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Abstract The traditional Cox model assumes a log-linear relationship between
covariates and the underlying hazard function. However, the linearity may be invalid
in real data. We study a Cox model which employs unknown parametric covariate
transformations. This model is applicable to observational studies or randomized tri-
als when a treatment effect is investigated after controlling for a confounding variable
that may have non-log-linear relationship with the underlying hazard function. While
the proposed generalization is simple, the inferential issues are challenging due to
the loss of identifiability under no effects of transformed covariates. Optimal tests are
derived for certain alternatives. Rigorous parametric inference is established under
regularity conditions and non-zero transformed covariate effects. The estimates per-
form well in simulation studies with realistic sample size, and the proposed tests are
more powerful than the usual partial likelihood ratio test, which is no longer optimal.
Data from a breast cancer trial are used to illustrate the model building strategy and
the better fit of the proposed model, comparing to the traditional Cox model.
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716 C. Fan et al.

1 Introduction

When dealing with failure time data, a famous model is the Cox proportional hazards
model (Cox 1972):

h(t; z) = h0(t) exp
{
βτ z(t)

}
, t ≥ 0 (1)

where the hazard rate or intensity of failure h(t) = lim�t↓0 Pr
[
T ≤ t +�t |T > t

]

for the survival time T of an individual, z is a p × 1 covariate vector which may
depend on the time t,β is a p-vector of unknown regression coefficients and h0(t),
the underlying hazard, is an unknown and unspecified nonnegative function.

Two assumptions are implied in Cox model, the proportional hazard assumption
and the linear relationship between log hazard and covariates. In some circumstances,
the log-linear relationship assumption may be invalid and may then induce invalidated
proportional hazard assumption. A natural idea to recover the linearity is to allow
parametric transformations to the covariates.

Parametric covariate transformations have been widely used in many kinds of mod-
els. They were first considered in the classic normal linear model (Draper and Smith
1981; Neter et al. 1985) with constant variance; see, for example, Box and Tidwell
(1962). A natural extension is to relax the homogenous normal error distribution;
see Carroll and Ruppert (1988) for a discussion of non-normal error distributions
(exponential, Laplace, etc) and variance function models. Another extension of the
linear model is to incorporate unknown transformations of the response. Parametric
(Draper and Cox 1969; Lindsey 1972) and non-parametric [including but not limited to
Doksum (1987); Pettitt (1982, 1984); Cheng et al. (1995); Fine et al. (1998)] response
transformations have been studied. In addition to their utility in assessing classical
linear model assumptions, nonparametric response transformations have been thor-
oughly studied with censored survival data because the Cox model (1) is a special
case with homogeneous extreme value errors.

Response and covariate transformations have been considered jointly (Cook and
Wang 1983; Atkinson 1986, 1988). These approaches are fully parametric with both
response and covariates permitted to follow different parametric transformations. In
related work on transform-both-sides models, the response and the linear predictor in
the linear model are transformed using a single transformation, which may be either
parametric (Carroll and Ruppert 1988) or nonparametric (Wang and Ruppert 1995),
but untransformed covariates.

Theoretical challenges arise with parametric covariate transformations in linear
models, with and without response transformations. The covariate’s transformation
cannot be identified with zero covariate effect, which means that standard likelihood
ratio tests are not applicable with unknown transformation. The issue has been glossed
over in most of the above-cited papers on parametric covariate transformations. Infer-
ences which are valid under this loss of identifiability can be traced to early work by
Davies (1977, 1987) on likelihood inferences for parametric models and later work
by Andrews and Ploberger (1994), which studied the admissibility of the likelihood
ratio test and the construction of optimal tests with better power properties than the
likelihood ratio test. All existing work focuses on likelihood based methods and their
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Generalized proportional hazards model 717

extension to the semi-parametric Cox model where inferences involve partial like-
lihood has not been established.

Nonparametric covariate transformations [as in generalized additive models, see
Hastie and Tibshirani (1986)] have also received much attention. The loss of identifi-
ability does not occur with nonparametric covariate transformations where the covar-
iate’s transformation and effect are not distinguished, as in Hastie and Tibshirani
(1990), where the Cox model is specified with nonparametric covariate effects. Of
course, smoothing is generally needed, and the usual parametric rates of convergence
do not hold, making inference tricky. Such difficulties have hindered the adoption
of such methods for formal testing. In practice, such models are generally used in
checking goodness-of-fit of parametric assumptions and in exploratory analysis of
covariate effects.

In this paper, we generalize the Cox model (1) to allow parametric covariate transfor-
mations and establish its inferences under regularity conditions and non-zero effects
of the transformed covariates, and we also develop optimal tests for the effects of
the transformed covariates adapting the framework in Andrews and Ploberger (1994)
for likelihood inferences for parametric models to partial likelihood for proportional
hazards model.

The generalized Cox model with parametric covariate transformations can be
defined as

h(t; z) = h0(t) exp
{
βτgλ(z(t))

}
, t ≥ 0 (2)

where β = (β1, . . . , βp)
τ ∈ R p is a p-dimensional parameter, gλ(z) is the transforma-

tion function, and if we denote z = (z1, . . . , z p)
τ ∈Z ⊂ R p and λ = (λ1, . . . , λq)

τ ∈
� ⊂ Rq , gλ(z) : Z × � �→ R p is defined as gλ(z) = {

g1(z1, λ1), . . . , gq(zq , λq),

gq+1(zq+1), . . . , gp(z p)
}τ , where

{
gi (zi , λi ), i = 1, . . . , q

}
are real-valued transfor-

mation functions with parameters λi ; {g j (z j ), j = q +1, . . . , p} are known functions.
For non-negative covariates, a commonly used unspecified transformation is the Box–
Cox transformation (Box and Cox 1964): gi (zi , λi ) = (zλi

i − 1)/λi if λi 	= 0, and
log(zi ) if λi = 0, for i = 1, . . . , q. A commonly used example of g j (z j ) is just taking
g j (z j ) = z j . General conditions for gλ(z) will be discussed in Sect. 3.

When the model is identifiable, i.e., when regularity conditions are satisfied and the
true value of any βi , i = 1, . . . , q, is not 0, estimates of the true value of θ = (βτ ,λτ )τ

can be obtained by maximizing the partial likelihood function

L(θ) =
n∏

i=1

{
exp{βτgλ(zi (Ti ))}∑

j∈Ri
exp{βτgλ(z j (Ti ))}

}δi

(3)

where Ri = { j : Tj ≥ Ti } and 1 − δi is an indicator for censoring. We can
modify Breslow’s estimator (Breslow 1972, 1974) to estimate the cumulative haz-
ard H0 = ∫ t

0 h0(s)ds : Ĥ(t) = ∑
Ti ≤t

[
δi/

∑
j∈Ri

exp
{
β̂
τ
g
λ̂
(z j (Ti ))

}]
. Counting

process setup similar to Andersen and Gill (1982) can be employed to investigate the
asymptotic properties of the estimates of the parameters β and λ and the cumulative
baseline hazard H0(t); see Sects. 2 and 3.
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718 C. Fan et al.

In model (2), if the true value of βi is 0 for some i ∈ {1, . . . , q}, corresponding
transformation parameter λi is not identifiable. This is the so-called model identifi-
ability problem investigated in Davies (1977, 1987). Ideas from Andrews (1993) and
Andrews and Ploberger (1994) motivate us to test Hi0 : βi = 0 versus Hia : βi 	= 0,
and transformation parameter λi exists, for i = 1, . . . , q.

To adapt the methods and results in Andrews and Ploberger (1994), a real likeli-
hood instead of a partial likelihood is needed. When covariate z is time independent,
Doksum (1987) shows that partial likelihood can be interpreted as rank likelihood
which is a real likelihood function with integral equal to 1. Section 4 adapts the opti-
mal theorems in Andrews and Ploberger (1994) to the rank likelihood to achieve the
proposed test.

Because the limiting distribution of our optimal tests is nonstandard, its critical
values need to be decided. In Sect. 5, we develop a Gaussian multiplier method to
generate these critical values by adapting ideas from Hansen (1996, 2000). Because
the partial likelihood is not based on independent terms, we use the martingale structure
to implement the generation procedure.

Section 6 gives simulation results to compare the rejection rates with theoretical
values, to compare the power of the optimal test and naive tests, and to verify the
parameter estimations.

We apply the proposed model to a data from a breast cancer clinical trial in Sect. 7.
Model building procedure including tests for covariate effects, covariate transforma-
tion selection, and estimates of parameters is shown. When assessing the proposed
model and the Cox model without parametric covariate transformations, AIC is used
to evaluate the goodness-of-fit, and estimated explained variation is used to evaluate
the prediction.

The rest of the paper is organized as the follows. Section 2 defines counting process
setup for the Cox model with covariate transformations (2). Section 3 gives the asymp-
totic properties of the estimates of the parameters β and λ, and baseline hazard h0(t)
under some regularity conditions including model identifiability. In Sect. 4, optimal
tests for the covariate effects are derived. Section 5 develops a Gaussian multiplier
method to generate the limiting distribution of the optimal test statistic. Section 6
investigates simulation studies. The application to the breast cancer data is shown in
Sect. 7. Discussions are located in Sect. 8.

2 Notation and assumptions

In this section we shall formulate the model (2) in the framework of multivariate
counting process which is similar to the framework for the Cox model in Andersen
and Gill (1982). For simplicity, we shall be working on the time interval [0,1], and
the extension to process on [0,∞] would be similar to Andersen and Gill (1982) thus
omitted. Background theories including multivariate counting processes, stochastic
integrals, and local martingales would be used without further comment.

Suppose we have a sequence of models, indexed by n = 1, 2, . . .. First, we
generate the possibly censored observation of the lifetimes of n individuals to the
observation (in the nth model) of an n-component multivariate counting process
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Generalized proportional hazards model 719

N (n) = (N (n)
1 , . . . , N (n)

n ), where N (n)
i counts observed events in the life of the i th

individual, i = 1, . . . , n, over the time interval [0,1]. Therefore, the sample paths of
N (n)

1 , . . . , N (n)
n are step functions, zero at time zero, with jumps of size+1 only, no

two component processes jumping at the same time. We assume N (n)
i (1) is almost

surely finite.
The basic assumption is that for each n, N (n) has random intensity process h(n) =

(h(n)i , . . . , h(n)n ) such that h(n)i (t) = Y (n)i (t)h0(t) exp{βτ0gλ0(Z
(n)
i (t))}. Here, θ0 =

(βτ0,λ
τ
0)
τ is a fixed column vector of (p+q) components, h0 a fixed underlying hazard

function, g the specified transformation function, and Y (n)i a predictable process taking
values in {0, 1} indicating (by value 1) when the i th individual is under observation
(so in particular, N (n)

i jumps only when Y (n)i = 1). Finally, Z(n)i = (Z (n)i1 , . . . , Z (n)i p )
τ

is a column vector of p covariate processes for the i th individual. We suppose that
Z(n)i is predictable and locally bounded. Assumptions about the continuous function
gλ(·) will be introduced in detail in the next section.

By stating that N (n) has intensity process h(n) we mean that the process M (n)
i

defined by

M (n)
i (t) = N (n)

i (t)−
∫ t

0
h(n)i (u)du, i = 1, . . . , n, t ∈ [0, 1],

is a local martingale on the time interval [0,1]. As a consequence, they are in fact
local square integrable martingales, with 〈M (n)

i ,M (n)
i 〉(t) = ∫ t

0 h(n)i (u)du and 〈M (n)
i ,

M (n)
j 〉(t) = 0, i 	= j , i.e., M (n)

i and M (n)
j are orthogonal when i 	= j .

For simplicity, in the following, we will drop the superscript (n). Only θ0 and h0
are the same in all models (i.e., for each n). Convergence in probability (→p) and
convergence in distribution (→d) are always relative to the probability measures P(n)

parameterized by θ0 and h0.

3 Asymptotic properties

For simplicity, we denote ġβ,λ(·) = ∂
{
βτgλ(·)

}
/∂λ, g̈β,λ(·) = ∂2

{
βτgλ(·)

}
/∂λ∂λτ ,

and ġλ(·) = ∂gλ(·)/∂λτ with dimensions q × 1, q × q, and p × q, respectively.

S(0)(θ , t) = 1

n

n∑

i=1

Yi (t)e
βτ gλ(Zi (t)), S(1)(θ, t) = ∂

∂θ
S(0)(θ , t),

S(2)(θ , t) = ∂2

∂θ∂θ τ
S(0)(θ , t),

S(2)0 (θ , t) = 1

n

n∑

i=1

Yi (t)e
βτ0gλ0 (Zi (t)) ·

[
0 ġλ(Zi (t))

ġτλ(Zi (t)) g̈β,λ(Zi (t))

]
,

E(θ , t) = S(1)(θ, t)

S(0)(θ , t)
,
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720 C. Fan et al.

V (θ , t) = S(2)(θ , t)− S(2)0 (θ , t)

S(0)(θ , t)
− E(θ , t)Eτ (θ , t).

Note that S(0) is scalar, S(1) and E are (p + q) vectors (i.e., with dimension
(p + q)× 1), and S(2), S(2)0 , and V are (p + q)× (p + q) matrices.

As an extension of the regular Cox partial likelihood estimator, the estimate of the
parameter θ0 can be reasonably obtained by maximizing the partial likelihood function
L(θ) in (3). Denoting

C(θ, t) =
n∑

i=1

∫ t

0
βτgλ(Zi (s))dNi (s)−

∫ t

0
log

{
n∑

i=1

Yi (s)e
βτ gλ(Zi (s))

}

dN̄ (s)

where N̄ = ∑n
i=1 Ni , then we have that C(θ , 1) = log L(θ), and the estimator θ̂

is defined as the solution to the likelihood equation U (θ, 1) = (∂/∂θ)C(θ , 1) = 0,
where

U (θ, t) = ∂

∂θ
C(θ , t) =

n∑

i=1

∫ t

0

[
gλ(Zi (s))

ġβ,λ(Zi (s))

]
dNi (s)−

∫ t

0

S(1)(θ , s)

S(0)(θ, s)
dN̄ (s).

Conditions.

A. (Finite interval).
∫ 1

0 h0(t)dt < ∞.
B. (Regular transformations). Transformation gλ(z) satisfies the differentiability and

boundedness condition: gλ(z) is two-order differentiable in λ and z, and gλ(z),
and all its first and second order derivatives are uniformly bounded and continuous
in λ across λ ∈ � and z ∈ Z , where � ∈ Rq and Z ∈ R p are bounded sets.

C. (Asymptotic stability). There exists a neighborhood � of θ and scalar func-
tion s(0), vector function s(1), and matrix function s(2), s(2)0 defined on � ×
[0, 1] such that for j = 0, 1, 2, supθ∈�,t∈[0,1] ||S( j)(θ , t)− s( j)(θ , t)|| →p 0, and

supθ∈�,t∈[0,1] ||S(2)0 (θ, t)− s(2)0 (θ, t)|| →p 0.
D. (Lindeberg condition). There exists δ > 0 such that

n−1/2 sup
i,t

∣
∣
∣
∣

[
gλ0 (Zi (t))

ġβ0,λ0 (Zi (t))

]∣
∣
∣
∣ Yi (t)I

{
βτ0gλ0 (Zi (t)) > −δ

∣
∣
∣
∣

[
gλ0 (Zi (t))

ġβ0,λ0 (Zi (t))

]∣
∣
∣
∣

}
→p 0.

E. (Asymptotic regularity conditions). Let �, s(0), s(1), s(2), and s(2)0 be as in Con-

dition C and define e = s(1)/s(0) and v = (s(2) − s(2)0 )/s(0) − eeτ . For all
θ ∈ �, t ∈ [0, 1], s(1)(θ , t) = ∂s(0)(θ , t)/∂θ, s(2)(θ , t) = ∂2s(0)(θ , t)/∂θ∂θ τ .
s(0)(·, t), s(1)(·, t), s(2)(·, t) and s(2)0 (·, t) are continuous functions of θ ∈ �,

uniformly in t ∈ [0, 1], s(0), s(1), s(2), and s(2)0 are bounded on � × [0, 1]; s(0) is
bounded away from zero on � × [0, 1], and the matrix � =∫ 1

0 v(θ0, t)s(0)(θ0, t)h0(t)dt is positive definite.
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Generalized proportional hazards model 721

Note that the partial derivative conditions on s(0), s(1), s(2), and s(2)0 are satisfied

by S(0), S(1), S(2), and S(2)0 ; and that � is automatically positive semi-definite. Fur-
thermore, the interval [0,1] in the conditions may everywhere be replaced by the set
{t : h0(t) > 0}. Consistency and asymptotic normality of θ̂ are in Theorem 1. Corol-
lary 1 gives an estimate of the asymptotic covariance matrix of n1/2(θ̂−θ0). Theorem 2
gives the weak convergence of the estimated cumulative hazard function Ĥ . Corol-
lary 2 gives the estimate of its limiting covariance function. The proofs for these results
are similar to those for Theorems 3.1, 3.2, and 3.3 in Andersen and Gill (1982) and
therefore omitted.

Theorem 1 θ̂ →p θ0 and n1/2(θ̂ − θ0) →d N (0, �−1).

Corollary 1 (Consistent estimate of�). n−1I (θ̂, 1) →p �, where the positive semi-
definite matrix is minus the second derivative of C(θ , t) w.r.t. θ :

I (θ , t) = −
∫ t

0

n∑

i=1

[
0 ġλ(Zi (s))
ġτλ(Zi (s)) g̈β,λ(Zi (s))

]
dNi (s)

+
∫ t

0

[
S(2)(θ , s)

S(0)(θ, s)
− S(1)(θ, s){S(1)(θ , s)}τ

{S(0)(θ , s)}2

]

dN̄ (s).

Theorem 2 (Weak convergence of n1/2(Ĥ − H0)). n1/2(θ̂ − θ0) and the process
equal in the point t to n1/2{Ĥ(t) − H0(t)} + n1/2(θ̂ − θ0)

τ
∫ t

0 e(θ0, u)h0(u)du are
asymptotically independent, the latter being asymptotically distributed as a Gaussian
martingale with variance function

∫ t
0 h0(u)/s(0)(θ0, u)du.

Corollary 2 (Consistent estimate of limiting covariance function of n1/2(Ĥ − H0)).

sup
t∈[0,1]

∣
∣
∣
∣

∣
∣
∣
∣K (θ̂, t)+

∫ t

0
e(θ0, u)h0(u)du

∣
∣
∣
∣

∣
∣
∣
∣ →p 0,

where K (θ, t) = − ∫ t
0 S(1)(θ , t)/(S(0))2(θ, t)d N̄ (s).

4 Optimal tests for covariate effects

When there exists i ∈ {1, . . . , q} such that the true value ofβi is 0,λi is not identifiable.
Although we exclude this case when we derive the asymptotic properties by assuming
matrix� in condition E is positive definite, we need the formal test to decide whether
there is effect by covariate Zi . Without loss of generality, we make our hypotheses be

H0d : βd = 0 vs Had : βd 	= 0, and there exists transformation parameter λd ,

where 1 ≤ d ≤ q,βd = (β1, . . . , βd)
τ ,λd = (λ1, . . . , λd)

τ . When d 	= 1, we can
get that there exist the effects of at least one of Z1, . . . , Zd . When d = 1, we can tell
if Z1 has effect.
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722 C. Fan et al.

Because nuisance parameter λd appears only under the alternative, we may use
the idea of profiling λd over range �d ⊂ Rd which was investigated by Andrews
and Ploberger (1994) in parametric case. We assume the true values of βd+1, . . . , βq

under the null hypothesis �0d to be non-zero to ensure λd+1, . . . , λq are estimatable,
where the null hypothesis space �0d = {

θd ∈ �d : θd = (0, . . . , 0, βd+1, . . . , βq ,

βq+1, . . . , βp, λd+1, . . . , λq)
τ
} ⊂ �d , and the union of null and alternative hypoth-

eses spaces �d = {
θd ∈ �d : θd = (β1, . . . , βp, λd+1, . . . , λq)

τ
} ⊂ � ∩ R p+q−d .

For fixed λd ∈ �d ⊂ Rd , the model is an identifiable Cox model with covariate
transformations which has been discussed in Sect. 2. To utilize similar methods inves-
tigated by Andrews and Ploberger (1994), we may need the partial likelihood for fixed
λd , Lλd (θd) = L(θ), to be a true likelihood. When the covariates Z1, . . . , Z p are
time-independent, Pettitt (1983) introduced the rank likelihood lλd (θd) = Pλd (R =
r, δ = δ|θd) where r is the rank vector for all event and censored times. Doksum
(1987) tells that the relationship between Lλd (θd) and lλd (θd) is

Lλd (θd) = lλd (θd) = Pλd (R = r, δ = δ|θd).

We can now construct the optimal tests. Let Lλd (θd) = log lλd (θd), DLλd (θd) =
∂Lλd (θd)/∂θd , and D2Lλd (θd) = ∂2Lλd (θd)/∂θd∂θ

τ
d . Note that in general,

DLλd (θ0d) and D2Lλd (θ0d) depend on λd although lλd (θ0d) and Lλd (θ0d) do not.
Because the optimal test would be based on maximum rank likelihood estimators,

i.e., the maximum partial likelihood estimator, with fixed λd , we may need Conditions
A–E hold for each fixed λd , and some of these convergence properties need to be
uniform in λd ∈ �d .

Assumptions 1. For each fixed λd , Conditions A–E hold for model (2) with param-
eter θd .

2. λd ∈ �d , a closed set in Rd , and λd ∼ J (λd).
3. −n−1 D2Lλd (θd) →p �(θd ,λd) uniformly over λd ∈ �d and θd ∈ �0d under

θ0d ;�(θd ,λd) is uniformly continuous in (θd ,λd) over �0d × �d ;�(θ0d ,λd) is
uniformly positive definite over λd ∈ �d , where �(θd ,λd) is the (p + q − d)×
(p+q −d) sub-matrix of�(θ) = ∫ 1

0 v(θ , t)S(0)(θ , t)h0(t)dt and does not involve
rows or columns corresponding to λd .

4. (Local alternative). Local alternatives to H0d is of the form lλd (θ0d + h/
√

n)
for λd ∈ �d , and h ∈ R p+q−d . h has pre-set distribution Qλd (h) = N (0, c�λd )

where c is a scalar constant and N (0, �) denotes a multivariate normal distribution
with mean 0 and covariance matrix �.

The local alternative assumption involves a weight function Qλd (·) on R p+q−d

that concentrates on the orthogonal complement of V with respect to the inner prod-
uct 〈h, l〉λd = hτIλd (θ0d)l for h, l ∈ R p+q−d , where V is the linear subspace of
R p+q−d : V = {θd ∈ R p+q−d : θd = (0, . . . , 0, βd+1, . . . , βp, λd+1, . . . , λq)

τ }.
We call this orthogonal complement V⊥

λd
.

Since V is (p + q − 2d)-dimensional subspace of R p+q−d , V⊥
λd

is a d-dimen-

sional subspace of R p+q−d . Let {a1λd , a2λd , . . . , adλd } be some basis of V⊥ and
define Aλd = [a1λd , . . . , apλd ] ∈ R(p+q−d)×(p+q−2d). An example would be Aλd =
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Generalized proportional hazards model 723

{Id ,−(I −1
3λd

I τ
2λd
)τ }τ , if we denote Iλd (θ0d) =

[
I1λd I2λd

I τ
2λd

I3λd

]
with I1λd ∈ Rd×d ,

I2λd ∈ Rd×(p+q−2d), and I3λd ∈ R(p+q−2d)×(p+q−2d). Consequently, V⊥
λd

= {
h ∈

R p+q−d : h = (sτ ,−(I −1
3λd

I τ
2λd

s)τ )τ for some s ∈ Rd
}
.

Next, we can define �λd = Aλ{Aτλd
Iλd (θ0d)Aλd }−1 Aτλd

=
[
�λd 11 �λd 12
�τλd 12 �λd 22

]
,

where�λd 11 = (I1λd −I2λd I
−1

3λd
I τ

2λd
)−1,�λd 22 = I −1

3λd
I τ

2λd
�λd 11I2λd I

−1
3λd

, and

�λd 12 = −�λd 11I2λd I
−1

3λd
.

Note that the d-dimensional covariance matrix of Qλd is singular when there is
unknown parameter under the null, i.e., p + q − d > d.

Let θ̂d(λd) be the unrestricted maximum rank likelihood estimator (also maxi-
mum partial likelihood estimator) of θd for fixed λd ∈ �d , i.e., θ̂d(λd) satisfies
Lλd (θ̂d(λd)) = maxθd∈�d Lλd (θd), for any λd ∈ �d with probability → 1 under
θ0d . Let θ̃d be the restricted maximum rank likelihood estimator (also restricted max-
imum partial likelihood estimator) of θd , i.e., θ̃d does not depend on λd and satisfies
Lλd (θ̃d) = maxθd∈�0d Lλd (θd) with probability → 1 under θ0d .

For known λd ∈ �d , the standard LM, Wald, and LR test statistics for testing H0d

against Had are given by

LM(λd) =
{

1√
n

DLλd (θ̃d)

}τ
I −1

λd
(θ̃d)

{
1√
n

DLλd (θ̃d)

}
,

W (λd) =
{

H
√

nθ̂d(λd)
}τ {

HI −1
λd
(θ̂d(λd))H

τ
}−1 {

H
√

nθ̂d(λd)
}
, (4)

LR(λd) = −2
{
Lλd (θ̃d)− Lλd (θ̂d(λd))

}
,

where H = [Id : 0] ⊂ Rd×(p+q−d) and Iλd = −D2Lλd (θd)/n.
The exponential LM test can be defined as

Exp − LM = (1 + c)−d/2
∫

exp

{
1

2

c

1 + c
LM(λd)

}
dJ (λd),

where c is the scalar constant which may depend on the local alternative hypothesis.
Exponential Wald (LR) test is just replacing LM(λd) by W (λd) (LR(λd)).

Now we can summarize the optimal results in Theorems 3 and 4.

Theorem 3 (Asymptotic distribution). Under the null hypothesis and Assumptions
1–4, (a) Exp −LM →d χ(θ0d , c), (b) Exp − W →d χ(θ0d , c), and (c) Exp −LR →d

χ(θ0d , c), where

χ(θ0d , c) = (1 + c)−d/2 ×
∫

exp

[
1

2

c

1 + c

{
HI −1

λd
(θ0d)Gλd (θ0d)

}τ

×
{

HI −1
λd
(θ0d)H

τ
}−1 {

HI −1
λd
(θ0d)Gλd (θ0d)

}]
dJ (λd)
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and {Gλd (θ0d) : λd ∈ �d} is a mean zero R p+q−d -valued Gaussian process with the
covariance EGλd (θ0d)Gλd (θ0d)

τ = �(θ0d ,λd) for any λd ∈ �d and has bounded
uniformly continuous sample paths (as functions of λd for fixed θ0d ) with probability 1.

Theorem 4 (Optimality). Under Assumptions 1–4, for any sequence of asymptoti-
cally level α tests based on ranks r = (r1, . . . , rn)

τ , {ψn : n ≥ 1}, a sequence of
asymptotically level α exponential LM (Wald or LR) tests {ξn : n ≥ 1} satisfies

lim
n→∞

∫ [∫
ψnlλd (θ0d + h/

√
n)dμn

]
d Qλd (h)d J (λd)

≤ lim
n→∞

∫ [∫
ξnlλd (θ0d + h/

√
n)dμn

]
d Qλd (h)d J (λd),

where a test ψn is a rank-based test of asymptotic significance level α if∫
ψnl(θ0d)dμn → α for all θ0d that satisfy the null hypothesis H0d;

∫
ψnl(θ0d)dμn

denotes the probability of rejection of H0d usingψn; the power ofψn against the local
alternative lλd (θ0d + h/

√
n) is denoted as

∫
ψnlλd (θ0d + h/

√
n)dμn.

Remark 1 One may interpret the optimality results in Theorem 4 in two ways. First, it
provides a greatest asymptotic weighted average power result for the exponential LM
test against the alternatives

{
lλd (θ0d + h/

√
n) : h ∈ R p+q−d ,λd ∈ �d

}
. Second,

it shows that the exponential LM test has the greatest asymptotic power against the
single sequence of local alternatives

{ ∫
lλd (θ0d + h/

√
n)d Qλd (h)dJ (λd)

}
amongst

all rank-based tests of asymptotic level α.

If we replace c/(1 + c) by r and replace 1 + c by 1, when r → ∞,Exp − LR test
becomes the partial likelihood ratio test. Since above three conditions cannot hold at
the mean time, the partial likelihood ratio test is not optimal in our proposed model.

5 Implementing the optimal tests

Ideas from Hansen (1996, 2000) motivate us to utilize the Gaussian multiplier method
to generate the limiting distribution χ(θ0d , c). However, it is more difficult here since
partial likelihood is not based on independent terms, and we adapt the Gaussian mul-
tiplier technique for statistics defined by a counting process martingale used in Lin
et al. (1993, 1994).

As in Andrews et al. (1996), we illustrate these issues for c = 0, 1, and ∞ with the
explicit form of the Exp − LM test statistics being

∫
LM(λd)dJ (λd),∫

exp {LM(λd)/4} dJ (λd), and log
∫

exp {LM(λd)/2} dJ (λd), respectively. To get
corresponding Exp − W and Exp − LR, we only need to change LM(λd) in above
three statistics to W (λd) and LR(λd), respectively.

For each fixed λd , (4) gives the usual LM test statistic with θ̃d which does not
depend on λd . If denoting (p + q − d) × (p + q − d) matrix R with upper-left
sub-matrix Id , a robust LM test statistic for fixed λd equivalent to (4) is

LMr (λd) =
{

R · DLλd (θ̃d)/
√

n
}τ

I −1
λd
(θ̃d)

{
R · DLλd (θ̃d)/

√
n
}

= LM(λd).

123



Generalized proportional hazards model 725

By counting process setup, if denoting Gθd ,λd (Zi (s)) = [
gτλ(Zi (s)), ġτβ,λ(Zi (s))

]τ ,
then

DLλd (θ̃d) = U (θ̃d ,λd , 1) =
n∑

i=1

∫ 1

0

{

G
θ̃d ,λd

(Zi (s))− S(1)(θ̃d ,λd , s)

S(0)(θ̃d ,λd , s)

}

dMi (s).

For i = 1, . . . , n, since E{Mi (s)} = 0,Var{Mi (s)} = E{Ni (s)}, if denoting
vi ∼ N (0, 1) independent with any quantity in U (θd ,λd , 1), replacing {Mi (s)} with
{Ni (s)vi } can yield

D∗Lλd (θ̃d) = U∗(θ̃d ,λd , 1)=
n∑

i=1

∫ 1

0

{

G
θ̃d ,λd

(Zi (s))− S(1)(θ̃d ,λd , s)

S(0)(θ̃d ,λd , s)

}

vi dNi (s).

A generated conditional process is then

LM∗
r (λd) =

{
R · D∗Lλd (θ̃d)/

√
n
}τ

I −1
λd
(θ̃d)

{
R · D∗Lλd (θ̃d)/

√
n
}
.

The equivalence of LMr (λd) and LM∗
r (λd) under H0d can be shown in Theorem 5.

Asymptotic equivalence of Exp − LM∗ and Exp − LM follows.

Theorem 5 Under H0d ,LMr (λd) and LM∗
r (λd) converge weakly to the same limiting

distribution.

For large sample size n, we can generate J replications of Exp − LM∗, and they
approximate the distribution of Exp − LM. The details are as follows. If we denote

Dλd ,i (θd) = ∂

∂θd

⎡

⎣βτgλ(zi )− log
∑

j∈Ri

exp{βτgλ(z j )}
⎤

⎦

and D∗
λd ,i (θd) =

( {Dλd ,i (θd)}d

0

)
,

where
{

Dλd ,i (θd)
}

d denotes the dimensions of Dλd ,i (θd) corresponding toβ1, . . . , βd ,

we have DLλd (θd) = ∑n
i=1 Dλd ,i (θd) and DLλd (θ̃d) = ∑n

i=1 Dλd ,i (θ̃d) =
∑n

i=1 D∗
λd ,i
(θ̃d).

Pre-specifying the large number J and noticing that Dλd ,i (θd) is (p + q − d)
dimensional, the simulation procedure for the limiting distribution follows the four
steps below.

1. for j = 1, . . . , J , generate {vi j }n
i=1 iid N (0, 1) random variables;

2. set D∗
j Lλd (θ̃d) = ∑n

i=1 D∗
λd ,i
(θ̃d)vi j for each fixed λd in J (λd), note here only

first d dimensions of D jLλd (θ̃d) are non-zero;

3. set LM∗
j (λd) =

{
D∗

j Lλd (θ̃d)/
√

n
}τ

I −1
λd
(θ̃d)

{
D∗

j Lλd (θ̃d)/
√

n
}

;
4. set Exp − LM∗

j = (1 + c)−d/2
∫

exp
[
cLM∗

j (λd)/{2(1 + c)}
]

dJ (λd).
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This gives a random sample Exp−LM∗
1, . . . ,Exp−LM∗

J of J observations from the
distribution of Exp − LM∗ conditional on observed data, thus from the distribution of
Exp−LM asymptotically. When sample size n is large, it is a random sample from the
limiting distribution χ(θ0d , c). Asymptotic p value is the proportion of Exp − LM∗

j ’s
which are larger than the test statistic value Exp − LM, and critical values can also be
tabulated.

6 Simulation studies

Simulations were carried out to check the performance of the estimates and the pro-
posed tests. First, we check the estimates for θ = (βτ ,λτ )τ under some specific
cases where identifiability holds. For simplicity, suppose p = 1, then β = β ∈ R,
λ = λ ∈ R. Also suppose the Box–Cox transformation gλ(z) = (zλ − 1)/λ when
λ 	= 0, and log(z) when λ = 0, where z is a real-valued covariate with distribu-
tion Uniform(0,2). Failure time T was assumed to be exponentially distributed; thus
baseline hazard rate h0(t) was a constant, and we assumed it to be 0.15. The random
censoring proportion was selected to be 25%. β and λ would be varied to conduct
several scenarios. Now the assumed model is

h(t; z)=h0(t) exp{βgλ(z)}, where h0(t)=0.15 and gλ(z)=
{
(zλ − 1)/λ, λ 	= 0
log(z), λ=0

.

For i = 1, . . . , 500, we generated covariate Zi ∼ U (0.01, 2). Time Ti was gen-
erated from an exponential distribution with parameter h(t; Zi ). Censoring indicator
δi (0 if censoring) was generated from a Bernoulli distribution with mean 0.75. By
this generation method, the distribution for event time Xi is exponential distribution
with parameter 0.75h(t; Zi ), and the distribution for censoring time Ci is exponential
distribution with parameter 0.25h(t; Zi ).

Based on the observed data, we can get (β̂, λ̂) by maximizing (3). Applying Theo-
rem 1, estimated variances of β̂ and λ̂ can be obtained, together with 95% confidence
intervals for β and λ. Repeat this procedure for k times. We can then get k copies of
(β̂, λ̂), their estimated variances, and k confidence intervals for β and λ. Comparisons
between the empirical variance and the mean estimated variance obtained from Theo-
rem 1 can be conducted. The empirical coverage of the 95% confidence interval may
also be computed. Table 1 below gives the results when k = 1,000. True values β0
and λ0 were chosen to be combinations of 1, 2, 3, and −1,−0.5, 0, 0.5, 1.

Table 1 shows that the point estimates of β and λ are close to their true values. For
both β and λ, the empirical variances which were calculated from k = 1,000 β̂’s are
roughly equal to the estimated variances which are the mean of k = 1,000 variance
estimators from Theorem 1. 95% confidence interval coverage ranges from 94 to 96%
which also supports the accuracy.

Performances of the optimal tests can be assessed by checking the size of the
tests and comparing the power to that of sup test and naive tests. Here, sup test is the
supreme LM test (score test); see Liang et al. (1990) for such supreme score test in Cox
model with one time structural change covariate. Using the asymptotic equivalence of
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Table 1 Simulation studies for β and λ (sample size n = 500, 1,000 simulations)

β λ β̂ Emp.V (β̂) Est.V (β̂) CI (%) λ̂ Emp.V (λ̂) Est.V (λ̂) CI (%)

1 −1 1.001 0.0145 0.0146 95.1 −1.011 0.0103 0.0107 95.6

1 −0.5 1.004 0.0142 0.0133 94.2 −0.506 0.0090 0.0082 94.4

1 0 1.006 0.0141 0.0137 94.7 0.002 0.0118 0.0115 95.7

1 0.5 1.002 0.0143 0.0139 94.4 0.514 0.0344 0.0347 95.6

1 1 0.993 0.0121 0.0120 95.3 1.024 0.0837 0.0871 95.7

2 −1 2.005 0.0317 0.0314 95.1 −1.006 0.0113 0.0111 95.6

2 −0.5 2.003 0.0269 0.0263 94.7 −0.506 0.0061 0.0059 94.5

2 0 2.007 0.0237 0.0232 94.1 −0.001 0.0057 0.0056 95.6

2 0.5 2.006 0.0216 0.0209 94.2 0.503 0.0107 0.0108 95.5

2 1 2.001 0.0182 0.0177 94.6 1.006 0.0229 0.0235 95.6

3 −1 3.007 0.0498 0.0495 94.5 −1.004 0.0094 0.0091 94.6

3 −0.5 3.006 0.0434 0.0428 94.6 −0.504 0.0052 0.0052 95.9

3 0 3.008 0.0375 0.0368 94.4 −0.002 0.0043 0.0043 95.7

3 0.5 3.008 0.0330 0.0322 94.1 0.501 0.0064 0.0065 95.6

3 1 3.006 0.0284 0.0276 94.2 1.003 0.0122 0.0127 96.0

LM∗(·) and LM(·), we can generate the p value for sup LM test adapting the method
of generating the p value for Exp − LM test.

The sample size n was set to be 250. Set β = 0, using the generation method above,
we generated observations {(Ti , δi ) : i = 1, . . . , n} under H0 : β = 0. For each of
the generated k = 1,000 data sets, we used the Gaussian multiplier method to get a p
value with the number of resampling J = 1,000. The test should have these p values
uniformly distributed in [0, 1].

The choice of J (λ)may be misspecified. However, this does not affect the validity
of the test although it may no longer be optimal. Even when J (λ) is misspecified,
combining information across λ using a vague prior may protect against misspecifi-
cation of λ in naive tests which uses fixed transformations. Here, we choose J (λ) to
be uniform distribution in intervals [−2, 2] and [−1, 1], and the significance level for
the tests to be 5%. For each case, the proportion of the p values less than 5% is the
rejection rate. They are shown in the first row of Table 2. For 5% tests, the rates range
from 4 to 5% which means that the Gaussian multiplier method generates appropriate
limiting distribution, and the test is valid under the null.

The upper half of Table 2 also compares powers for the optimal tests, sup LM test,
and naive tests. The naive tests were chosen with fixed λ = −2,−1, 0, 1, 2 and the
true value under alternative. Comparing to the naive tests, our proposed tests are more
robust. With a moderately assumed distribution of λ, the proposed test can achieve
good power which improves on sup test or naive tests with greatly misspecified λ and
comparable power to the test with true λ. When β = 0.1, λ = −0.5, with moderately
wide distribution of λ, say [−2, 2] or [−1, 1], the proposed tests give power greater
than 70%. Sup test gives power 63%, less than the optimal tests. For naive tests, the
power is 80% when true λ is used, and if a mis-specified λ value is used, the power
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Table 2 Comparisons of the type I errors and powers (percentages of rejection rates for Exp − LM 5%
test, sample size n = 250, 1,000 simulations)

J (λd ) = U [−2, 2] J (λd ) = U [−1, 1] Sup Naive tests with fixed λ =
(β, λ) c = 0 1 ∞ c = 0 1 ∞ Test −2 −1 0 1 2 True

Univariate analysis

(0, ·) 5 4 4 5 5 5

(0.002,−2) 77 77 77 73 74 74 75 89 87 65 23 13 89

(0.05,−1) 92 92 92 91 91 91 89 94 95 89 58 37 95

(0.1,−0.5) 72 71 71 75 74 74 63 64 75 74 52 35 80

(0.2, 0) 69 68 67 72 72 72 56 40 56 73 63 52 73

(0.3, 0.5) 69 68 67 72 72 72 56 28 41 72 73 66 76

(0.4, 1) 78 77 77 77 79 80 67 24 35 76 85 82 85

(0.5, 2) 88 89 89 84 87 89 85 21 30 80 96 97 97

Multivariate analysis: true β2 = 1

(0, ·) 4 4 4 5 4 4

(0.002,−2) 78 78 79 74 76 76 76 88 87 69 27 14 88

(0.05,−1) 93 93 92 92 92 92 91 94 95 91 63 38 95

(0.1,−0.5) 74 73 73 76 76 76 66 66 76 75 49 33 79

(0.2, 0) 70 68 67 73 73 73 54 44 58 74 63 49 74

(0.3, 0.5) 70 69 68 73 73 73 56 31 44 72 73 64 76

(0.4, 1) 78 77 77 78 79 80 66 27 38 77 85 82 85

(0.5, 2) 88 88 88 84 87 88 84 23 32 81 95 97 97

may be as low as only 35% (λ = 2, square transformation). When no transformation
is implemented (λ = 1), the power is only 52%. For other combination of β, λ, the
advantage of optimal tests can also be observed.

Another simulation example was carried out for the case when nuisance parameter
presents and we need to estimate it under the null. The model is selected to be

h(t; z1, z2) = h0(t) exp(β1zλ1 + β2z2), where h0(t) = 0.15,

with p = 2, q = d = 1, and the test is H0 : β1 = 0 versus Ha : β1 	= 0 and λ exists.
The censoring proportion was again assumed to be 25%, and the technique to

generate censoring was the same with previous scenario. After setting sample size
n = 250, we generated the observed data

{
(Ti , δi ) : i = 1, . . . , 250

}
by considering

h(t; Z1i , Z2i ) = h0(t) exp(β10 Zλ0
1i + β20 Z2i ) and Z1i , Z2i ∼ U (0.01, 2) for true

values of β10, β20, and λ0.
We chose true values of β2 to be 1. Under null, we generated k = 1,000 data sets.

Similar to the previous scenario, the rejection rates can be shown in the first row of
the lower half of Table 2. Similar to the upper half of Table 2, the lower half also gives
the power of the 5% Exp − LM test for selected Ha . In terms of both rejection rate
and power, similar improvements of the optimal tests can be observed.
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7 Application to breast cancer data

These data come from a National Surgical Adjuvant Breast and Bowel Project
(NSABP) study (B-20) designed to test, in women with estrogen receptor (ER)-positive
breast cancer and histologically negative axillary lymph nodes, whether the addition
of chemotherapy to tamoxifen would result in a greater benefit than that achieved
with tamoxifen alone. In this study, a total of 2,363 patients were randomized over a
period of 5 years to tamoxifen (TAM), MFT [tamoxifen(T) plus sequential methotrex-
ate(M) and fluorouracil(F)], or CMFT [MFT plus a chemotherapy regimen containing
the alkylating agent cyclophosphamide(C)], and have been followed for an additional
10 years. One of the primary endpoints of interest was disease-free survival (DFS). For
this endpoint, a patient is considered to have an event when she recurs, has a second
primary cancer, or dies (whichever occurs first). Fisher et al. (1997) reported that the
administration of chemotherapy with tamoxifen resulted in a significantly better DFS
than that achieved with tamoxifen alone. Only 2,183 eligible patients with positive
follow-up and known tumor size and hormonal status information (735 patients in
the tamoxifen group, 717 patients in the MFT group, and 731 patients in the CMFT
group) are used for statistical analysis.

We focus on developing risk indices for DFS, using other non-treatment covariates.
Prognostic factors on DFS include treatment, age, clinical tumor size (CTSIZE), path-
ological tumor size (PTSIZE), and progesterone receptor level (PgR). The proposed
model is used to assess the effects of these risk factors both individually and jointly,
with the results compared to those from a traditional Cox model without covariate
transformations. We first examine the effects of individual factors separately, without
adjusting for other covariates. The Box–Cox transformation is chosen as the non-
linear transformation. We focus on transformations for biological prognostic factors
CTSIZE, PTSIZE and PgR.

For each covariate Z with transformation (Z can be CTSIZE, PTSIZE, or PgR),
the model is

h(t; Z) = h0(t) exp
{
β × gλ(Z)

}
where gλ(z) =

{
(zλ − 1)/λ, λ 	= 0
log(z), λ = 0

.

To get estimates of the parameters β and λ, we need to decide if the covariates have
effects or not; thus, we test H0 : β = 0 vs H1 : β 	= 0 and there exists λ.

When conducting naive tests (the upper portion of Table 3), as suggested by Atkin-
son (1987), we use λ = −2,−1,−0.5, 0, 0.5, 1, and 2. We choose the prior distribution
of λ as uniform distribution in [−2, 2], [−1.5, 1.5], and [−1, 1] and then Exp − LM
test gives test statistic values as shown in the upper portion of Table 4.

When using naive tests with fixed transformation parameter λ, for PTSIZE, we can
still reject the null, but for CTSIZE, log transformation or negative-valued transforma-
tion parameters give insignificant effect, with traditional cutoff point 0.05. For PgR,
λ = 1 (no transformation) or <0 result in insignificant effect. However, in the proposed
tests, all p values for testing effects of PTSIZE are less than 0.05, under α = 0.05, we
should reject H0 of no effects of PTSIZE. Similar results can be obtained for CTSIZE
and PgR with most p values <0.05.
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Table 3 Breast cancer data: p values of naive tests

λ −2 −1 −0.5 0 0.5 1 2

Univariate analysis H0 : β = 0

CTSIZE 0.970 0.873 0.553 0.117 0.011 0.003 0.004

PTSIZE 0.154 0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PgR 0.485 0.361 0.142 0.009 0.004 0.084 0.984

Multivariate analysis H0 : β4 = 0

CTSIZE 0.942 0.934 0.566 0.096 0.006 0.001 0.002

PTSIZE 0.111 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PgR 0.649 0.510 0.232 0.014 0.006 0.082 0.847

Table 4 Breast cancer data: p values of optimal tests

CTSIZE PTSIZE PgR

J (λd ) c = 0 1 ∞ c = 0 1 ∞ c = 0 1 ∞
Univariate analysis H0 : β = 0

U [−2, 2] 0.03 0.01 0.01 0.00 0.00 0.00 0.06 0.04 0.03

U [−1.5, 1.5] 0.04 0.02 0.01 0.00 0.00 0.00 0.03 0.02 0.02

U [−1, 1] 0.06 0.03 0.02 0.00 0.00 0.00 0.01 0.01 0.01

Multivariate analysis H0 : β4 = 0

U [−2, 2] 0.02 0.01 0.01 0.00 0.00 0.00 0.08 0.05 0.03

U [−1.5, 1.5] 0.03 0.01 0.01 0.00 0.00 0.00 0.04 0.03 0.02

U [−1, 1] 0.04 0.01 0.01 0.00 0.00 0.00 0.02 0.02 0.01

Next, we fit univariate models to estimate the covariate effects. To make the mag-
nitude of the effects comparable across covariates, we divide the covariate by 10t

where 10t is greater than the largest value of corresponding covariate, but 10t−1 is
less than it. The upper portion of Table 5 gives the used covariates, their estimates and
standard errors of their coefficients, and corresponding p values (Treatment and Age
are omitted here). Note that the coefficients of the transformed covariates (CTSIZE,
PTSIZE, or PgR) cannot be tested by simply using β̂/SE

β̂
.

The p value for the transformation of PgR is less than 0.01, and for that of PTSIZE
is 0.10, a suggestive but not significant p value. For CTSIZE, p value 0.73 means that
the transformation to CTSIZE is unnecessary.

We now fit models for the effects of CTSIZE, PTSIZE, and PgR, respectively, with
simultaneous adjustments for treatment and age. For each covariate Z4 (Z4 can be
CTSIZE, PTSIZE, or PgR), the model is

h(t; Z) = h0(t) exp
{
β1 Z1 + β2 Z2 + β3 × Age + β4 × gλ(Z4)

}

where Z1 and Z2 are dummy variables: Z1 = 1 if treatment =MFT, 0 otherwise;
Z2 = 1 if treatment=CMFT, 0 otherwise, and gλ(z)= (zλ − 1)/λ when λ 	= 0 and
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Table 5 Breast cancer data: parameter estimates and standard errors

Covariate β̂ SE
β̂

p value λ̂ SE
λ̂

p value (H0 : λ = 1)

Univariate analysis

CTSIZE/102 1.23 0.97 – 1.19 0.55 0.73

PTSIZE/103 0.96 1.69 – 0.26 0.45 0.10

PgR/104 −0.39 0.35 – 0.38 0.17 <0.01

Multivariate analysis

CTSIZE/102 1.34 0.95 – 1.19 0.50 0.70

PTSIZE/103 1.01 1.67 – 0.26 0.43 0.09

PgR/104 −0.42 0.40 – 0.41 0.18 <0.01

Table 6 AIC Values for the univariate models (smaller is better, real AIC values should be the values in
this table plus 10,600)

Proposed Naive models with fixed transformation λ Fisher et al.

−2 −1 −0.5 0 0.5 1 2

CTSIZE 47.79 56.21 56.19 55.85 53.62 49.74 47.92 49.19 48.33

PTSIZE 35.43 51.15 42.62 38.28 35.82 35.74 38.06 47.15 37.90

PgR 47.29 55.74 55.40 54.13 49.14 47.64 52.89 56.22 53.44

log(z)when λ = 0. We still use the Gaussian multiplier method to test if the effect
of PgR (CTSIZE, PTSIZE) is significant, as shown in the lower portion of Table 4.
Comparing to p values from the naive tests in the lower portion of Table 3, the optimal
tests suggest rejecting H0 for model with CTSIZE, with PTSIZE or with PgR.

As shown in the lower portion of Table 5, the estimate for the transformation of
PgR is 0.41, with standard error 0.18. This means that when there exist effects by
PgR, the power transformation is significant (reject null hypothesis λ = 1). But for
CTSIZE or PTSIZE, the test for null hypothesis λ = 1 has p value 0.70, 0.09, respec-
tively; thus, it seems unnecessary transformation to CTSIZE and suggestive but not
significant transformation to PTSIZE.

As a summary, we conclude that the effects of PgR is non-linear to DFS, either
univariate or after adjustment for treatment and age. Thus, traditional Cox model may
cause lack-of-fit.

AIC based on partial likelihood and estimated explained variation can be used to
assess the proposed model and traditional Cox model. Table 6 gives AIC values for
the proposed model and traditional models in univariate analysis, for both Cox model
with continuous CTSIZE, PTSIZE, or PgR values and Cox model with dichotomized
CTSIZE (≤20, >20), PTSIZE (≤20, >20), or PgR (<10, ≥10) values, as did in Fisher
et al. (1997). Transformation implemented to PgR decreases AIC value to 10,647.29,
while the model without covariate transformation has AIC 10,652.89 if considering
PgR as continuous value and 10,653.44 if as dichotomized value.
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Fig. 1 Estimated explained variation. Compare the proposed model and traditional Cox models, univariate
models (unit of time: month). Explained variations by treatment, CTSIZE, PTSIZE, and PgR are compara-
ble. For CTSIZE or PTSIZE, the proposed model can only improve a little comparing to the traditional Cox
model with continuous or dichotomized covariate values. For PgR, the proposed model leads to twofold
improvement in terms of the explained variation. Solid line proposed model, dashed line Cox model with
continuous covariate values, dotted line Cox model with dichotomized covariate values

Estimated explained variation (Graf and Schumacher 1995) can be used to assess
the improvement in prediction. It is defined as a function of time t . Suppose the
Kaplan–Meier estimate for the survival curve is Ŝ0(t) and for a patient with covariate
Zi , model-based estimate of the survival curve is Ŝ(t |Zi ), then we can define

estimated explained variation(t) = 1 − (1/n)
∑n

i=1 Ŝ(t |Zi )
{
1 − Ŝ(t |Zi )

}

Ŝ0(t){1 − Ŝ0(t)}
,

and it is a criterion comparable to R2 and larger value means better prediction.
Figure 1 shows comparisons between the proposed model and traditional models.

The estimated explained variation by treatment, CTSIZE, PTSIZE, and PgR are plot-
ted with the same scale; thus, we can conclude that the explained variation by them
are comparable. For CTSIZE and PTSIZE, the proposed model can lead to a small
improvement in terms of estimated explained variation, comparing to Cox model with
continuous or dichotomized covariate values. Interestingly, for PGR, the proposed
model leads to a substantial improvement in explained variation, with a roughly two-
fold improvement in prediction.

8 Discussion

The original motivation for this work is to recover the log-linear relationship between
independent covariates and the underlying hazard function in the Cox model. Allowing
covariate transformations works well toward this goal. This model can be used to
develop the risk indices or to better control the confounding variables when a treatment
effect is investigated. For the transformed covariates, inference and the corresponding
interpretations can be naturally carried out on the transformed scale. The proposed
model performs well in estimating parameters, and the proposed tests for the null of no
effects of transformed covariates are more powerful than partial likelihood ratio tests
with fixed transformation. Even though in current analysis, the optimal tests function
when only time-independent covariates are involved in the model, it should be valid in
general, but the proof of optimality is unclear without likelihood connections. More

123



Generalized proportional hazards model 733

broad usage of the proposed model needs us to extend the optimal tests to also allow
time-dependent covariates.

Appendix: Proofs of Theorems 3–5

Proof of Theorem 3 and 4 Following Theorems 1 and 2 in Andrews and Ploberger
(1994), we only need to verify their Assumptions 1–5 with B = √

nI . Since the rank
likelihood is just the partial likelihood, we will use the counting process set-up for
partial likelihood to verify these assumptions. In this proof, even though the covariates
are written as Z1(t), . . . , Zn(t), they are only allowed to be time independent for the
equality of partial likelihood and rank likelihood. The reason using these notations is
to keep consistent notations with previous sections.

Assumption 1 (a), (b), (d), (e), and (f) are obvious.
(c): By Conditions B, Lλd (θd) = log lλd (θd) = log L(θ) is twice continuously

differentiable in θ ; thus, lλd (θd) = L(θ) whose derivatives are continuous function
of Lλd (θd) and L(θ) is also twice continuously differentiable in θ for all θd ∈ θ0d

and λd ∈ �d under H0d .

Assumption 2 Denote θ̂d(λd) as the solution of U (θd ,λd , 1) = 0, where
U (θd ,λd , 1) = dimensions of U (θ , 1) corresponding to θd . Theorem 1 gives the con-
sistency of θ̂d(λd) to θ0d for fixed λd under H0d . Since U (θd ,λd , 1) is continuously
differentiable in �0d ×�d , by Implicit Function Theorem, θ̂d(λd) is continuously dif-

ferentiable in λd . Since �d is a closed set, θ̂
′
d(λd) is bounded. Thus, θ̂d(λd) →p θ0d

uniformly under θ0d .

Assumptions 3 and 4 are obvious.

Assumption 5 we need to check n−1/2U (θ0d , ·, 1) →d G(θ0d , ·) under θ0d .
To establish the weak convergence, we need to prove the finite dimensional con-

vergence and the tightness. Proving for the finite dimensional convergence is sim-
ilar to the first part of that of Theorem 1 with proving for any λd1, . . . ,λdk ∈
�d , n−1/2[U (θ0d ,λd1, 1), . . . ,U (θ0d ,λdk, 1)]τ →d N (0, �∗), and let Hil(t) =
n−1/2{Gτ

θ0d ,λd1
(Zl(s)), . . . ,Gτ

θ0d ,λdk
(Zl(s))}τi when we denote U (θd ,λd , t) =

∑n
i=1

∫ t
0 Gθd ,λd (Zi (s))dMi (s). Tightness can be verified by checking a tightness cri-

terion in Billingsley (1968, p. 95). ��
Proof of Theorem 5. We only need to show that under H0d , R · DLλd (θ̃d)/

√
n =

R · n−1/2U (θ̃d ,λd , 1) and R · D∗Lλd (θ̃d)/
√

n = R · n−1/2U∗(θ̃d ,λd , 1) converge
weakly to the same mean zero Gaussian process indexed by λd .

Under H0d , θ̃d is a strongly consistent estimator of θ0d , thus n−1/2U (θ̃d ,λd , 1) and
n−1/2U (θ0d ,λd , 1) have the same limiting distribution. By checking Assumption 5 of
Theorem 4, the limiting distribution for n−1/2U (θ0d ,λd , 1) is a mean zero Gaussian
process. If we denote Hλd ,i (s) = Gθ0d ,λd j (Zi (s))− S(1)(θ0d ,λd , s)/S(0)(θ0d ,λd , s)
which is a predictable process and locally bounded, then for λd j 	= λdk , by
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Theorem II.3.1 in Andersen et al. (1993), an unbiased estimate of the covariance
between

∫ 1
0 Hλd j ,i (s)dMi (s) and

∫ 1
0 Hλdk ,i ′(s)dMi ′(s) is

[∫ 1

0
Hλd j ,i (s)dMi (s),

∫ 1

0
Hλdk ,i ′ (s)dMi ′ (s)

]

=
∫ 1

0
Hλd j ,i (s)H

τ
λdk ,i ′ (s)d[Mi ,Mi ′ ](s),

where d[Mi ,Mi ′ ](s) is optional covariation process of martingale Mi and Mi ′ , and
[Mi ,Mi ](s) = Ni (s) by (5.24) in Section 5.3 of Kalbfleisch and Prentice (2002),
and [Mi ,Mi ′ ](s)= 0 when i 	= i ′ because they are orthogonal. Then it is easy to
see that an unbiased estimate of the covariance between n−1/2U (θ0d ,λd j , 1) =
n−1/2 ∑n

i=1

∫ 1
0 Hλd j ,i (s)dMi (s) and n−1/2U (θ0d ,λdk, 1)=n−1/2 ∑n

i=1

∫ 1
0 Hλdk ,i (s)

dMi (s) is

σ̂ jk = n−1
n∑

i=1

∫ 1

0
Hλd j ,i (s)H

τ
λdk ,i (s)d[Mi ,Mi ](s)

= n−1
n∑

i=1

∫ 1

0
Hλd j ,i (s)H

τ
λdk ,i (s)dNi (s)

= n−1
n∑

i=1

{

Gθ0d ,λd j (Zi (Ti ))− S(1)(θ0d ,λd , Ti )

S(0)(θ0d ,λd , Ti )

}

×
{

Gθ0d ,λd j (Zi (Ti ))− S(1)(θ0d ,λd , Ti )

S(0)(θ0d ,λd , Ti )

}τ
δi .

The conditional process n−1/2U∗(θ̃d ,λd , 1) consists of a sum of n independent
random variables at each fixed λd . If we regard {vi } as random and {Ti , δi , Zi (·)} as
fixed in U∗(θ̃d ,λd , 1), it can be shown to converge weakly to a mean zero Gauss-
ian process by applying the Lindeberg-Feller theorem and by verifying a tightness
criterion (Billingsley 1968, p. 95). Furthermore, the covariance matrix when λd j 	=
λdk is

σ ∗
jk = E[n−1/2U∗(θ̃d ,λd j , 1) · n−1/2U∗(θ̃d ,λdk, 1)|{T i , δi , Zi (·)}]

= n−1
n∑

i=1

{

G
θ̃d ,λd j

(Zi (Ti ))− S(1)(θ̃d ,λd j , Ti )

S(0)(θ̃d ,λd j , Ti )

}

×
{

G
θ̃d ,λdk

(Zi (Ti ))− S(1)(θ̃d ,λdk, Ti )

S(0)(θ̃d ,λdk, Ti )

}τ
δi .

When n → ∞, θ̃d is strongly consistent with θd0, thus σ ∗
jk and σ̂ jk have the same

unconditional limit. This shows that n−1/2U (θ̃d ,λd , 1) and n−1/2U∗(θ̃d ,λd , 1) have
the same limiting distribution along all possible sample paths. Since LMr (λd) and
LM∗

r (λd) are generated from n−1/2U (θ̃d ,λd , 1) and n−1/2U∗(θ̃d ,λd , 1) by the same
function, respectively, they have the same limiting distribution. ��
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