
Ann Inst Stat Math (2012) 64:919–943
DOI 10.1007/s10463-011-0339-4

On estimating distribution functions using Bernstein
polynomials

Alexandre Leblanc

Received: 9 May 2008 / Revised: 25 July 2011 / Published online: 20 November 2011
© The Institute of Statistical Mathematics, Tokyo 2011

Abstract It is a known fact that some estimators of smooth distribution functions
can outperform the empirical distribution function in terms of asymptotic (integrated)
mean-squared error. In this paper, we show that this is also true of Bernstein polynomial
estimators of distribution functions associated with densities that are supported on a
closed interval. Specifically, we introduce a higher order expansion for the asymptotic
(integrated) mean-squared error of Bernstein estimators of distribution functions and
examine the relative deficiency of the empirical distribution function with respect to
these estimators. Finally, we also establish the (pointwise) asymptotic normality of
these estimators and show that they have highly advantageous boundary properties,
including the absence of boundary bias.

Keywords Bernstein polynomials · Distribution function estimation · Mean
integrated squared error · Mean squared error · Asymptotic properties · Efficiency ·
Deficiency

1 Introduction

Let X1, X2, . . . be a sequence of i.i.d. random variables having a common unknown
distribution function F with associated density f supported on a closed interval. With-
out loss of generality, we take that interval to be [0, 1]. Now, when F is known to be
continuous, it is natural to consider the estimation of F by using smooth functions
rather then the empirical distribution function, which is not continuous. One way of
doing this, in the case where f is supported on the unit interval, is to make use of
the famous Bernstein polynomial approximations. This is particularly appealing since
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920 A. Leblanc

Bernstein polynomials are known to yield very smooth estimates that typically have
acceptable behaviour at the boundaries. This is the approach that will be considered
in this paper.

Specifically, following Babu et al. (2002), the Bernstein estimator of order m > 0
of the distribution F is defined as

F̂m,n(x) =
m∑

k=0

Fn(k/m)Pk,m(x), (1)

where Pk,m(x) = (m
k

)
xk(1 − x)m−k are binomial probabilities and Fn denotes the

empirical distribution function obtained from a random sample of size n. Throughout
this paper, we assume that m = mn depends on n. The suffix n will however be omitted
for the sake of clarity. Note that F̂m,n is a polynomial of degree m with coefficients
depending on the data and, thus, leads to very smooth estimates. Note also that taking
the derivative of F̂m,n with respect to x leads to

f̂m,n(x) = d

dx
F̂m,n(x) = m

m−1∑

k=0

[
Fn

([k + 1]/m
) − Fn(k/m)

]
Pk,m−1(x), (2)

which is the Bernstein density estimator of order m, as it is defined by Babu et al.
(2002) and many others.

Now, let Bm denote the Bernstein polynomial of order m of F according to

Bm(x) =
m∑

k=0

F(k/m)Pk,m(x).

A quick inspection of (1) and the previous equality makes it clear that E
[
F̂m,n(x)

] =
Bm(x) for all x ∈ [0, 1] and all n ≥ 1. Note also that Bm is a genuine distribution
function and that F̂m,n yields, with probability one and for any value of m, estimates
that are genuine distribution functions. To see this, notice that

F̂m,n(0) = 0 = F(0) = Bm(0) and F̂m,n(1) = 1 = F(1) = Bm(1), (3)

with probability one for all values of m, and that both functions have a nonnegative
first derivative over the unit interval. See Babu et al. (2002) and Lorentz (1986, Section
1.7) for more details.

Bernstein polynomial estimators of density functions have become quite popu-
lar and recently attracted a lot of attention. See, for instance, the original work of
Vitale (1975) and recent extensions/generalizations by Tenbusch (1994), Babu et al.
(2002), Kakizawa (2004), Rao (2005), Babu and Chaubey (2006) and Leblanc (2010).
Working from a completely different perspective, Petrone (1999) introduced a fully
Bayesian approach to nonparametric density estimation on a compact interval through
the use of Bernstein polynomials. This approach was further studied by Ghosal (2001)
and Petrone and Wasserman (2002). Bernstein-based or related approaches to other
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Estimating distribution functions using Bernstein polynomials 921

problems of nonparametric function estimation have also been developed by different
authors. For example, Tenbusch (1997) and Brown and Chen (1999) have suggested
different regression methods, Choudhuri et al. (2004) have developed a Bayesian
approach to spectral density estimation and Chang et al. (2005) have developed a
Bayesian approach to the estimation of cumulative hazard functions.

In light of this, it is surprising that the estimator defined in (1) has not attracted more
attention in the literature. Babu et al. (2002) have shown it to be uniformly strongly
consistent when m, n → ∞. Leblanc (2009) has shown it to have the Chung–Smirnov
property, which quantifies its extreme fluctuations (about F) as n → ∞. Specifically,
he showed that, under fairly general conditions on m and F , we have

lim sup
n→∞

(2n/ log log n)1/2 sup
x∈[0,1]

∣∣F̂m,n(x)− F(x)
∣∣ ≤ 1, almost surely,

and that the equality actually holds under slightly more restrictive conditions. Finally,
Babu and Chaubey (2006) considered the problem of estimating a multivariate distri-
bution function by using Bernstein polynomials in multiple dimensions.

In an attempt to partly fill the gap in the literature related to the estimator defined in
(1), we show that it outperforms the empirical distribution function in terms of asymp-
totic mean-squared error (MSE) and mean-integrated squared error (MISE). We also
establish the (pointwise) asymptotic normality of this estimator. Kernel estimators of
distribution functions are known to have these properties. See, for instance, the work
of Azzalini (1981) and Jones (1990) for the asymptotic MSE and MISE properties and
Watson and Leadbetter (1964) for the asymptotic normality of these estimators.

Specifically, in Sect. 2 we derive the MSE properties of F̂m,n . In Sect. 3, we show
that the estimator is asymptotically normal for appropriate choices of m. In Sect. 4,
we obtain the MISE properties of the estimator. In Sect. 5, we specifically address
the issue of asymptotic efficiency and the notion of deficiency to conclude that the
Bernstein estimator F̂m,n asymptotically outperforms the empirical distribution func-
tion locally, in terms of MSE, and globally, in terms of MISE, for certain choices of
the order m of the estimator. In Sect. 6, we present a brief numerical example that
highlights some of the theoretical results obtained in the paper. Finally, in Sect. 7, we
present a simulation study that compares the performance of the Bernstein estimator
F̂m,n with the empirical distribution function and with a standard Gaussian kernel
estimator.

2 Some basic results

We start by considering some basic properties of the family of estimators defined in (1).
Specifically, we focus on establishing the bias, variance and mean-squared error prop-
erties of the Bernstein estimator F̂m,n . First, note that (3) implies that the estimator
F̂m,n has very advantageous behaviour at the boundary points. Indeed, this estimator
is unbiased and has zero variance at x = 0, 1. To eventually obtain the behaviour of
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922 A. Leblanc

the estimator inside the unit interval, we make the assumption that

F is continuous and admits two continuous and
bounded derivatives on [0, 1], (4)

and start by giving a result that can be found in Lorentz (1986, Section 1.6).

Lemma 1 Under assumption (4), we have for x ∈ (0, 1) that

Bm(x) = F(x)+ m−1b(x)+ o(m−1),

where b(x) = x(1 − x) f ′(x)/2. Finally, for the trivial case where f is the uniform
density (and only in that case), we have that Bm(x) = F(x) = x for all m ≥ 1 and
x ∈ [0, 1]. �	

It should be noted that here, and throughout this paper, we use o and O in the usual
way to denote a uniform bound (with respect to x) on an error of approximation. A
pointwise bound in x will be emphasized by using ox and Ox , as nonuniform error
bounds have important implications in the derivations of some of our results. Note
that the proofs of all of our main results can be found in the Appendix. We are now
ready to state the basic properties of the Bernstein estimator F̂m,n .

Theorem 1 Under assumption (4), we have for x ∈ (0, 1) that

Bias
[
F̂m,n(x)

] = E
[
F̂m,n(x)

] − F(x) = m−1b(x)+ o(m−1),

where b(x) is defined as in Lemma 1. Also, we have

Var
[
F̂m,n(x)

] = n−1σ 2(x)− m−1/2n−1V (x)+ ox (m
−1/2n−1),

where

σ 2(x) = F(x)
[
1 − F(x)

]
and V (x) = f (x)

[
2x(1 − x)/π

]1/2
,

as both m, n → ∞. �	
Notice that the previous result implies F̂m,n has uniform bias inside the unit inter-

val in addition to being unbiased at the boundary. Obviously, this estimator is then
free of boundary bias. On the other hand, from its definition given in (1), it seems
natural to consider h = 1/m as the “bandwidth” of the Bernstein estimator. Doing
so, Lemma 1 suggests that the bias of F̂m,n is O(m−1) = O(h), which is more than
the bias typically obtained using kernel estimators generally having a bias at least as
small as O(h2) (except possibly near the boundaries).

Another consequence of the previous result is that F̂m,n can asymptotically out-
perform the empirical distribution function at every x ∈ (0, 1) in terms of MSE.
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Estimating distribution functions using Bernstein polynomials 923

(Both estimators achieve an MSE of zero at x = 0, 1.) Indeed, from Theorem 1, we
have that

MSE
[
F̂m,n(x)

] = n−1σ 2(x)− m−1/2n−1V (x)+ m−2b2(x)

+ o(m−2)+ ox (m
−1/2n−1). (5)

On the other hand, it is well known that

MSE[Fn(x)] = Var[Fn(x)] = n−1σ 2(x),

so that F̂m,n and Fn are equivalent in MSE up to the first-order. However, when con-
sidering also higher order terms, it turns out that F̂m,n asymptotically dominates Fn in
terms of MSE when m is chosen carefully. This comes from the fact that the second
term on the right-hand side of (5) is always negative, and is formally established in
the next corollary. A thorough investigation of the conditions under which Bernstein
estimators outperform the empirical distribution function Fn is postponed until Sect. 5.

Corollary 1 Assuming (4), f (x) 
= 0 and f ′(x) 
= 0 all hold, the asymptotically
optimal choice of m for estimating F(x), with respect to MSE, is

mopt = n2/3
[

4b2(x)

V (x)

]2/3

,

in which case

MSE
[
F̂mopt,n(x)

] = n−1σ 2(x)− n−4/3 3

4

[
V 4(x)

4b2(x)

]1/3

+ ox (n
−4/3),

for x ∈ (0, 1), where σ 2(x), b(x) and V (x) are defined as in Theorem 1. �	
We note that other results similar to this have been obtained for different estimators

of smooth distribution functions. For example, see Read (1972) for an estimator based
on linear interpolation and Azzalini (1981) for the case of kernel estimators.

Before we move on to study the global properties of the Bernstein estimator, we
next complete our study of the local first-order properties of the Bernstein estimator
by focusing on the limiting distribution of F̂m,n(x) for given values of x ∈ (0, 1).

3 Asymptotic normality

In this section, we establish the asymptotic normality of the Bernstein estimator F̂m,n

at every x inside the unit interval. In essence, we will establish that when the order m
of the Bernstein estimator is chosen large enough (so that bias becomes negligible),
the asymptotic distribution of F̂m,n is the same as that of the empirical distribution
Fn . Note that this is a property that kernel estimators of distribution functions are
known to have. This will be addressed again shortly. We first state a general result
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924 A. Leblanc

that establishes the asymptotic normality of the Bernstein estimator for any choice of
m → ∞ when n → ∞.

Theorem 2 Assume (4) holds and m, n → ∞. For x ∈ (0, 1) such that 0 < F(x) < 1,
we have that

n1/2(F̂m,n(x)− Bm(x)
) D−→ N

(
0, σ 2(x)

)
,

where σ 2(x) is defined as in Theorem 1 and “
D−→” denotes convergence in distribu-

tion. �	
Notice how the previous result contrasts with that obtained in the case of density

estimation, where asymptotic normality holds for m values that are large enough,
but not too large. Indeed, Babu et al. (2002, Proposition 1) showed that in the den-
sity estimation setting, for their asymptotic normality result to hold, we need that
mn−2/3 → ∞, and also that mn−1 → 0. This is not the case here as asymptotic
normality holds for any m such that m → ∞, with no restriction whatsoever on the
rate at which m increases. Note also that, under an appropriate choice of bandwidth,
a result similar to Theorem 2 has been obtained by Watson and Leadbetter (1964) for
general kernel estimators of distribution functions.

Now, as interest is mainly in how F̂m,n(x) behaves with respect to F(x), we note
that, from Lemma 1, we have

n1/2(F̂m,n(x)− F(x)
) = n1/2(F̂m,n(x)− Bm(x)

) + m−1n1/2b(x)+ o(m−1n1/2),

with b(x) (defined as in Lemma 1) being bounded over the unit interval. This leads to
the following result.

Corollary 2 Assume (4) holds and m, n → ∞. Then, for x ∈ (0, 1) such that 0 <
F(x) < 1,

(i) if mn−1/2 → ∞,

n1/2(F̂m,n(x)− F(x)
) D−→ N

(
0, σ 2(x)

)
,

(ii) if mn−1/2 → c for some constant c > 0,

n1/2(F̂m,n(x)− F(x)
) D−→ N

(
c−1b(x), σ 2(x)

)
,

where σ 2(x) and b(x) are defined as in Theorem 1. �	
Note that (i) can be derived without using Theorem 2 by relying instead on Theo-

rem 4 of Leblanc (2009) (which basically states that, under a smoothness assumption
on F and an appropriate choice for the order of the Bernstein estimator, the distance
between F̂m,n(x) and Fn(x) is “small” enough with probability one) and the fact that
Fn(x) has itself a well-known asymptotic normal distribution.
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Estimating distribution functions using Bernstein polynomials 925

We now point out that the phenomenon observed by Hjort and Walker (2001) in
the context of kernel estimation is also observed with Bernstein polynomial estima-
tors. Specifically, Hjort and Walker (2001) proved that MISE optimal bandwidths for
density estimation, when using kernel estimators, lead to density estimates for which
the associated estimate of the distribution function F has the property of lying outside
of reasonable confidence bands for F (based on the empirical distribution function
Fn), with probability tending to one. This phenomenon is linked to the fact that the
MISE optimal bandwidths for density estimation, in that context, satisfy hn1/5 → c
for some finite constant c > 0, while it is necessary that hn1/4 → 0 for the kernel
estimator of the distribution function to have a limiting distribution centred at F(x)
when properly rescaled.

As was mentioned above, this phenomenon is also observed with Bernstein poly-
nomial estimators. Indeed, the MISE optimal choice of the order m of Bernstein
estimators, in the context of density estimation, satisfies mn−2/5 → c for some con-
stant c > 0. See, for instance, Babu et al. (2002) and Leblanc (2010). However, it is
not difficult to see that if mn−1/2 → 0 and f ′(x) 
= 0, then

P

[
n1/2

∣∣F̂m,n(x)− F(x)
∣∣ > ε

]
−→ 1,

for all ε > 0. According to this, if the MISE optimal choice of m is used for density
estimation, the estimator F̂m,n of the distribution function associated with the density
estimator does not converge in distribution (for this choice of m) to a limiting distri-
bution centred at F(x)when properly rescaled. It is not difficult to see that, as a result,
F̂m,n will also lie outside of confidence bands based on Fn with probability tending
to one.

4 MISE of the Bernstein estimator

We now obtain the mean-integrated squared error (MISE) of the Bernstein estimator as
given by (1). It is important to note that this result is not obtained through integrating
the expression for MSE

[
F̂m,n(x)

]
obtained in (5), even though intuitively one might

think of it in that way. This is because of the nonuniformity (with respect to x) of
the error term in the asymptotic expression for the variance of the Bernstein estimator
obtained in Theorem 1.

We here define the MISE of an estimator F̂ of the distribution function F defined
on the unit interval as

MISE
[
F̂

] = E

[∫ 1

0

[
F̂(x)− F(x)

]2dx

]
, (6)

and turn our attention to MISE
[
F̂m,n

]
. Following Altman and Léger (1995) and many

others, it would have also been possible to define the MISE of an estimator F̂ by

MISE
[
F̂

] = E

[∫ 1

0

[
F̂(x)− F(x)

]2
W (x) f (x) dx

]
,
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926 A. Leblanc

where W is a nonnegative weighting function. Given it is assumed that X is supported
on the unit interval, there is no obvious benefit to using this second definition, and so
we work with the slightly simpler definition provided by (6). Note, however, that our
next result could easily be adapted to account for such a modification.

Theorem 3 Under assumption (4), we have that

MISE
[
F̂m,n

] = n−1C1 − m−1/2n−1C2 + m−2C3 + o(m−1/2n−1)+ o(m−2),

where

C1 =
∫ 1

0
σ 2(x) dx, C2 =

∫ 1

0
V (x) dx, and C3 =

∫ 1

0
b2(x) dx,

and σ 2(x), b(x) and V (x) are defined as in Theorem 1. �	
Note that the constants C1, C2 and C3 are all strictly positive, except in the trivial

case where f is the uniform density, in which case C3 = 0. The following result is a
direct consequence of the previous theorem and identifies the asymptotically optimal
order m of the Bernstein estimator with respect to MISE. It also establishes the fact
that, for a carefully chosen value of m, F̂m,n asymptotically dominates Fn in terms of
their MISE performance.

Corollary 3 If assumption (4) holds and if C3 > 0 (see above), the asymptotically
optimal choice of m for estimating F, with respect to MISE, is

mopt = n2/3
[

4C3

C2

]2/3

,

in which case

MISE
[
F̂mopt,n

] = n−1C1 − n−4/3 3

4

[
C2

4

4C3

]1/3

+ o(n−4/3),

where the constants C1, C2 and C3 are defined as in Theorem 3. �	
Results similar to this have been obtained for general kernel estimators by Jones

(1990), among others. The selection of m for specific data sets, although an interest-
ing problem, will not be addressed here. Notice, however, that the plug-in approach
suggested by Altman and Léger (1995) and the cross-validation method of Bowman
et al. (1998) for estimating smooth distribution functions using kernel estimators could
certainly be adapted to the current context.

5 Deficiency of the empirical distribution function

In this section, we focus on the relative deficiency of the empirical distribution func-
tion with respect to the Bernstein estimator F̂m,n . In doing this, our goal is to better
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Estimating distribution functions using Bernstein polynomials 927

appreciate the performance of the two estimators and better understand the differences
between the two. Indeed, as was pointed out in Sect. 2, the first-order properties of the
two estimators are the same, so that the second-order properties have to be considered
if one is to really compare these estimators.

Following the work of Hodges and Lehman (1970), we define iL (n, x) to be the sam-
ple size required for the empirical distribution function to have the same (or smaller)
MSE as F̂m,n at the point x , that is

iL(n, x) = min
{
k ∈ N : MSE[Fk(x)] ≤ MSE[F̂m,n(x)]

}
.

A local comparison of the two estimators can now be made, at the point x , by com-
paring iL(n, x) with n. Indeed, the usual notion of asymptotic relative efficiency is
now simply the limiting behaviour of the ratio iL(n, x)/n. Obviously, when two esti-
mators share the same first-order properties, one should find that this ratio converges
to one. What is of interest, in those cases, is the limiting behaviour of the difference
iL(n, x)−n, known as (local) asymptotic deficiency. In the current context, this corre-
sponds to the number of additional observations required for the empirical distribution
function to perform at least as well as the Bernstein estimator, in terms of MSE, at the
point x .

To compare the global performance of Fn with that of the Bernstein estimator F̂m,n ,
one can instead focus on the deficiency in MISE. For this, we define

iG(n) = min
{
k ∈ N : MISE[Fk] ≤ MISE[F̂m,n]

}
,

and consider the limiting behaviour of the ratio iG(n)/n and of the difference iG(n)−n.
The following result establishes conditions under which Fn is asymptotically efficient
(to the first order), but asymptotically deficient (locally in MSE and globally in MISE)
with respect to F̂m,n . It also gives this asymptotic deficiency in closed form.

Theorem 4 Assume that (4) holds, x ∈ (0, 1) and that m, n → ∞. Then, if mn−1/2

→ ∞, we have that

iL(n, x) = n
[
1 + ox (1)

]
and iG(n) = n

[
1 + o(1)

]
.

In addition,

(i) if mn−2/3 → ∞ and mn−2 → 0, then

iL(n, x)− n = m−1/2n
[
θ(x)+ ox (1)

]
,

and iG(n)− n = m−1/2n
[
C2/C1 + o(1)

]
,

(ii) if mn−2/3 → c for some constant c > 0,

iL(n, x)− n = n2/3[c−1/2 θ(x)− c−2 γ (x)+ ox (1)
]
,
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928 A. Leblanc

and

iG(n)− n = n2/3[c−1/2 C2/C1 − c−2 C3/C1 + o(1)
]
,

where

θ(x) = V (x)/σ 2(x) and γ (x) = b2(x)/σ 2(x),

where V (x), σ 2(x) and b(x) are defined as in Theorem 1, and C1, C2 and C3 are
defined as in Theorem 3. �	

Note that the case of local deficiency in MSE where x = 0 or 1 is not covered in
the previous result. Actually, in that case, it is trivial to show that

iL(n, 0) = iL(n, 1) = n,

this being true for any choice of m > 0.
Also, Theorem 4 should be interpreted as an indicator of when Bernstein estimators

outperform (locally, in MSE, and globally, in MISE) the empirical distribution func-
tion in a significant way. Indeed, we point out the fact that (i) and (ii) identify setups
where the asymptotic deficiency of Fn grows to infinity with n. This observation gives
a different view of the seemingly small difference in MSE and MISE between the
estimators considered here. Indeed, as n increases and even if the difference in MSE
(or MISE) seems relatively small, one needs increasingly many more observations to
see a reduction in MSE (or MISE), using the empirical distribution function, of the
same order as that which would be obtained by instead using a Bernstein estimator of
a carefully selected order m without increasing the sample size.

To our knowledge, Aggarwal (1995) was the first to exhibit an estimator of distribu-
tion functions that dominates the empirical estimator Fn in terms of MISE. Similarly,
Read (1972) was the first to exhibit a continuous estimator of smooth distribution
functions that dominates the empirical estimator Fn in terms of MSE. Note that both
of these authors did not discuss deficiency in their work. We also mention that the
deficiency in MSE of the empirical distribution function with respect to kernel esti-
mators has been first established by Reiss (1981) and later obtained in a form similar
to our Theorem 4 by Falk (1983).

As a final comment, we point out that the selection of an optimal order m of the
Bernstein estimator could be made based on deficiency. Indeed, it seems reasonable
to consider choosing m in such a way as to maximize the deficiency of the empirical
distribution with respect to the Bernstein estimator, thus making sure the former is
outperformed by the latter as much as possible, for example, in terms of MISE. Obvi-
ously, doing this is justified only if one thinks of the empirical distribution function
as a reference or standard that should be outperformed. It should probably come with
no surprise, however, that this leads to the same choice of the optimal order mopt as
identified in Corollary 3, as can be seen from the following simple argument.
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Estimating distribution functions using Bernstein polynomials 929

First, our goal is to maximize the deficiency of the empirical estimator Fn ; note
that when mn−2/3 → c, the asymptotic deficiency of Fn is positive only when

c >
[
C3/C2

]2/3 = c∗.

In this case, the asymptotic deficiency of Fn is of the order of n2/3, the largest it actu-
ally can be. This suggests choosing m so that mn−2/3 → c, where c > c∗ is chosen
to maximize

g(c) = c−1/2C2/C1 − c−2 C3/C1.

Elementary calculations lead to the previous expression being maximized when

c = copt = [
4C3/C2

]2/3 = 24/3c∗,

leading, in turn, to the deficiency-based optimal order of the Bernstein estimator
satisfying moptn−2/3 → copt, or

mopt = n2/3[copt + o(1)
]
.

This is in agreement with the result obtained earlier in Corollary 3 based on minimizing
the MISE of the Bernstein estimator.

6 Numerical example

We consider an example that highlights the features of the Bernstein estimator F̂m,n .
Specifically, we look at the so-called suicide data given in Table 2.1 of Silverman
(1986). These data consist of durations (in days) of psychiatric treatment for 86 patients
used as controls in a study of suicide risks. They are an example of data leading to prob-
lematic behaviour of typical density estimators close to a boundary (e.g. see Leblanc
2010). It is clear in this setup that the distribution function to be estimated is defined
only for x > 0. For convenience, we also assume that the maximum treatment duration
is 800 days (the data are such that mini (xi ) = 1 and maxi (xi ) = 737) and analyse
the original data rescaled to the unit interval. Of utmost interest is the behaviour of
estimators near x = 0.

In Fig. 1, we display different Bernstein estimators of the underlying density f of
treatment durations along with a histogram of the data. Specifically, we graphed the
estimator f̂m,n introduced in (2) for m = 5, 10, 19 and 60. Note that m = 19 is the
data-driven optimal choice of m based on least-squares cross-validation for the density
estimation problem (cf. Leblanc 2010). It is obvious here that the choices of m = 5
and 10 lead to considerable oversmoothing. On the other hand, the choice of m = 60
leads to an undesirable feature at x = 0 and is actually undersmoothing.

Different Bernstein estimators F̂m,n of the underlying distribution function F of
treatment durations are pictured in Fig. 2. Also shown on this graph is the empirical
distribution function constructed from the data. The oversmoothing, in the cases of
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Fig. 1 Bernstein density estimates f̂m,n obtained with m = 5 (dotted line), m = 10 (short-dashed line),
m = 19 (full line) and m = 60 (long-dashed line)
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Fig. 2 Bernstein estimates F̂m,n of the distribution function calculated with m = 5, 10, 19 and 60 as above
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m = 5 and 10, is again quite apparent. Note, however, that the choice of m = 19 also
leads to oversmoothing in this case, and that m = 60 seems to be the most appropriate
choice for m among the values considered here.

This last point is particularly interesting. Indeed, from Theorem 3 of Leblanc (2010),
we know that mopt ∝ n2/5 in the density estimation setup. On the other hand, Corol-
lary 3 establishes that mopt ∝ n2/3 when estimating a distribution function. In other
words, the asymptotically optimal order of the Bernstein density estimator is much
smaller than the optimal order used for estimating a distribution function. Hence, what
we see here is in agreement with these two asymptotic results: it seems that optimal
smoothing for density estimation leads to oversmoothing when considering the dis-
tribution function. This is linked to the earlier discussion presented after Corollary 2
in Sect. 3, and can also be observed with kernel estimators of density and distribution
functions (cf. Hjort and Walker 2001).

7 Simulation study

Babu et al. (2002) presented a short simulation study looking at the behaviour of the
Bernstein estimator F̂m,n (and at the density estimator f̂m,n). However, they have not
considered comparing its performance with that of the empirical distribution Fn or
any kernel estimator. This is what we do in this section.

Specifically, we study the performance of the Bernstein estimator in estimating
different distributions by comparing it to the performances of Fn and of the Gaussian
kernel estimator

K̂h,n(x) = 1

n

∑

i=1

�
( x − Xi

h

)
,

where � denotes the standard normal distribution function and h is the bandwidth of
the estimator. See, for instance, Altman and Léger (1995) and Bowman et al. (1998)
for more discussion on kernel estimators of distribution functions and, in particular,
on bandwidth selection. We also refer the reader to the papers of Swanepoel and Van
Graan (2005), Liu and Yang (2008) and Chacón and Rodríguez-Casal (2010) for recent
work on kernel estimators of distribution functions.

As a measure of performance, we use the MISE of each of the mentioned estima-
tors, as defined in (6). In the case of the Bernstein and kernel estimators, the MISE
value depends, respectively, on the order m and the bandwidth h that are considered.
Specifically, let

ISE
[
F̂

] =
∫ 1

0

[
F̂(x)− F(x)

]2dx, (7)

and note that, from M pseudo-random samples of size n,

MISE
[
F̂

]  1

M

M∑

i=1

ISEi
[
F̂

]
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932 A. Leblanc

Table 1 Summary of simulation study, all approximated MISE values ×10−3

n Fn F̂m,n K̂h,n

MISE MISE mopt MISE hopt

Beta(2,1) 20 6.70 3.84 7 4.42 0.143

50 2.69 1.78 11 2.02 0.100

100 1.34 0.96 16 1.08 0.075

Beta(10,10) 20 3.11 2.06 61 2.10 0.058

50 1.25 0.92 114 0.93 0.044

100 0.62 0.48 174 0.48 0.035

Truncated N (1/2, 1/4) 20 9.14 7.06 11 7.49 0.115

50 3.69 3.11 27 3.28 0.062

100 1.85 1.63 43 1.71 0.043

1/2 Beta(2.5,6)+ 1/2 Beta(9,1) 20 6.20 3.68 10 4.11 0.124

50 2.51 1.71 17 1.84 0.093

100 1.25 0.92 26 0.97 0.075

is a Monte Carlo approximation of MISE
[
F̂

]
, where ISEi

[
F̂

]
denotes the value of ISE

calculated from the i th randomly generated sample from F and obtained from (7).
We ran simulations using four different underlying distribution functions on the unit

interval: the Beta(2,1) (with linear density), the Beta(10,10) (with density concentrated
around 1/2), the N(1/2, 1/4) truncated to the unit interval (smooth, but positive density
at the boundaries) and the mixture 1/2 Beta(2.5,6)+1/2 Beta(9,1) (asymmetric den-
sity, bimodal with a mode at a boundary). In each case, we approximated the MISE
of Fn , F̂m,n (for integers 2 ≤ m ≤ 200) and K̂h,n (for h = i/1000 with integers
1 ≤ i ≤ 200) using M = 10,000 pseudo-random samples of sizes n = 20, 50 and
100. We next summarize our findings.

First, we observe that, in all cases presented in Table 1, both smooth estimators
do better than the empirical distribution function Fn for appropriate choices of the
smoothing parameters. Indeed, we see that for n = 20, the potential reduction in
MISE ranges between 23 and 43% for the Bernstein estimator, and between 18 and
34% for the Gaussian kernel estimator, when compared with Fn . For n = 50, this
reduction is between 16 and 34% for the Bernstein estimator and between 11 and 27%
for the kernel estimator. Finally, for n = 100, the reduction is between 12 and 28%
for the former, and between 8 and 23% for the latter. These results are in line with our
Corollary 3 and with the comments of Swanepoel and Van Graan (2005) and others
suggesting the benefits of smoothing in the case of distribution function estimation.

Our second observation is that, from the previous perspective, the Bernstein estima-
tor does better than its kernel counterpart in all the presented cases. Obviously, there
might be other kernel estimators that do better than the Gaussian kernel estimator used
here, but this suggests that there could be interesting gains in MISE reduction when
considering using the Bernstein estimator F̂m,n over simple standard kernel estimators
like K̂h,n .
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Fig. 3 Approximated MISE of Fn , of the Bernstein estimator and of the Gaussian kernel estimator for
the Beta(2,1) distribution and n = 20. The x-axis displays values of m, for the Bernstein estimator, and of
h × 103 for the kernel estimator

To further investigate this, we plotted, in Fig. 3, the MISE of both smooth esti-
mators, as functions of their respective smoothing parameter m and h, and added the
MISE of the empirical distribution for the case where the true underlying distribution
is Beta(2,1) and n = 20. This highlights once again that smoothing is beneficial when
estimating a distribution function. Indeed, for almost all the considered values of the
smoothing parameters m and h, both smooth estimators have a reduced MISE com-
pared to Fn . As mentioned above, this reduction is quite significant in the best cases.
Going back to the comparison between F̂m,n and K̂h,n , it is interesting to see that the
MISE of the Bernstein estimator is smaller than the MISE of the optimal Gaussian
kernel estimator (with h = 0.143) for values of m between 5 and 18 inclusive. Figure 4
tells a similar story for the case where n = 100, but the domination of F̂m,n over the
optimal kernel estimator (with h = 0.075) is now for m values between 10 and 61
inclusive.

Going back to Table 1, we see that the case of the Beta(10,10) distribution is the one
where the optimal performance of the smooth estimators is most similar. This makes
sense as the density of the Beta(10,10) is exactly zero at both boundaries and practi-
cally zero for x < 0.1 and x > 0.9, implying boundary issues should not play a big
role for the Gaussian kernel estimator in this case. Note also that optimal smoothing
is done here with much larger order m for the Bernstein estimator and much smaller
bandwidth h for the kernel estimator. This was expected because the Beta(10,10) den-
sity is much more concentrated then the other three considered in the current study,
suggesting that less smoothing is better in this case.
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Fig. 4 Approximated MISE of Fn , of the Bernstein estimator and of the Gaussian kernel estimator for the
Beta(2,1) distribution and n = 100. The x-axis displays values of m, for the Bernstein estimator, and of
h × 103 for the kernel estimator

Graphs similar to Figs. 3 and 4 were also obtained for the other combinations of
underlying distributions and sample sizes given in Table 1 but are not shown here,
since they highlight similar patterns.

8 Conclusion

The literature on Bernstein estimators of distribution functions is surprisingly sparse
given the recent interest in using Bernstein polynomials for function estimation in
different areas of statistics. In this article, we have shown that Bernstein estimators of
distribution functions have very good boundary properties, including the absence of
boundary bias. We also showed that a few important properties that contributed to the
popularity of kernel estimators of distribution functions are also satisfied by Bernstein
estimators. Mainly, we have shown that Bernstein estimators of distribution functions
are asymptotically normal and first-order efficient. Using the concept of asymptotic
deficiency, we also established that they asymptotically dominate the empirical distri-
bution in terms of both MSE and MISE when the order m of the estimator is selected
appropriately.

Through a simple real-life example and a small simulation study, we have shown
how Bernstein estimators can lead to very satisfactory estimates of the underlying
distribution. Finally, our simulations also suggest that the Bernstein estimator studied
here behaves quite well when compared with both the empirical distribution Fn and
the simple Gaussian kernel estimator.
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Appendix

In this Appendix, we present proofs for selected results presented in the paper. How-
ever, we first present a series of results linked to different sums of binomial probabilities
defined by

Sm(x) =
m∑

k=0

P2
k,m(x),

and, for j = 0, 1 and 2,

R j,m(x) = m− j
∑ ∑

0≤k<l≤m

(k − mx) j Pk,m(x)Pl,m(x),

where Pk,m(x) = (m
k

)
xk(1 − x)m−k are the binomial probabilities. These results are

given in the following lemma.

Lemma 2 Let ψ1(x) = [
4πx(1 − x)

]−1/2
and ψ2(x) = [

x(1 − x)/(2π)
]1/2

. Then
the following results hold:

(i) 0 ≤ Sm(x) ≤ 1 for x ∈ [0, 1],
(ii) Sm(x) = m−1/2

[
ψ1(x)+ ox (1)

]
for x ∈ (0, 1),

(iii) Sm(0) = Sm(1) = 1,
(iv) R1,m(x) = m−1/2

[ − ψ2(x)+ ox (1)
]

for x ∈ (0, 1),
(v) 0 ≤ R2,m(x) ≤ (4m)−1 for x ∈ (0, 1),

(vi) R j,m(0) = R j,m(1) = 0 for j = 0, 1, 2.

Proof First note that (i), (iii) and (vi) trivially hold. The proof of (ii) is due to Babu
et al. (2002, Lemma 3.1). We now turn to the proofs of (iv) and (v).

To prove (iv), we rely on Theorem 1 of Cressie (1978). Indeed, this result allows
us to write

m∑

l=k

Pl,m(x) = 1 −�
(
δk − Gx (δk−1/2)

) + Ox (m
−1), (8)

where the error term is independent of k,� stands for the normal distribution function,

δk = (k − mx)
[
mx(1 − x)

]−1/2
,

and

Gx (t) =
[

1

2
+ 1

6
(1 − 2x)(t2 − 1)

][
mx(1 − x)

]−1/2
.

Note that the correction factor Gx (δk−1/2) is the reason why the normal approximation
given in (8) is of order m−1. This is crucial, as the uncorrected normal approximation
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to the binomial tail probabilities is of order m−1/2, which is not precise enough in the
current context. Now, a Taylor series expansion of �(t) about t = 0 leads to

�(t) = 1

2
+ t√

2π
+ o(|t |),

so that we can actually write

m∑

l=k+1

Pl,m(x) = 1

2
− δk+1 − Gx (δk+1/2)√

2π
+ ox

(|δk+1 − Gx (δk+1/2)|
) + Ox (m

−1),

the last error term being independent of k. Although still fairly crude, we will see that
this approximation will allow the derivation of an asymptotic expression for R1,m(x).
Indeed, it can be shown that

δk+1 − Gx (δk+1/2) =1

3
(2 − x)

[
mx(1 − x)

]−1/2

+
[

1 − 1

6
(1 − 2x)

[
mx(1 − x)

]−1
]
δk

− 1

6
(1 − 2x)

[
mx(1 − x)

]−1/2
δ2

k + Ox (m
−5/2),

so that

R1,m(x) =m−1
m∑

k=0

(k − mx)Pk,m(x)

[ m∑

l=k+1

Pl,m(x)

]
(9)

=
[

1

2
− 1

3
(2 − x)

[
2πmx(1 − x)

]−1/2
]

m−1T1,m(x)

− [
2πmx(1 − x)

]−1/2
m−1T2,m(x)

+ ox
(
m−3/2 H1,m(x)

) + ox
(
m−3/2 H2,m(x)

) + Ox
(
m−5/2 H3,m(x)

)
,

where

Tj,m(x) =
m∑

k=0

(k − mx) j Pk,m(x), and Hj,m(x) =
m∑

k=0

|k − mx | j Pk,m(x),

(10)

with Hj,m(x) = Tj,m(x) for even values of j . Note that (cf. Lorentz 1986, Section 1.5)
it is easy to obtain

T1,m(x) = 0, T2,m(x) = mx(1 − x), T3,m(x) = mx(1 − x)(1 − 2x),

T4,m(x) = 3m(m − 2)x2(1 − x)2 + mx(1 − x).
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Hence, we have that

R1,m(x) = −x(1 − x)
[
2πmx(1 − x)

]−1/2 + ox (m
−1/2)+ ox

(
m−3/2 H1,m(x)

)

+ Ox
(
m−5/2 H3,m(x)

)
. (11)

However, note that the Cauchy–Schwartz inequality implies that

m−3/2 H1,m(x) ≤ m−3/2
[
T2,m(x)

]1/2

= m−3/2[mx(1 − x)
]1/2 ≤ (2m)−1 = O(m−1), (12)

and that

m−5/2 H3,m(x) ≤ m−5/2
[
T2,m(x)T4,m(x)

]1/2 = O(m−1).

Substituting these two results into (11) leads to (iv).
Finally, (v) is easily proved since R2,m is clearly a nonnegative function and

R2,m(x) ≤ m−2
m∑

k=0

m∑

l=0

(k − mx)2 Pk,m(x)Pl,m(x) = m−2T2,m(x) = m−1x(1 − x),

so that 0 ≤ R2,m(x) ≤ (4m)−1. �	
Lemma 3 Let g be any continuous function on [0, 1]. Then,

(i) m1/2
∫ 1

0
Sm(x)dx =

∫ 1

0
ψ1(x)dx + O(m−1) = √

π/2 + O(m−1),

(ii) m1/2
∫ 1

0
g(x) R1,m(x)dx = −

∫ 1

0
g(x)ψ2(x)dx + o(1),

where ψ1 and ψ2 are defined as in Lemma 2.

Proof The proof of (i) can be found in Leblanc (2010, Lemma 4). We now prove (ii)
using an approach similar to what was used there.

First, let Gm(x) = m1/2 R1,m(x) and G(x) = −ψ2(x) and note that Lemma 2 (iv)
implies that Gm converges almost everywhere to G on the unit interval. On the other
hand, from (9), (10) and (12), we have

∣∣Gm(x)
∣∣ ≤ m−1/2 H1,m(x) ≤ 1/2,

for all m and x ∈ [0, 1]. Thus, the sequence is uniformly bounded on the unit interval
and, hence, is also uniformly integrable. Now, the almost everywhere convergence and
uniform integrability of Gm together imply that (cf. Theorem 16.14 and its Corollary
of Billingsley 1995, pp. 217–218)

∫ 1

0

∣∣Gm(x)− G(x)
∣∣dx = o(1),

123



938 A. Leblanc

i.e. the sequence also converges in L1. This result also implies that

∣∣∣∣
∫ 1

0
g(x)Gm(x) dx −

∫ 1

0
g(x)G(x) dx

∣∣∣∣ ≤ sup
x∈[0,1]

|g(x)|
∫ 1

0

∣∣Gm(x)− G(x)
∣∣dx = o(1),

which proves (ii) is also satisfied. �	
Proof of Theorem 1 It is clear that

E
[
F̂m,n(x)

] = Bm(x), (13)

for all x ∈ [0, 1], so that the expression for the bias of F̂m,n just follows from Lemma 1.
Let us now focus on calculating the variance of our estimator. For this, we define for
any x ∈ [0, 1],


i (x) = I(Xi ≤ x)− F(x),

where I(A) denotes the indicator function of the event A, so that 
1(x), . . . , 
n(x)
are i.i.d. with mean zero. Note that

F̂m,n(x)− Bm(x) =
m∑

k=0

[
Fn(k/m)− F(k/m)

]
Pk,m(x) = 1

n

n∑

i=1

Yi,m,

where

Yi,m =
m∑

k=0


i (k/m)Pk,m(x).

For given m, the random variables Y1,m, . . . ,Yn,m are also i.i.d. with mean zero, so
that

Var
[
F̂m,n(x)

] = 1

n
E[Y 2

1,m]. (14)

However, it is easy to verify that

E
[

1(x)
1(y)

] = min
(
F(x), F(y)

) − F(x)F(y),

for any x, y ∈ [0, 1], so that

E[Y 2
1,m] =

m∑

k=0

m∑

l=0

E
[

1(k/m)
1(l/m)

]
Pk,m(x)Pl,m(x)

=
m∑

k=0

F(k/m)P2
k,m(x)+ 2

∑ ∑

0≤k<l≤m

F(k/m)Pk,m(x)Pl,m(x)− B2
m(x).

(15)
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It is now a matter of obtaining an asymptotic expression for (15). For this, we use
arguments similar to those used by Babu et al. (2002, Lemma 3.2) and Leblanc (2010,
Proposition 1). For this, we first expand F(k/m) about x to write

F(k/m) = F(x)+ O
(|k/m − x |),

which holds for all 0 ≤ k ≤ m. This allows us to write the first term of (15) as

m∑

k=0

F(k/m)P2
k,m(x) = F(x)Sm(x)+ O

(
Im(x)

)
, (16)

where

Im(x) =
m∑

k=0

|k/m − x |P2
k,m(x).

For the second term of (15), we instead write F(k/m) as

F(k/m) = F(x)+ (k/m − x) f (x)+ O
(
(k/m − x)2

)
, (17)

and note that

1 =
m∑

k=0

m∑

l=0

Pk,m(x)Pl,m(x) = 2R0,m(x)+ Sm(x),

so that

R0,m(x) = 1

2

[
1 − Sm(x)

]
.

This last result, along with (17) and Lemma 2 (v), leads to

∑ ∑

0≤k<l≤m

F(k/m)Pk,m(x)Pl,m(x) = F(x)R0,m(x)+ f (x)R1,m(x)+ O
(
R2,m(x)

)

= 1

2
F(x)

[
1 − Sm(x)

] + f (x)R1,m(x)+ O(m−1), (18)

so that, substituting (16) and (18) back into (15) and using Lemma 1, we get

E[Y 2
1,m] = σ 2(x)+ 2 f (x)R1,m(x)+ O(Im(x))+ O(m−1). (19)
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Now, using the Cauchy–Schwarz inequality and the fact that 0 ≤ Pk,m(x) ≤ 1, we
have

Im(x) ≤
[

m∑

k=0

( k

m
− x

)2
Pk,m(x)

]1/2 [
m∑

k=0

P3
k,m(x)

]1/2

≤
[

T2,m(x)

m2 Sm(x)

]1/2

≤
[

Sm(x)

4m

]1/2

, (20)

so that, after using Lemma 2 (ii), we get Im(x) = Ox (m−3/4). This fact and Lemma 2
(iv) allow us to rewrite (19) as

E[Y 2
1,m] = σ 2(x)− m−1/2V (x)+ ox (m

−1/2). (21)

In light of (14), this leads to the required asymptotic expression for the variance of
F̂m,n(x). �	
Proof of Theorem 2 We essentially follow the approach taken by Babu et al. (2002,
Proposition 1). It has been established earlier that, for fixed m, F̂m,n(x) is an average
of i.i.d. random variables. Let s2

m = E[Y 2
1,m]; then, making use of the central limit

theorem for double arrays (cf. Serfling 1980, Section 1.9.3), the required result will
hold if and only if the following Lindeberg condition is satisfied,

s−2
m E

[
Y 2

1,m I
(|Y1,m | > εsmn1/2)] −→ 0, (22)

for every ε > 0 as n → ∞. However, note that in light of (21), we have that sm → σ(x)
as m → ∞, and that

|Y1,m | ≤ 2
m∑

k=0

Pk,m(x) = 2,

for all m. Obviously, then, (22) holds when m, n → ∞. �	
Proof of Theorem 3 The proof of this result follows along the lines of the proof of
Theorem 3 of Leblanc (2010). We first note that (20), Lemma 3 (i) and Jensen’s
inequality together lead to

∫ 1

0
Im(x) dx ≤

[
1

4m

∫ 1

0
Sm(x) dx

]1/2

=
[

1

4m3/2

(√
π/2 + O(m−1)

)]1/2

= O(m−3/4),
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the function G(x) = √
x being concave on [0, 1]. Combining this with (13), (14)

and (19), we can write

MISE
[
F̂m,n

] =
∫ 1

0

(
Var

[
F̂m,n(x)

] + Bias
[
F̂m,n(x)

]2
)

dx

= n−1
[ ∫ 1

0
σ 2(x) dx + 2

∫ 1

0
f (x)R1,m(x) dx

]
+ m−2

∫ 1

0
b2(x) dx

+ O(m−3/4n−1)+ o(m−2),

since the O(m−1) term of (19) is independent of x . It now suffices to use Lemma 3
(ii) and to notice that 2 f (x)ψ2(x) = V (x) to get

MISE
[
F̂m,n

] = n−1C1 − m−1/2n−1C2 + m−2C3 + o(m−1/2n−1)+ o(m−2),

as was claimed. �	

Proof of Theorem 4 We cover here only the case of local deficiency since, for all
practical purposes, the case of global deficiency uses identical arguments. For con-
ciseness, we use i(n) in lieu of iL(n, x) in what follows.

Turning to the proof of the first result, we start by noting that, by definition, i(n)
satisfies

MSE
[
Fi(n)(x)

] ≤ MSE
[
F̂m,n(x)

] ≤ MSE
[
Fi(n)−1(x)

]
,

that is,

[i(n)]−1σ 2(x) ≤ n−1σ 2(x)− m−1/2n−1V (x)+ m−2b2(x)

+ ox (m
−1/2n−1)+ o(m−2)

≤ [i(n)− 1]−1σ 2(x), (23)

and limn→∞ i(n) = ∞. From this, we can see that

1 ≤ i(n)

n

[
1 − m−1/2θ(x)+ m−2n γ (x)+ ox (m

−1/2)+ ox (m
−2n)

]
≤ i(n)

i(n)− 1
,

where θ(x) = V (x)/σ 2(x) and γ (x) = b2(x)/σ 2(x). Now, as long as mn−1/2 → ∞
(so that m−2n → 0), taking the limit as n → ∞ in the previous inequality leads to
i(n)/n → 1, so that the condition for first-order efficiency indeed holds. To see that
(i) also holds, it suffices instead to rewrite (23) as

m−1/2n−1θ(x) ≤ A1,n + m−2γ (x)+ ox (m
−1/2n−1)+ ox (m

−2)

≤ m−1/2n−1θ(x)+ A2,n,
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where

A1,n = 1

n
− 1

i(n)
, and A2,n = 1

i(n)− 1
− 1

i(n)
.

This, in turn, can be rewritten as

θ(x) ≤ m1/2n A1,n + m−3/2n γ (x)+ ox (1)+ ox (m
−3/2n) ≤ θ(x)+ m1/2n A2,n .

(24)

Now, assuming that mn−2/3 → ∞ and mn−2 → 0 (so that m−3/2n → 0 and
m−1/2n → ∞), we have that

lim
n→∞ m1/2n A1,n =

(
lim

n→∞
i(n)− n

m−1/2n

)(
lim

n→∞
n

i(n)

)
= lim

n→∞
i(n)− n

m−1/2n
,

and that

lim
n→∞ m1/2n A2,n =

(
lim

n→∞ m1/2n−1
) (

lim
n→∞

n

i(n)

)(
lim

n→∞
n

i(n)− 1

)
= 0.

Hence, taking the limit in (24), it is clear that (i) does hold. Finally, for (ii), note that
if mn−2/3 → c > 0, a similar argument instead leads to

lim
n→∞

i(n)− n

m−1/2n
= θ(x)− c−3/2 γ (x),

and, since

lim
n→∞

i(n)− n

m−1/2n
=

(
lim

n→∞
i(n)− n

n2/3

)(
lim

n→∞ m1/2n−1/3
)

= c1/2 lim
n→∞

i(n)− n

n2/3 ,

the required result easily follows. �	
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