
Ann Inst Stat Math (2012) 64:521–544
DOI 10.1007/s10463-010-0320-7

Markov-modulated Hawkes process with stepwise decay

Ting Wang · Mark Bebbington · David Harte

Received: 15 April 2010 / Revised: 30 August 2010 / Published online: 30 December 2010
© The Institute of Statistical Mathematics, Tokyo 2010

Abstract This paper proposes a new model—the Markov-modulated Hawkes pro-
cess with stepwise decay (MMHPSD)—to investigate the variation in seismicity rate
during a series of earthquake sequences including multiple main shocks. The MMH-
PSD is a self-exciting process which switches among different states, in each of which
the process has distinguishable background seismicity and decay rates. Parameter esti-
mation is developed via the expectation maximization algorithm. The model is applied
to data from the Landers–Hector Mine earthquake sequence, demonstrating that it is
useful for modelling changes in the temporal patterns of seismicity. The states in the
model can capture the behavior of main shocks, large aftershocks, secondary after-
shocks, and a period of quiescence with different background rates and decay rates.

Keywords Markov-modulated Hawkes process with stepwise decay ·
EM algorithm · ETAS model · Simulation · Landers

1 Introduction

Fedotov (1968) and Mogi (1968) described the concept of a seismic cycle includ-
ing foreshocks and relative quiescence. Statistically, there have been few attempts
to identify, or exploit this. Zhuang (2000) analyzed the earthquake sequence off
Cape Palliser in New Zealand from 1978 to 1996 and divided the seismicity into
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four periods: background seismicity, a relatively quiescent period, main shock and
aftershock sequence, and a postseismic period. According to variations in occurrence
rate and probability distribution of inter-event time, Pievatolo and Rotondi (2008)
decomposed the observed seismicity from the Kresna region of Bulgaria into differ-
ent phases and found two seismic cycles which have similar patterns as background
activity—foreshocks, main shocks, and aftershock sequences.

Bebbington et al. (2010) examined a cyclical model for the San Francisco Bay
region, showing that it reproduces observed accelerated moment release (AMR) behav-
ior (Bufe and Varnes 1993). This study is notable in that the state variable was the
accumulation of tectonic strain, not directly reflected in the observed data. Hidden
Markov models (HMMs) form a remarkably general statistical framework for mod-
elling such partially observed systems, by assuming that the unobserved (or hidden)
process is a Markov chain, and the observations are conditionally independent given
the hidden states. However, earthquakes considered as point processes often occur in
a self-exciting way, i.e., previous events often trigger new ones. This combination of
a self-exciting process and a continuous-time hidden process is not considered in any
of the existing HMMs and their extensions, discrete-time HMMs (see Rabiner 1989
for a detailed review), Markov-modulated Poisson processes (MMPPs; Fischer and
Meier-Hellstern 1993; Rydén 1994, 1996), nonhomogeneous hidden Markov models
(NHMMs; Hughes and Guttorp 1994), Markov-modulated generalized linear mod-
els (MMGLMs; Harte 2005), or Markov-modulated renewal processes (Bebbington
2007). Hence, to model earthquakes in the HMM framework, further extension is
required.

An MMPP is a doubly stochastic Poisson process, the intensity of which is con-
trolled by a finite, non-observable, continuous-time Markov chain. It is parameterized
by an r -state continuous-time Markov chain with infinitesimal generator Q = (qi j )r×r

and r Poisson arrival ratesλ1, λ2, . . . , λr . When an MMPP is in one specific state, say s,
the event occurrences follow a Poisson process with rate λs . This process has been
applied to model bursty point processes, especially in telecommunications (see e.g.,
Heffes and Lucantoni 1986), but as pointed out above, it is not suitable for earthquakes,
due to the occurrence rate being constant in any given state, hence not self-exciting.

Hence, it is necessary to extend the MMPP to the case when the observed pro-
cess follows a self-exciting point process sojourning in each state. The self-exciting
Hawkes process with exponential decay rate (Hawkes 1971) will be used to formulate
the event occurrence rate in each hidden state. This is because this Hawkes process
has the Markovian property and is thus mathematically tractable. We will examine the
effect of this choice later.

The next section introduces the Markov-modulated Hawkes process with stepwise
decay (MMHPSD), a model in which the process switches among a finite number of
states, each characterized by a self-exciting occurrence rate of events from a Hawkes
process. Section 3 presents a method of estimating the parameters involved in the
model using the EM algorithm, including a detailed implementation algorithm for
parameter estimation. The goodness-of-fit problem is discussed in Sect. 4. A simu-
lation algorithm for the process is provided as part of a study of the consistency of
the parameter estimation procedure in Sect. 5. Section 6 discusses a case study of the
model using the earthquake data for the Landers–Hector Mine series.
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2 Markov-modulated Hawkes process with stepwise decay

The Hawkes process has an extensive application history in seismology (see e.g.,
Hawkes and Adamopoulos 1973), epidemiology, neurophysiology (see e.g., Brémaud
and Massoulié 1996), and econometrics (see e.g., Bowsher 2007). It is a point-process
analogue of the autoregressive model in time series. Let N be a simple point process on
R with successive occurrence times T0 = t0 = 0, T1 = t1, . . . , Tn = tn . The history
Ht of the process at time t is defined by Ht = {tl : tl < t}. The conditional intensity

function of the Hawkes process is λ(t)
�= λ(t | Ht ) = λ+∫ t

−∞ g(t −u)dN (u),where
λ ≥ 0, g(u) ≥ 0 and

∫ ∞
0 g(u)du < 1 (Hawkes 1971). The immigrants arrive in a

Poisson process of rate λ, and each immigrant generates offspring in a non-stationary
Poisson stream of rate g(t −u). If we let g(t −u) = νηe−η(t−u), the process will then
have the Markovian property (Daley and Vere-Jones 2003) and become mathemati-
cally tractable. This model can be imbedded into the hidden Markov model framework
with restriction of the intensity function to stepwise decay for reasons of computa-
tional feasibility (cf. Wang 2010). Thus for a point process N with occurrence times
t0 = 0, t1, . . . , tn , the intensity of the process changes only at the times limε↓0(tk +ε),
i.e., for tk < t < tk+1, λ∗(t) = λ∗(tk+1), and λ∗(tk+1) = λ + νη

∑
t j<tk e−η(tk−t j ).

The general conditional intensity function for the process can be written as

λ∗(t) = λ+ νη
∑

t j<max{tl :tl<t}
e−η(max{tl :tl<t}−t j ). (1)

We will call this restricted process as a Hawkes process with stepwise decay.
Consider a Hawkes process with stepwise decay the parameters of which vary

according to an r -state irreducible Markov process. Denote the infinitesimal gen-
erator of the underlying Markov process {Y (t)} by Q = (qi j )r×r and qi = −qii ,
i = 1, . . . , r . The observed Hawkes process with stepwise decay is characterized by
�∗(t), an r × r diagonal matrix with diagonal elements λ∗

1(t), . . . , λ
∗
r (t), where

λ∗
i (t) = λi + νiηi

∑

t j<max{tl :tl<t}
e−ηi (max{tl :tl<t}−t j ), (2)

tk is the occurrence time of the kth event, and λi , νi and ηi , i = 1, . . . , r , are param-
eters. This process is said to be in state i , 1 ≤ i ≤ r , when the underlying Markov
process is in state i . When this process is in state i at time t , events occur according to a
Hawkes process with stepwise decay rate λ∗

i (t) as defined in (2). This process we will
call a Markov-modulated Hawkes process with stepwise decay (MMHPSD) of order r .
Denote the inter-event times of this process by X1 = T1 − T0, . . . , Xn = Tn − Tn−1.
Let Y0 be the state of the Markov process having generator Q at time t = 0, and let
X0 = 0. The kth event of the MMHPSD is associated with the corresponding state Yk

of the underlying Markov process as well as the time Xk , k ≥ 1, between the (k −1)st
and the kth event.

The state of the underlying Markov process at time t is Y (t). Let Nn(u) denote
the number of events in the MMHPSD in (tn−1, tn−1 + u], where tn denotes the nth
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event time. In order to obtain the transition probability matrix, we need the following
Lemma. See the Appendix for the proof.

Lemma 1 Given the history Htn−1 , the transition probability without arrival,

H (n)
i j (u) = P{Y (tn−1 + u) = j, Nn(u) = 0 | Y (tn−1) = i,Htn−1}, can be expressed

as H (n)(u) = exp{(Q −�∗(tn))u} for u ≥ 0, where H (n)(u) = {H (n)
i j (u)}.

The transition probability matrix of the MMHPSD is then given by F (n)(x) =∫ x
0 H (n)(u)�∗(tn−1 + u)du, where the elements are F (n)i j (x) = P(Yn = j, Xn ≤

x | Yn−1 = i,Htn−1). Thus, the transition density matrix is f (n)(x) = exp{(Q −
�∗(tn))x}�∗(tn). Let λ = (λ1, . . . , λr ), ν = (ν1, . . . , νr ), and η = (η1, . . . , ηr ).
Denote � = {Q; λ, ν, η}. Let π = (π1, . . . , πr ) denote the initial distribution vector
of the Markov process. If x1, . . . , xn are the observed inter-event times, then the like-
lihood of the parameter � is L(�; x1, . . . , xn) = π

{∏n
i=1 f (i)(xi ;�)

}
1, where 1 is

an r × 1 vector of ones.
Similar to the standard discrete time HMM problem, if we define the forward prob-

ability as αt (i) = P{T1 = t1, . . . , TN (t) = tN (t), 0 < tN (t) ≤ t < tN (t)+1,Y (t) = i},
and the backward probability as βt ( j) = P{TN (t)+1 = tN (t)+1, . . . , Tn = tn, tN (t) <

t ≤ tN (t)+1 < tn,Y (t) = j}, then the likelihood can be expressed as L = ∑r
i=1 αt (i)

βt (i).

2.1 Comparison with the ETAS model

The Epidemic Type Aftershock Sequence (ETAS; Ogata 1988) model and its exten-
sions (Ogata 1998 and references therein) are nowadays almost invariably used to
investigate the characteristics of aftershock sequences. Hence, we need to compare
our formulation with that of the ETAS model. The conditional intensity function for
the ETAS model is given by λ(t | Ht ) = μ + ∑

i :ti<t eα(Mi −M0)K (t − ti + c)−p,
where μ is the occurrence rate for the background seismic activity; the parameter c
is a time delay constant; the parameter p characterizes the aftershock decay rate; the
parameter α provides a measure of the power of a shock in generating its aftershocks;
and the parameter K can be explained as the productivity of events dependent on the
magnitude threshold M0.

The main differences between the ETAS model and the Hawkes process are in
the term involving magnitude and in the decay rate term. The ETAS model assumes
that for each event, both the time and magnitude of the event influence the intensity.
However, the conditional intensity function of the Hawkes process is time-depen-
dent only. Although the decay rate of the ETAS model follows a power law, whereas
that of the Hawkes process is an exponential decay, these are per ancestor event, and
the actual decay rates, as we see later, appear rather different. For very small and
very large delays t − ti , the decay rate term in the ETAS model is always larger,
implying a higher seismicity rate immediately following an event. Moreover, in the
ETAS model, this is multiplied by the exponential of the magnitude (which is always
larger than or equal to 1). The relationship between ν in the Hawkes process and K
in the ETAS model is not as obvious. Assuming that the distribution of earthquake
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magnitudes M follows the Gutenberg–Richter distribution b log(10)10−b(M−M0), the
average number of offspring (triggered per immigrant) predicted by the ETAS model
is aE = n0

∫ +∞
0 (t +1)−pdt , where α∗ = α/ log(10) and n0 = K b/cp−1(b−α∗) (cf.

Helmstetter and Sornette 2002). For the Hawkes process, it is
∫ +∞

0 νηe−ηt dt = ν.

Given the same number of offspring, we thus have ν = K c−(p−1)b(b−α∗)−1
∫ +∞

0 (t+
1)−pdt . For example, for b = 1, α = 1.468, i.e., α∗ = 0.638, restraining 0 < ν =
aE < 1 ensures that each immigrant has a finite total number of offspring with proba-
bility one. However, in the ETAS model, there is no such constraint on the parameter
K , i.e., there are cases when aE ≥ 1 due to the self-exciting nature of the process,
which compounds with the magnitude term.

3 An EM algorithm for parameter estimation

In order to estimate the parameters, we will construct a version of the EM algorithm.

3.1 The complete likelihood

First, we formulate the complete likelihood of an MMHPSD process. Suppose that the
occurrence times t0 = 0, t1, . . . , tn = T from an MMHPSD of order r are observed.
Let x1 = t1 − t0, . . . , xn = tn − tn−1, which are the inter-event times. Assume
that the hidden Markov process {Y (t)} has transitions at the time-points 0 < u1 <

u2 < · · · < um < T . Define u0 = 0 and um+1 = T , and write Ik = [uk−1, uk), and
�uk = uk −uk−1, for 1 ≤ k ≤ m+1. Moreover, denote the state of {Y (t)} during Ik by
sk , let zk be the number of events in Ik (do not count the event at t = 0), and let N (t) =
#{k : 0 < k ≤ n, tk ≤ t}, i.e., the number of events up to time t . Let ρ0 = 0 and ρk =
z1 +· · ·+ zk , for 1 ≤ k ≤ m +1. Then the complete likelihood of� can be written as

Lc = πs1

{
m∏

k=1

qsk e−qsk�uk × qsk ,sk+1

qsk

}

e−qsm+1�um+1

×
{

m+1∏

k=1

zk∏

i=1

λ∗
sk
(tρk−1+i ) exp

{

−
∫ tρk−1+i

tρk−1+i−1

λ∗
sk
(t)dt

}}

, (3)

where qk = −qkk . Taking the logarithm of the complete likelihood (3) and simplifying,
it follows that log Lc = L1 + L2, where

L1 =
r∑

i=1

I {Y (0) = i} logπi −
r∑

i=1

Di qi +
r∑

i=1

r∑

j=1
j �=i

wi j log qi j (4)

and

L2 =
r∑

i=1

n∑

k=1

log λ∗
i (tk)I {Y (tk) = i} −

r∑

i=1

∫ T

0
λ∗

i (t)I {Y (t) = i}dt, (5)

123



526 T. Wang et al.

for i �= j , wi j = #{k : 1 ≤ k ≤ m, sk = i, sk+1 = j} = #{t : 0 < t ≤ T,
Y (t−) = i,Y (t) = j} is the number of jumps of Y (t) from State i to State j in [0, T ],
Di = ∑

{k:1≤k≤m+1,sk=i}�uk = ∫ T
0 I {Y (t) = i}dt is the time {Y (t)} spends in state

i during [0, T ].

3.2 The EM algorithm

The EM algorithm can now be used to estimate the parameters. If �0 is a given
parameter estimate, then the E-step of the EM algorithm is to calculate the expectation
Q(�;�0) = EY,�0 [log Lc(�; N (t), Y ) | N (t)] with respect to Y and�0. The M-step
then maximizes the Q function to obtain the new estimate �̂ = arg max�Q(�;�0).
The expected complete log-likelihood Q(�;�0) is obtained by taking the expectation
of the complete likelihood over Y at the current parameter estimate�0 conditional on
the observed data {N (s), 0 ≤ s ≤ T }.

The parameters involved in Eq. (4), the initial distribution π of the Markov process
and the infinitesimal generator Q, can be estimated using a similar approach as out-
lined for the MMPP in Rydén (1996). The conditional expectation of the statistics Di

and wi j are

D̂i = E

{∫ T

0
I {Y (t) = i}dt

∣
∣
∣
∣ N (s), 0 ≤ s ≤ T

}

=
∫ T

0

αt (i)βt (i)∑r
j=1 αs( j)βs( j)

dt

(6)

and

ŵi j = E {#{t : 0 < t ≤ T,Y (t−) = i,Y (t) = j} | N (s), 0 ≤ s ≤ T }
=

∫ T

0

αt (i)qi jβt ( j)
∑r

k=1 αs(k)βs(k)
dt. (7)

The remaining problem is to estimate the parameters in the intensity function of
the Hawkes process with stepwise decay rate. This can be done by maximizing the
conditional expectation of L2 in Eq. (5) given the observations {N (s), 0 ≤ s ≤ T }.
This conditional expectation can be expressed as

Q2(�;�0) = E{L2 | N (s), 0 ≤ s ≤ T }
=

r∑

i=1

n∑

k=1

{
αtk (i)βtk (i)

L log
(
λ∗

i (tk)
) −

∫ tk

tk−1

αt (i)βt (i)

L λ∗
i (tk)dt

}

. (8)

In order to get the estimates of the parameters involved in the intensity part, we will
calculate the forward and backward probabilities in the E-step, and then carry out
numerical optimization to maximize Q2(�;�0) in Eq. (8) in the M-step.
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3.3 Implementation

We will now provide the implementation steps to carry out the parameter estimation.
For the scaling of forward–backward recursions and the evaluation of matrix expo-
nential integrals, to avoid a lengthy explanation, the readers are referred to Rydén
(1996), Roberts et al. (2006) and Van Loan (1978) for the version corresponding to
the MMPP. To estimate the parameters via the EM algorithm, we provide the following
implementation algorithm.

Algorithm 1 Given the initial values λ0 = (λ01, . . . , λ0r ), ν0 = (ν01, . . . , ν0r ),
and η0 = (η01, . . . , η0r ), Q0 = (q0i j )r×r and π0 = (π01, . . . , π0r ), and given the
observed occurrence times t0 = 0, t1, . . . , tn = T from an MMHPSD of order r ,
with inter-event times x1 = t1 − t0, . . . , xn = tn − tn−1, the EM algorithm for the
MMHPSD can be carried out as follows.

(1) Let L(0) = π0, and for k = 1, . . . , n, let L(k) = L(k − 1) f (k)(xk)/L(k −
1) f (k)(xk)1.

(2) Let R(n + 1) = 1, and for k = n, . . . , 1, let R(k) = f (k)(xk)R(k + 1)/L(k −
1) f (k)(xk)1.

(3) For k = 1, . . . , n, let

Ck =
(

Q −�(tk) �∗(tk)R(k + 1)L(k − 1)
0 Q −�(tk)

)

and calculate the matrix eCk xk . Then set Ik as the r × r upper-right block of this
matrix.

(4) Calculate the conditional expectations (6) and (7), w = Q 	 ∑n
k=1 IT

k /ck and
Di = wi i/q0i i , where 	 denotes element-by-element multiplication of the two
matrices.

(5) We have the new estimates q̂i j = wi j/Di , for i, j = 1, . . . , r, i �= j , q̂i =∑r
j=1, j �=i q̂i j , for i = 1, . . . , r , and π̂i = π0i eT

i R(1), for i = 1, . . . , r , where ei

is an r × 1 vector, the elements of which are zeros except the i th entry which is
1.

(6) For i = 1, . . . , r and k = 1, . . . , n, set Bik = L(k)ei eT
i R(k+1)= Li (k)Ri (k+1).

(7) Numerically optimize Q2(�;�0) = ∑r
i=1

∑n
k=1 Bik log(λ∗

i (tk))−
∑r

i=1
∑n

k=1
Iikλ

∗
i (tk)/ck , and obtain estimates for the parameters λ, ν, and η.

(8) Calculate the log likelihood L Lold = ∑n
k=1 log(L(k − 1) f (k)(xk)1). Then sub-

stitute (Q̂, �̂, ν̂, η̂) in place of (Q0,�0, ν0, η0) in step (1) with L(0) = π̂ , and
calculate the ‘new’ log likelihood L Lnew = ∑n

k=1 log(L(k − 1) f (k)(xk)1).
(9) Substitute (Q̂, �̂, ν̂, η̂) in place of (Q0,�0, ν0, η0) and repeat step (1) to step

(8) until the difference in the log likelihoods becomes less than the terminative
condition.

Note that the parameter estimation of Q2 in Step (7) requires some numerical opti-
mization technique, such as the standard nonlinear optimization technique suggested
by Fletcher and Powell (1963). To perform this, we need the gradients and Hessian
of Q2, which are the partial first- and second-order derivatives of the function Q2 with
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respect to the parameters. See the Appendix for the detailed gradients and Hessian
calculations.

4 Goodness-of-fit

4.1 Estimated intensity function of the observed process

After fitting an MMHPSD to a set of observed data, the probability of the hidden
state occupying a specific state at time t given the entire observed process can provide
a clear illustration of the underlying process. As discussed in Zucchini and Guttorp
(1991) and MacDonald and Zucchini (1997), this probability can be directly calculated
using the forward and backward probabilities with the estimated parameters,

P(St = i | HT ) = P(T1 = t1, . . . , Tn = tn,Y (t) = i)

P(T1 = t1, . . . , Tn = tn)
= αt (i)βt (i)

L . (9)

The estimated intensity function can be obtained by

λ̂∗(t) =
r∑

i=1

⎛

⎝λ̂i + ν̂i η̂i

∑

t j<max{tl :tl<t}
e−η̂i (max{tl :tl<t}−t j )

⎞

⎠ αt (i)βt (i)

L . (10)

We will use this as the basis of a goodness-of-fit test.

Algorithm 2 After fitting an MMHPSD to the data, the estimates of the parameters
λ̂ = (̂λ1, . . . , λ̂r ), ν̂ = (̂ν1, . . . , ν̂r ), and η̂ = (̂η1, . . . , η̂r ), Q̂ = (q̂i j )r×r and π̂ =
(π̂1, . . . , π̂r ) are obtained. Given the observed occurrence times t0 = 0, t1, . . . , tn = T
with inter-event times x1 = t1 − t0, . . . , xn = tn − tn−1, the procedure of estimating
the probability of the hidden state occupying a specific state at time t and the intensity
function is as follows.

(1) Let L(0) = π̂ , and for k = 1, . . . , n, let L(k) = L(k − 1) f (k)(xk)/L(k −
1) f (k)(xk)1.

(2) Let R(n + 1) = 1, and for k = n, . . . , 1, let R(k) = f (k)(xk)R(k + 1)/L(k −
1) f (k)(xk)1.

(3) For i = 1, . . . , r and tk−1 ≤ t < tk , set p̂i (t) = L(k − 1) exp{(Q̂ − �̂∗(tk))(t −
tk−1)}ei eT

i exp{(Q̂ − �̂∗(tk))(tk − t)}�̂∗(tk)R(k + 1)/ck . Thus p̂i (t) is the esti-
mated probability of the hidden state occupying state i at time t for (9).

(4) For i = 1, . . . , r and tk−1 ≤ t < tk , set the estimated intensity function (10) as
λ̂∗(t) = ∑r

i=1(̂λi + ν̂i η̂i
∑

t j<max{tl :tl<t} e−η̂i (max{tl :tl<t}−t j )) p̂i (t).

4.2 Residual analysis

Residual analysis (see e.g., Ogata 1988; Bebbington and Harte 2001) can be used
to assess the goodness-of-fit of the MMHPSD. According to Theorem 7.4.I in
Daley and Vere-Jones (2003), if a point process in time with intensity function λ(t) is
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rescaled using the random time change τ = �(t) = ∫ t
0 λ(s)ds, then the rescaled time

τ is a stationary Poisson process with unit rate. For an observed point process with
occurrence times t1, t2, . . . , tn , the true model for the data is usually unknown. If we
fit a model to the data and rescale the points as given above, then the fitted model is a
good approximation to the true model if the residual point process

τi = �(ti ), (11)

is indistinguishable from a stationary Poisson process with unit rate. Residual analysis
differs in intent from other model selection criteria such as the log likelihood, Akaike
Information Criterion (AIC; Akaike 1974) and Bayesian information criterion (BIC;
Schwarz 1978) in that it is used to identify systematic deviation of the data from the
fitted model. Therefore, it provides evidence of a good fit. The latter three criteria, how-
ever, only suggest which model is relatively better and do not guarantee that the model
is a good approximation of the true model. Standard tests can be used to investigate
whether the residual point process is a stationary Poisson process with unit rate.

5 Simulation

5.1 Simulation algorithm

To see how well the parameter estimation method works, an MMHPSD process can be
simulated, and then the model can be fitted to the simulated data set to get the param-
eter estimates. By comparing the estimated parameters with the true parameters, one
can see how the parameter estimation method performs.

Algorithm 3 Given the initial state y1 = j , the parameters Q, λl , νl and ηl , l =
1, . . . , r , and the history data set H ⊂ {t ≤ 0}, the following steps can be carried out
to generate n events from an MMHPSD process.

1. Set i = s = 1 and ti = ts = 0.
2. Use ri = q j + λ j + ν jη j

∑
tl<ti e−η(ti −tl ) as the rate and generate an inter-event

time τi from the exponential distribution.
3. Set ts+1 = ts + τi . Generate a uniform random variable U ∈ (0, 1).

– If U > q j/ri , then add ti+1 = ts+1 into the history. Set i = i + 1, s = s + 1
and go to Step 2.

– If U ≤ q j/ri , then this point is a state transition point. Use (q jk/q j )1≤k≤r to
generate the next state y2. Set j = y2, s = s + 1 and go to Step 2.

If i = n, then stop.
4. The sequence of times simulated is the generated MMHPSD process.

As we will see in the example of the Landers earthquake sequences, the magnitude
is state dependent. If one wants to simulate earthquake magnitudes in the MMHPSD,
we refer to Jaumé and Bebbington (2004) for discussion of ways in which a state-
dependent magnitude distribution might be parameterized.
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5.2 Consistency of the parameter estimation procedure

We now investigate the performance of the parameter estimation algorithm proposed
in Sect. 3. The ETAS model has been well studied and has often been used to simulate
earthquake catalogues. In order to get some reasonable parameters of the MMHPSD
from an analogue earthquake sequence, we therefore use the ETAS model to simulate
a long homogeneous earthquake catalogue and then fit the MMHPSD model with
two states to the simulated sequence. We can then use these estimated parameters to
simulate MMHPSD sequences of varying lengths and examine the parameter estima-
tion method for consistency before we use this model to analyze a real earthquake
catalogue.

Zhuang (2000) used the ETAS model to study the seismicity of the earthquake
sequence which occurred off Cape Palliser at the southeastern tip of North Island, New
Zealand from January 1, 1978 to May 31, 1996. The whole period was divided visu-
ally according to the magnitude–time plot into four stages: early background period,
relatively quiescent period, main shock and aftershock sequence, and an active period
of post-aftershocks.

We use the same study area as in Zhuang (2000), selecting 920 events with mini-
mum magnitude 2.0 from the SSLib package (http://homepages.paradise.net.nz/david.
harte/SSLib/, last accessed on September 22, 2009) within the cylinder centered at
latitude 41.686S and longitude 175.508E with a radius of 36 km and a depth of 40 km
from January 1, 1978 to May 31, 1996. Note that the catalogue has changed slightly
since Zhuang’s work appeared. An ETAS model fitted to this sequence produced max-
imum likelihood estimates of the parameters, μ̂ = 0.025, K̂ = 11.002, α̂ = 1.468,
ĉ = 0.004 and p̂ = 1.127. These estimated parameters were then used to simulate a
sequence of 3,000 events from the ETAS model.

Next, the MMHPSD with two states is fitted to the simulated series of events.
The estimated parameters are λ̂1 = 0.003, λ̂2 = 6.324, ν̂1 = 0.192, ν̂2 = 0.583,
η̂1 = 0.044, η̂2 = 19.502, q̂1 = 0.083, and q̂2 = 8.036. These estimated parameters
are then used to simulate four groups of MMHPSD events. Each group consists of
100 sequences. Each sequence has 500 events in Group 1, 1,000 events in Group 2,
2,000 events in Group 3, and 5,000 events in Group 4. Then the MMHPSD is refitted
to each of the simulated sequences, and the parameters are estimated.

The boxplot of the estimated parameters for each group is shown in Fig. 1. We see
that the mean of the parameter estimates of each of the parameters is very close to the
true value, and the variation in the parameter estimates decreases with the number of
events, indicating consistency.

6 Example: the Landers–Hector Mine series of earthquakes

6.1 Earthquake data around Landers

The magnitude 7.3 Landers earthquake on June 28, 1992 is one of the most signif-
icant, and the most studied, earthquakes in Southern California. It was preceded by
the Joshua Tree earthquake of magnitude 6.1 on April 22, 1992, and followed by the
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Fig. 1 Boxplot of the estimated parameters λ̂1, λ̂2, ν̂1, ν̂2, η̂1, η̂2, q̂1 and q̂2 for each group. The true
parameters are λ1 = 0.003, λ2 = 6.324, ν1 = 0.192, ν2 = 0.583, η1 = 0.044, η2 = 19.502, q1 = 0.083
and q2 = 8.036 which are indicated using dashed lines

magnitude 6.4 Big Bear earthquake 3 h later, about 35 km west of the Landers epi-
center. The Landers aftershock sequence contains more than ten large aftershocks of
magnitude 5.0 or above. The 1999 magnitude 7.1 Hector Mine earthquake occurred
about 30 km northeast of the Landers source region 7 years later.

The seismicity in the region around the above events will be studied. In order to
choose the magnitude threshold, the cutoff should ensure that the earthquakes above
this magnitude follow the Gutenberg–Richter (G–R) law because this is assumed
in the ETAS formulation. While the series contains multiple seismic cycles, the
number of events should not be too large, otherwise the parameter estimation will
be very time-consuming. Thus, we select earthquakes between latitude 33.8N and
34.8N, and between longitude 117.1W and 116.1W, with minimum magnitude 3 from
January 1, 1976 to December 31, 2008, which are complete according to the G–R
law.

Some 2,431 events are thus selected, including the magnitude 7.3 Landers earth-
quake which occurred on June 28, 1992 and the magnitude 7.1 Hector Mine earthquake
on October 16, 1999. The data are from the SCSN catalogue which is available from
the southern California earthquake data center web site (http://www.data.scec.org/
index.html, last accessed on September 19, 2009). The locations of the earthquakes
are plotted in Fig. 2. Figure 3 shows the cumulative number of earthquakes in the
study area during the 33 years. We can clearly see several jumps which indicate
seismicity rate changes. We will fit the MMHPSD to this set of data and discuss the
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features this model captures. For comparison, we also examine the data using the ETAS
model with magnitude threshold M0 = 3.0. The occurrence times are expressed in
days.
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6.2 Exploratory data analysis using the MMHPSDs

Starting from a two-state MMHPSD, we add one state at a time until the residual point
process of the current model is a stationary Poisson process with unit rate. The result
will thus be a good approximation of the true model. For each model, the transformed
time τi in (11) is calculated, and the cumulative number of the residual process versus
the transformed time {τi } is plotted. For the fitted MMHPSDs with two and three
hidden states, the 95% confidence limits are exceeded not long before the Landers
earthquake, and the 99% limits are further exceeded after the Big Bear earthquake
(see Fig. 4a for the plot of the three-state MMHPSD). Note that, in order to better
see the deviation of the calculated curves from the theoretical one, we subtracted the
latter from the former. The residual process of the MMHPSD with four hidden states,
however, is well approximated by the standard stationary Poisson process, as shown
in Fig. 4b.
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Let Ek = τk − τk−1 = �(tk)−�(tk−1), k = 1, . . . , n, and Uk = 1 − exp(−Ek).
For the MMHPSD with four hidden states, we then test whether the Uk have a uniform
distribution on [0, 1). Testing the Uk versus a null hypothesis of uniformity produces
a Kolmogorov–Smirnov statistic of 0.0206 (P = 0.2535), from which we see that
we cannot reject the null hypothesis of uniformity. Therefore, the inter-arrival times
appear exponentially distributed.

The t-statistic of the hypothesis test with the null hypothesis that the correlation
coefficient between log(Ek) and log(Ek+1) equals zero is −1.4514 with a P value of
0.1468. A scatter plot of Uk+1 against Uk suggests no particular pattern. The auto-
correlation of Uk is shown in Fig. 5, which indicates that except at lag 9 and 13 the
autocorrelation between Uk lies within the 95% confidence band. Therefore, there
is no evidence that the inter-arrival times are not independent, and hence, the fitted
MMHPSD with four hidden states is a good approximation of the true intensity of the
data.

The parameters estimated via the EM algorithm for the four state MMHPSD are
shown in Table 1. Note that the states are ordered according to the decay rate η. The
estimated Q-matrix is

Q̂ =

⎛

⎜
⎜
⎝

−0.0066 0.0000 0.0064 0.0002
0.0001 −0.4677 0.0002 0.4674
0.0001 0.0643 −6.1022 6.0378
58.0805 132.6127 121.2158 −311.9090

⎞

⎟
⎟
⎠ , (12)
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Table 1 Estimated parameters
of the four-state MMHPSD
fitted to the data around Landers

State 1 2 3 4

λ̂ 0.022 0.000 0.783 154.098

ν̂ 0.254 0.545 0.914 0.999

η̂ 0.026 0.521 19.286 188.787
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Fig. 6 Illustration of the fitted four-state MMHPSD and the fitted ETAS model. Top plot the tracked Viterbi
path for the hidden states given the observed sequence; next two plots the estimated intensity functions for
the fitted four-state MMHPSD and the fitted ETAS model; bottom the magnitude–time plot for the Landers
earthquakes

with stationary distribution (0.9652, 0.0315, 0.0032, 0.0001). The tracked Viterbi
path (see Bebbington 2007) and the estimated intensity function of the four-state
MMHPSD are shown in Fig. 6. Note that the residual analysis shows that the MMH-
PSD with four hidden states is the simplest MMHPSD model which captures the main
features of the data. Hence, according to Occam’s Razor, it can be concluded that the
four-state model is the ‘best’ in this sense. The log likelihood, AIC (Akaike 1974,
1978; Shibata 1980, 1981) and BIC (Schwarz 1978) values for the fitted MMHPSDs
with two, three, and four hidden states are listed in Table 2. Among the three models,
the AIC and BIC suggest that the fitted MMHPSD with four hidden states is the best
fit. Although the AIC and BIC may improve with additional states, these parameters
cannot be justified by the residual analysis, which shows that the data are already
explained by the four-state model.
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Table 2 The log likelihood (LL), AIC, and BIC for the fitted MMHPSDs, respectively, with two states
(MMHP2S), three states (MMHP3S) and four states (MMHP4S), and the ETAS model

MMHP2S MMHP3S MMHP4S ETAS

LL 1,760.669 1,942.465 2,019.240 2,020.587

AIC −3,505.338 −3,854.930 −3,990.48 −4,031.174

BIC −3,458.966 −3,767.983 −3,851.365 −4,002.192

We see from Table 1 and Fig. 6 that State 4 most likely corresponds to the major
main shocks and its immediate aftermath. In this state, there is a very high immigration
rate λ, indicating that the events are not triggered by other events. The decay rate η
is also very high, so these events do not themselves trigger other events, and ν ∼ 1,
indicating a period of almost constant activity rate. State 3 appears most likely to
account for the major aftershocks, while State 2, with a negligible immigration rate
and a small decay rate, is the principal aftershock state (cf. Fig. 8). Finally, State 1 has
a low immigration rate, a very low decay rate, and a small value of ν. Coupled with
the long sojourn time implied by (12), we see that this corresponds to a ground, or
quiescent, state.

Further examining the transition matrix in (12), we see that State 4 has a very short
sojourn time (approximately 5 min on average), and exits to one of the aftershock
states. State 3 appears to possibly have some precursory properties for State 4, com-
mensurate with the Joshua Tree–Landers triggering (Hill et al. 1993, 1995). This is
further supported by the preferred transition from State 1 to State 3. In short, our seis-
mic cycle is identified: State 1 (quiescent) – State 3 (precursory/main shock) – [State
4 (main shock) – State 3 (primary aftershocks)] – State 2 (aftershocks) – State 1, with
the steps in brackets being optional, so to speak.

Aftershocks are generally considered to exhibit a power-law decay rate (see e.g.,
Utsu et al. 1995). Figure 7 enlarges the time period of about a year just after the
Landers main shock with the corresponding Viterbi path of the hidden states (shown
in the top frame) allowing us to clearly see the state transitions and the estimated
intensity functions of both the MMHPSD and the ETAS models. Even though the ‘per
event’ decay rate in the former model is exponential, the effect is closer to a power
law (a straight line on the log-log axis) than is that of the ETAS model. The properties
of mixtures often differ significantly from those of their components (cf. Vere-Jones
et al. 2001). In order to see the pattern of state changes better, Fig. 8 presents the
data from Fig. 7 in transformed, or residual, time. We can see from Fig. 7 that after
approximately 20 days of very high seismicity rate following the Landers main shock,
the Viterbi sequence entered State 1 although the seismicity rate remained relatively
high due to the large number of contributing ancestor events immediately upstream,
and then switched back to the high seismicity regime after approximately another
130 days (about 150 days after Landers main shock) on the appearance of a cluster of
large aftershocks. It reentered State 1 after a further 20 days of high seismicity rate
(about 170 days after Landers main shock). In comparison to the temporal study of
the Landers aftershock sequence by Ogata et al. (2003), which detected a first change
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Fig. 7 Enlarged plots for the time period of about a year just after the Landers main shock with the x-axis
in log scale. Top the tracked Viterbi path for the hidden states given the observed sequence; next two plots
the estimated intensity functions for the fitted four-state MMHPSD and the fitted ETAS model; bottom the
magnitude–time plot for the Landers earthquakes

point at about 190 days after the Landers main shock, the Viterbi path of the MMHPSD
suggests the possibility of two further change points at about 20 and 150 days.

The conditional intensity function of a point process in time can be used to interpret
the inter-event times. Larger intensities correspond to shorter inter-event times. From
the above MMHPSD analysis of the data, it is not difficult to notice that the inter-
event times are highly correlated with magnitude. Take the fitted four-state model for
example. State 4 with the highest conditional intensity function captures the feature
of the largest earthquake; State 3, which has medium-large intensities, is related to
the large-magnitude aftershocks; States 1 and 2 with low intensities correspond to
smaller earthquakes. The modelled inter-event times indirectly reflect the magnitude
influence. Although we do not include the magnitude effect in our formulation of the
conditional intensity function, the fitted model still accounts for the magnitude effect.

6.3 Comparison with the ETAS model

Now let us examine the same data using the ETAS model with magnitude thresh-
old M0 = 3.0. The maximum likelihood estimates of the ETAS parameters are, μ =
0.0208, K = 1.4217, α = 1.6265, c = 0.0381, and p = 1.2230. The estimated inten-
sity function as plotted in Fig. 6 shows large spikes for almost every event, whereas
the intensity function of the MMHPSD tends to have fewer, and on average lower,
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Fig. 8 Enlarged plots for the time period of about a year just after the Landers main shock with the x-axis in
transformed time scale. Top the tracked Viterbi path for the hidden states given the observed sequence; next
two plots the estimated intensity functions for the fitted four-state MMHPSD and the fitted ETAS model;
bottom the magnitude–time plot for the Landers earthquakes

spikes. Recall from the discussion in Sect. 2.1 that for very small t − ti , the ETAS
model always has larger intensity than the Hawkes process and is very sensitive to
event magnitude.

The log likelihood, AIC, and BIC values for the fitted ETAS model are given in
Table 2. Both the AIC and BIC indicate that the ETAS model is a ‘better’ fit than the
MMHPSD with four states, but this does not guarantee that this ‘best’ model captures
the main features of the data. In order to examine whether the intensity of the fitted
ETAS model is a good approximation of the true intensity of the observed data, we
will examine the corresponding residual point process.

The cumulative number versus the transformed time plot for the fitted ETAS model
as shown in Fig. 4c lies well outside of the 99% confidence limits for much of the
time between Joshua Tree and Landers, and between Big Bear and Hector Mine. The
Kolmogorov–Smirnov test under the null hypothesis of stationarity produces a P value
of 0.0002. In comparison with the results for the MMHPSD with four states, for the
ETAS model, the t-statistic of the hypothesis test with the null hypothesis that the
correlation coefficient between log(Ek) and log(Ek+1) equals zero is 5.0352 with a
P value less than 0.001. The autocorrelation of Uk for the ETAS model is shown in
Fig. 5, which indicates autocorrelation between Uk for majority of the lags. Moreover,
this autocorrelation is consistently positive. Therefore, the inter-arrival times for the
ETAS model are not independent.
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The interpretation of these results is that the fitted ETAS model is not a good approx-
imation of the true intensity of the data. The reason for this involves the log likelihood
of a point process,

log L =
n∑

i=1

log λ(ti )−
∫ T

0
λ(t) dt. (13)

It is clear that the form of the ETAS intensity (see Sect. 2.1) allows the first term of
the log likelihood to be enlarged greatly at each event occurrence. The second term,
however, is much less influenced by such spikes at each event occurrence. The Hawkes
process contributes much less to the log likelihood on the occurrence of each event.
As λ(t) is left continuous, provided that events are occurring closely enough in time,
λ(t) for the ETAS model will be higher, especially as the effect is added to by each
subsequent event. Using maximum likelihood estimation, the integral term in (13) is
the number of events in the data set, and hence, the likelihood of the ETAS model is
greater than that of the MMHPSD. However, the residual process (11) is analogous
to a CUMSUM, which will detect model discrepancies that continue over a period of
time, in contrast to the log likelihood which isolates discrepancies at individual event
locations ti . In particular, the sum of the contributions from ancestor events in the
ETAS model decays too slowly.

7 Discussion

The parameter estimation for an HMM type model incorporating a time-varying con-
ditional intensity function is nowhere near trivial. The proposed MMHPSD switches
among a finite number of states according to a Markov transition rate matrix with a
self-exciting occurrence rate of the events from a Hawkes process in which the inten-
sity of this process changes after each event occurrence but remains a constant between
each two consecutive events. The conditional intensity function of this process is (1),
not the original Hawkes process. This simplification is for the sake of parameter esti-
mation. Note that when calculating the transition probability without arrival, H (n)

i j (u),
an ordinary differential equation (14) has to be solved. If the conditional intensity
function takes the form of the original Hawkes process, then we have to calculate
an integral, the integrand of which is a matrix exponential with each element of the
matrix being a function of t (cf. Wang 2010), a much more formidable computational
challenge.

We see from Fig. 4c that the most significant deviations of the ETAS model from
the observed data are for the period after the Joshua Tree earthquake but before the
Landers earthquake, and the period not long after the Big Bear earthquake. These
two periods were shown to be relatively quiescent (Ogata et al. 2003; Marsan and
Nalbant 2005). The ETAS model fits well for the period immediately after the Land-
ers earthquake. This suggests that the ETAS model captures well the features of an
aftershock sequence, but may not be as good a fit for the entire seismic cycle, includ-
ing the quiescence period of a sequence. This problem may be inherited from the
assumption of the ETAS model. In the ETAS model, the frequency of the aftershocks
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triggered by an event with {ti ,Mi } is assumed to be Ki/(t − ti + c)p. For differ-
ent magnitudes Mi , Ki are different with Ki = K eα(Mi −M0). This suggests that for
an event with magnitude M0, the frequency of aftershocks triggered by the event is
K/(t − ti + c)p, and for a larger event with magnitude Mi > M0, the frequency
becomes K eα(Mi −M0)/(t − ti + c)p, which is eα(Mi −M0) times of that of an event with
magnitude M0. Note that the empirical formula eα(Mi −M0) was found for a sequence
of aftershocks triggered by a main shock with magnitude Mi , which describes the
total number of aftershocks in the sequence. But in the ETAS model, this is assigned
to all the events, including aftershocks and secondary aftershocks. This may result in
a higher intensity than is consistent with the actual process. In the MMHPSD, how-
ever, there is an indirect coupling of the state and magnitude through the aftershock
sequence characteristic of each class.

The advantage of the MMHPSD over the ETAS model is that the former incor-
porates seismic cycles rather than only an immigration-birth framework, and when
the features of the event occurrences evolve towards a different attractor, the model
automatically switches into a different regime (or state) in a seismic cycle. This is
especially useful for a long sequence with several state changes. While one might
use change-point analysis for the ETAS model to account for the seismicity changes,
estimating the change point is not an easy procedure in this case, as the number of
change points is indeterminate. Our current MMHPSD model is purely temporal, and
further development might occur along spatial lines, as has been done for the ETAS
model (cf. Ogata 1998).

In order to formulate main shocks and aftershocks in one model, a two-node
(main shock/aftershock) stress release/transfer model was presented by Borovkov and
Bebbington (2003) and Bebbington (2008), which provided an alternative to the ETAS
model for aftershock sequences with a physically attractive mechanism for main shock
interaction. Borovkov and Bebbington (2003) also pointed out that, to account for ‘sec-
ondary’ aftershocks, a third node might be added to the two-node model. However, the
weakness is that earthquakes have to be identified as main shocks, aftershocks, etc.,
with main shocks assumed to be from the largest fault or faults, aftershocks assumed to
be from the secondary faults, and so on (Borovkov and Bebbington 2003). We outlined
how an MMHPSD might be used to perform this task ‘automatically’ producing, as
a by-product, a model of the seismic cycle. Note that this is in some sense a gener-
alization of the two-node or three-node stress transfer model, and the elastic rebound
controlling the main shock events is represented by the first passage time between the
main shock state.

8 Conclusion

Assuming the existence of an earthquake cycle (for example, mainshock–aftershock–
quiescence–precursory seismicity), a new HMM type model is proposed in this paper.
Unlike the traditional HMMs and MMPPs, the distinctive feature of this new HMM
type model, MMHPSD, is the incorporation of a self-exciting point process into a con-
tinuous-time hidden Markov chain. The existing self-exciting models can only cap-
ture one or several fixed or pre-identified phases in one (seismic) cycle. For example,
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the ETAS model formulates aftershock sequences, while the two-node stress release/
transfer model can capture main shocks and aftershocks. The new model, however,
while characterizing the self-exciting feature of each phase, switches into a new regime
automatically whenever the feature of the event occurrences evolves towards a differ-
ent attractor. A method for estimating the parameters via EM algorithm was developed,
which involves a numerical optimization in the M-step for estimating the parameters
in the Hawkes intensity function. Residual analysis techniques for point processes
are used to demonstrate the goodness-of-fit for this model. Exploratory data analysis
using the MMHPSD on the Landers–Hector Mine earthquake sequences shows that
this model is useful in modelling changes of the temporal patterns of seismicity.

Appendix

Proof of Lemma 1

Proof Given the history, the transition probability without arrival is

H (n)
i j (u) = P{Y (tn−1 + u) = j, Nn(u) = 0 | Y (tn−1) = i,Htn−1}.

For 1 ≤ i, j ≤ r and for �u > 0 we have

H (n)
i j (u +�u) =

r∑

k=1

H (n)
k j (�u)H (n)

ik (u),

and the probability of the process remaining in state j without arrival is

H (n)
j j (�u) = exp{−q j�u} exp{−λ∗

j (tn)�u},

and

lim
�u→0

H (n)
j j (�u)− 1

�u
= −q j − λ∗

j (tn).

Given that

lim
�u→0

H (n)
i j (�u)

�u
= qi j ,

we thus have
⎧
⎨

⎩

H (n)′
i j (u) = −H (n)

i j (u)(q j + λ∗
j (tn))+ ∑r

k=1,k �= j H (n)
ik (u)qkj , u > 0

H (n)′
i j (0) = δi j ,
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where δi j = 1 for i = j , and 0 otherwise, or in matrix format,

{
H (n)′(u) = H (n)(u)(Q −�∗(tn))
H (n)′(0) = I,

(14)

where H (n)(u) = {H (n)
i j (u)}, which yields H (n)(u) = exp{(Q −�∗(tn))u} for u ≥ 0.

��

The gradients and Hessian of the function Q2

To simplify the notations in the derivatives, denote

ξik = ηi

∑

t j<tk−1

e−ηi (tk−1−t j ),

ζik = 1

λi + νiηi
∑

t j<tk−1
e−ηi (tk−1−t j )

,

ϕik =
∑

t j<tk−1

e−ηi (tk−1−t j ) − ηi

∑

t j<tk−1

e−ηi (tk−1−t j )(tk−1 − t j ),

ψik = −2νi

∑

t j<tk−1

e−ηi (tk−1−t j )(tk−1 − t j )+ νiηi

∑

t j<tk−1

e−ηi (tk−1−t j )(tk−1 − t j )
2.

The gradients of Q2 are then given by

∂Q2

∂λi
=

n∑

k=1

Bikζik −
n∑

k=1

Iik

ck
,

∂Q2

∂νi
=

n∑

k=1

Bikζikξik −
n∑

k=1

Iik

ck
ξik,

∂Q2

∂ηi
=

n∑

k=1

Bikζikνiϕik −
n∑

k=1

Iik

ck
νiϕik .

The Hessian of the function Q2 is given by

∂2Q2

∂λ2
i

= −
n∑

k=1

Bikζ
2
ik,

∂2Q2

∂λi∂νi
= −

n∑

k=1

Bikζ
2
ikξik,

∂2Q2

∂λi∂ηi
= −

n∑

k=1

Bikζ
2
ikνiϕik,
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∂2Q2

∂ν2
i

= −
n∑

k=1

Bikζ
2
ikξ

2
ik,

∂2Q2

∂νi∂ηi
= −

n∑

k=1

Bikζ
2
ikνiϕikξik +

n∑

k=1

Bikζikϕik −
n∑

k=1

Iik

ck
ϕik,

∂2Q2

∂η2
i

= −
n∑

k=1

Bikζ
2
ikν

2
i ϕ

2
ik +

n∑

k=1

Bikζikψik −
n∑

k=1

Iik

ck
ψik .

Acknowledgments This work was supported by the Marsden Fund, administered by the Royal Society
of New Zealand. We are grateful to Professor David Vere-Jones for insightful suggestions on using the self-
exciting Hawkes process as the conditional intensity function of the observed point process. We would like
to thank three anonymous reviewers for constructive suggestions which have greatly improved an earlier
manuscript and have made the paper more concise. We also express our thanks to Marco Brenna, Takaki
Iwata, Chin-Diew Lai and Roger Littlejohn for helpful comments.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic
Control, 19(6), 716–723.

Akaike, H. (1978). A Bayesian analysis of the minimum AIC procedure. Annals of the Institute of Statistical
Mathematics, 30(1), 9–14; also included in E. Parzen et al. (Eds.) (1998), Selected papers of Hirotugu
Akaike (pp. 275–280). Berlin: Springer.

Bebbington, M. S. (2007). Identifying volcanic regimes using hidden Markov models. Geophysical Journal
International, 171, 921–942.

Bebbington, M. S. (2008). Estimating rate- and state-fraction parameters using a two-node stochastic model
for aftershocks. Tectonophysics, 457, 71–85.

Bebbington, M. S., Harte, D. S. (2001). On the statistics of the linked stress release model. Journal of
Applied Probability, 38A, 176–187.

Bebbington, M. S., Harte, D. S., Jaumé, S. C. (2010). Repeated intermittent earthquake cycles in the San
Francisco Bay Region. Pure and Applied Geophysics, 167, 801–818.

Borovkov, K., Bebbington, M. S. (2003). A stochastic two-node stress transfer model reproducing Omori’s
law. Pure and Applied Geophysics, 160, 1429–1445.

Bowsher, C. G. (2007). Modelling security market events in continuous time: intensity based, multivariate
point process models. Journal of Econometrics, 141, 876–912.

Brémaud, P., Massoulié, L. (1996). Stability of nonlinear Hawkes processes. Annals of Probability, 24,
1563–1588.

Bufe, C. G., Varnes, D. J. (1993). Predictive modeling of the seismic cycle of the greater San Francisco Bay
region. Journal of Geophysical Research, 98, 9871–9883.

Daley, D. J., Vere-Jones, D. (2003). Introduction to the theory of point processes (2nd ed.). New York:
Springer.

Fedotov, S. A. (1968). The seismic cycle, quantitative seismic zoning, and long-term seismic forecasting.
In S. V. Medvedev (Eds.), Seismic zoning in the USSR (pp. 133–166). Moscow: Izdatel’stvo Nauka.

Fischer, W., Meier-Hellstern, K. S. (1993). The Markov-modulated Poisson process (MMPP) cookbook.
Performance Evaluation, 18(2), 149–171.

Fletcher, R., Powell, M. J. D. (1963). A rapidly convergent method for minimization. The Computer Journal,
6, 163–168.

Harte, D. S. (2005). Package “HiddenMarkov”: discrete time hidden Markov models. R statistical pro-
gram routines. Wellington: Statistics Research Associates. http://cran.at.r-project.org/web/packages/
HiddenMarkov.

Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes. Biometrika,
58, 83–90.

Hawkes, A. G., Adamopoulos, L. (1973). Cluster models for earthquakes-regional comparisons. Bulletin
of the International Statistical Institute, 45, 454–461.

123

http://cran.at.r-project.org/web/packages/HiddenMarkov
http://cran.at.r-project.org/web/packages/HiddenMarkov


544 T. Wang et al.

Heffes, H., Lucantoni, D. (1986). A Markov modulated characterization of packetized voice and data traffic
related statistical performance. IEEE Journal on Selected Areas in Communications, 4, 856–868.

Helmstetter, A., Sornette, D. (2002). Subcritical and supercritical regimes in epidemic models of earthquake
aftershocks. Journal of Geophysical Research, 107. doi:10.1029/2001JB001580

Hill, D. P., Reasenberg, P. A., Michael, A., Arabaz, W., Beroza, G. C., Brune, J. N., Brumbaugh, D., Davis, S.,
DePolo, D., Ellsworth, W. L., Gomberg, J., Harmsen, S., House, L., Jackson, S. M., Johnston, M., Jones,
L., Keller, R., Malone, S., Nava, S., Pechmann, J. C., Sanford, A., Simpson, R. W., Smith, R. S., Stark, M.,
Stickney, M., Walter, S., Zollweg, J. (1993). Seismicity in the western United States remotely triggered
by the M7.4 Landers, California, earthquake of June 28, 1992. Science, 260, 1617–1623.

Hill, D. P., Johnston, M. J. S., Langbein, J. O., Bilham, R. (1995). Response of Long Valley caldera to the
Mw = 7.3 Landers, California, earthquake. Journal of Geophysical Research, 100, 12985–13005.

Hughes, J. P., Guttorp, P. (1994). A class of stochastic models for relating synoptic atmospheric patterns to
regional hydrologic phenomena. Water Resources Research, 30, 1535–1546.

Jaumé, S. C., Bebbington, M. S. (2004). Accelerating seismic release from a self-correcting stochastic
model. Journal of Geophysical Research, 109, B12301. doi:10.1029/2003JB002867

MacDonald, I., Zucchini, W. (1997). Hidden-Markov and other models for discrete-valued time series. New
York: Chapman and Hall.

Marsan, D. (2003). Triggering of seismicity at short timescales following Californian earthquakes. Journal
of Geophysical Research, 108, 2266. doi:10.1029/2002JB001946

Marsan, D., Nalbant, S. S. (2005). Methods for measuring seismicity rate changes: a review and a study
of how the Mw 7.3 Landers earthquake affected the aftershock sequence of the Mw 6.1 Joshua Tree
earthquake. Pure and Applied Geophysics, 162, 1151–1185.

Mogi, K. (1968). Source locations of elastic shocks in the fracturing process in rocks (1). Bulletin of
Earthquake Research Institute, 46, 1103–1125.

Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes.
Journal of the American Statistical Association, 83(401), 9–27.

Ogata, Y. (1998). Space-time point-process models for earthquake occurrences. Annals of the Institute of
Statistical Mathematics, 50, 379–402.

Ogata, Y., Jones, L. M., Toda, S. (2003). When and where the aftershock activity was depressed: contrast-
ing decay patterns of the proximate large earthquakes in southern California. Journal of Geophysical
Research, 108(B6), 2318. doi:10.1029/2002JB002009 (ESE1-12).

Pievatolo, A., Rotondi, R. (2008). Statistical identification of seismic phases. Geophysical Journal Inter-
national, 173, 942–957.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77, 257–286

Roberts, W. J. J., Ephraim, Y., Dieguez, E. (2006). On Rydén’s EM algorithm for estimating MMPPs.
IEEE Signal Processing Letters, 13(6), 373–376.

Rydén, T. (1994). Parameter estimation for Markov modulated Poisson processes. Communications in
Statistics–Stochastic Models, 10(4), 795–829.

Rydén, T. (1996). An EM algorithm for estimation in Markov-modulated Poisson processes. Computational
Statistics & Data Analysis, 21, 431–447.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.
Shibata, R. (1980). Asymptotically efficient selection of the order of the model for estimating parameters

of a linear process. The Annals of Statistics, 8, 147–164.
Shibata, R. (1981). An optimal selection of regression variables. Biometrika, 68(1), 45–54.
Utsu, T., Ogata, Y., Matsu’ura, R. S. (1995). The centenary of the Omori formula for a decay law of

aftershock activity. Journal of Physics of the Earth, 43, 1–33.
Van Loan, C. F. (1978). Computing integrals involving the matrix exponential. IEEE Transactions on

Automatic Control, AC-23(3), 395–404.
Vere-Jones, D., Robinson, R., Yang, W. (2001). Remarks on the accelerated moment release model: problems

of model formulation, simulation and estimation. Geophysical Journal International, 144, 517–531.
Wang, T. (2010). Statistical models for earthquakes incorporating ancillary data. PhD thesis, New Zealand:

Massey University.
Zhuang, J. (2000). Statistical modeling of seismicity patterns before and after the 1990 Oct 5 Cape Palliser

earthquake, New Zealand. New Zealand Journal of Geology and Geophysics, 43, 447–460.
Zucchini, W., Guttorp, P. (1991). A hidden Markov model for space-time precipitation. Water Resources

Research, 27(8), 1917–1923.

123

http://dx.doi.org/10.1029/2001JB001580
http://dx.doi.org/10.1029/2003JB002867
http://dx.doi.org/10.1029/2002JB001946
http://dx.doi.org/10.1029/2002JB002009

	Markov-modulated Hawkes process with stepwise decay
	Abstract
	1 Introduction
	2 Markov-modulated Hawkes process with stepwise decay
	2.1 Comparison with the ETAS model 

	3 An EM algorithm for parameter estimation
	3.1 The complete likelihood
	3.2 The EM algorithm
	3.3 Implementation

	4 Goodness-of-fit
	4.1 Estimated intensity function of the observed process
	4.2 Residual analysis

	5 Simulation
	5.1 Simulation algorithm
	5.2 Consistency of the parameter estimation procedure

	6 Example: the Landers--Hector Mine series of earthquakes
	6.1 Earthquake data around Landers 
	6.2 Exploratory data analysis using the MMHPSDs
	6.3 Comparison with the ETAS model

	7 Discussion
	8 Conclusion
	Appendix
	Proof of Lemma 1
	The gradients and Hessian of the function mathcal Q2

	Acknowledgments
	References


