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Abstract We revisit the second-order nonlinear least square estimator proposed in
Wang and Leblanc (Anne Inst Stat Math 60:883–900, 2008) and show that the esti-
mator reaches the asymptotic optimality concerning the estimation variability. Using
a fully semiparametric approach, we further modify and extend the method to the het-
eroscedastic error models and propose a semiparametric efficient estimator in this more
general setting. Numerical results are provided to support the results and illustrate the
finite sample performance of the proposed estimator.

Keywords Second-order least squares estimator · Heteroscedasticity ·
Moments · Semiparametric methods

1 Introduction

Wang and Leblanc (2008) considered a regression model with a parametric mean
function and a constant variance:

Y = m(X;β) + ε, (1)

where they assumed that Y is a one-dimensional continuous response variable, and
X is a covariate vector that can be continuous, discrete, or mixed. The mean function
m is a known function up to the d-dimensional parameter β and the model error ε

satisfies the usual mean zero assumption E(ε|X) = 0. In addition, they also assumed
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that ε has a constant yet unknown variance σ 2, i.e. E(ε2|X) = σ 2. The observa-
tions are denoted (X1, Y1), . . . , (Xn, Yn), each satisfies (1) and the n observations
are independent of each other. Without the additional homoscedastic assumption, this
is the usual semiparametric regression problem, or sometimes named the restricted
moment model, and the consistent estimator family as well as the efficient estimator
for β is known. See, for example, Tsiatis (2006, p. 53). With the additional assumption
of homoscedasticity, Wang and Leblanc (2008) proposed a second-order least squares
(SLS) type estimation procedure where they take advantage of the knowledge of the
second moment of Y − m(X;β). They showed that this SLS estimation of β indeed
yields improvement over classical least squares estimation.

This naturally motivates us to ask: Can further improvement be obtained? In other
words, we are curious to find out whether or not the Wang and Leblanc (2008) estima-
tor reaches the optimal efficiency bound in the sense of Bickel et al. (1993). Studying
the semiparametric efficiency bound is important in understanding a model. It provides
an ultimate conclusion when searching for estimators or trying to improve existing
procedures. Only when an efficient estimator is obtained, the procedure of estimation
can be considered to have reached certain optimality. Researchers have been search-
ing for optimal estimators in various problems, the most familiar example being the
ordinary and weighted least square estimators in the regression setting. Efficiency
issues are also considered in more complex problems such as the Cox model (Tsiatis
2006, Chapter 5.2, p 113), a class of general survival models (Zeng and Lin 2007),
problems in case control designs (Rabinowitz 2000; Ma 2010) or involving auxiliary
information (Chen et al. 2008), the partially linear models (Chamberlaine 1992; Ma
et al. 2006), the latent variable models (Ma and Genton 2010), the functional esti-
mation in semiparametric models (Maity et al. 2007; Müller 2009), the regression
with missing covariates (Robins et al. 1994), the skewed distribution families (Ma
et al. 2005; Ma and Hart 2007), the quantile regression models (Newey and Powell
1990) and the measurement error models (Tsiatis and Ma 2004; Ma and Carroll 2006).
To answer the question of optimality in our problem, we view the model in (1) as a
semiparametric problem and take a geometric approach. We construct the locally effi-
cient semiparametric estimators, and proceed to identify the optimal semiparametric
efficient (SE) estimator. The SE has the classical root-n convergence rate and is asymp-
totically normal. We further derive the estimation variance of the SE estimator, which
reaches the semiparametric efficiency bound and compares with the result in Wang
and Leblanc (2008). It demonstrates that the SLS estimator by Wang and Leblanc
(2008) is semiparametrically efficient as well and is thus optimal asymptotically. The
resulting estimator, which is asymptotically optimal, is new in literature.

In order to relax the homoscedasticity assumption on ε, we subsequently assume
E(ε2|X) = σ 2(X; γ ), which is a function of X with unknown parameter γ . Note
that here σ 2 has a known functional form. This model certainly includes the constant
variance model as a special case. Although the model is more complex, we can eas-
ily adapt the analysis we performed and derive the optimal efficient estimator. The
estimator and its asymptotic optimality is also new in literature.

The rest of the paper is organized as follows. We introduce the semiparametric
method and show the efficiency of the SLS estimator in Sect. 2. In Sect. 3, we adapt
our method to the heteroscedastic error models and propose the efficient estimators
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and the corresponding variance estimation. We also show the asymptotic optimality
of the generalized estimator in this section. Numerical experiments are provided in
Sect. 4, and we discuss some possible further extensions in Sect. 5. Technical details
are provided in Appendix.

2 Efficiency results

For convenience, we denote the augmented parameter θ = (βT, σ 2)T, and aim at
finding the class of consistent semiparametric estimators for θ and identifying the
most efficient one within this class. The probability density function (pdf) of a single
observation (X, Y ), ignoring the subscripts, can be written as

pX,Y (x, y) = pX (x)pε|X {y − m(x;β)|X = x} = η1(x)η2{y − m(x;β), x}, (2)

where η2(·) satisfies
∫

εη2(ε, x) dε = 0,
∫

ε2η2(ε, x) dε = σ 2, and the third and
fourth moments of ε conditional on X are constants. Here, we use η1(·), η2(·, ·) to
denote the pdf of X and the conditional pdf of ε given X . This emphasizes that these
pdfs are infinite-dimensional nuisance parameters. We sometimes write pX,Y (x, y) as
pX,Y (x, y; θ, η1, η2) to emphasize that the pdf contains a finite-dimensional param-
eter θ and infinite-dimensional parameters η1, η2. We also use ε and Y − m(X;β)

interchangeably, and use a subscript ‘0’ to denote the true parameter value.
The geometric approach to semiparametric regression analysis consists of defining

a Hilbert space H and finding two subspaces of H, namely the nuisance tangent space
� and its orthogonal complement �⊥. Here, the Hilbert space is the space of all mean
zero, length d, finite variance functions of (X, Y ). Here and after, all the expectations
are calculated under the true distribution. The subspace � is a space spanned by the
nuisance score functions (the score function obtained through taking derivative of the
logarithm of the pdf with respect to the nuisance parameter) of all the parametric sub-
models of (2) and their limiting points. The subspace �⊥ is a space consisting of all
the functions that are orthogonal to all the functions in �. See Tsiatis (2006, Chapter 4)
for an elaborated explanation of these concepts. Once � and �⊥ are obtained, we then
project the score function Sθ = ∂ log pX,Y /∂θ onto �⊥ to obtain Seff. The orthogonal
projection of the score function onto �⊥, i.e. Seff, is usually referred to as the efficient
score function. If it can be constructed,

∑n
i=1 Seff(Xi , Yi ;β, η10, η20) = 0 will then

be the estimating equation that will yield the optimal estimator of θ .
For model (1), a careful analysis yields � = �η1 ⊕ �η2 , where

�η1 = { f (X) : E( f ) = 0},
�η2 = {g(ε, X) : E(g|X) = 0, E(εg|X) = 0, E(ε2g|X) = 0}, and

�⊥ = {h(ε, X) : h = a(X)ε + b(X)(ε2 − σ 2)},

where a, b, f are all length d functions of X , and g, h are length d functions of ε, X .
The derivation details are in Appendix A1. Taking derivative of the logarithm of the
pdf with respect to θ gives us the score function
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Sθ (X, Y ) = (ST
β , Sσ 2)T =

{

− ∂η2(ε, X)

η2(ε, X)∂ε

∂m(X;β)

∂βT ,
∂η2(ε, X)

η2(ε, X)∂σ 2

}T

. (3)

As pointed out in Appendix A2, the projection of an arbitrary function h(X, Y ) ∈ H
onto �⊥ can be calculated as


(h|�⊥) = E(εh|X)

σ 2 ε + E(Ch|X)

E(C2|X)
C, (4)

where C = ε2 − σ 2 − E(ε3 − εσ 2|X)ε/σ 2. Letting h(X, Y ) = Sθ (X, Y ), we can
obtain Seff = (ST

β,eff, Sσ 2,eff)
T. Further solving

∑n
i=1 Seff(Xi , Yi ) = 0 gives the SE

estimator, and the asymptotic covariance matrix of
√

nθ̂ is

ncov(θ̂) = {E(SeffS
T
eff)}−1.

More specifically, we have

Theorem 1 The efficient score functions for β and σ 2 have the form

Sβ,eff (X, Y ) = ∂m(X;β)

∂β

{
ε

σ 2 − E(ε3|X)C

σ 2 E(C2|X)

}

,

Sσ 2,eff(X, Y ) = C

E(C2|X)
. (5)

The estimation covariance matrix is

E(Seff ST
eff |θ=θ0)

−1

=

⎡

⎢
⎢
⎣

(

σ 2
0 − μ2

3
μ4−σ 4

0

) {

B − μ2
3

σ 2
0 (μ4−σ 4

0 )
AAT

}−1
μ3{σ 2

0 (μ4−σ 4
0 )−μ2

3}B−1 A

σ 2
0 (μ4−σ 4

0 )−μ2
3 AT B−1 A

μ3{σ 2
0 (μ4−σ 4

0 )−μ2
3}AT B−1

σ 2
0 (μ4−σ 4

0 )−μ2
3 AT B−1 A

(μ4−σ 4
0 )

{
σ 2

0 (μ4−σ 4
0 )−μ2

3

}

σ 2
0 (μ4−σ 4

0 )−μ2
3 AT B−1 A

⎤

⎥
⎥
⎦ , (6)

where μ3 = E(ε3|X), μ4 = E(ε4|X), and

A = E

{
∂m(X;β0)

∂β

}

, B = E

{
∂m(X;β0)

∂β

∂m(X;β0)

∂βT

}

.

The proof of Theorem 1 consists the derivation of the efficient score (5), given
in Appendix A3, and the derivation of (6), given in Appendix A4. Comparing the
variances in (6), and (7), (8) in Wang and Leblanc (2008), we obtain that their SLS
estimator is indeed efficient.

We would like to point out that for convenience, we have assumed both μ3 and μ4
are constants, and we estimate them using the residuals from an initial OLS estima-
tor. The same assumptions are made in Wang and Leblanc (2008). If, however, these
assumptions are not valid, we still have E(C |X) = E(ε2|X)−σ 2 −μ∗

3 E(ε|X)/σ 2 =
0, where we use μ∗

3 to denote E(ε3 −εσ 2|X) calculated under the wrong model. From
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the efficient score in (5), it is easily verified that we still have E(Seff|X) = 0, hence
our estimator remains consistent. On the other hand, if these assumptions are indeed
valid, then our procedure achieves the optimal efficiency.

3 Extension

In Sect. 2, we developed the efficient semiparametric estimator and its estimation var-
iance in the model (1) with the homoscedasticity error. In this section, we extend the
results to the heteroscedastic error case. We assume E(ε2|X) = σ 2(X; γ ), where the
variance function σ 2 is known up to an unknown parameter γ . We denote the param-
eter θ = (βT, γ T)T. In this case, similar derivations show that the nuisance tangent
space, now denoted �, can still be expressed as � = �η1 + �η2 , where �η1 = �η1

is unchanged from the homoscedastic case, and

�η2 = {g(ε, X) : E(g|X) = 0, E(εg|X) = 0, E[{ε2 − σ 2(X; γ )}g|X ] = 0}.

Consequently,

�⊥ = {h(ε, X) : h = a(X)ε + b(X){ε2 − σ 2(X; γ )}}.

Here, a, b, g, h are all length d functions.
The score function

Sθ (X, Y ) = (ST
β , ST

γ )T =
{

− ∂η2(ε, X)

η2(ε, X)∂ε

∂m(X;β)

∂βT ,
∂η2(ε, X)

η2(ε, X)∂σ 2

∂σ 2(X; γ )

∂γ T

}T

can be similarly calculated by differentiating the logarithm of the pdf with respect
to θ . The projection of an arbitrary function h(X, Y ) ∈ H onto �⊥ also has a form
similar to (4), i.e.


(h|�⊥) = E(εh|X)

σ 2(X; γ )
ε + E(Ch|X)

E(C2|X)
C,

where C = ε2 − σ 2(X; γ ) − E{ε3 − εσ 2(X; γ )|X}ε/σ 2(X; γ ). Projecting Sθ onto
�⊥, we can obtain Seff = (ST

β,eff, ST
γ,eff)

T. The SE estimator can therefore be obtained
through solving

∑n
i=1 Seff(Xi , Yi ) = 0, and the asymptotic covariance matrix of the

resulting estimator satisfies ncov(θ̂) = {E(SeffST
eff)}−1 evaluated at θ = θ0. We sum-

marize the results parallel to Theorem 1 in Theorem 2, but omit the detailed proofs.
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Theorem 2 The efficient score functions for β and γ have the form

Sβ,eff (X, Y ) = ∂m(X;β)

∂β

{
ε

σ 2(X; γ )
− E(ε3|X)C

σ 2(X; γ )E(C2|X)

}

,

Sγ,eff (X, Y ) = C

E(C2|X)

∂σ 2(X; γ )

∂γ
.

The estimation covariance matrix is

E
(
Seff ST

eff

)

= E

⎡

⎢
⎣

∂m(X;β0)
∂β

∂m(X;β0)

∂βT
1

σ 2(X;γ0)

{

1 + μ2
3

σ 2(X;γ0)E(C2 |X)

}

− μ3
σ 2(X;γ0)E(C2|X)

∂m(X;β0)
∂β

∂σ 2(X;γ0)

∂γ T

− μ3
σ 2(X;γ0)E(C2|X)

∂σ 2(X;γ0)
∂γ

∂m(X;β0)

∂βT
1

E(C2 |X)

∂σ 2(X;γ0)
∂γ

∂σ 2(X;γ0)

∂γ T

⎤

⎥
⎦ ,

where μ3 is defined after (6).

The upper-left block of the inverse of E(SeffST
eff) gives the covariance matrix of the

efficient estimator nβ̂. Specifically, denote

U1 = m′
β(X;β0)μ3σ

−2(X; γ0)/
√

E(C2|X),

U2 = ∂σ 2(X; γ0)

∂γ
/
√

E(C2|X),

where m′
β(X;β0) denotes ∂m(X;β)/∂βT evaluated at β = β0, we have

ncov(β̂) = [E{m′
β(X;β0)m

′
β(X;β0)

Tσ−2(X; γ0)}
+E(U1U T

1 ) − E(U1U T
2 ){E(U2U T

2 )}−1 E(U1U2)
T]−1.

In contrast to the efficient semiparametric estimator, we inspect the usual weighted
least square (WLS) estimator where

∑n
i=1 wi {Yi −m(Xi ;β)}2 is minimized to obtain

the WLS estimator β̃. In this case, it is well known that the optimal weights are
wi = 1/σ 2(Xi ; γ0), and the corresponding optimal estimator in the WLS family has
asymptotic estimation covariance matrix

ncov(β̃) = E{σ−2(Xi ; γ0)m
′
β(Xi ;β0)m

′
β(Xi ;β0)

T}−1.

The covariance matrices of the two estimators are obviously different. In fact, it is
easy to verify that

{ncov(β̂)}−1 − {ncov(β̃)}−1 = E(U1U T
1 ) − E(U1U T

2 ){E(U2U T
2 )}−1 E(U1U2)

T

= cov[U1 − E(U1U T
2 ){E(U2U T

2 )}−1U2],

hence ncov(β̃) − ncov(β̂) is nonnegative-definite. This shows that although the opti-
mal WLS is the most efficient among the WLS estimator family, it is in general not as
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efficient as the SE estimator that we have derived. The practical improvement of the
estimation variance will be demonstrated in the simulation studies in Sect. 4.

Unlike in the homoscedastic error case, it is no longer reasonable to assume μ3
and μ4 to be constants. Similar to σ 2, they are usually functions of the covariate
X , say μ3(X) and μ4(X). Implementing our efficient estimator requires plugging in
μ3(X) and μ4(X), which are generally unknown. In practice, we could first obtain
the residual ri s of the model from an initial OLS estimator, then fit parametric or non-
parametric models for (Xi , r3

i ) and (Xi , r4
i ) to obtain μ̂3(X), μ̂4(X). We then proceed

with the estimation on β, γ . Similar to the homoscedastic case, even if the parametric
models are misspecified, or the estimation of μ3(X) and μ4(X) is completely wrong,
our estimator remains consistent. This is because E(Seff|X) = 0 is guaranteed by
E(ε|X) = 0 and E(ε2|X) = σ 2(X; γ ), it does not rely on the correctness of μ3(X)

and μ4(X). However, when the model is correct, our estimator is efficient, even when
μ3(X), μ4(X) are estimated rather crudely.

4 Numerical results

We carry out simulations to study the finite sample performance of the various esti-
mators. The first two simulations focus on homoscedastic error models, as studied
in Sect. 2, and the last two simulations on heteroscedastic error models as studied in
Sect. 3.

The mean in simulation one has an exponential form, and the model is

Y = β1 exp(β2 X) + ε, (7)

with the true parameter values β1 = 10, β2 = −0.6 and a constant error variance
σ 2 = 2. In simulation two, we considered a growth model

Y = β1

1 + exp(β2 + β3 X)
+ ε, (8)

with the true parameter values β1 = 10, β2 = 1.5, β3 = −0.8 and σ 2 = 2. Models
(7) and (8) are identical to the simulation settings in Wang and Leblanc (2008). In both
models, xi s are generated from a uniform distribution in (0, 20) and εi = (ei −3)/

√
3,

where ei s are generated from a χ2(3) distribution. Thus, εi s have mean zero and
variance 2 but are asymmetrically distributed. The asymmetry insures that the third
moment E(ε3|X) does not vanish, hence the SE or SLS does not degenerate to the
WLS estimator. We implemented the OLS, the SLS and the SE estimators, and report
the sample mean and sample variance of these estimates. For the SE estimator, we
also calculated the estimated variance.

We used a sample size n = 200, and generated 1,000 data sets. The simulation
results are presented in Table 1. These results clearly indicate that all three estimators
are consistent, while both the SLS and the SE estimators outperform the OLS in terms
of estimation variance. The estimation variances of the SLS and the SE estimator
are very close, which supports our claim that both are efficient. Finally, our variance
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Table 1 Simulation results for exponential and growth mean model with homoscedastic error (results are
based on a sample size of 200)

OLS VAR SLS VAR SE VAR VAR1

Exponential model
β1 = 10 10.0768 0.5572 10.0938 0.3418 10.0889 0.3379 0.3721

β2 = −0.6 −0.6068 0.0038 −0.6070 0.0024 −0.6068 0.0024 0.0024

σ 2 = 2 1.9597 0.1024 1.9418 0.0714 1.9319 0.0726 0.0641

Growth model

β1 = 10 9.9981 0.0146 9.9872 0.0125 9.9849 0.0107 0.0119

β2 = 1.5 1.5236 0.0489 1.5173 0.0259 1.5166 0.0254 0.0259

β3 = −0.8 −0.8104 0.0097 −0.8059 0.0047 −0.8060 0.0047 0.0045

σ 2 = 2 1.9469 0.1112 1.9179 0.1081 1.8920 0.0921 0.1092

The average and sample variance (VAR) of 1,000 OLS, SLS and SE estimators as well as the average of
the 1,000 estimated variances (VAR1) for the SE estimator are presented

Table 2 Simulation results for exponential and growth mean model with homoscedastic error (results are
based on a sample size of 500)

OLS VAR SLS VAR SE VAR VAR1

Exponential model
β1 = 10 10.0185 0.2224 10.0221 0.1187 10.0228 0.1193 0.1193

β2 = −0.6 −0.6025 0.0015 −0.6021 8.73e−4 −0.6023 8.76e−4 8.74e−4

σ 2 = 2 1.9900 0.0483 1.9789 0.0303 1.9730 0.0303 0.0295

Growth model
β1 = 10 10.0005 0.0061 9.9933 0.0051 9.9953 0.0050 0.0051

β2 = 1.5 1.5148 0.0181 1.5084 0.0107 1.5077 0.0105 0.0104

β3 = −0.8 −0.8039 0.0032 −0.8029 0.0018 −0.8028 0.0018 0.0019

σ 2 = 2 1.9843 0.0466 1.9728 0.0463 1.9785 0.0468 0.0482

The average and sample variance (VAR) of 1,000 OLS, SLS and SE estimators, as well as the average of
the 1,000 estimated variances (VAR1) for the SE estimator are presented

estimation is reasonably precise, in that the sample variance, calculated using the
1,000 estimates via standard sample variance calculation, and the estimated variance,
calculated as the mean of the 1,000 estimated variances, are very close. To further
demonstrate the impact of the sample size n, we increased n to 500. The numerical
outcome in Table 2 further suggests the relevancy of our asymptotic results.

In Sect. 3, we have seen how the variance of the error can be allowed to depend on X .
To experiment with the heteroscedastic error situation, we modified the error structure
in the first two simulations to have a variance function σ 2(X; γ ) = γ1 + γ2 X2, while
keeping the same mean functions and β values. For the exponential model (7), a true
value γ = (1, 0.1) was used and xi s are generated from a uniform distribution (0, 5).
For the growth model (8), we use γ = (2, 0.05) and generated xi s from a uniform
distribution (0, 7). In both models, we set εi = ei − ki , where ki = σ 2(xi ; γ )/2 and
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ei s are generated from a χ2(ki ) distribution. Thus, the errors εi s in both (7) and (8)
have mean zero, variance σ 2(X; γ ) and have an asymmetric distribution.

In implementing the WLS estimators, we used the ideal weights 1/σ 2(Xi ; γ0),
hence the WLS performance is optimal among all WLS estimators. Implementing
the SE estimator requires plugging in the third and fourth conditional moment func-
tions of the error. To test the optimality and robustness of our proposed estimator, we
experimented with two different scenarios. In the first case, we calculated the true
moment functions and plugged them into the SE estimator (SE1). In the second case,
we adopted drastically different functions, and plugged them into the SE estimator as if
they were the truth (SE2). To be specific, the true third and fourth conditional moment
functions can be calculated to be a2 X2 + a1 and a5 X4 + a4 X2 + a3, respectively,
where a1 = 4γ1, a2 = 4γ2, a3 = 3γ 2

1 + 24γ1, a4 = 24γ2 + 6γ1γ2 and a5 = 3γ 2
2 .

However, we used the wrong models a2 X + a1 and a5 X2 + a4 X + a3 instead. Both
results along with the optimal WLS results were reported in Table 3. These results
are based on 1,000 simulations with a sample size n = 400. The results of Table 3
reflect the fact that all three estimators are consistent. Compared with the two SE
estimators, the WLS estimator, although already optimal in its family, is much less
efficient in that the sample variances in estimating βs are much larger than both SEs.
We had expected to see SE1 to outperform SE2 substantially. However, to our surprise,
the performance of two estimators is rather similar. This is a pleasant surprise, since
modeling and estimating the third and fourth conditional moments usually need very
large sample size and can be numerically unstable. Finally, the sample variance and
estimated variance for both SEs match reasonably well, indicating the validity of our
inference. We also increased the sample size to 500 and 1,000, and find the two get

Table 3 Simulation results for exponential and growth mean model with heteroscedastic error (results are
based on a sample size of 400)

WLS VAR SE1 VAR VAR1 SE2 VAR VAR1

Exponential model

β1 = 10 9.9931 0.0358 9.9980 0.0217 0.0255 10.0032 0.0229 0.0215

β2 = −0.6 −0.5998 3.51e−4 −0.5996 2.27e−4 2.32e−4 −0.5994 2.98e−4 2.14e−4

γ1 = 1 1.0305 0.1328 0.1635 1.0232 0.1436 0.1474

γ2 = 0.1 0.0967 0.0016 0.0019 0.0998 0.0019 0.0013

Growth model

β1 = 10 10.0086 0.0668 10.0018 0.0517 0.0497 9.9989 0.0512 0.0490

β2 = 1.5 1.5081 0.0093 1.5023 0.0061 0.0061 1.5010 0.0068 0.0059

β3 = −0.8 −0.8042 0.0039 −0.8020 0.0020 0.0018 −0.8028 0.0024 0.0018

γ1 = 2 1.9768 0.3192 0.2523 1.9993 0.3386 0.2827

γ2 = 0.05 0.0498 9.43e−4 7.87e−4 0.0498 0.0012 6.68e−4

The average and sample variance (VAR) of 1,000 WLS, SE1 and SE2 estimators are presented. SE1 is
the SE estimator with the true moment models, and SE2 the wrong moment models. Median of the 1,000
estimated variances (VAR1) for SE1 and SE2 are calculated
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Table 4 Simulation results for exponential and growth mean model with heteroscedastic error (results are
based on a sample size of 1,000)

WLS VAR SE1 VAR VAR1 SE2 VAR VAR1

Exponential model

β1 = 10 10.0073 0.0151 10.0068 0.0076 0.0080 10.0107 0.0075 0.0076

β2 = −0.6 −0.5999 1.42e−4 −0.5999 7.96e−5 8.09e−5 −0.6001 8.73e−5 7.85e−5

γ1 = 1 1.0379 0.0578 0.0555 1.0395 0.0632 0.0618

γ2 = 0.1 0.0959 6.36e−4 5.77e−4 0.0963 7.39e−4 5.15e−4

Growth model

β1 = 10 10.0040 0.0258 10.0062 0.0192 0.0194 10.0057 0.0191 0.0192

β2 = 1.5 1.5064 0.0034 1.5019 0.0023 0.0024 1.5006 0.0024 0.0023

β3 = −0.8 −0.8036 0.0014 −0.8007 6.92e−4 6.94e−4 −0.8003 6.93e−4 6.81e−4

γ1 = 2 1.9976 0.1207 0.1127 2.0088 0.1260 0.1242

γ2 = 0.05 0.0496 3.77e−4 3.51e−4 0.0489 3.78e−4 3.26e−4

The average and sample variance (VAR) of 1,000 WLS, SE1 and SE2 estimators are presented. SE1 is
the SE estimator with the true moment models, and SE2 the wrong moment models. Median of the 1,000
estimated variances (VAR1) for SE1 and SE2 are calculated

closer when the sample size increases, numerical results for n = 500 and n = 1,000
are given in Tables 2 and 4.

5 Discussion

We have derived a SE estimator in a regression model, where the regression error
has conditional mean zero and conditional variance a constant. We have shown that
this estimator achieves the optimal semiparametric efficiency bound and is equiva-
lent to the SLS estimator proposed in Wang and Leblanc (2008), hence revealing an
unknown optimality of their estimator. We further extended the model to the case
where the second moment can be an arbitrary function of the covariates, and derived
the SE estimator in this general case. The same kind of extension can also be made
on the SLS estimator to handle heteroscedasticity. Simulation results demonstrated
the significant improvement of the estimation variance in comparison to the classical
WLS estimators and supported the inference procedure.

We have adopted fixed models for the third and fourth conditional moment func-
tions of the error distribution, and demonstrated the consistency of the proposed esti-
mator whether or not these higher moment models are misspecified. However, in
reality, these moment functions need to be estimated. We caution that the estimation
of the higher moments can be rather unstable, usually requiring a large sample size.
Although the need to estimate higher order moments will not affect the estimation
variance of the parameter of interest in the asymptotic sense, in finite samples, it is
very likely to inflate the variance. Thus, we propose to adopt simple models for these
higher moments. Finally, the same line of analysis can be extended to higher moments,
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although both the theoretical analysis and the implementation of the estimators will
become increasingly complex.

6 Appendix

A1. Derivation of � and �⊥

We consider � first. From Tsiatis (2006, Section 4.5), �η1 = (all length d mean zero
functions of X).

We now derive �η2 . As a model for pε|X (ε|x), the pdf η2(ε, x) satisfies the follow-
ing conditions:

∫
η2(ε, x) dε = 1,

∫
εη2(ε, x) dε = 0,

∫
ε2η2(ε, x) dε = σ 2,

which can be equivalently written as
∫

η2(ε, x) dε = 1,

∫
εη2(ε, x) dε = 0,

∫
(ε2 − σ 2)η2(ε, x) dε = 0.

Following Tsiatis (2006, Section 4.5), the first constraint implies that any function
g(ε, X) in �η2 has to satisfy E(g|X) = 0, and the second constraint implies that
g has to satisfy E(εg|X) = 0. Applying similar arguments to the third constraint,
we can obtain that g has to also satisfy E{(ε2 − σ 2)g|X} = 0 and, consequently,
E(ε2g|X) = 0. These three requirements on g yield the desired form of the space
�η2 .

We point out that the space �η1 is orthogonal to �η2 , which justifies the notation
� = �η1 ⊕�η2 . This is because for an arbitrary element f1(X) ∈ �η1 and an arbitrary
element f2(ε, X) ∈ �η2 ,

E { f1(X) f2(ε, X)} = E [E { f1(X) f2(ε, X)|X}] = E [ f1(X)E { f2(ε, X)|X}] = 0.

To show the form of �⊥, we first define a space K = {a(X)ε + b(X)(ε2 − σ 2)},
then show K ⊂ �⊥ and �⊥ ⊂ K .

For any function h(ε, X) = a(X)ε + b(X)(ε2 − σ 2) ∈ K , we will show that
E(h f ) = 0 for all f ∈ �η1 and E(hg) = 0 for all g ∈ �η2 . This would demonstrate
that h ∈ �⊥. We have

E{h(ε, X) f T(X)} = E(E[{a(X)ε + b(X)(ε2 − σ 2)} f T(X)|X ])
= E{a(X) f T(X)E(ε|X)} + E{b(X) f T(X)E(ε2 − σ 2|X)}
= 0,

E{h(ε, X)gT(ε, X)} = E(E[{a(X)ε + b(X)(ε2 − σ 2)}gT(ε, X)|X ])
= E{a(X)E(εgT|X)} + E{b(X)E(ε2gT|X)}

−σ 2 E{b(X)E(gT|X)}
= 0.

Thus, K ⊂ �⊥.
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To show �⊥ ⊂ K , we consider an arbitrary h ∈ �⊥. Let �η2 = �a ∩ �b ∩ �c,
where

�a = {g : E(g|X) = 0}, �b = {g : E(εg|X) = 0}, �c = {g : E(ε2g|X) = 0}.

Lemma 4.3 of Tsiatis (2006) implies that �⊥
η1

= �a . It is then trivial to see that
h ∈ �⊥ implies h ⊥ �η1 , which further implies h ∈ �a . Thus E(h|X) = 0. Form
r(ε, X) = E(εh|X)ε/σ 2 + E(Ch|X)C/E(C2|X), where C is defined after (4) and
decompose h as

h = {h − E(εh|X)ε/σ 2 − E(Ch|X)C/E(C2|X)} + r.

Note r ∈ K ⊂ �⊥, hence h1 = h − E(εh|X)ε/σ 2 − E(Ch|X)C/E(C2|X) =
h − r ∈ �⊥ as well. However, we can easily verify that h1 ∈ �η2 at the same time,
by verifying that E(h1|X) = 0, E(εh1|X) = 0 and E(ε2h1|X) = 0. Hence, h1 = 0.
This indicates h = r ∈ K , thus �⊥ ⊂ K .

A2. Proof of (4)

Let r(ε, X) = E(εh|X)

σ 2 ε+ E(Ch|X)

E(C2|X)
C . Obviously r(ε, X) ∈ �⊥. Decompose h −r

as

h(ε, X) − r(ε, X) = E(h|X) + {h(ε, X) − r(ε, X) − E(h|X)}.

Note that E(h|X) ∈ �η1 . We can also verify that h(ε, X)− r(ε, X)− E(h|X) ∈ �η2 ,
by verifying that E[{h − r − E(h|X)}|X ] = 0, E[ε{h − r − E(h|X)}|X ] = 0 and
E[ε2{h − r − E(h|X)}|X ] = 0.

Hence h(ε, X) − r(ε, X) ∈ �. Thus, we obtain that 
(h|�) = h(ε, X) − r(ε, X)

and 
(h|�⊥) = r(ε, X).

A3. Calculation of Seff given in (5)

Seff(X, Y ) can be written as

Seff = 
(Sθ |�⊥) = E(εSθ |X)

σ 2 ε + E(C Sθ |X)

E(C2|X)
C.

Using the form of Sβ and Sσ 2 in (3), we can verify that E(εSβ |X) = ∂m(X;β)

∂β
and

E(C Sβ |X) = −∂m(X;β)

∂β

μ3

σ 2 , thus

Sβ,eff = ∂m(X;β)

∂β

{
ε

σ 2 − μ3

σ 2 E(C2|X)
C

}

.
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Similarly, we can verify that E(εSσ 2 |X) = 0 and E(C Sσ 2 |X) = 1, hence Sσ 2,eff =
C/E(C2|X).

A4. Derivation of the variances in (6)

Using the explicit form of Sθ , we have

SeffS
T
eff

=
⎡

⎣
∂m(X;β)

∂β
∂m(X;β)

∂βT

{
ε
σ 2 − μ3C

σ 2 E(C2|X)

}2
∂m(X;β)

∂β

{
ε
σ 2 − μ3C

σ 2 E(C2|X)

}
C

E(C2|X)

∂m(X;β)

∂βT

{
ε
σ 2 − μ3C

σ 2 E(C2|X)

}
C

E(C2|X)
C2

E(C2|X)2

⎤

⎦ .

Taking expectation of SeffST
eff evaluated at the true parameter values, we have

E(Seff ST
eff|θ=θ0 )

=
⎡

⎢
⎣

1
σ 2

0
E

{
∂m(X;β0)

∂β
∂m(X;β0)

∂βT

}
+ 1

σ 4
0

E

{
∂m(X;β0)

∂β
∂m(X;β0)

∂βT
μ2

3
E(C2 |X)

}

− 1
σ 2

0
E

{
∂m(X;β0)

∂β
μ3

E(C2|X)

}

− 1
σ 2

0
E

{
∂m(X;β0)

∂βT
μ3

E(C2|X)

}
E

{
1

E(C2 |X)

}

⎤

⎥
⎦

=
⎡

⎢
⎣

1
σ 2

0

{

1 + μ2
3

σ 2
0 (μ4−σ 4

0 )−μ2
3

}

B − μ3

σ 2
0 (μ4−σ 4

0 )−μ2
3

A

− μ3

σ 2
0 (μ4−σ 4

0 )−μ2
3

AT σ 2
0

σ 2
0 (μ4−σ 4

0 )−μ2
3

⎤

⎥
⎦ .

Its inverse can then be calculated using the matrix inversion and is easy to verify to
have the form in (6).
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