector of interest. Let h(x, θ) = ω1(θ3xω2,−θ3ω2, 1)T, where ω1 =
exp(−e−θ1x+θ2), ω2 = e−θ1x+θ2 . Then M(ξ, θ) = ∫

χ
h(x, θ)h(x, θ)T dξ(x) and

d(ξ, x) = h(x, θ)TM−1(ξ, θ)h(x, θ). In the next two sections we will consider the
locally D-optimal design and efficient designs for the model (2).

4.1 Locally D-optimal designs

Let mi j denote the (i, j)th element of M−1(ξ, θ). Then, for any constant c,
ω−2

1 [d(ξ, x) − 3 + c] is a linear combination of

{1, ω2, ω
2
2, xω2

2, x2ω2
2, u(x)}, (7)

where u(x) = −2m13θ3xω2 + (3 − c)ω−2
1 .

It follows from Lemma 2 that {1, ω2, ω
2
2, xω2

2, x2ω2
2, ω

−2
1 } is a T -system. For a

design ξ with support x1, x2, . . . , xt and corresponding weights p1, p2, . . . , pt , where
t ≥ 3, pi > 0 and

∑t
i=1 pi = 1, let Mi j be the minor corresponding to the (i, j)th

element of M(ξ, θ). Let v(r, s) =
∣∣∣ ω1(r) ω1(r)ω2(r)

ω1(s) ω1(s)ω2(s)

∣∣∣ ×
∣∣∣ω1(r)ω2(r) ω1(r)ω2(r)r
ω1(s)ω2(s) ω1(s)ω2(s)s

∣∣∣ . It

can be shown that M13 =θ3
3

∑
1≤i< j≤t pi p jv(xi , x j ).

If θ1 > 0, then both {ω1, −ω1ω2} and {ω1ω2, ω1ω2x} are T -systems. Thus
v(r, s) < 0 ∀ r = s and M13θ3 < 0. Since m13 = M13/|M |, m13θ3 < 0 for
ξ ∈ H . From Karlin and Studden (1966, p10), we know {1, ω2, ω

2
2, xω2

2, x2ω2
2, xω2}

is a T -system. So u(x) is a linear combination of {ω−2
1 , xω2} with positive coeffi-

cients for c < 3. It follows from Lemma 1 that (7) is a T -system, which implies
that (d(ξ, x) − 3 + c) has at most five roots. Similarly it can also be shown that
(d(ξ, x) − 3 + c) has at most five roots if θ1 < 0. From part (ii)&(iii) of Theo-
rem 1, the locally D-optimal designs for (−∞, b] or (−∞, b] or [a, b] are minimally
supported if a D-optimal design exist in the corresponding design space.

From (8) we know that the locally D-optimal design does not depend on θ3 and
depends on θ1 and θ2 through the linear combination −θ1xi + θ2. Let Λ = {λ : λ =
−θ1x + θ2, x ∈ χ} be the induced design region spanned by λ. The support points
of the D-optimal design, expressed in the λ’s, can be determined by maximizing the
right hand of (8) in the corresponding induced design region. Again we would like
to summarize the D-optimal design under the induced design space Λ. Let us first
consider the infinite design interval Λ = (−∞,∞).

Consider a typical three-point uniformly weighted design ξ with support x1, x2, x3
and let λi = −θ1xi + θ2. The determinant of the information matrix is

|M(ξ, θ)| = θ4
3 [eλ1+λ2(λ1 − λ2) + eλ2+λ3(λ2 − λ3) + eλ3+λ1(λ3 − λ1)]2

27θ2
1 exp 2(eλ1 + eλ2 + eλ3)

(8)
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For fixed λ2 < λ3, it can be shown that the numerator of (8) is decreasing and the
denominator is increasing in λ1 ∈ (−∞, λ2). This implies that −∞ is one of the
support points of the locally D-optimal design in a limiting case when −∞ is also
included in the design space Λ. Plugging λ1 = −∞ into (8) will result in an equa-
tion equivalent to (6), which is the D-optimal criterion function for the two-parameter
Gompertz regression model. Thus, in this limiting case, the other two support points of
the locally D-optimal design for the three-parameter Gompertz regression model (2)
are the same as those for the two-parameter Gompertz regression model (1), namely
−1.044 and 0.499.

Hence a finite lower limit must be imposed on the induced design space Λ. Since the
other two support points are finite, no finite upper limit on Λ is needed from a mathe-
matical point of view. In the following theorem we summarize D-optimal designs for
the three-parameter Gompertz regression model on Λ = [a,∞) and [a, b].

Theorem 3 (i) The D-optimal design ξ∗
a∞ on Λ = [a,∞) is minimally supported

with three support points, a < λ∗
2(a) < λ∗

3(a).
(ii) The D-optimal design ξ∗

ab on Λ = [a, b] is minimally supported with three sup-
port points, where the lowest support point is a and the largest support point is
min{b, λ∗

3(a)}. In the special case if b ≥ λ∗
3(a), then ξ∗

ab = ξ∗
a∞.

Proof We have shown that both ξ∗
a∞ and ξ∗

ab are minimally supported and a is one of the
support points. We only need to show the largest support point of ξ∗

ab is min{b, λ∗
3(a)}.

If b < λ∗
3(a) and the largest support point of ξ∗

ab is λ̃3 < b, then d(ξ∗
ab, λ) < 3 for

λ ∈ (λ̃3, b]. Given the fact that (d(ξ∗
ab, λ) − 3 + c) has at most 5 roots for any c < 3,

d(ξ∗
ab, λ) < 3 if λ > b. This implies that ξ∗

ab is a D-optimal design on Λ = [a,∞)

different from ξ∗
a∞, which contradicts with the uniqueness of the D-optimal design

on Λ = [a,∞). Thus the largest support point of ξ∗
ab is b if b < λ∗

3(a). Similarly it
can shown that if b ≥ λ∗

3(a) then ξ∗
ab = ξ∗

a∞. ��

In practice, the induced design region Λ may be chosen by the extent to which
researchers want to plan the experiment. For example, it is subject to ethical reasons
that we would sacrifice the animals before the cancer tumor reaches a certain size
in oncology animal studies. An induced design region Λ = [ln(− ln(p)),∞) cor-
responds to a design region with the size of the tumor up to 100p percent of the
maximum tumor size. At the same time the experimenter may choose to make the
first measurement after the tumor has grown to certain size. In this case, an induced
design region of Λ = [ln(− ln(p1)), ln(− ln(p2))] corresponds to a design region
with the size of tumor between 100p2 and 100p1 percent of the maximum tumor
size.

Table 3 provides the support points of the D-optimal designs for different design
regions. It is noted that support points of the D-optimal design on the design space in
the type of Λ = [a,∞)(p2 = 0) increases with a, the lower limit of the design space.
We can also observe that the D-optimal design on Λ = [−2.25,∞](p1 = 0.9, p2 = 0)

is the same as that on Λ = [−2.25, 0.834](p1 = 0.9, p2 = 0.1) because b > λ∗
3(a)

(i.e. 0.834 > 0.643).
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Table 3 D-optimal designs for three-parameter homoscedastic Gompertz regression models; Λ =
[ln(− ln(p1)), ln(− ln(p2))]
Design region D-optimal design Design region D-optimal design

p1 p2 Support points p1 p2 Support points

1/2 0 {−0.367, 0.191, 0.996} 1/2 1/10 {−0.367, 0.147, 0.834}
3/5 0 {−0.672, 0.014, 0.91} 3/5 1/10 {−0.672, −0.009, 0.834}

7/10 0 {−1.031, −0.181, 0.821} 7/10 1/5 {−1.031, −0.297, 0.476}

4/5 0 {−1.50, −0.389, 0.73} 4/5 1/5 {−1.50, −0.482, 0.476}

9/10 0 {−2.25, −0.633, 0.643} 9/10 1/10 {−2.25, −0.633, 0.643}

Table 4 D-efficiencies of alternative designs for three-parameter homoscedastic Gompertz models;
Λ = [ln(− ln(p)), ∞)

p m D-optimal ESUWD D-optimal ESRUWD

(λ∗, δ∗
λ) Efficiency (%) (y∗, δ∗

y ) Efficiency (%)

1/2 4 (−0.367, 0.474) 92.6 (0.500, 0.146) 92.5
5 (−0.367, 0.367) 88.8 (0.500, 0.111) 87.7

6 (−0.367, 0.298) 86.0 (0.500, 0.090) 84.6

7 (−0.367, 0.251) 83.8 (0.500, 0.075) 82.3

8 (−0.367, 0.217) 82.2 (0.500, 0.065) 80.7

2/3 4 (−0.903, 0.605) 92.2 (0.667, 0.193) 92.7

5 (−0.903, 0.467) 88.4 (0.667, 0.147) 88.0

6 (−0.903, 0.380) 85.8 (0.667, 0.119) 84.9

7 (−0.903, 0.320) 83.9 (0.667, 0.100) 82.6

8 (−0.903, 0.277) 82.5 (0.667, 0.086) 80.9

Again, in order to implement the optimal designs, we plug in the initial guess
{θ(0)

1 , θ
(0)
2 } for the unknown parameter and solve for the support points in the original

design region χ , i.e. x∗
i = [λ∗

i − θ
(0)
2 ]/(−θ

(0)
1 ).

4.2 Efficient designs

In this section we present alternative designs for the three-parameter Gompertz models
under the induced design region Λ = [ln(− ln(p),∞). Similar to the two-parameter
Gompertz model, D-optimal ESUWDs and ESRUWDs can be found by numerical
computations and D-optimal designs can be used as benchmarks to evaluate the perfor-
mance of these designs. Table 4 presents the efficiency of these alternative designs. For
4 ≤ m ≤ 8, the D-optimal ESUWDs and ESRUWDs have high efficiency although
the efficiency decreases as m increases. It is worth pointing out that, λ∗ = ln(− ln(p))

for all D-optimal ESUWD designs shown in the Table 4.
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5 Conclusions

In this paper we have studied D-optimal designs for two Gompertz regression mod-
els with homoscedastic variance. Because of the nonlinear nature of the Gompertz
functions, we considered local optimality criteria. For both Gompertz regression mod-
els, we provided theoretical proofs to show that D-optimal designs are minimally
supported. In addition, we studied the efficiencies of equally weighted designs with
support points equally spaced in either design space (i.e., ESUWD) or the response
space (i.e, ESRUWD). Using D-optimal designs as benchmark designs these equally
spaced designs have good efficiencies.

Although heteroscedastic regression models have been used in fitting growth curves
more widely, we believe that the optimal and efficient designs obtained in this paper
for homoscedastic models should still be valuable and applicable under certain het-
eroscedastic structures. We will continue to investigate this in future research.

6 Appendix

6.1 Proof of Lemma 1

Let vi = ∑li
j=1 ci j ui j . The sth order discriminant is

U

(
v1, v2, . . . , vs

t1, t2, . . . , ts

)
=

l1∑
j1=1

· · ·
ls∑

js=1

[(
s∏

i=1

ci, ji

)
U

(
u1 j1 , u2 j2 , . . . , us js
t1, t2, . . . , ts

)]

Since {u1 j1, u2 j2 , . . . , us js } are weak T -systems, ∀ ji ∈ {1, 2, . . ., li }, i ∈
{1, 2, . . ., s}, U

(
u1 j1 , u2 j2 , . . . , us js
t1, t2, . . . , ts

)
≥ 0 whenever t1 < t2 < · · · < ts . Thus

U

(
v1, v2, . . . , vs

t1, t2, . . . , ts

)
≥ 0 whenever t1 < t2 < · · · < ts . This means {v1, v2, . . . , vs},

i.e. (4), is a weak T -system. If at least one of {u1 j1, u2 j2 , . . . , us js } is a T -system,
then whenever t1 < t2 < · · · < ts . This means {v1, v2, . . . , vs} is a T -system.

6.2 Proof of Lemma 2

It is noted that e2eαt = ∑∞
i=0(2

i/ i !)eiαt . It follows from Karlin and Studden (1966,
p10) that {1, eαt , e2αt , te2αt , t2e2αt , eiαt } is a weak T -systems if 0 ≤ i ≤ 2; Otherwise
{1, eαt , e2αt , te2αt , t2e2αt , eiαt } is a T -system. Since the coefficients for eiαt are all
positive, it follows from Lemma 1 that {1, eαt , e2αt , te2αt , t2e2αt , ee2αt } is a T -system.
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