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Abstract The present article investigates a class of random partitioning distributions
of a positive integer. This class is called the limiting conditional compound poisson
(LCCP) distribution and characterized by the law of small numbers. Accordingly the
LCCP distribution explains the limiting behavior of counts on a sparse contingency
table by the frequencies of frequencies. The LCCP distribution is constructed via some
combinations of conditioning and limiting, and this view reveals that the LCCP dis-
tribution is a subclass of several known classes that depend on a Bell polynomial. It
follows that the limiting behavior of a Bell polynomial provides new asymptotics for
a sparse contingency table. Also the Neyman Type A distribution and the Thomas
distribution are revisited as the basis of the sparsity.

Keywords Discrete multivariate distribution · Infinitely divisible · Size index ·
Statistical disclosure control · Species abundance

1 Introduction

A sparse contingency table implies that a sample size n is far smaller than the number
of cells J . This situation arises, e.g., from a case–control study of a rare disease, which
involves hundreds of variables for only a few hundred samples. A standard practice
for data of this kind avoids cross-classifying with respect to all variables; a table with
fewer cells is constructed for fewer samples. This dependence of J on n leads to the
standard sparse asymptotics that n/J converges to a positive constant as n and J go
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458 N. Hoshino

to infinity (see, e.g. Fienberg and Holland 1973). By taking n → ∞, central limit
theorems apply.

The present article substitutes the law of small numbers for the central limit theorem.
More precisely, we fix n while J → ∞. The Poisson distribution governs this limit,
where n individuals are randomly partitioned. A class of these partitioning distribu-
tions is studied in the present article.

We will take n → ∞ for this class, which provides alternative sparse asymptotics.
The proposed limiting argument is motivated by practices in which J is very large
regardless of n. For example, in ecology, let J be the number of species, which may
include extinct species. Then J does not apparently depend on the number of observed
individuals n. In statistical disclosure control the risk of breaching privacy is evaluated
for a data set similar to the rare disease example. This kind of risk is considered as a
function of the frequencies of cells, and is assessed with respect to J for fixed n (see
Hoshino 2009).

The objective class of random partitioning is called the limiting conditional com-
pound poisson (LCCP) distribution by Hoshino (2009), since its derivation employs
the limiting and conditioning of compound Poisson distributions. An equivalent of the
LCCP distribution is introduced as a discretization of an infinitely divisible distribution
over nonnegative real numbers in Hoshino (2006).

The present article shows that the LCCP distribution is more generally derived by
the law of small numbers. Also clarified is the relationship among the LCCP distribu-
tion and other classes of random partitioning distributions. It turns out that the law of
small numbers characterizes the LCCP distribution, which is thus worth consideration
in particular.

The following subsection introduces more detailed contexts and the developments
of the present article.

1.1 Setup

Throughout the present article, N0 and N are, respectively, the sets of nonnegative
integers and positive integers. For n ∈ N, [n] := {1, 2, . . . , n}.

In our modeling of a contingency table, the frequency of the j th cell is denoted by
Fj,J , j ∈ [J ]. The sum of the frequencies is

NJ :=
J∑

j=1

Fj,J . (1)

A standard model of a contingency table supposes that Fj,J , j ∈ [J ], is inde-
pendently distributed over N0. For example, the joint distribution of F J := (F1,J ,

F2,J , . . . , FJ,J ) is often the product of the Poisson distribution with mean λ j , j ∈ [J ],
which is denoted by Po(λ j ) henceforth. We express the independence of random vari-
ables by “×” such as F J ∼ ×J

j=1Po(λ j ), where “∼” implies “is distributed as”. The
conditional distribution of this F J given NJ = n is multinomial, which is frequently
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Random partitioning over a sparse contingency table 459

used as well. The following argument does not assume a specific distribution for Fj,J ,
but they are assumed to be independent before conditioning on NJ = n.

To describe a sparse contingency table, we will take J → ∞ while NJ = n is fixed.
Since almost every cell is empty in the limit, we consider the limiting distribution of

Si,J :=
J∑

j=1

I (Fj,J = i), i ∈ N. (2)

These statistics are known as frequencies of frequencies (Good 1953) or size indices
(Sibuya 1993). It holds NJ = ∑∞

i=1 i Si,J . Rather the behavior of size indices than that
of cell frequencies is sometimes of interest in practice such as statistical disclosure
control.

If the limiting distribution of a random variable X is the same as that of another

random variable Y , we write X
d→ Y . In this article Si,J

d→ Si and NJ
d→ N as

J → ∞, where

Si ∼ Po(μqi ), i ∈ N, (3)

independently. That is,

S := (S1, S2, . . .) ∼ ×∞
i=1Po(μqi ). (4)

We may shortly write Si,J
d→ Po(μqi ). Our canonical expression requires

0 < μ < ∞, qi ≥ 0, i ∈ N,

∞∑

i=1

qi = 1. (5)

Then q := {qi }i∈N is a proper distribution over N. It can be shown that N := ∑∞
i=1 i Si

has the compound Poisson distribution, which is defined for some proper q by the fol-
lowing probability generating function (pgf):

G(z) = exp(μ(g(z) − 1)), μ > 0, (6)

where

g(z) =
∞∑

i=1

zi qi . (7)

We refer to (6) by CP(μ, q) (see Johnson et al. 1993, p. 188 for more on this distribu-
tion).

Example Assume that g(z) is of the logarithmic series distribution whose probabil-

ity mass function (pmf) is defined for 0 < θ < 1 as
{

1
− log(1−θ)

θ i

i

}

i∈N
=: LS(θ).
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Then g(z) = log(1 − θ z)/log(1 − θ), and CP(−k log(1 − θ),LS(θ)) is the negative
binomial distribution, whose pgf is G(z) = exp(−k log(1 − θ)(log(1 − θ z)/
log(1 − θ) − 1)). ��

Arratia et al. (2003) point out that many random combinatorial structures can be
regarded as the conditional distribution of independent random variables X1, X2, . . . ,

Xn given
∑

i Xi = n. If Xi is Poisson distributed, the resulting conditional distri-
bution is called assembly. Hoshino (2006, 2009) derives this class by limiting and
conditioning of the compound Poisson distribution; this derivation will be reviewed
in Proposition 1. We formally introduce the class of interest below.

Definition 1 Suppose that (4) holds. Then, for n ∈ N, we call the conditional distri-
bution of S given

∑∞
i=1 i Si = n the LCCP distribution generated by q. We refer to

this distribution by LCCP(μ, q).

If N = n, then Si has to be zero for all i > n. Therefore we regard the LCCP
distribution as the distribution of n dimensional vector Sn := (S1, . . . , Sn). The sup-
port of an LCCP distribution is S |n := {

sn : si ∈ N0, i ∈ [n],∑n
i=1 isi = n

}
, where

sn := (s1, s2, . . . , sn). This set S|n coincides with the set of all unordered partitions
of a positive integer n. Hence the LCCP distribution can be interpreted as a class of
random partitioning distributions.

Three examples of the LCCP distribution are presented below. The most famous
one is called the Ewens (1972) distribution, which is surveyed by Johnson et al.
(1997, Chap. 41) and more closely to our context by Charalambides (2007, Sec. 4.2).
The limiting conditional inverse-Gaussian Poisson (LCIGP) distribution is proposed
by Hoshino (2006). The limiting quasi-multinomial (LQM) distribution derived by
Hoshino (2005b) is equivalent to Moon’s model of Pitman (1999). For an LCCP
distribution, we denote u := ∑n

i=1 si .

Example (Ewens) For k > 0, LCCP(−k log(1 − θ),LS(θ)) is called the Ewens dis-
tribution, whose pmf is

{
kun!

k(k + 1) · · · (k + n − 1)

n∏

i=1

(
1

i

)si 1

si !

}

sn∈S|n

=: Ew(k).

��
Example (LCIGP) Engen (1974) proposes the extended (truncated) negative binomial

distribution, whose special case has q of
{

1
1−√

1−θ

θ i (2i−3)!!
2i i !

}

i∈N
=: ENB(θ), 0 < θ ≤

1. For μ > 0, LCCP(μ(1−√
1 − θ),ENB(θ)) is called the LCIGP distribution, whose

pmf is

{√
π

2μ

n! exp(−μ)

μn−u Kn−1/2(μ)

n∏

i=1

(
(2i − 3)!!

i !
)si 1

si !

}

sn∈S|n

=: LCIGP(μ),

where Kn−1/2(·) is the modified Bessel function of the third kind of order n − 1/2.
��
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Example (LQM) The Borel (1942) distribution has the pmf of the following:{
(λi)i−1

i ! exp(−λi)
}

i∈N
=: Bo(λ), 0 < λ ≤ 1. For ρ > 0, LCCP(ρλ,Bo(λ)) is

called the LQM distribution. Its pmf is

{
n! ρu−1(ρ + n)1−n

n∏

i=1

(
i i−1

i !
)si 1

si !

}

sn∈Sn

=: LQM(ρ).

��
Hoshino’s (2009, Theorem 4) derivation of the LCCP distribution reads:

Proposition 1 Suppose that

F J ∼ ×J
j=1CP(λ j , q), λ j ≥ 0, j ∈ [J ]. (8)

Then two conditions

lim
J→∞

J∑

j=1

λ j = μ, 0 < μ < ∞, (9)

and

lim
J→∞ max

j
λ j = 0 (10)

are sufficient for

((S1,J , S2,J , . . . |NJ ), NJ )
d→ (LCCP(μ, q),CP(μ, q)) (11)

as J → ∞.

We will see that the limiting arguments (9) and (10) comprise the law of small
numbers. Figure 1 depicts the idea of Proposition 1; the LCCP distribution can be
derived from (8) in two ways by changing the order of the limiting and the conditioning.

Section 2 shows that the law of small numbers is necessary and sufficient for (11)
in a broader sense. Namely the law of small numbers characterizes the LCCP distribu-
tion among the class of random partitioning distributions. Considering other classes
of random partitioning, we note the construction of Kolchin model (Kerov 1995) is
partly the same as Fig. 1. Hence Sect. 2 also explicates the construction of the LCCP
distribution to include this literature. In Sect. 3 we take n → ∞ for alternative sparse
asymptotics. Some results in terms of a Bell polynomial are stated for the LCCP dis-
tribution. In Sect. 4, the Neyman Type A distribution and the Thomas distribution
exemplify the argument of the present article. Appendix A notes that Karlin (1967)
model of size indices is slightly different from ours. Appendix B gathers the proofs
of theorems.
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Fig. 1 The law of small numbers

2 The construction of the LCCP distribution

This section clarifies that the LCCP distribution can be derived in a broader situation
than that of Proposition 1. Section 2.1 proves that size indices converge to the LCCP
distribution if and only if the law of small numbers holds. Section 2.2 generalizes
Fig. 1 construction of the LCCP distribution by conditioning on the number of non-
empty cells. Section 2.3 considers the special case of compound Poisson frequencies
to understand the implication of the generalized construction. In Sect. 2.4, the LCCP
distribution connects to Kolchin’s class of random partitioning distributions by the
generalized construction.

2.1 The characterization of the LCCP distribution

To show that the law of small numbers is equivalent to the size indices’ convergence to
the LCCP distribution, we employ Koopman (1950) necessary and sufficient condition
for (3):

Proposition 2 Suppose that Fj,J , j ∈ [J ], is independently distributed over N0. Then
(3) holds if and only if

lim
J→∞ max

j
P(Fj,J = i) = 0, i ∈ N, (12)

and

lim
J→∞ E(Si,J ) = μqi , i ∈ N. (13)

The limiting argument of (12) and (13) is essentially the law of small numbers. This
fact is clear when we regard a size index Si,J as the number of successes of Bernoulli
trials with unequal success probabilities. This type of distribution is called Poisson’s
binomial by Wang (1993) (see also Johnson et al. 1993, p. 138).

Wang and Ji (1993, Theorem 2) show that (12) and (13) are equivalent to that
N = ∑∞

i=1 i Si ∼ CP(μ, q). Therefore, as J → ∞,

(S1,J , S2,J , . . . , NJ )
d→ (S, N ) ∼ (×∞

i=1Po(μqi ),CP(μ, q)) (14)
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Random partitioning over a sparse contingency table 463

is equivalent to the law of small numbers. Rewriting (14), we have the following
theorem.

Theorem 1 Let Fj,J , j ∈ [J ], be independently distributed over N0. Then (11) holds
as J → ∞ if and only if the law of small numbers (12) and (13) hold.

Remark 1 The compound Poisson distribution is equivalent to the infinitely divisible
distribution over N0 (see, e.g. Steutel and van Harn 2004, Theorem 3.2, p. 30). An
infinitely divisible distribution is equivalent to the limiting sum of uniformly almost
negligible random variables (see, e.g. Steutel and van Harn 2004, Theorem 5.3, p. 15).
Hence Wang and Ji’s (1993, Theorem 2) result is a discrete special case.

It is important that Theorem 1 does not assume the distribution of F J . Moreover,
(14) still holds for “weakly” dependent Fj,J ’s (see, e.g. Meyer 1973). Therefore the
LCCP distribution describes sparse contingency tables in many situations.

Proposition 1 deals with a special case of Theorem 1; we can show the following
corollary. For a different example of the limiting argument of Theorem 1, see Hoshino
(2005a, Theorem 2.3).

Theorem 2 In Proposition 1, the two sufficient conditions (9) and (10) are also
necessary.

2.2 Conditioning on the number of nonempty cells

Theorem 1 implies that Fig. 1 is valid for Fj,J , j ∈ [J ], that is independently
distributed over N0. This subsection further expands the idea of Fig. 1 by condition-
ing on the number of nonempty cells. For later use this subsection requires general
notation.

The pmf of a size indices vector (S1,J , S2,J , . . .) is denoted by

πJ (sn) = P((S1,J , . . . , SNJ ,J ) = sn),

sn ∈ SJ :=∪∞
n=0

{
sn : si ∈ N0, i =1, 2, . . . , n,

n∑

i=1

isi = n,

n∑

i=1

si ≤ J

}
. (15)

It is noteworthy that NJ may be 0, and we treat s0 as empty. The conditional distribution
of πJ given NJ = n has the pmf of

πJ |n(sn) = πJ (sn)∑
sn∈SJ |n πJ (sn)

,

sn ∈ SJ |n :=
{

sn : si ∈ N0, i ∈ [n],
n∑

i=1

isi = n,

n∑

i=1

si ≤ J

}
. (16)

The pmf of the limiting distribution of πJ as J → ∞ is

π(sn;μ, q) =
n∏

i=1

exp(−μqi )(μqi )
si

si ! , sn ∈ ∪∞
n=0 S|n =: S. (17)
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Fig. 2 Relationship among size indices’ distributions

We denote the pmf of LCCP(μ, q) by

π|n(sn;μ, q) = π(sn)∑
sn∈S|n π(sn)

, sn ∈ S|n . (18)

Next let us consider the number of nonempty cells denoted by

UJ :=
J∑

j=1

I (Fj,J ≥ 1) =
∞∑

i=1

Si,J (19)

or U := ∑∞
i=1 Si ∼ Po(μ). We observe that UJ has Poisson’s binomial distribu-

tion with success probabilities P(Fj,J ≥ 1), j ∈ [J ]. This distribution converges in
distribution to Po(μ) by the law of small numbers: (12) and (13).

We express the conditional distributions of πJ and π given UJ = u and U = u by
πJ |u and π|u . Namely

πJ |u(sn) = πJ (sn)∑
sn∈SJ |u πJ (sn)

,

sn ∈ SJ |u := ∪∞
n=u

{
sn : si ∈N0, i ∈[n],

n∑

i=1

isi = n,

n∑

i=1

si = u ≤ J

}
, (20)

and

π|u(sn) = π(sn)∑
sn∈S|u π(sn)

,

sn ∈ S|u :=∪∞
n=u

{
sn : si ∈ N0, i ∈ [n],

n∑

i=1

isi = n,

n∑

i=1

si =u

}
. (21)

Since limJ→∞ SJ |u = S|u and πJ →π , we have the result below generalizing Fig. 1
to Fig. 2.
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Theorem 3 Suppose that Fj,J , j ∈ [J ], is independently distributed over N0. Then
as we apply the law of small numbers (12) and (13),

lim
J→∞ πJ |u(sn) = π|u(sn), sn ∈ S|u . (22)

The right hand side of (22) can be explicitly written as

π|u(sn; q) = u!
s1! · · · sn !

n∏

i=1

qi
si , sn ∈ S|u, (23)

which is multinomial. We note that π|u does not depend on μ, or U is sufficient for μ

of π . Size indices are multinomially distributed when frequencies are independent and
identically distributed (see, e.g. Hoshino 2005a, Appendix A). This fact is specifically
stated below.

Proposition 3 Let X1, . . . , Xu be independent and identically distributed as q. Denote
a size index by Ti = ∑u

j=1 I (X j = i), i ∈ N. When n = ∑u
j=1 x j is the observed

sum of frequencies, P((T1, . . . , Tn) = sn) = π|u(sn; q).

2.3 An example of compound Poisson frequencies

This subsection considers a special case of Fig. 2 where frequencies are independently
compound Poisson distributed. By this example we can well understand the role of
the law of small numbers. CP is a practical class of distributions over N0 since it over-
disperses (see Johnson et al. 1993, p. 354). Hoshino (2009) validates CP in modeling
a contingency table, for it is closed under the corruption of cells.

Throughout this subsection we employ the assumption of Proposition 1 or (8).
Then Hoshino (2009) calls πJ |n the conditional compound poisson (CCP) distribu-
tion generated by q; Theorem 2 states that (9) and (10) are necessary and sufficient
for the CCP distribution’s convergence to the LCCP distribution. Actually NJ ∼
CP

(∑J
j=1 λ j , q

)
. Hence (9) alone is equivalent to N ∼ CP(μ, q). To understand the

meaning of (10), let us denote the pgf of CP(λ j , q) by G j (z). Then

P(Fj,J = 0) = G j (0) = exp(−λ j ). (24)

Therefore in considering the definition (19) of UJ , (10) implies that the success proba-
bility of the Poisson’s binomial distribution goes to zero. Consequently UJ converges
to the Poisson distribution.

Simultaneously zero truncated distribution of Fj,J converges to q. Let F̃j,J be
zero-truncated Fj,J , or P(F̃j,J = i) := P(Fj,J = i)/(1 − P(Fj,J = 0)) = P(Fj,J =
i |Fj,J ≥ 1), i ∈ N. Then Kemp (1978) shows

lim
λ j →0

P(F̃j,J = i) = qi , i ∈ N. (25)
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Fig. 3 Kolchin’s modeling

This result confirms that πJ |u→π|u under (8), which was suggested by Professor
Akimichi Takemura. Zero truncation is equivalent to conditioning on nonempty cells,
and by the law of small numbers, all the positive frequencies are i.i.d. as q in the limit.

2.4 Kolchin’s model

Generalizing the idea of Kolchin (1971), Kerov (1995) formulates a class of random
partitioning distributions called Kolchin’s model, which contains the class of LCCP
distributions. To see this fact, let us review the construction of a Kolchin model.

For u ∈ N0, suppose that u random variables are i.i.d. as q. Then the size indices
of these are multinomially distributed as (23) or π|u . Take a distribution over N0 of
v := {vu}∞u=0, with which we mix π|u as

∞∑

u=0

vu · π|u(sn; q) =: �(sn; v, q), sn ∈ S. (26)

Conditioning � on n, we have a random partitioning distribution:

�|n(sn; v, q) := �(sn; v, q)∑
sn∈S|n �(sn; v, q)

, sn ∈ S|n . (27)

This construction is illustrated as Fig. 3.

Definition 2 The distribution of (27) is called Kolchin’s model with parameters v

and q.

It is obvious from Fig. 2 that

π(sn;μ, q) = �(sn;Po(μ), q). (28)

An immediate proposition follows:

Proposition 4 Kolchin’s model with parameters Po(μ) and q equals the LCCP dis-
tribution generated by q. Equivalently,

π|n(sn;μ, q) = �|n(sn;Po(μ), q). (29)

Consequently an LCCP distribution has the property of a Kolchin model. Using
this result, we can show the uniqueness of the Ewens distribution among LCCP dis-
tributions on Kingman (1978) partition structure defined below.
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Definition 3 Let pn(·) be some pmf over S|n . If for all n ∈ N, pn(sn) = pn+1(s1 +1,

s2, . . . , sn+1)
s1+1
n+1 + ∑n+1

r=2 pn+1(s1, . . . , sr−1 − 1, sr + 1, . . . , sn+1)
r(sr +1)

n+1 , then the
distribution of pn(·) is said to have partition structure.

Definition 3 implies that a given partition of n elements results from the deletion of
one element uniformly at random from a partition of n+1 elements. This property thus
assures that a model is closed under simple random sampling without replacement.

Theorem 4 Among LCCP distributions, only the Ewens distribution has partition
structure.

3 Using Bell polynomials

The LCCP distribution can be expressed as an expansion of a Bell polynomial. Pitman
(2006) formulates this expression as the Gibbs partition, which is named after statis-
tical physics (see Vershik’s 1996 explanation).

Based on this expression, we take n → ∞ for the LCCP distribution. Then depen-
dence among size indices should diminish since conditioning on N = n becomes less
restrictive. Hence we expect a size index Si converges to independent Poisson; this
surmise is formalized together with other consequences in this section.

First let us define a (total) Bell polynomial denoted by Bn(x1, . . . , xn) :=n!∑sn∈S|n∏n
i=1 (xi/i !)si /si !. A partial Bell polynomial is defined by Bn,u(x1, . . . , xn) := n!∑
sn∈S|n,u

∏n
i=1 (xi/i !)si /si !, where S|n,u := {sn : si ∈ N0, i ∈ [n],∑n

i=1 isi =
n,

∑n
i=1 si = u}. It follows

n∑

u=1

μu Bn,u(x1, . . . , xn) = Bn(μx1, . . . , μxn) (30)

(see, e.g. Charalambides 2002, eq. 11.15).
The pgf (6) of CP(μ, q) multiplied by exp(μ) is the generating function of Bell

polynomials. When N ∼ CP(μ, q),

P(N = n) = exp(−μ)

n! Bn(μx1, . . . , μxn). (31)

Therefore a Bell polynomial inevitably appears when we deal with a compound
Poisson distribution.

The Gibbs partition uses the weighted sum of partial Bell polynomials as a normal-
izing constant. Write Bn(w, x) := ∑n

u=1 wu Bn,u(x), where w = (w1, w2, . . .) and
x = (x1, x2, . . .).

Definition 4 A Gibbs partition with parameters w, x is defined by the following pmf:

γ|n(sn;w, x) := n!wu

Bn(w, x)

n∏

i=1

( xi

i !
)si 1

si ! , sn ∈ S|n .
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468 N. Hoshino

Because of (30) a Gibbs partition is not uniquely determined by the parameters.
For example,

γ|n(sn; (1, 1, . . .), (μx1, μx2, . . .)) = γ|n(sn; (μ,μ2, . . .), (x1, x2, . . .)). (32)

Pitman (2006, Theorem 1.2) points out that a Gibbs partition has a representation
of Kolchin model. In particular, we have the following expression.

Proposition 5 An LCCP distribution is a Gibbs partition of (32). That is, for n ∈ N,

π|n(sn;μ, q) = n!μu ∏n
i=1 qi

si 1
si !

Bn(μx1, . . . , μxn)
, sn ∈ S|n, (33)

where xi = i ! qi , u = ∑n
i=1 si .

Next we consider a special case where q belongs to the class of power series dis-
tributions. Then q is expressed for a power parameter θ > 0 as

{
yiθ

i

η(θ)i !
}

i∈N

=: PS( y, θ). (34)

In this case, xi in (33) equals yiθ
i/η(θ). By (see, e.g. Charalambides 2002, eq. 11.3)

Bn(θ1 y1, θ
2 y2, . . . , θ

n yn) = θn Bn(y1, y2, . . . , yn) (35)

and (30), we have

π|n(sn;μη(θ),PS( y, θ)) = n!μu ∏n
i=1

( yi
i !

)si 1
si !

Bn(μy1, . . . , μyn)
, sn ∈ S|n . (36)

Remark 2 The right hand side of (36) does not depend on the power parameter θ .
Figure 2 explains this fact as that, in Proposition 3,

∑u
i=1 Xi or N is sufficient for θ .

Example (Ewens) Suppose that yi =(i − 1)! and η(θ)=− log(1 − θ). Then LS(θ) =
PS( y, θ). Let μ = k, and the denominator in (36) reduces to

Bn(k0!, k1!, . . . , k(n − 1)!) = k(k + 1) · · · (k + n − 1) (37)

(see, e.g. Charalambides 2002, eq. 8.4). Consequentlyπ|n(sn;−k log(1−θ),LS(θ)) =
Ew(k). ��

In the following we study a random vector of size indices Sn ∼ LCCP(μ, q). The
marginal moments are cited from Hoshino (2009):
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Proposition 6 Suppose that Sn ∼ LCCP(μ, q). Then for all r1, . . . , rn ∈ N0 such
that l := ∑n

i=1 iri ≤ n, the factorial moments are

E

(
n∏

i=1

S(ri )
i

)
= Bn−l(μx1, . . . , μxn−l)μ

r n(l)

Bn(μx1, . . . , μxn)

n∏

i=1

( xi

i !
)ri

, (38)

where r = ∑n
i=1 ri and n(l) = n(n − 1) · · · (n − l + 1).

Sibuya (1993) takes n → ∞ for the Ewens distribution and shows that the first
m components of Sn converge to independent Poisson distributions. Similar results
for LCIGP and LQM are shown by Hoshino (2006, 2005b). An analogue for a general
LCCP distribution is given below.

Theorem 5 Suppose that Sn ∼ LCCP(μ, q). Let m be a finite fixed positive integer.
If and only if

lim
n→∞

nBn−1(μx1, . . . , μxn−1)

Bn(μx1, . . . , μxn)
= c < ∞, (39)

the first m components (S1, S2, . . . , Sm)= Sm converge as n → ∞ to ×m
i=1Po(ciμqi ).

It must be c ≥ 1 in (39) if we requireCP(μ, q) to be proper. If
∑∞

n=0 P(N = n) = 1,
d’Alembert’s ratio test concludes

lim
n→∞

P(N = n − 1)

P(N = n)
≥ 1. (40)

By (31) the left hand side of (40) equals the left hand side of (39).

Example (Ewens) We examine the condition (39) on Ew(k) using (37):
limn→∞ nk(k + 1) · · · (k + n − 2)/(k(k + 1) · · · (k + n − 1)) = 1. Therefore Sm

converges to independent Po(k/ i), i = 1, 2, . . . , m. ��
To see that the LCCP distribution belongs to an exponential family, we rewrite the

pmf asπ|n(sn;μ, q) = exp (u log μ + log n! − log Bn(μx1, . . . , μxn))
∏n

i=1 qi
si /si !.

Regarding log μ as the unique parameter, we have the following statement (see
Theorem 5.6 of Lehmann 1991).

Theorem 6 Suppose that Sn ∼ LCCP(μ, q). Then it belongs to an exponential family,
and

Un :=
n∑

i=1

Si (41)

is complete and sufficient for μ.
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The sufficient statistic Un is of interest in many applications such as the abun-
dance of species (see a survey on this statistic by Bunge and Fitzpatrick 1993). If
Sn ∼ LCCP(μ, q), the distribution of Un is

P(Un = u) = Bn,u(μx1, . . . μxn)

Bn(μx1, . . . , μxn)
, u ∈ [n]. (42)

Nandi and Dutta (1988) consider the special case of (42) where q = PS. We treat the
right hand side of (42) as a class of distributions:

Definition 5 The generalized Bell distribution generated by x is defined for μ > 0
by the pmf of (42), which is referred to by GB(μ, x).

Differently from our definition, in Nandi and Dutta (1988), the generalized Bell
distribution refers to the case where the denominator is Enneking and Ahuja’s (1976)
generalized Bell number.

Uppuluri and Carpenter (1969) discuss the moment properties of GB(1, (1, 1, . . .))

or the Bell distribution. Its pmf reduces to S(n, u)/Bn(1, 1, . . .), u ∈ [n], where
S(n, u) = Bn,u(1, 1, . . .) is the Stirling number of the second kind. The denominator
Bn(1, 1, . . .) is the Bell number (see, e.g. Riordan 1968, p. 192).

Next we consider the limiting distribution of Un as n → ∞. Pitman (2006,
p. 33) reviews the study of a central limit theorem for Un , i.e., (Un −E(Un))/

√
V(Un)

converges in distribution to the standard normal. We alternatively generalize the cases

of LQM(μ) and LCIGP(μ), for which Un
d→ 1+Po(μ) is shown by Hoshino (2005b,

2006). Interestingly the Ewens distribution has a different limiting distribution of Un

(see, e.g. Arratia et al. 2003, Section 4.2). This difference can be explained by the
asymptotic expression of a partial Bell polynomial.

Theorem 7 Let f (·) be some function and c be a positive finite real number. If

Bn,u(x1, . . . , xn) ≈ cu

(u − 1)! f (n), u ∈ [n], (43)

when n is large, then GB(μ, x) converges in distribution to 1 + Po(cμ) as n → ∞.

It is worthy of note that f (n) must not depend on u in (43).

Example (LCIGP) For LCIGP(μ), xi = (2i − 3)!!/2i , i ∈ N. Then Bn(μx1, . . . ,

μxn) =
√

2μ
π

Kn−1/2(μ)

exp(−μ)

(
μ
2

)n
, and Bn,u(x1, . . . , xn) = (2n−u−1)!

(u−1)!(n−u)!
( 1

2

)2n−u
. Using

Stirling’s formula of n! ≈ √
2π(n/e)n , we have Bn,u(x1, . . . , xn) ≈ nn−1

en
√

2
1

(u−1)! ,
which is the case of c = 1, f (n) = nn−1/(en

√
2) in (43). ��

4 Two cases for a sparse contingency table

This section investigates two more examples of the LCCP distribution. Recalling
that q is the limiting distribution of the zero-truncated frequency of a cell, we may

123



Random partitioning over a sparse contingency table 471

assume that q is the Poisson distribution since it could be the frequency of a rare
event. However, we require q be distributed over N, and two modifications to the
Poisson distribution are considered. The first one is zero truncation, which follows

q =
{

φi exp(−φ)
i !

1
1−exp(−φ)

}

i∈N
=: TPo(φ). The second one is shifting, which follows

q =
{

φi−1 exp(−φ)
(i−1)!

}

i∈N
= 1 +Po(φ). Below we observe that these two cases result in

different LCCP distributions.
The pgf of TPo(φ) is expressed as g(z) = (exp(φz) − 1)/(exp(φ) − 1). Therefore

the pgf of CP(μ,TPo(φ)) is

G(z) = exp

[
μ

(
exp(φz) − 1

exp(φ) − 1
− 1

)]
= exp

[
μ exp(φ)

exp(φ) − 1

(
exp(φz)

exp(φ)
− 1

)]
. (44)

The last expression of (44) implies that Po(φ) is compounded as q. This is the usual
form of the Neyman Type A distribution, which is reviewed by Johnson et al. (1993,
p. 368). Thus CP(μ,TPo(φ)) is the Neyman Type A distribution.
TPo(φ) is PS( y, φ), where η(φ) = exp(−φ)/(1 − exp(−φ)), yi = 1, i ∈ N.

Using (36), LCCP
(

μexp(−φ)
1−exp(−φ)

,TPo(φ)
)

has the following pmf:

π|n(sn; μexp(−φ)

1 − exp(−φ)
,TPo(φ)) = n!μu ∏n

i=1

( 1
i !
)si 1

si !
Bn(μ, . . . , μ)

, sn ∈ S|n . (45)

Equation (45) does not depend on the power parameter φ as noted in Remark 2. We

also observe that LCCP
(

μexp(−φ)
1−exp(−φ)

,TPo(φ)
)

belongs to an exponential family with

one parameter μ as in Theorem 6. Its complete sufficient statistic Un is distributed
as GB(μ, (1, 1, . . .)). Reminding of Bn,u(μ, . . . , μ) = μu S(n, u), GB(μ, (1, 1, . . .))

is regarded as a power-series-distributionized Bell distribution. Since (see, e.g. Char-
alambides 2002, p. 323) S(n, u) ≈ un/u! when n is large, Theorem 7 suggests that
GB(μ, (1, 1, . . .)) does not converge to 1 + Po(μ).

Next we consider the other case; the pgf of 1 + Po(φ) is g(z) = z exp(φ(z − 1)).
The resulting compound Poisson distribution CP(μ, 1 +Po(φ)) is called the Thomas
(1949) distribution (see Johnson et al. 1993, p. 392).

Again 1 + Po(φ) is PS( y, φ), where η(φ) = exp(−φ)/φ, yi = i, i ∈ N. Using
(36), LCCP(μexp(−φ)/φ, 1 + Po(φ)) has the following pmf:

π|n(sn; μ exp(−φ)

φ
, 1 + Po(φ)) =

n!μu ∏n
i=1

(
1

(i−1)!
)si 1

si !
Bn(μ, 2μ, 3μ, . . . , nμ)

, sn ∈ S|n . (46)

Equation (46) does not depend on the power parameter φ either. Consequently
LCCP(μexp(−φ)/φ, 1+Po(φ)) belongs to an exponential family with one parameter
μ, whose sufficient statistic Un is distributed asGB(μ, (1, 2, 3, . . . , n)). Comtet (1974,
p. 135) calls Bn,u(1, 2, 3, . . . , n) the idempotent number, and Bn,u(μ, 2μ, . . . , nμ) =
μu

(n
u

)
un−u . Since Bn,u(1, 2, 3, . . . , n) ≈ nuun−u/u!, Theorem 7 suggests that

GB(μ, (1, 2, 3, . . . , n)) does not converge to 1 + Po(μ).
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These two LCCP distributions are applicable to sparse contingency table analysis
with the general results provided in Sect. 3.

Appendix

A. Karlin’s model

The framework of the LCCP distribution is similar to Karlin’s model but different in
the following sense. Karlin (1967) considers an urn model where n balls are thrown
independently at a fixed infinite array of cells with probability qi of hitting the i th
cell. Let Xn,i be the number of balls in the i th cell after n tosses. If n is subject to a
Poisson process {N (t); t ∈ [0,∞)} with parameter 1, X N (t),i or the number of balls in
the i th cell at time t is independently Poisson distributed with parameter tqi . Namely
P(X N (μ),1 = s1, X N (μ),2 = s2, . . .) = π(s1, s2, . . . ;μ, q). The right hand side is
our model of size indices S := (S1, S2, . . .). Confusingly, Karlin (1967) is interested
in the distribution of size indices: Zr (t) := ∑∞

i=1 I (X N (t),i = r), r ∈ N0. Hence

Zr (μ)
d= ∑∞

i=1 I (Si = r), which is the size index of size indices in our sense. Also

we should note that N (μ)
d= U = ∑∞

i=1 Si 
= N = ∑∞
i=1 i Si . The same distribution

is used for different concepts.

B. Proofs

Proof of Theorem 2 We will show (9) and (10) are equivalent to the two conditions
of Theorem 1: (12) and (13).

We rewrite E(Si,J ) = ∑J
j=1 P(Fj,J = i) = ∑J

j=1 λ j P(Fj,J = i)/λ j . Hence (13)
is equivalent to

lim
J→∞

J∑

j=1

λ j
P(Fj,J = i)

λ j
= μqi , i ∈ N. (47)

Hoshino (2005a, eq. B.2) shows that limλ j →0 P(Fj,J = i)/λ j = qi , i ∈ N, when (8)
holds. Therefore (9) and (10) implies (47) or (13). Also (10) implies (12) because of
(24).

On the contrary, if (12) holds then limJ→∞ P(Fj,J = 0) = 1 for all j . This is equiv-
alent to (10) because of (24). Hence by (12), (13) reduces to limJ→∞

∑J
j=1 λ j qi =

μqi , i ∈ N. Therefore (12) and (13) imply (9) and (10). ��

Proof of Theorem 4 This result is rather immediate from Kerov (1995, Theorem 7.1),
who shows that when Kolchin’s model has partition structure then for sn ∈ S|n

�|n(sn; v, q) = n!θ
[u:α]

θ [n]
n∏

j=1

(
(1 − α)[ j−1]

j !
)s j 1

s j ! =: Pit(α, θ), (48)
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where θ [u:α] = θ(θ + α) · · · (θ + (u − 1)α), θ [n] = θ(θ + 1) · · · (θ + n − 1). The
right hand side of (48) defines Pitman’s (1995) distribution, whose parameter space
includes limits.

The LCCP distribution requires that v = Po(μ). Then in Proposition 6.3 of Kerov
(1995), y = 0, b = μ > 0 and α becomes zero. Since Pit(0, θ) = Ew(θ), an LCCP
distribution that has partition structure has to be Ew(θ). ��
Proof of Theorem 5 We show the result by the method of moments (see, e.g. Breiman
1992, p. 181). If for all r1, . . . , rm ∈ N0

lim
n→∞ E

(
m∏

i=1

S(ri )
i

)
=

m∏

i=1

(ciμqi )
ri , (49)

then Sm
d→ ×m

i=1Po(ciμqi ). Conversely if Sm
d→ ×m

i=1Po(ciμqi ) then (49) holds.
Therefore we show the equivalence of (49) to (39).

By (38),

E

(
m∏

i=1

S(ri )
i

)
= Bn−�(μx1, . . . , μxn−�)n!

Bn(μx1, . . . , μxn)(n − �)!
m∏

i=1

(μqi )
ri , (50)

where � = ∑m
i=1 iri . Thus (49) is tantamount to

lim
n→∞

�−1∏

j=0

(n − j)Bn− j−1(μx1, . . . , μxn− j−1)

Bn− j (μx1, . . . , μxn− j )
= c�. (51)

If (39) holds then (51) holds for all r1, . . . , rm . Conversely (51) reduces to (39) when
� = 1. Hence the equivalence has been proved. ��
Proof of Theorem 7 We denote the pgf of GB(μ, x) by GGB(z) = ∑n

u=1 zu Bn,u

(μx1, . . . , μxn)/Bn(μx1, . . . , μxn). It suffices to show that limn→∞ GGB(z) =
z exp(cμ(z − 1)), which is the pgf of the shifted Poisson distribution.

If the condition (43) holds, Bn(zx1, . . . , zxn) = ∑n
u=1 zu Bn,u(x1, . . . , xn) ≈∑n

u=1
(cz)u

(u−1)! f (n) → cz exp(cz) f (n) as n → ∞. Then GGB(z) → {cμz exp(cμz)
f (n)}/{cμ exp(cμ) f (n)} = z exp(cμ(z − 1)). ��
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