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Abstract A specific form of stochastic differential equation with unknown param-
eters are considered. We do not necessarily assume ergodicity or recurrency, and
any moment conditions for the true process, but some tightness conditions for an
information-like quantity. The interest is to estimate the parameters from discrete
observations the step size of which tends to zero. Consistency and the rate of conver-
gence of proposed estimators are presented. The rate is deduced naturally from the
rate for the information-like quantities.

Keywords Parametric inference · Non-ergodic diffusions · Discrete observations ·
Consistency · Rates of convergence · Normalized information

1 Introduction

1.1 Model

We consider 1-dimensional stochastic processes Xϑ = (Xϑ
t )t≥0 each of which solves

the following specific form of stochastic differential equation.

Xϑ
0 = X0, dXϑ

t = μU (Xϑ
t ) dt + √

σ V (Xϑ
t ) dWt , (1)
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546 Y. Shimizu

where W is a Wiener process; X0 is a random variable independent of W ; ϑ =
(μ, σ ) is a 2-dimensional unknown parameter belonging to a compact convex set
� := � × � ⊂ R × R+; U and V are measurable functions. We also denote by
ϑ0 = (μ0, σ0) the true parameter such that μ0 ∈ int(�) and σ0 ∈ int(�), X := Xϑ0

the data generating process. We assume that X is observed at discrete time points
tn
i := ihn (i = 0, 1, 2, . . . , n) for positive numbers hn , and put Tn := tn

n . Throughout
the paper, we assume a non-degeneracy of diffusion coefficient:

inf
x∈R

|V (x)| > 0. (2)

This condition is not essential, but for simplicity of discussion. We can drop off this
assumption by using the data such that Xn

ε := {
Xtn

i
| i = 0, 1, . . . , n, |V (Xtn

i
)| > ε

}

for ε > 0 small enough, and assuming that #Xn
ε ∼ n as n → ∞ which would not be

so restrictive in practice.
In the sequel, we denote by C(x) a [1,∞)-valued function such that

|U (x)| + |V (x)| � C(x), (3)

where the symbol A � B means that there exists an absolute constant c0 such that A ≤
c0 B. For example, one of the simplest choices is C(x) = √

1 + |U (x)|2 + |V (x)|2.
Moreover, we put

S(x) := U 2(x)

V 2(x)
. (4)

1.2 Parametric inference for non-ergodic diffusions

Estimation of ϑ0 from a discrete sample (Xtn
i
)n
i=0 is a fundamental problem in applica-

tion of diffusion processes, and there are many works on this issue when X is ergodic.
When X is non-ergodic, there are only a few works for discretely observed cases:
Kasonga (1990) proposed a trajectory-fitting estimator (TFE) for a drift parameter
within a nonlinear drift, and gave a sufficient condition for the strong consistency
of the TFE. His condition was essentially valid for non-ergodic case, but invalid in
ergodic case. Jacod (2006) proposed a moment type contrast function which includes

implicit functions φn(x, ϑ) = Eϑ

[
Xϑ

hn
− x

]
and φ′

n(x, ϑ) = Eϑ

[
(Xϑ

hn
− x)2

]
such

that

	n(ϑ) =
n∑

i=1

1

C4(Xtn
i−1

)

∣
∣
∣
n

i X − φn(Xtn
i−1

, ϑ)

∣
∣
∣
2

+
n∑

i=1

1

C6(Xtn
i−1

)

∣
∣
∣(
n

i X)2 − φ′
n(Xtn

i−1
, ϑ)

∣
∣
∣
2
,
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Estimation of diffusions without ergodicity 547

and showed the consistency, and that an M-estimator

ϑ̂n = (μ̂n, σ̂n) := arg min
ϑ∈�

	n(ϑ) (5)

is (
√

Tn,
√

n)-consistent if Tn → ∞ and hn → 0 under some identifiability
conditions, which are reduced in our case of (1) to that

(
Tn I −1

n,4, Tn J−1
n,6

)
are tight, (6)

where

In,k :=
∫ Tn

0

S(Xs)

Ck(Xs)
ds; Jn,k :=

∫ Tn

0

1

Ck(Xs)
ds;

C is a smooth function satisfying (3) with bounded derivatives. The weights
C−k(Xtn

i−1
)’s in 	n are used to ensure some integrability for 	n . Note, in this case,

that
(
T −1

n In,4, T −1
n Jn,6

)
is also tight.

Shimizu (2009b) proposed quadratic type contrast functions in closed form based
on discrete data. For instance, one of the simplest contrasts is written as follows:

	n,k(ϑ) :=
n∑

i=1

1

Ck(Xtn
i−1

)

⎡

⎢
⎣

(

n

i X − μhnU (Xtn
i−1

)
)2

2hnσ V 2(Xtn
i−1

)
+ 1

2
log σ

⎤

⎥
⎦ .

Note that 	n,k is a normalization of a local-Gauss approximation of the log-likelihood
function of (Xtn

i
)n
i=0. The weight C−k(Xt ) is also used for some integrability of 	n,k ;

that is the meaning of normalization. Then the M-estimator ϑ̂n,k via 	n,k becomes
consistent if

(
Tn I −1

n,k , Tn J−1
n,k

)
and

(
T −1

n In,k, T −1
n Jn,k

)
are tight. (7)

The M-estimator attains the same rate of convergence with the estimator by Jacod
(2006).

It would be natural that the quantities In,k and Jn,k appear in the inference for ϑ0
since those quantities are related to a kind of information for the distribution (Xtn

i
)n
i=0.

For example, considering the case where X is ergodic with an invariant probability
measure π , we see under some regularities that the asymptotic Fisher information
matrix, say K0, becomes

K0 := diag

(∫

R

σ−1
0 S(x) π(dx), 2−1σ−2

0

)
∼ diag

(
T −1

n In,0, T −1
n Jn,0

)
, n → ∞.
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548 Y. Shimizu

Here, we should note that K0 is also an asymptotic observed information:

K0 = Pϑ0 - lim
n→∞ diag

(
1

Tn

n∑

i=1

∂2
μ	n,0(ϑ0),

1

n

n∑

i=1

∂2
σ 	n,0(ϑ0)

)

.

As a result, it follows that the M-estimator ϑ̂n,0 is asymptotically normal with the
asymptotic variance K −1

0 , which is also asymptotically efficient in the sense of min-
imum asymptotic variance; see Kessler (1997), Theorem1 and Remark 2, or Gobet
(2002) for details. The rate of convergence becomes (

√
Tn,

√
n), which is naturally

derived from the rate of observed information. On the other hand, in cases treated
by Jacod (2006) and Shimizu (2009b), where the contrast functions are weighted
by C−k(Xtn

i−1
)’s, the information is lost due to the weights by which the information

processes are normalized so that Tn I −1
n,k and Tn J−1

n,k become tight. Consequently, a
normalized information In,k and Jn,k will appear.

Condition (6) or (7) is not so restrictive if X is ergodic, and the rate of convergence
(
√

Tn,
√

n) is the best attainable. However, in non-ergodic cases, many examples vio-
late (6) or (7) with a variety of rates of convergence: e.g., for the drift, one is more
rapid, and another is slower than

√
Tn . Therefore, in this paper, we consider more

variety of classes for X such that

(
βn,k I −1

n,k , γn,k J−1
n,k

)
and

(
β−1

n,k In,k, γ −1
n,k Jn,k

)
are tight

for some numbers βn,k and γn,k ; see Section 2. Considering such a class, one could
expect that the natural rate of convergence of estimator would be (

√
βn,k,

√
γn,k/hn)

from the above consideration in ergodic cases. This paper actually gives such an esti-
mator, which is consistent with one of the estimator given in Shimizu (2009b) if
βn,k = γn,k = Tn .

Our plan of the paper is as follows. In Sect. 2, we introduce a class of diffusions
treated in this paper with some examples. The main results are presented in Sect. 3,
where two cases are discussed separately: the case where βn,k/γn,k = O(1), and
βn,k/γn,k → ∞. Section 4 is devoted to some examples, where ergodic models with-
out moments, null- and non-recurrent models are dealt with. We shall show there that
our estimator is possible to attain the best attainable rate of convergence. Section 5 is
for the concluding remarks. All the proofs of our results are given in Sect. 6.

Although we consider just a simple form of SDEs in this paper, it is not essential,
but for the simplicity of notation and discussion. We can deal with more general form
of multidimensional SDEs: see Sect. 5 on this point.

2 A class of diffusion processes

Let

D(U ; V ;�) := {Xϑ = (Xt )t≥0 | U, V are measurable functions with (2); ϑ ∈ �}

be a family of random elements Xϑ satisfying (1) for each U and V .
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Estimation of diffusions without ergodicity 549

Definition 1 For a given function C(x) and a real number k ≥ 0,

Dk(βn,k, γn,k) :=
{

Xϑ ∈ D(U ; V ;�)
∣
∣ (In,k,Jn,k

)
and

(
I−1

n,k,J −1
n,k

)
are tight.

}
,

where

In,k := 1

βn,k

∫ Tn

0

S(Xs)

Ck(Xs)
ds; Jn,k := 1

γn,k

∫ Tn

0

1

Ck(Xs)
ds,

βn,k and γn,k are deterministic positive numbers.

Note that the tightness of In,k and Jn,k are automatically satisfied if k ≥ 2 and
βn,k = γn,k = Tn , which is the class treated in Jacod (2006), or Shimizu (2009b). In
what follows, we shall give examples of some classes of diffusions.

Example 1 (Ergodic models without moments) Consider a class DErg which is a
subclass of D(U ; V ;�) with |U (x)|2 + |V (x)|2 � 1 + |x |c0 such that Xϑ is
ergodic (positive recurrent) with an invariant measure πϑ : for f (x) satisfying∫
R

f (x) πϑ(dx) < ∞,

1

Tn

∫ Tn

0
f (Xϑ

t ) dt
Pϑ0−→

∫

R

f (x) πϑ(dx), Tn → ∞.

If we take k ≥ 2 and C(x) = √
1 + |x |c0 , then

In,k = 1

Tn

∫ Tn

0

S(Xs)

Ck(Xs)
ds

Pϑ0−→
∫

R

S(x)

Ck(x)
π(dx);

Jn,k = 1

Tn

∫ Tn

0

1

Ck(Xs)
ds

Pϑ0−→
∫

R

1

Ck(x)
π(dx),

even if

∫

R

S(x) π(dx) = ∞.

Hence it follows that

DErg ⊂ Dk(βn,k = Tn, γn,k = Tn),

for C(x) = √
1 + |x |c0 and k ≥ 2.

Example 2 (Null-recurrent models) Let

DNR :=
{

Xϑ ∈ D(U ; V ;�) | U (x) = x/(1 + x2), V (x) = 1, |μ| < σ 2/2
}

,
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550 Y. Shimizu

which is a null-recurrent class discussed in Höpfner and Kutoyants (2003). Then it
follows that, for a constant α = 1/2 − μ/σ 2 ∈ (0, 1),

1

T α
n

∫ Tn

0
U (Xϑ

s )2 ds
Pϑ0−→ Kα,U W α

1 , Tn → ∞,

where Kα,U is a constant depending on α and U , and W α is a Mittag–Leffler process
with index α. Hence

DNR ⊂ D0(βn,k = T α
n , γn,k = Tn),

while lim infn→∞ Tn > 0.

Example 3 (OU processes) Consider the following subclass of D(U ; V ;�):

DOU+ := {
Xϑ ∈ D(U ; V ;�) | U (x) = x, V (x) = 1, μ > 0

}
,

which is a family of non-recurrent Ornstein–Uhlenbeck (OU) processes. As is well
known,

1

e2μTn

∫ Tn

0
|Xϑ

s |2 ds → (X0 + Zϑ)2

2μσ
a.s., Tn → ∞,

where Zϑ := limt→∞ e−μt Xt a.s. ∼ N (0, σ (2μ)−1); see e.g. Feigin (1976).
Therefore, we see that

DOU+ ⊂ D0(βn,0 = e2μTn , γn,0 = Tn),

while lim infn→∞ Tn > 0. Moreover, if we choose C(x) = √
1 + x2 then it also

follows that

DOU+ ⊂ D2(βn,2 = Tn, γn,2 = 1),

since
∫ Tn

0 |Xϑ
s |2(1 + |Xϑ

s |2)−1 ds = O(Tn) and
∫ Tn

0 (1 + |Xϑ
s |2)−1 ds = O(1) a.s.;

here we note that Xϑ
t ∼a.s. eμt Zϑ as t → ∞. On the other hand, it follows for any

k ≥ 0 that

DOU− := {
Xϑ ∈ D(U ; V ;�) | U (x) = x, V (x) = 1, μ < 0

} ⊂ Dk(Tn, Tn),

since DOU− is a subclass of the ergodic class with higher order moments.

Example 4 (Exponential growth models) An extension of DOU+ is the following class.

DExp := {
Xϑ ∈ D(U ; V ;�) | U (x) = x + r(x), V (x) = 1, μ > 0

}
,
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Estimation of diffusions without ergodicity 551

where r is a Lipschitz function with growth condition |r(x)| ≤ K (1 + |x |κ) for
constants K ≥ 0 and κ ∈ [0, 1). In this case,

DExp ⊂ D0(βn,0 = e2μTn , γn,0 = Tn),

since, for a random variable ημ := limt→∞ e−μt Xt a.s.,

1

e2μTn

∫ Tn

0
U 2(Xs) ds → (X0 + η2

ϑ)

2μσ
a.s., Tn → ∞;

see Dietz and Kutoyants (2003) for details. Moreover, we see as in DOU+ -case that

DExp ⊂ D2(βn,2 = Tn, γn,2 = 1),

for C(x) = √
1 + |x |2 while lim infn→∞ Tn > 0.

Example 5 (Polynomial growth models) Let

DPo := {
Xϑ ∈ D(U ; V ;�) | U (x) = |x |κ , κ ∈ (0, 1) and V (x) = 1

}
.

Since it follows for γ = (1 + κ)/(1 − κ) that

1

T γ
n

∫ Tn

0
|Xϑ

s |2κ dt → (1 − κ)γ

(1 + κ)

(
μ2

σ

)κ/(1−κ)

a.s., Tn → ∞;

from Kutoyants (2004) Sect. 3.5, it follows that

DPo ⊂ D0(βn,0 = T γ
n , γn,0 = Tn).

Taking C(x) = √
1 + |x |2κ , we see that

∫ Tn
0 S(Xϑ

s )C−2(Xϑ
s ) ds = O(Tn) a.s.

Moreover, noticing that

Xt ∼a.s. c0t
1

1−κ ,

where c0 = [(1−κ)μ0]1/(1−κ), and that
∫ T

0 (1+ sα)−1 ds = O(T 1−α) for α ∈ (0, 1),
we see that

∫ Tn

0

ds

C2(Xs)
∼a.s.

∫ Tn

0

ds

1 + s
2κ

1−κ

= O
(

T γ ′
n

)
, γ ′ = 1 − 3κ

1 − κ
,

if 2κ/(1 − κ) < 1 ⇔ κ ∈ (0, 1/3). Therefore, it follows that

Dϑ
Po ⊂ Dϑ

2 (βn,2 = Tn, γn,2 = T γ ′
n ),

for C(x) = √
1 + |x |2 and κ ∈ (0, 1/3).
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552 Y. Shimizu

3 M-estimator and the asymptotic properties

If Xϑ ∈ Dk(βn,k, γn,k) then, as is described in Sect. 1, the natural rate of convergence
of estimators for ϑ0 would be (

√
βn,k,

√
γn,k/hn). In this section, we shall propose an

M-estimator for ϑ0 that attains such a rate.
We consider the following quadratic-type contrast functions; cf. Shimizu (2009b):

Qn,k(ϑ) :=
n∑

i=1

1

Ck
i−1

[(

n

i X − κn(μ)Ui−1
)2

hnσ V 2
i−1

+ log σ

]

, (8)

where Gi−1 := G(Xtn
i−1

) for any function G, and define the M-estimator ϑ̂n,k =
(μ̂n,k, σ̂n,k) as

ϑ̂n,k = arg inf
ϑ∈�

Qn,k(ϑ). (9)

If κn has an inverse for each n, then ϑ̂n,k can be written in an explicit form such as

μ̂n,k = κ−1
n ◦

⎡

⎣

(
n∑

i=1

Ui−1

n
i X

Ck
i−1V 2

i−1

)(
n∑

i=1

U 2
i−1

Ck
i−1V 2

i−1

)−1
⎤

⎦ ; (10)

σ̂n,k =
(

n∑

i=1

(

n

i X − κn(μ̂n,k)Ui−1
)2

hnCk
i−1V 2

i−1

)(
n∑

i=1

1

Ck
i−1

)−1

. (11)

When we discuss the asymptotic properties under the assumption that X ∈
Dk(βn,k, γn,k), we consider the following two cases separately: As n → ∞,

Case 1: βn,k/γn,k = O(1);
Case 2: βn,k/γn,k → ∞.

Case 1 includes the case of DErg and a null-recurrent case DNR, where the rate for
σ̂n,k will be more rapid than the one for μ̂n,k , and μ0 should be estimated in first.

Case 2 includes non-recurrent cases such as DOU+ , DExp and DPo, where the rate
for μ̂n,k will be more rapid than the one for σ̂n,k , and σ0 should be estimated in first.

The case where Tn → ∞ is important since the joint estimation of (μ0, σ0) can
be possible. We shall also add a remark describing what the asymptotic distribution
should be if the joint convergence holds for the score vector ∇ϑ Qn,k(ϑ0) and the
normalized information (In,k,Jn,k); see Corollaries 1 and 2.

3.1 Assumptions

Let κn(μ) be a twice differentiable function in μ, satisfying the following assumptions.

Assumption 1 supμ∈� |∂ j
μκn(μ) − ∂

j
μ(hnμ)| = O(h2

n); j = 0, 1, 2, as n → ∞.
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Estimation of diffusions without ergodicity 553

Assumption 2 There exist some functions R j (x); j = 1, 2, 4, such that

(i)
∣
∣
∣Eϑ0

[

n

i X − κn(μ0)Ui−1

∣
∣
∣Xtn

i−1

]∣∣
∣ � R1,i−1h3/2

n ;

(ii)
∣
∣
∣Eϑ0

[(

n

i X − κn(μ0)Ui−1
)2
∣
∣
∣Xtn

i−1

]
− hnσ0V 2

i−1

∣
∣
∣ � R2,i−1h2

n;

(iii) Eϑ0

[∣
∣
n

i X − κn(μ0)Ui−1
∣
∣4
∣
∣
∣Xtn

i−1

]
� R4,i−1h2

n,

where R j,i−1 := R j (Xtn
i−1

).

Moreover, we assume some regularities on functions R j and Ck :

Assumption (H[k])
(H1) |R1UC−k | is bounded;
(H2) |R2C−k | is bounded;
(H3) |R4C−2k | is bounded.

Remark 1 The simplest choice of κn for Xϑ ∈ D(U ; V ;�) is κn(μ) = μhn . Then
Assumption 2 is satisfied with R j (x) = C j (x) if U, V ∈ C2 and the derivatives are
uniformly bounded: see Jacod (2006), Sect. 3.1. In this case, Assumption (H [2]) holds
true. Furthermore, if U and V are also uniformly bounded, then all R j ’s become con-
stants since the above C can be taken as a constant; e.g., DNR-class, and Assumption
(H [0]) holds true.

Remark 2 For DOU+ , a choice κn(μ) = eμhn − 1 is useful; see Sect. 4.3. One can
calculate the conditional expectations in Assumption 2 (i)–(iii) directly since, in this
case,


n
i X − κn(μ0)Ui−1 = Xtn

i
− eμ0hn Xtn

i−1
∼ N

(
0,

σ0(e2μ0 − 1)

2μ0

)
,

which is independent of Xtn
i−1

. As a result, R j ’s become constants, especially R1 ≡ 0,
and Assumption (H [0]) holds true.

We further require a situation that the following convergences hold true:

Assumption (LLN)

(LLN1)
hn

γn,k

n∑

i=1

1

Ck
i−1

− Jn,k
Pϑ0−→ 0;

(LLN2)
hn

βn,k

n∑

i=1

Si−1

Ck
i−1

− In,k
Pϑ0−→ 0.

Note that, if Jn,k
Pϑ0−→ Jk and In,k

Pϑ0−→ Ik for some positive tight variable Ik and Jk

as in Examples 2–5, then (LLN1,2) are, so-called, the law of large numbers. However,
we do not require the existence of the limits Ik and Jk . Although we often assume
directly that the above (LLN1,2) hold true below, we can give some sufficient (but not
necessary) conditions that ensure those convergences: see Appendix A for details.
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554 Y. Shimizu

3.2 Results for Case 1

Theorem 1 Assume that X ∈ Dk(βn,k, γn,k) with βn,k/γn,k = O(1). Moreover,
suppose Assumptions 1, 2, (H [k]), (LLN), and that

nh2
nγ

−1
n,k → 0; hn → 0, (12)

as n → ∞. Then σ̂n,k
Pϑ0−→ σ0. In addition, suppose that

β−1
n,k

(
1 + nh3/2

n

)
→ 0. (13)

Then μ̂n,k
Pϑ0−→ μ0.

Remark 3 Note that Case 1 also includes the case where Tn is fixed, say Tn ≡ 1
without loss of generality. Indeed, X ∈ D0(1, 1) while

∫ 1
0 S(Xs) ds > 0 a.s. In this

case, the consistent estimates for σ0 is possible. We remark that, in that case, we need
not assume the tightness of I−1

n,0 to estimate σ0.

Remark 4 It is required that βn,k → ∞ in (13) to estimate μ0. In this case, In,k
Pϑ0−→ 0

if lim supn→∞ Tn < ∞. Therefore, it should be that Tn → ∞ to ensure the tightness
of I−1

n,k .

Theorem 2 Suppose the same assumptions as in Theorem 1, and that

nh3/2
n β

−1/2
n,k → 0; (14)

nhnγ −1
n,k = O(1). (15)

Then the sequence
(√

βn,k(μ̂n,k − μ0),
√

γn,k/hn(σ̂n,k − σ0)
)

is tight.

Remark 5 We notice that Condition (14) does not need to show the tightness of the
sequence

√
γn,k/hn(σ̂n,k −σ0). In the light of Remark 3, the sequence

√
n(σ̂n,k −σ0)

is tight even when Tn is fixed since (15) is satisfied for γn,k = Tn , where Tn/hn = n.
This is consistent with the well known result.

The following corollary is clear from the proof of Theorem 2.

Corollary 1 Suppose the same assumptions as in Theorem 2, and that the following
joint convergence holds true:

(
1

√
βn,k

∂μQn,k(ϑ0),

√
hn

γn,k
∂σ Qn,k(ϑ0), In,k,Jn,k

)
D−→ (L1, L2, Ik, Jk) .

Then

(√
βn,k(μ̂n,k − μ0),

√
γn,k/hn(σ̂n,k − σ0)

) D−→
(σ0

2
I −1
k L1, σ

2
0 J−1

k L2

)
.
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3.3 Results for Case 2

Theorem 3 Assume that X ∈ Dk(βn,k, γn,k) with βn,k/γn,k → ∞. Moreover,
suppose Assumptions 1, 2, (H [k]) and (LLN2), and that

nh3/2
n β−1

n,k → 0; hn → 0. (16)

Then μ̂n,k
Pϑ0−→ μ0. Moreover, the sequence

√
βn,k(μ̂n,k − μ0) is tight.

Theorem 4 Assume that X ∈ Dk(βn,k, γn,k) with βn,k/γn,k → ∞. Moreover,
suppose Assumptions 1, 2, (H [k]), (LLN) and that the sequence

√
βn,k(μ̂n,k − μ0) is

tight. Furthermore, suppose that

hnγ
−1
n,k → 0; nh3/2

n γ
−1/2
n,k = O(1). (17)

Then σ̂n,k
Pϑ0−→ σ0. Moreover, the sequence

√
γn,k/hn(σ̂n,k − σ0) is tight.

Corollary 2 Suppose the same assumptions as in Theorem 4, and that the following
joint convergence holds true:

(
1

√
βn,k

∂μQn,k(ϑ0),

√
hn

γn,k
∂σ Qn,k(ϑ0), In,k,Jn,k

)
D−→ (L1, L2, Ik, Jk) .

Then

(√
βn,k(μ̂n,k − μ0),

√
γn,k/hn(σ̂n,k − σ0)

) D−→
(σ0

2
I −1
k L1, σ

2
0 J−1

k L2

)
.

4 Examples

Examples in this section are the continuation of Examples 1–5 described in Sect. 2.
We shall propose some explicit forms of κn(μ) and the value of k ≥ 0, and study
the asymptotic properties of those estimators. In Sect. 4.6, we describe a relationship
between the TFE and our proposal estimator.

Throughout this section, we consider the case where

hn → 0 and Tn → ∞,

as n → ∞ for the joint estimation of μ0 and σ0.

4.1 Ergodic models without moments

Assume that X ∈ DErg with an invariant measure π , and that U, V ∈ C2(R) satisfying

|U (x)| + |V (x)| � 1 + |x |c0 , c0 > 0,

with bounded derivatives. Here, we do not assume any moment condition on X .
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In this case, we can choose C(x) = 1 + |x |c0 for some c0 > 0. Then

DErg ⊂ D2(βn,2 = Tn, γn,2 = Tn).

Therefore, this is Case 1.

• When κn(μ) = μhn then Assumptions 1 and 2 are satisfied with R j (x) = C j (x).
• Assumption (H [2]) is satisfied.
• Assumption (LLN) hold by Corollaries 3 and 4 if hn → 0:

In,2
Pϑ0−→

∫

R

S(x)

C2(x)
π(dx) =: I2; Jn,2

Pϑ0−→
∫

R

1

C2(x)
π(dx) =: J2,

the limits of which are constants.
• Conditions (12)–(15) in Theorems 1 and 2 are satisfied if nh2

n → 0.

Hence we see that
(√

Tn(μ̂n,2 − μ0),
√

n(σ̂n,2 − σ0)
)

is tight. Moreover, by
Corollary 1,

(√
Tn(μ̂n,2 − μ0),

√
n(σ̂n,2 − σ0)

) D−→ N2

(
0, diag

(
σ 2

0 I −1
2 , 2σ 2

0 J−1
2

))
.

4.2 Null-recurrent models

Assume that X ∈ DNR. Then it follows that

DNR ⊂ D0(βn,k = T α
n , γn,k = Tn), α := 1/2 − μ0/σ

2
0 ∈ (0, 1).

Therefore, this is Case 1. We see the following:

• When κn(μ) = μhn then Assumptions 1 and 2 are satisfied with R j (x)’s being
constants.

• Assumption (H [0]) is satisfied; see Remark 1.
• Convergences (LLN1,2) hold if

nh3/2
n β−1

n,k = h1/2
n T 1−α

n → 0; (18)

see Remark 8.
• Conditions (12) and (13) in Theorem 1 are satisfied under (18).

Therefore, it follows from (18) that ϑ̂n,0 → ϑ0 if

nh
3
2 + α

2(1−α)
n → 0.

For the tightness of Dn(ϑ̂n,0 − ϑ0) with Dn = diag(T α/2
n ,

√
n), we need a further

condition

nh
1+ 1

2−α
n → 0.
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The rate Dn is the best attainable since T α/2
n is consistent with the rate of the MLE

based on continuous observations which is asymptotically efficient in the asymptotic
minimax sense; see Höpfner and Kutoyants (2003) for details.

4.3 Non-recurrent OU processes

Assume that X ∈ DOU+ . As in Example 3, it follows that

DOU+ ⊂ D0(βn,k = e2μ0Tn , γn,k = Tn).

Therefore, this is Case 2. In this case, a naive choice κn(μ) = μhn is not suitable since
Assumption (H [0]), e.g., (H1), is not satisfied. Actually, the M-estimator for μ0 via the
above choice is

√
Tn-consistent but not eμ0Tn -consistent which is the optimal rate of

convergence in this model. However, it implies that we can obtain at least (
√

Tn,
√

n)-
consistent estimator by such a naive choice even if the sign of μ is unknown (ergodic,
or non-ergodic). See Shimizu (2009a), Theorems 1–3 for details.

To obtain eμ0Tn -consistent estimator for μ0, the TFE proposed by Kasonga (1990)
is one of the candidates. We can obtain the TFE-type estimator in this model by setting
κn(μ) = eμhn − 1; see also Sect. 4.6. Then we see the following:

• If κn(μ) = eμhn − 1 then Assumptions 1 and 2 are satisfied with R1(x) ≡ 0 and
R2, R4 are constants.

• Assumption (H [0]) is satisfied; see Remark 2.
• Convergences (LLN1,2) hold true if hn → 0: see Remark 9. In particular,

In,0
Pϑ0−→ (X0 + Z)2

2μ0σ0
:= I0; Jn,0 ≡ 1,

where Z ∼ N (0, σ0(2μ0)
−1).

• Condition (16): eμ0Tn /n → ∞ and Tne−μ0Tn → 0, which are satisfied if there
exists some δ > 0 such that nh1+δ

n → ∞, which is a mild condition in practice.

Hence it follows from Theorem 3 that eμ0Tn (μ̂n,0 − μ0) is tight if nh1+δ
n → ∞ for

some δ > 0. Moreover, if nh2
n = O(1) then

• Condition (17) is satisfied since nh3/2
n γ

−1/2
n,k = √

nh2
n = O(1),

which implies that
√

n(σ̂n,0−σ0) is tight by Theorem 4. Therefore, the joint estimation
of (μ0, σ0) is possible. Note that ϑ̂n,k can be written in explicit form by (10) since
κ−1

n (μ) = h−1
n log(1 + μ).

According to Shimizu (2009c), Corollary 1 type result is also obtained, and the
asymptotic distribution becomes a mixture of normal:

(
eμ0Tn (μ̂n,0 − μ0),

√
n(σ̂n,0 − σ0)

) D−→ N2

(
0, diag(I −1

0 , 2σ 2
0 )
)

.

Furthermore, ϑ̂n,0 becomes asymptotically efficient in the sense of maximum concen-
tration probability: Wolfowitz’s-sense.
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Remark 6 In Jacod (2006), or Shimizu (2009b), the identifiability conditions
described in (6), or (7) are invalid for joint estimation of (μ0, σ0); see the comment for
OU processes in the end of Sect. 2, p. 388 in Jacod (2006), or Remark 4.2 in Shimizu
(2009b). This is because the normalization rate for In,k and Jn,k is Tn in both cases.

However, in this paper, we admit more flexible rate of normalization according to k:
βn,k and γn,k , which enables us the joint estimation.

Remark 7 Condition (17) is actually redundant for the tightness of
√

n(σ̂n,k − σ0) in
the case where X ∈ DOU+ since the condition is used in the proof of Theorem 4 to

show, e.g., the convergence in (47):
∑n

i=1 |Eϑ0 [pn
i |Xtn

i−1
]| Pϑ0−→ 0. However, in OU

cases with κn(μ) = eμTn − 1,
∑n

i=1 |Eϑ0 [pn
i |Xtn

i−1
]| = 0, exactly.

4.4 Exponential growth models

Assume that X ∈ DExp, which is a general class including DOU+ . Moreover, we
assume that r ∈ C2 with bounded derivatives. Note from Example 4 that

DExp ⊂ D0(e
2μ0Tn , Tn) ∩ D2(Tn, 1),

if we choose C(x) = √
1 + x2. In this case, we could not take a good κn(μ) for which

R1(x) ≡ 0 and R2, R4 are constants as in the case where X ∈ DOU+ . Therefore,
Assumptions (H1) with k = 0 may collapse. Now, we shall regard that

DExp ⊂ D2(Tn, 1).

Then this is Case 2, and we see the following:

• For κn(μ) = μhn , Assumptions 1 and 2 are satisfied with R j (x) = C j (x).
• Assumption (H [2]) is satisfied.
• (LLN1) is checked by an easy calculation; (LLN2) is also be checked by Corollary 4.
• Condition (16) is clear: nh3/2

n β−1
n,k = √

hn → 0.

• Condition (17) is satisfied if nh3/2
n = O(1).

Therefore, if nh3/2
n = O(1), then

(√
Tn(μ̂n,2 − μ0),

√
1/hn(σ̂n,2 − σ0)

)
is tight.

4.5 Polynomial growth models

Assume that X ∈ DPo with U (x) = |x |κ , κ ∈ (0, 1/3). In this case, as in the exponen-
tial growth model, k = 0 would not be suitable for our purpose. However, we know
by Example 5 that it also holds that, for C(x) = √

1 + |x |2,

DPo ⊂ D2(βn,k = Tn, γn,k = T γ ′
n ), γ ′ = 1 − 3κ

1 − κ
∈ (0, 1).
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Therefore, this is Case 2, and we see the following:

• For κn(μ) = μhn , Assumptions 1 and 2 are satisfied with R j (x) = C j (x).
• Assumption (H [2]) is satisfied.
• Assumption (LLN) is checked by Corollaries 3 and 4 with slight modifications.
• Condition (16) is clear: nh3/2

n β−1
n,k = √

hn → 0.

• Condition (17) is satisfied if nh
1+ 1

2−γ ′
n = O(1).

Therefore, if κ ∈ (0, 1/5) and nh
1+ 1

2−γ ′
n = O(1), then

(√
Tn(μ̂n,2 − μ0),

√
T γ ′

n /hn(σ̂n,2 − σ0)

)
is tight.

4.6 The TFE and our contrast function

The trajectory-fitting estimator (TFE) based on discrete sample was introduced by
Kasonga (1990) in the context of drift estimation for non-ergodic diffusions. When
we can find the explicit solution to the following ordinary differential equations:

dxμ
t = μU (xμ

t ) dt, xμ

tn
i−1

= Xtn
i−1

, (19)

for each i = 1, . . . , n, the contrast function is given by

	TFE
n (ϑ) =

n∑

i=1

⎡

⎣
|Xtn

i
− xμ

tn
i
|2

hnσ V 2
i−1

+ log σ

⎤

⎦ .

This is an extended version of Kasonga (1990)’s contrast functions for joint estimation
of (μ, σ ).

The TFE can be a candidate that has a good rate of convergence. Actually, in the
case of DOU+, our contrast function with κn(μ) = eμhn − 1 gives the TFE, which is
asymptotically efficient as is described in Sect. 4.3.

In the case of DPo, where U (x) = |x |κ , (19) is also explicitly solved such that

|xμ
t |1−κ = sgn(Xtn

i−1
)μ(1 − κ)(t − tn

i−1) + |Xtn
i−1

|1−κ , (20)

in a neighborhood of t = tn
i−1. Then the TFE for μ is expected to have more rapid rate

than
√

Tn given in Sect. 4.5 although one can not get μ̂ in explicit form. However, the
contrast 	TFE

n with (20) does not belong to the class of our contrast functions at the
present form, and it seems difficult to find a suitable choice of κn(μ) by which Qn,k

is close to 	TFE
n . For example, assuming for simplicity that Xtn

i−1
> 0 for each i , we

see from (20) that

xμ

tn
i

= Xtn
i−1

[
1 + μ(1 − κ)hn X1−κ

tn
i−1

] 1
1−κ ∼ Xtn

i−1
+ μhn Xκ

tn
i−1

, hn → 0,
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which just leads us a naive κn(μ) = μhn as in Sect. 4.5. This consideration gives
us an insight that it seems difficult to find some κn(μ) that gives a better rate for μ̂

than
√

Tn in our class of contrasts. Research of the convergence rate of the TFE is a
separate issue.

As in the case of DExp, it would be difficult to solve (19) in general. When we could
not find the solution explicitly, a simple approximation of the solution, say x̃μ

t , is as
follows.

x̃μ
t = Xtn

i−1
+ μUi−1(t − tn

i−1),

which yields a version of our contrast function Qn,0 with a simple choiceκn(μ) = μhn .
As a result, we need weights, e.g., C−2

i−1’s, to obtain some limit theorems. That is why,
we naturally obtain our contrast function Qn,k . The case of DOU+ is a rare example
where we can choose an explicit κn(μ) yielding the TFE.

5 Concluding remarks

We investigated parametric inference for discretely observed diffusion processes
which may not be ergodic (positive recurrent), but may be null- or non-recurrent. To
specify the rate for information, we restricted the class of diffusions to Dk(βn,k, γn,k)

defined in Definition 1, where (βn,k, γn,k) is the rate for some normalized information.
We proposed a simple contrast function, which is due to a (weighted) local-Gauss
approximation for the likelihood function, and gave a pair of sufficient conditions
depending on k ≥ 0 to ensure that a proposed estimator ϑ̂n,k = (μ̂n,k, σ̂n,k) becomes
(
√

βn,k,
√

γn,k/hn)-consistent:

(√
βn,k(μ̂n,k − μ0),

√
γn,k/hn(σ̂n,k − σ0)

)
is tight.

If the conditions hold true for k = 0, the rate can be the best attainable (rate-optimal).
Indeed, we gave, in the previous section, some concrete examples where the estimator
becomes rate-optimal. Otherwise, we can often check a condition for some k > 0, and
can find an estimator the rate of convergence of which is at least (

√
βn,k,

√
γn,k/hn)

for some k > 0 though it may not be optimal. Obtaining more sharp results: to present
a contrast function which always gives a rate-optimal estimator, is an open problem.

In the paper, we considered only 1-dimensional, and a special form of stochastic
differential equation as in (1) for simplicity of notation and discussion. As is com-
mented in Introduction, we can extend the result to more general cases. Now, suppose
that X is a 1-dimensional diffusion process satisfying

dXϑ
t = U (Xϑ

t , μ) dt + V (Xϑ
t , σ ) dWt (21)

where U and V are measurable functions defined on R × � and R × �, respectively.
Then it would be easy to imagine due to the argument as in Shimizu (2009b) that we
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should consider the class D̃k(βn,k, γn,k) such that

Ĩn,k(μ0) + J̃n,k(σ0) = OPϑ0
(1); (22)

lim
η→0

lim sup
n→∞

Pϑ0

{
inf

μ:|μ−μ0|>ε

{
Ĩn,k(μ)

}
≤ η

}
= 0; (23)

lim
η→0

lim sup
n→∞

Pϑ0

{
inf

σ :|σ−σ0|>ε

{
J̃n,k(σ )

}
≤ η

}
= 0, (24)

where

Ĩn,k(μ) := 1
βn,k

∫ Tn

0

ũ2(Xs , μ, μ0)

Ck(Xs)V 2(Xs , σ0)
ds; ũ(x, μ, μ0) := U (x, μ0) − U (x, μ);

J̃n,k(σ ) := 1
γn,k

∫ Tn

0

ṽ(Xs , σ, σ0)

Ck(Xs)
ds; ṽ(x, σ, σ0) := V 2(x, σ0)

V 2(x, σ )
− log

V 2(x, σ0)

V 2(x, σ )
− 1.

It would be clear that Condition (22) is reduced to the tightness of (In,k,Jn,k), and that
Conditions (23) and (24) are reduced to the tightness of (I−1

n,k,J −1
n,k ) in the case of (1).

In this case, a local-Gauss type contrast function with weights C−k
i−1 is also utilizable

with some further regularities on U and V to ensure some uniform convergence in the
parameter ϑ of the contrast function and its derivatives; the regularities are not needed
in our simple case since the parameters and functions U, V are separated. Similarly,
our methods would also easily extend to a higher dimensional framework.

6 Proofs

6.1 Auxiliary results

Let 	n(ϑ) be contrast functions on �: a compact convex subset of R
q , and ϑ̂n ∈ �

be an M-estimator such that

	n(ϑ̂n) = inf
ϑ∈�

	n(ϑ).

The following propositions given by Shimizu (2009b), are useful to show our main
theorems. One can find the essence of the proofs in the paper by Jacod (2006). Here,
we present the statements without proofs: the first result is for consistency of ϑ̂n for
some value ϑ0 ∈ �.

Proposition 1 Suppose that there exist functions Fn(ϑ), possibly random, such that

sup
ϑ∈�

|	n(ϑ) − Fn(ϑ)| Pϑ0−→ 0 (25)

as n → ∞, and that there exists some ϑ0 ∈ � such that, for each ε > 0,
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[
inf

ϑ :|ϑ−ϑ0|>ε
(Fn(ϑ) − Fn(ϑ0))

]−1

is uniformly tight. (26)

Then ϑ̂n,k is consistent for ϑ0: ϑ̂n
Pϑ0−→ ϑ0 as n → ∞.

The next result is for the rate of convergence of ϑ̂n . Hereafter, for ϑ = (ϑ1, . . . , ϑq),
we denote by ∇ϑ = (∂ϑ1, . . . , ∂ϑq )� the differential operator, and by ∇2

ϑ = ∇�
ϑ ∇ϑ .

Proposition 2 Suppose that ϑ0 ∈ int (�), and that ϑ̂n is consistent for ϑ0. Moreover,
suppose that 	n(ϑ) is twice differentiable in ϑ for each n, and that there exist some
q ×q-matrices Kn, invertible q ×q-matrices Dn and F̃n(ϑ), all of which are possibly
random, such that, as n → ∞,

Kn∇ϑ	n(ϑ0) is uniformly tight; (27)
∣
∣
∣det(F̃n(ϑ0))

∣
∣
∣
−1

is uniformly tight; (28)

sup
ϑ∈�

∣
∣
∣Kn∇2

ϑ	n(ϑ)D−1
n − F̃n(ϑ)

∣
∣
∣

Pϑ0−→ 0; (29)

sup
|w|≤εn

∣
∣
∣F̃n(w + ϑ0) − F̃n(ϑ0)

∣
∣
∣

Pϑ0−→ 0, (30)

where εn is arbitrary sequence tending to zero. Then Dn(ϑ̂n − ϑ0) is uniformly tight.

The next lemma is obtained immediately from Lemma 9 by Genon-Catalot and
Jacod (1993) and its proof, so we omit the proof.

Lemma 1 Let gn
i (i = 1, . . . , n) be σ(Xtn

i
)-measurable random variables, and let

An :=
n∑

i=1

Eϑ0

[
gn

i

∣
∣
∣Xtn

i−1

]
, Bn :=

n∑

i=1

Eϑ0

[
|gn

i |2
∣
∣
∣Xtn

i−1

]
.

If both An and Bn are uniformly tight, then
{∑n

i=1 gn
i

}
n∈N

is also uniformly tight. In

particular, if An
Pϑ0−→ A for a random variable A, and Bn

Pϑ0−→ 0, then
∑n

i=1 gn
i

Pϑ0−→ A.

Lemma 2 Assume that X ∈ Dk(βn,k, γn,k). Moreover, suppose Assumptions 1, 2,
(H [k]) and (LLN2). Furthermore, suppose that hn → 0, and that a positive sequence
{αn} satisfies that

nh3/2
n α−1

n + βn,kα
−2
n → 0, (31)

as n → ∞. Then

1

αn

n∑

i=1

Ui−1

Ck
i−1V 2

i−1

(

n

i X − κn(μ0)Ui−1
) Pϑ0−→ 0. (32)
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In addition that,

βn,kα
−1
n → 0. (33)

Then

sup
μ�

∣
∣
∣
∣
∣

1

αn

n∑

i=1

Ui−1

Ck
i−1V 2

i−1

(

n

i X − κn(μ)Ui−1
)
∣
∣
∣
∣
∣

Pϑ0−→ 0. (34)

Proof Note the following decomposition:

1

αn

n∑

i=1

Ui−1

Ck
i−1V 2

i−1

(

n

i X − κn(μ)Ui−1
) = 1

αn

n∑

i=1

Ui−1

Ck
i−1V 2

i−1

(

n

i X − κn(μ0)Ui−1
)

+ 1

αn

n∑

i=1

U 2
i−1

Ck
i−1V 2

i−1

(κn(μ0) − κn(μ))

=:
n∑

i=1

pn
i +

n∑

i=1

qn
i .

It follow from Assumptions 2 (i), (ii) and 1 that

∣
∣
∣
∣
∣

n∑

i=1

Eϑ0

[
pn

i |Xtn
i−1

]
∣
∣
∣
∣
∣
� h3/2

n

αn

n∑

i=1

|Ui−1|R1,i−1

Ck
i−1

= OPϑ0

(
nh3/2

n

αn

)
Pϑ0−→ 0;

n∑

i=1

Eϑ0

[
|pn

i |2|Xtn
i−1

]
� βn,k

α2
n

(
hn

βn,k

n∑

i=1

Si−1

Ck
i−1

)

+ hnβn,k

α2
n

(
hn

βn,k

n∑

i=1

Si−1 R2,i−1

C2k
i−1

)

= OPϑ0

(
βn,k

α2
n

)
Pϑ0−→ 0.

Note that here we used (H1,2) and (LLN2). Hence, we see that
∑n

i=1 pn
i

Pϑ0−→ 0 by
Lemma 1. Moreover, it follows from Assumption 1 that

sup
μ∈�

∣
∣
∣
∣
∣

n∑

i=1

qn
i

∣
∣
∣
∣
∣
� βn,k

αn

(
hn

βn,k

n∑

i=1

Si−1

Ck
i−1

)

1{μ�=μ0}

= OPϑ0

(
βn,k

αn
1{μ�=μ0}

)
Pϑ0−→ 0.

This completes the proof. ��
Lemma 3 Assume that X ∈ Dk(βn,k, γn,k). Moreover, suppose Assumptions 1, 2,
(H2,3) in (H [k]), (LLN1), and that

hnγ −1
n,k → 0.
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Then

1

γn,k

n∑

i=1

(

n

i X − κn(μ0)Ui−1
)2

Ck
i−1V 2

i−1

− σ0Jn,k
Pϑ0−→ 0.

Proof Let

gn
i := 1

γn,k

(

n

i X − κn(μ0)hnUi−1
)2

Ck
i−1V 2

i−1

− hn

γn,k

σ0

Ck
i−1

.

It follow from (H2,3) and (LLN1) that

∣
∣
∣
∣
∣

n∑

i=1

Eϑ0

[
gn

i

∣
∣
∣Xtn

i−1

]
∣
∣
∣
∣
∣
� h2

n

γn,k

n∑

i=1

R2,i−1

Ck
i−1

Pϑ0−→ 0;
n∑

i=1

Eϑ0

[
|gn

i |2
∣
∣
∣Xtn

i−1

]
� h2

n

γ 2
n,k

n∑

i=1

R4,i−1

C2k
i−1

+ hn

γn,k

(
hn

γn,k

n∑

i=1

1

C2k
i−1

)
Pϑ0−→ 0.

Hence, by Lemma 1, we have the consequence. ��

Lemma 4 Assume that X ∈ Dk(βn,k, γn,k) with βn,k/γn,k = O(1). Moreover,
suppose Assumptions 1, 2, (H [k]), (LLN), and that

nh2
nγ −1

n,k → 0.

Then, uniformly in μ ∈ �,

1

γn,k

n∑

i=1

1

Ck
i−1V 2

i−1

(

n

i X − κn(μ)Ui−1
)2 − σ0Jn,k

Pϑ0−→ 0. (35)

Proof Note the decomposition:

1

γn,k

n∑

i=1

(

n

i X − κn(μ)Ui−1
)2

Ck
i−1V 2

i−1

= 1

γn,k

n∑

i=1

(

n

i X − κn(μ0)Ui−1
)2

Ck
i−1V 2

i−1

(36)

+ 1

γn,k

n∑

i=1

U 2
i−1

Ck
i−1V 2

i−1

(κn(μ0) − κn(μ))2 (37)

+ 2

γn,k

n∑

i=1

(κn(μ0) − κn(μ)) Ui−1

Ck
i−1V 2

i−1

(

n

i X − κn(μ0)Ui−1
)
.

(38)
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The term (36) is asymptotically equivalent to σ0Jn,k by Lemma 3, and it follows for
(37) that

sup
μ∈�

∣
∣
∣
∣
∣

1

γn,k

n∑

i=1

U 2
i−1

Ck
i−1V 2

i−1

(κn(μ0) − κn(μ))2

∣
∣
∣
∣
∣
� hnβn,k

γn,k

hn

βn,k

n∑

i=1

Si−1

Ck
i−1

Pϑ0−→ 0,

by (LLN2) and the assumption βn,k/γn,k = O(1). Moreover, the term (38) also con-
verges to zero in probability uniformly in μ by Lemma 2 (34) since (31) and (33) hold
with αn = γn,k/hn . This completes the proof. ��
Lemma 5 Assume that X ∈ Dk(βn,k, γn,k). Moreover, suppose Assumptions 1, 2,
(H [k]) and (LLN2). Then, uniformly in μ ∈ �,

Tn,k(μ) − (μ0 − μ)2 In,k
Pϑ0−→ 0, (39)

where

Tn,k(μ) :=
n∑

i=1

1

hnCk
i−1V 2

i−1

(

n

i X − κn(μ)Ui−1
)2

−
n∑

i=1

1

hnCk
i−1V 2

i−1

(

n

i X − κn(μ0)Ui−1
)2

.

Proof Note that

1

βn,k

n∑

i=1

(

n

i X − κn(μ)Ui−1
)2

hnCk
i−1V 2

i−1

= 1

hnβn,k

n∑

i=1

U 2
i−1

Ck
i−1V 2

i−1

(κn(μ0) − κn(μ))2 (40)

+ 2

hnβn,k

n∑

i=1

Ui−1 (κn(μ0) − κn(μ))

Ck
i−1V 2

i−1

(

n

i X − κn(μ0)Ui−1
)

(41)

=:
n∑

i=1

pn
i +

n∑

i=1

qn
i . (42)

It follows by Assumption 1 and (H2) that

∣
∣
∣
∣
∣

n∑

i=1

pn
i − hn

βn,k

n∑

i=1

Si−1

Ck
i−1

(μ − μ0)
2

∣
∣
∣
∣
∣

Pϑ0−→ 0,

uniformly in μ. Since

hn

βn,k

n∑

i=1

Si−1

Ck
i−1

(μ − μ0)
2 − (μ0 − μ)2 In,k

Pϑ0−→ 0,
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566 Y. Shimizu

by (LLN2), we see that
∑n

i=1 pn
i − (μ0 − μ)2 In,k

Pϑ0−→ 0. Finally, it follows from

Lemma 2 (32) with αn = βn,k that
∑n

i=1 qn
i

Pϑ0−→ 0 uniformly in μ; the uniformity is
obvious since (κn(μ0) − κn(μ)) is separated. This completes the proof. ��

6.2 Proofs of main results

6.2.1 Proof of Theorem 1

Note that an estimator σ̂n,k is a minimizer of

	1,n,k(σ ) := hn

γn,k

{
Qn,k(μ̂n,k, σ ) − Qn,k(μ̂n,k, σ0)

}
.

It follows from Lemma 4 and (LLN1) that

sup
σ∈�

∣
∣	1,n,k(σ ) − F1,n,k(σ )

∣
∣ Pϑ0−→ 0,

where F1,n,k(σ ) :=
(

σ0
σ

+ log σ
σ0

− 1
)

Jn,k . Moreover, it follows for any ε > 0 that

inf
σ :|σ−σ0|>ε

(
F1,n,k(σ ) − F1,n,k(σ0)

) = inf
σ :|σ−σ0|>ε

(
σ0

σ
+ log

σ

σ0
− 1

)
Jn,k,

the inverse of which is tight since J −1
n,k is tight from the assumption. Hence, applying

Proposition 1, we obtain that σ̂n,k
Pϑ0−→ σ0. Next, we consider the following contrast

function:

	2,n,k(μ) := 1

βn,k

{
Qn,k(μ, σ̂n,k) − Qn,k(μ0, σ̂n,k)

}
.

Note that a statistic μ̂n,k is a minimizer of 	2,n,k in �, and that

	2,n,k(μ) = 1

σ̂n,khnβn,k

n∑

i=1

2 (κn(μ0) − κn(μ)) Ui−1

Ck
i−1V 2

i−1

(

n

i X − κn(μ0)Ui−1
)

+ 1

σ̂n,khnβn,k

n∑

i=1

U 2
i−1

Ck
i−1V 2

i−1

(κn(μ0) − κn(μ))2 .

Using Lemma 2 (32) with αn = βn,k and (LLN2), we obtain that

sup
μ∈�

∣
∣	2,n,k(μ) − F2,n,k(μ)

∣
∣ Pϑ0−→ 0,
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where F2,n,k(μ) := σ−1
0 (μ0 − μ)2In,k . Moreover, it follows for any ε > 0 that

inf
μ:|μ−μ0|>ε

(
F2,n,k(μ) − F2,n,k(μ0)

) = inf
μ:|μ−μ0|>ε

σ−1
0 (μ0 − μ)2In,k,

the inverse of which is tight since I−1
n,k is tight from the assumption. Hence, applying

Proposition 1, we obtain that μ̂n,k
Pϑ0−→ μ0.

6.2.2 Proof of Theorem 2

Note that the assumptions ensure that ϑ̂n,k
Pϑ0−→ ϑ0 by Theorem 1. Let

Q̃n,k(ϑ) = D−1
n ∇2

ϑ Qn,k(ϑ)D−1
n ; Dn =

(√
βn,k 0
0

√
γn,k/hn

)
.

According to Proposition 2, the proof ends if the following (a) and (b) are shown:

(a) There exist random matrices F̃n(ϑ) satisfying (28) and (30)-type conditions in

Proposition 2 such that |Q̃n,k(ϑ) − F̃n(ϑ)| Pϑ0−→ 0 uniformly in ϑ ∈ �, which
corresponds to (29);

(b) Sequence
{

D−1
n ∇ϑ Qn,k(ϑ0)

}
n∈N

is uniformly tight.

Note that

∂μQn,k(ϑ) = −2
n∑

i=1

∂μκn(μ)Ui−1

hnσCk
i−1V 2

i−1

(

n

i X − κn(μ)Ui−1
) ;

∂σ Qn,k(ϑ) =
n∑

i=1

{
1

σCk
i−1

−
(

n

i X − κn(μ)Ui−1
)2

hnσ 2Ck
i−1V 2

i−1

}

;

∂2
μQn,k(ϑ) = 2

n∑

i=1

(∂μκn(μ)Ui−1)
2 − ∂2

μκn(μ)Ui−1
(

n

i X − κn(μ)Ui−1
)

hnσCk
i−1V 2

i−1

;

∂2
σ Qn,k(ϑ) =

n∑

i=1

{
2
(

n

i X − κn(μ)Ui−1
)2

hnσ 3Ck
i−1V 2

i−1

− 1

σ 2Ck
i−1

}

;

∂μ∂σ Qn,k(ϑ) = 2
n∑

i=1

∂μκn(μ)Ui−1
(

n

i X − κn(μ)Ui−1
)

hnσ 2Ck
i−1V 2

i−1

.

Then it is easy to see the point (a) since, by Lemmas 2 (32) with αn = βn,k/hn and√
βn,kγn,k/hn and Lemma 4, we can take

F̃n(ϑ) = diag

(
2

σ0
In,k,

(
2σ0

σ3
− 1

σ 2

)
Jn,k

)
,

which clearly satisfies (30), and also (28) because of the tightness of I−1
n,k and J −1

n,k .
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Finally, we shall show the point (b). Putting

pn
i := −2

√
βn,k

∂μκn(μ)Ui−1

hnσCk
i−1V 2

i−1

(

n

i X − κn(μ0)Ui−1
) ;

qn
i :=

√
hn

γn,k

{
1

σCk
i−1

−
(

n

i X − κn(μ)Ui−1
)2

hnσ 2Ck
i−1V 2

i−1

}

,

we see by Assumption 2 that

n∑

i=1

∣
∣
∣Eϑ0

[
pn

i

∣
∣
∣Xtn

i−1

]∣∣
∣ � h3/2

n√
βn,k

n∑

i=1

R1,i−1Ui−1

Ck
i−1

= OPϑ0

(
nh3/2

n√
βn,k

)
Pϑ0−→ 0;

n∑

i=1

Eϑ0

[
|pn

i |2
∣
∣
∣Xtn

i−1

]
� hn

βn,k

n∑

i=1

S2
i−1

Ck
i−1

+ h2
n

βn,k

n∑

i=1

R2,i−1

C2k
i−1

= OPϑ0

(
In,k + nh2

n

βn,k

)
;

(43)
n∑

i=1

∣
∣
∣Eϑ0

[
qn

i

∣
∣
∣Xtn

i−1

]∣∣
∣ � h3/2

n√
γn,k

n∑

i=1

R2,i−1

Ck
i−1V 2

i−1

Pϑ0−→ 0;
n∑

i=1

Eϑ0

[
|qn

i |2
∣
∣
∣Xtn

i−1

]
� hn

γn,k

n∑

i=1

1

Ck
i−1

+ hn

γn,k

n∑

i=1

R4,i−1

C2k
i−1

= OPϑ0

(
Jn,k + nhn

γn,k

)
.

Therefore, by Lemma 1, we see the tightness of
∑n

i=1 pn
i and

∑n
i=1 qn

i . This completes
the proof.

6.3 Proof of Theorem 3

Consider the following contrast function for μ:

Tn,k(μ) :=
n∑

i=1

1

hnCk
i−1V 2

i−1

(

n

i X − κn(μ)Ui−1
)2

−
n∑

i=1

1

hnCk
i−1V 2

i−1

(

n

i X − κn(μ0)Ui−1
)2

.

Then an M-estimator for Tn,k is consistent with μ̂n,k defined in (9), that is,

Tn,k(μ̂n,k) = inf
ϑ∈�

Tn,k(μ).

By Lemma 5, it follows that

sup
μ∈�

∣
∣
∣
∣

1

βn,k
Tn,k(μ) − T̃n,k(μ)

∣
∣
∣
∣

Pϑ0−→ 0,
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where T̃n,k(μ) := (μ0 − μ)2In,k . Moreover, it follows for any ε > 0 that

[
inf

μ:|μ−μ0|>ε

(
T̃n,k(μ) − T̃n,k(μ0)

)]−1

≤ ε−2I−1
n,k,

which is tight. Hence, by Proposition 1, it follows that μ̂n,k
Pϑ0−→ μ0.

To show the tightness of
√

βn,k(μ̂n,k − μ0), we use Proposition 2. We will show
the following:

(a) There exist random variables F̃n(μ) satisfying (28) and (30)-type conditions in

Proposition 2 such that |β−1
n,k∂

2
μTn,k(ϑ) − F̃n(μ)| Pϑ0−→ 0 uniformly in μ ∈ �,

which corresponds to (29);

(b) Sequence
{
β

−1/2
n,k ∂μTn,k(μ0)

}

n∈N

is uniformly tight.

The point (a) is easy to see since

1

βn,k
∂2
μTn,k(μ) = 2

βn,k

n∑

i=1

Ui−1

hnCk
i−1V 2

i−1

×
[(

∂μκn(μ)
)2

Ui−1 − ∂2
μκn(μ)

(

n

i X − κn(μ)Ui−1
)] ∼ 2In,k under Pϑ0 ,

uniformly in μ ∈ � by Lemma 2 (34) with αn = βn,k/hn . The point (b) is clear by
the same argument as in the proof of Theorem 2. This completes the proof.

6.4 Proof of Theorem 4

Consider the contrast function

Q̄n,k(σ ) :=
{

1

σ
Tn,k(μ̂n,k) − 1

σ0
Tn,k(μ̂n,k)

}
+

n∑

i=1

1

Ck
i−1

log
σ

σ0
,

where Tn,k is given in the proof of Theorem 3. Then the estimator σ̂n,k is a minimizer
of Q̄n,k . Here, we note that

√
βn,k

(
μ̂n,k − μ0

)
is tight by Theorem 3, and that

hn

γn,k
Tn,k(μ̂n,k) = 1

γn,k

n∑

i=1

1

Ck
i−1V 2

i−1

(

n

i X − κn(μ0)Ui−1
)2 (44)

+ 1

βn,kγn,k

n∑

i=1

U 2
i−1

Ck
i−1V 2

i−1

{√
βn,k

(
κn(μ0) − κn(μ̂n,k)

)}2
(45)

+ 1
√

βn,kγn,k

n∑

i=1

Ui−1

Ck
i−1V 2

i−1

(

n

i X − κn(μ0)Ui−1
)

√
βn,k

(
κn(μ0) − κn(μ̂n,k)

)
. (46)
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Then it follows from Lemma 3 that the term (44) is asymptotically equivalent to σ0Jn,k

under Pϑ0 , and the term (45) tends to zero in probability by the fact that

√
βn,k

(
κn(μ0) − κn(μ̂n,k)

) = OPϑ0
(hn),

and (LLN2). Moreover, the term (46) also tends to zero in probability by Lemma 2
(32) with αn = √

βn,kγn,k . Consequently, we have

sup
σ∈�

∣
∣
∣
∣

hn

γn,k
Q̄n,k(σ ) −

(
σ0

σ
+ log

σ

σ0
− 1

)
Jn,k

∣
∣
∣
∣

Pϑ0−→ 0.

Hence, by the same argument as in the proof of Theorem 1, we have the consistence.
Next, along Proposition 2, we shall show the following:

(a) There exists a random variable F̃n(σ ) satisfying (30) and (28)-type conditions in

Proposition 2 such that |hnγ
−1
n,k ∂2

σ Q̄n,k(σ ) − F̃n(σ )| Pϑ0−→ 0 uniformly in σ ∈ �,
which corresponds to (29);

(b) Sequence
{√

hn/γn,k∂σ Q̄n,k(σ0)
}

n∈N
is uniformly tight.

The point (a) is easy to see since, by the same argument as above,

hn

γn,k
∂2
σ Q̄n,k(σ ) = 2

σ 3

hn

γn,k
Tn,k(μ̂n,k) − hn

γn,k

n∑

i=1

1

σ 2Ck
i−1

∼
(

2σ0

σ 3 − 1

σ 2

)
Jn,k under Pϑ0 ,

uniformly in σ ∈ �. To show the point (b), note that

√
hn

γn,k
∂σ Q̄n,k(σ0) =

n∑

i=1

√
hn

γn,k

[
1

σ0Ck
i−1

− 1

σ 2
0 hnCk

i−1V 2
i−1

(

n

i X − κn(μ0)Ui−1
)2

]

+
n∑

i=1

√
hn

γn,k

U 2
i−1

σ 2
0 hnCk

i−1V 2
i−1

(
κn(μ0) − κn(μ̂n,k)

)2

+
n∑

i=1

√
hn

γn,k

Ui−1

σ 2
0 hnCk

i−1V 2
i−1

(

n

i X − κn(μ0)Ui−1
) (

κn(μ0) − κn(μ̂n,k)
)

=:
n∑

i=1

pn
i +

n∑

i=1

qn
i +

n∑

i=1

rn
i × h−1

n

√
βn,k

(
κn(μ0) − κn(μ̂n,k)

)
,

where it means that

rn
i =

√
hn

βn,kγn,k

Ui−1

σ 2
0 Ck

i−1V 2
i−1

(

n

i X − κn(μ0)Ui−1
)
,
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and note that h−1
n

√
βn,k

(
κn(μ0) − κn(μ̂n,k)

)
is tight. It follows that

n∑

i=1

∣
∣
∣Eϑ0

[
pn

i |Xtn
i−1

]∣∣
∣ � h3/2

n√
γn,k

n∑

i=1

R2,i−1

Ck
i−1V 2

i−1

= OPϑ0

(
nh3/2

n√
γn,k

)

;
n∑

i=1

Eϑ0

[
|pn

i |2|Xtn
i−1

]
� hn

γn,k

n∑

i=1

1

Ck
i−1

+ hn

γn,k

n∑

i=1

R4,i−1

C2k
i−1

= OPϑ0

(
Jn,k + nhn

γn,k

)
,

(47)

which are tight. Therefore,
∑n

i=1 pn
i is tight by Lemma 1. Moreover,

∣
∣
∣
∣
∣

n∑

i=1

qn
i

∣
∣
∣
∣
∣
�
√

hn

γn,k

hn

βn,k

n∑

i=1

Si−1

Ck
i−1

× βn,k
(
κn(μ0) − κn(μ̂n,k)

)2 Pϑ0−→ 0,

and
∑n

i=1 rn
i

Pϑ0−→ 0 by Lemma 2 (34) with αn = √
βn,kγn,k/hn . This completes the

proof.

6.5 Proof of Corollary 2

Note that, for Tn,k given in the proof of Theorem 3,

Qn,k(ϑ) = 1

σ
Tn,k(μ) +

n∑

i=1

log σ

Ck
i−1

,

and that

−D−1
n ∇ϑ Qn,k(ϑ0) = Q̃n,k(ϑ

∗
n ) · Dn(ϑ̂n,k − ϑ0),

where ϑ∗
n = (μ∗

n, σ ∗
n ) is between ϑ̂n,k and ϑ0, Q̃n,k(ϑ) = D−1

n ∇2
ϑ Qn,k(ϑ)D−1

n and

Dn =
(√

βn,k 0
0

√
γn,k/hn

)
.

We have already shown in the proofs of Theorems 3 and 4 that D−1
n ∇ϑ Qn,k(ϑ0) is

tight, and that

diag
(

Q̃n,k(ϑ
∗
n )
)

∼ diag

(
2

σ0
In,k,

1

σ 2
0

Jn,k

)

.
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Therefore, the proof ends if we show that

√
hn

βn,kγn,k
∂μ∂σ Qn,k(ϑ

∗
n )

Pϑ0−→ 0.

Here, we note that

√
hn

βn,kγn,k
∂μ∂σ Qn,k(ϑ

∗
n ) = 2

√
hn

βn,kγn,k

n∑

i=1

Ui−1

(σ ∗
n )2Ck

i−1V 2
i−1

× (

n

i X − κn(μ
∗
n)Ui−1

)+ oPϑ0
(1)

=
√

hn

βn,kγn,k

n∑

i=1

Ui−1

Ck
i−1V 2

i−1

(

n

i X − κn(μ0)Ui−1
)

+
√

hn

βn,kγn,k

n∑

i=1

U 2
i−1

Ck
i−1V 2

i−1

× (
κn(μ0) − κn(μ

∗
n)
)+ oPϑ0

(1)

=:
n∑

i=1

pn
i +

n∑

i=1

qn
i + oPϑ0

(1).

Then it follows from Lemma 2 (34) with αn = √
βn,kγn,k/hn that

∑n
i=1 pn

i

Pϑ0−→ 0.
Moreover, noticing that h−1

n

√
βn,k

(
κn(ϑ

∗
n ) − κn(ϑ0)

)
is tight, we see that

n∑

i=1

qn
i =

√
hn

γn,k

(
hn

βn,k

n∑

i=1

U 2
i−1

Ck
i−1V 2

i−1

)

× h−1
n

√
βn,k

(
κn(μ0) − κn(μ

∗
n)
) Pϑ0−→ 0.

This completes the proof.

Appendix A: The law of large numbers

In this section, we use the following notation: for p > 0 and a measurable
function G,

‖G‖∗
L p

:= sup
t≥0

Eϑ0

[|G(Xt )|p] .

The following result is an L p-version of the law of large numbers.

Proposition 3 Let f (x, ϑ) : R × � → R be a function which is twice differentiable
in x such that the following three quantities are bounded: for some p ≥ 1,

‖U∂x f (·, ϑ)‖∗
L p

; ‖V ∂x f (·, ϑ)‖∗
L2p

; ‖V 2∂2
x f (·, ϑ)‖∗

L p
. (48)
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In addition, suppose that nh1/2+1/p
n α−1

n → 0 as n → ∞. Then

lim
n→∞ sup

ϑ∈�

Eϑ0

[∣∣
∣
∣
∣
hn

αn

n∑

i=1

fi−1(ϑ) − 1

αn

∫ Tn

0
f (Xs, ϑ) ds

∣
∣
∣
∣
∣

p]

= 0.

Proof Let


n( f ;ϑ) :=
∣
∣
∣
∣
∣
hn

αn

n∑

i=1

fi−1(ϑ) − 1

αn

∫ Tn

0
f (Xs, ϑ) ds

∣
∣
∣
∣
∣
.

Thanks to Jensen’s and Minkovskii’s inequality, we can deduce that

‖
n( f ;ϑ)‖L p(Pϑ0 ) ≤ 1

αn

n∑

i=1

(∫ tn
i

tn
i−1

Eϑ0

[| fi−1(ϑ) − f (Xs, ϑ)|p] ds

)1/p

.

By Itô’s formula, it follows for any t > tn
i−1 and p ≥ 1 that

∣
∣
∣ f (Xt , ϑ)− f (Xtn

i−1
, ϑ)

∣
∣
∣
p ≤

∣
∣
∣
∣
∣

∫ t

tn
i−1

(
U (Xs)∂x f (Xs , ϑ)+ 1

2
V 2(Xs)∂

2
x f (Xs , ϑ)

)
ds

∣
∣
∣
∣
∣

p

+
∣
∣
∣
∣
∣

∫ t

tn
i−1

V (Xs)∂x f (Xs , ϑ) dWs

∣
∣
∣
∣
∣

p

.

Thanks to Condition (48), Jensen’s and Burkholder–Davis–Gundy’s inequality yields
that

sup
ϑ∈�

Eϑ0

[∣∣
∣ f (Xtn

i
, ϑ) − f (Xtn

i−1
, ϑ)

∣
∣
∣

p]
� h p/2

n ,

and

sup
ϑ∈�

‖
n( f ;ϑ)‖L p(Pϑ0 ) � nh1/2+1/p
n α−1

n .

The last term tends to zero under the assumption. This completes the proof. ��
Corollary 3 Suppose that functions U, V and C are twice differentiable with bounded
derivatives. Moreover, suppose that nh1/2+1/p

n γ −1
n,k → 0 for some p ≥ 1. Then

Eϑ0

[∣∣
∣
∣
∣

hn

γn,k

n∑

i=1

1

Ck
i−1

− 1

γn,k

∫ Tn

0

1

Ck(Xs)
ds

∣
∣
∣
∣
∣

p]

→ 0,

for any k ≥ 0. In particular, if X ∈ Dk(βn,k, γn,k), then (LLN1) holds true.

Proof Check Condition (48) with f (x, ϑ) = C−k(x). ��
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Corollary 4 Suppose that functions U, V and C are twice differentiable with bounded
derivatives. Moreover, suppose that nh1/2+1/p

n β−1
n,k → 0 for some p ≥ 1, and that the

following either (a) or (b) is satisfied:

(a)
∥
∥U 3C−k

∥
∥∗

L p
< ∞.

(b)
∥
∥U 2C−k

∥
∥∗

L p
< ∞, and V is constant.

Then

Eϑ0

[∣∣
∣
∣
∣

hn

βn,k

n∑

i=1

Si−1

Ck
i−1

− 1

βn,k

∫ Tn

0

S(Xs)

Ck(Xs)
ds

∣
∣
∣
∣
∣

p]

→ 0.

Proof Put f (x, ϑ) = S(x)C−k(x), and denote by f ′(x) = ∂x f (x, ϑ). Then, by the
direct computation, we have the following estimates:

| f ′| �
∣
∣
∣
∣

U

Ck V 2

∣
∣
∣
∣+

∣
∣
∣
∣
U 2V ′

Ck V 3

∣
∣
∣
∣ ;

| f ′′| �
∣
∣
∣
∣

U

Ck V 2

∣
∣
∣
∣+

∣
∣
∣
∣
U 2V ′′

Ck V 3

∣
∣
∣
∣+

∣
∣
∣
∣
U 2(V ′)2

Ck V 3

∣
∣
∣
∣+

∣
∣
∣
∣

U 2

Ck V 4

∣
∣
∣
∣ .

Use them to check Condition (48). ��
Remark 8 Assume that X ∈ Dk(βn,k, γn,k), and that all the conditions in Corollary 4
are satisfied. Then (LLN2) holds true. Condition (a) or (b) is satisfied if k ≥ 3, or
k ≥ 2 when V is a constant. Moreover, Condition (a) is satisfied for any k ≥ 0 if U is
bounded. In particular, (LLN1,2) hold for DNR if h1/2

n T 1−α
n → 0.

Remark 9 For DOU+ and DExp, (LLN2) holds true with k = 2 and βn,2 = Tn since

DOU+ , DExp ⊂ D2(Tn, 1);

see Examples 3 and 4. However, (LLN2) also holds if k = 0 and βn,0 = e2μ0Tn

although ‖X2‖∗
L1

is not finite in these cases; see Lemmas 1 and 2 in Shimizu (2009a).
It implies that (a) and (b) are not necessary, but sufficient.
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