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Abstract The paper presents the method of moments estimation for generalized
linear measurement error models using the instrumental variable approach. The mea-
surement error has a parametric distribution that is not necessarily normal, while the
distributions of the unobserved covariates are nonparametric. We also propose simu-
lation-based estimators for the situation where the closed forms of the moments are
not available. The proposed estimators are strongly consistent and asymptotically nor-
mally distributed under some regularity conditions. Finite sample performances of the
estimators are investigated through simulation studies.

Keywords Errors in variables · Generalized linear models · Heterogeneity ·
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1 Introduction

Generalized linear models (GLM) are widely used in biostatistics, epidemiology, and
many other areas. However, the real data analyzes using GLM often involve covariates
that are not observed directly or are measured with error. See, e.g., Franks et al. (2004),
Stimmer (2003), Kiechl et al. (2004), and Carroll et al. (2006). In such cases, statis-
tical estimation and inference become very challenging. Several researchers, such as
Stefanski and Carroll (1985), Aitkin (1996), and Rabe-Hesketh et al. (2003), have stud-
ied the maximum likelihood estimation of the GLM with measurement error. However,
most of the proposed approaches rely on the normality assumption for the unobserved
covariates and measurement error, though some other parametric distributions have
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been considered (Schafer 2001, Aitkin and Rocci 2002, Kukush and Schneeweiss 2005,
Roy and Banerjee 2006). A computational difficulty with the likelihood approach is
that the likelihood function involves multiple integrals which do not admit closed
forms in general. Other approximate approaches such as corrected score functions,
regression calibration and simulation extrapolation have been used (Nakamura 1990;
Stefanski and Carroll 1991; Buzas and Stefanski 1996; Carroll et al. 2006). These
approaches, however, give only approximately consistent estimators and are applica-
ble when the measurement error variance is small.

General nonlinear models with classical errors-in-variables have been investigated
by several authors using either replicate data (Li 1998; Thoresen and Laake 2003;
Li and Hsiao 2004; Schennach 2004a) or instrumental variable methods (Wang and
Hsiao 1995, 2010; Schennach 2007). In addition, non- or semi-parametric approaches
have been considered (Schafer 2001; Taupin 2001; Schennach 2004b, 2008; Delaigle
et al. 2006; Delaigle and Meister 2007). However, most of these papers deal with
models with homoscedastic regression errors.

In this paper, we study the generalized linear models which allow very general
heteroscedastic regression errors. In particular, we propose the method of moments
estimation combined with instrumental variables (IV) method. This approach does not
require parametric assumptions for the distributions of the unobserved covariates and
of the measurement errors, which are difficult to check in practice. A similar method
was used by Wang (2003, 2004), who deals with a nonlinear homoscedastic model
with Berkson type measurement error. It is well-known that the Berkson and classical
measurement errors lead to fundamentally different statistical structures and therefore
must be treated differently (Carroll et al. 2006). In particular, a nonlinear model with
Berkson error is usually identifiable without extra information if the parametric form
of the model is known (Wang 2004). In contrast, in order for a classical measurement
error model to be identifiable, extra information such as replicate data or instrumental
data are needed.

In Sect. 2, we introduce the model and give some examples to motivate our estima-
tion method. Then we introduce the method of moments estimators and derive their
consistency and asymptotic normality in Sect. 3. In Sect. 4, we construct simulation-
based estimators for the situations where the closed forms of the moments are not
available. In Sect. 5, we present simulation studies of finite sample performances of
the proposed estimators. Finally, conclusions and discussion are contained in Sect. 6,
whereas proofs of the theorems are given in Sect. 7.

2 The model

In a generalized linear model (GLM, McCullagh and Nelder 1989), the first two con-
ditional moments of the response variable Y ∈ R given the covariates X ∈ R

p can be
written as

E(Y |X) = G−1(α + β ′ X),

V (Y |X) = ϕK (G−1(α + β ′ X)),
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where β ∈ R
p, α ∈ R and ϕ ∈ R are unknown parameters, G is the link function and

K is a known function. It follows that

E(Y 2|X) = ϕK (G−1(α + β ′ X))+ (G−1(α + β ′ X))2.

To simplify notation, in this paper we consider the model of the form

E(Y |X) = f (α + β ′ X), (1)

E(Y 2|X) = g(α + β ′ X, ϕ). (2)

Further, suppose that X is unobservable, instead we observe

Z = X + δ, (3)

where δ is a random measurement error. Following Schennach (2007) and Wang and
Hsiao (2010), we assume that an instrumental variable W ∈ R

q , q ≥ p, is available
and is related to X through

X = H W + U, (4)

where H is a p × q matrix of unknown parameters with rank p,U has distribution
fU (u; θ) with unknown parameters θ ∈ � ⊂ R

k . An instrumental variable is defined
as a random variable that is correlated with X but uncorrelated with measurement
error and other random error terms in the model (Fuller 1987; Carroll et al. 2006).
Furthermore, Fuller (1987, p. 51) showed that the conditions of an instrumental vari-
able imply a parametric expression between X and W that can be written as (4). Note
that (4) becomes a Berkson measurement error model, if H is an identity matrix and U
is independent of W . However, the essential difference is that in a Berkson model W
is an unbiased observation for X ; while in an instrumental model, W can be a biased
observation for X . Carroll et al. (2006) calls W “a weaker second observation for X”
(in addition to Z ). Therefore, the assumption for an instrumental variable is weaker
than a replicate for X . The random variables are assumed to satisfy the following
conditions.

Assumption 1 E(Y j |X,W ) = E(Y j |X), j = 1, 2; U is independent of W with
E(U ) = 0; and the measurement error δ is independent of X,W,Y with E(δ) = 0.

Note that the first part of the above assumption is weaker than the usual assumption
of nondifferential measurement error (i.e. the conditional distribution of Y given X,W
does not depend on W ). There is no assumption concerning the functional forms of the
distributions of X and δ. In this sense model (1)–(4) is semiparametric. In this model,
the observed variables are (Y, Z ,W ). Our interest is to estimate γ = (α, β, ϕ, θ). We
propose the method of moments estimators as follows. First, substitute (4) into (3) to
obtain a usual linear regression equation

E(Z |W ) = H W. (5)
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It follows that H can be consistently estimated by the least squares estimator

Ĥ =
(

n∑
i=1

Zi W ′
i

)(
n∑

i=1

Wi W ′
i

)−1

. (6)

Further, by model assumptions and the law of iterative expectation we have

E(Y |W ) = E[E(Y |X,W )|W ]
= E[E(Y |X)|W ]
= E

[
f (α + β ′ X)|W ]

= E
[

f (α + β ′(H W + U ))|W ]
=

∫
f (α + β ′ H W + β ′u) fU (u; θ)du, (7)

and, similarly,

E(Y 2|W ) =
∫

g(α + β ′ H W + β ′u;ϕ) fU (u; θ)du (8)

and

E(Y Z |W ) = E(Y X |W )

= E[X E(Y |X)|W ]
= E

[
X f (α + β ′ X)|W ]

=
∫
(H W + u) f (α + β ′ H W + β ′u) fU (u; θ)du. (9)

Throughout the paper, all integrals are taken over the space R
p. Given that H is con-

sistently estimated by (6), other parameters α, β, θ and ϕ can be consistently estimated
using (7)–(9) and nonlinear least squares method, provided that they are identifiable by
these equations. Wang and Hsiao (1995) showed that the homoscedastic model with
integrable E(Y |X) = f (·) and constant V (Y |X) can be identifiable if the number of
available instrumental variables is equal to or higher than the number of unobserved
covariates. Schennach (2007) showed that a model with one unobserved covariate is
generally identifiable if E(Y |X) = f (·) is bounded by a polynomial (but not necessar-
ily integrable). The identifiability of general nonlinear heteroscedastic models appears
to be a difficult problem which deserves further study. In practice, checking the model
identifiability can be a tedious task and it is usually done in an ad hoc way. On the
other hand, however, a model in practice is usually identified as long as it is carefully
defined and well studied. In the following, we use some examples to demonstrate that
the mentioned parameters may indeed be identified and consistently estimated using
(7)–(9). To simplify notation, we consider the case where all variables are scalars and
U ∼ N (0, θ). For the same reason we let H = 1 because it is identified by (5).
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Example 1 Consider a Gamma loglinear model where Y has a continuous distribution
with first two conditional moments E(Y |X) = exp(α + βX) and V (Y | X) =
ϕ exp[2(α + βX)]. Here ϕ is the dispersion parameter. This type of model has wide
applications in finance, radio ligand assays and kinetic reaction experiments. Under
the model assumptions we have

E(Y |W ) = E
[
exp(α + βX)|W ]

= E
[
exp(α + β(W + U ))|W ]

= exp(α + βW )E
[
exp(βU )|W ]

= exp

(
α + βW + β2θ

2

)
, (10)

E(Y 2|W ) = E
[
(ϕ + 1) exp(2(α + βX))|W ]

= (ϕ + 1) exp(2(α + βW ))E
[
exp(2βU )|W ]

= (ϕ + 1) exp
[
2(α + βW + β2θ)

]
, (11)

and

E(Y Z |W ) = exp(α)E[(W + U ) exp(β(W + U ))|W ]
= exp(α + βW )[W E(exp(βU )|W )+ E(U exp(βU )|W )]
= (W + βθ) exp

(
α + βW + β2θ

2

)
. (12)

Now we show that all unknown parameters are identifiable because they can be
consistently estimated by (10)–(12) which are usual nonlinear regression equations
in observed variables. First, β and exp(α + β2θ/2) are identifiable by (10), and
(βθ) exp(α + β2θ/2) is identifiable by (12). It follows that θ and α are identifiable.
Further, given that all other parameters are identified, ϕ can be identified by (11). Thus,
all parameters are identified.

Example 2 Consider a Poisson loglinear model where Y is a count variable with
moments E(Y |X)= V (Y |X) = exp(α + βX). This model has applications in biol-
ogy, demographics and survival analysis. Then we have

E(Y |W ) = E
[
exp(α + βX)|W ]

= exp(α)E
[
exp(β(W + U ))|W ]

= exp

(
α + βW + β2θ

2

)
, (13)

E(Y 2|W ) = E
[
exp(α + βX)|W ] + E

[
exp(2(α + βX))|W ]

= exp
[
2(α + βW + β2θ)

]
+ exp

(
α + βW + β2θ

2

)
, (14)
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and

E(Y Z |W ) = exp(α)E[(W + U ) exp(W + U )|W ]
= exp(α + βW )[W E(exp(βU )|W )+ E(U exp(βU )|W )]
= (W + βθ) exp

(
α + βW + β2θ

2

)
. (15)

Since Eqs. (13) and (15) are identical to (10) and (12) respectively, similar to the
Gamma model in the previous example we can show that parameters (α, β, θ) are
identified using (13)–(15).

Example 3 Consider a logistic model E(Y |X) = [1+exp(−α−βX)]−1. In this mode,
Y is binary and its second moment is equal to the mean. Logistic regression has being
used extensively in medical and social sciences as well as marketing applications.
Using the assumptions for the model we have

E(Y |W ) = E(Y 2|W ) = 1√
2πθ

∫
exp(−u2/2θ)

1 + exp(−α − βW − βu)
du,

and

E(Y Z |W ) = 1√
2πθ

∫
(W + u) exp(−u2/2θ)

1 + exp(−α − βW − βu)
du.

Although these moments do not have closed forms, however, the unknown parameters
(α, β, θ) can be identified by the fact that the measurement error-free Logistic model
is identifiable, so they can be consistently estimated by the simulation-based approach
in Sect. 3.

3 Method of moments estimator

Let T = (1,Y, Z ′)′ and

x̃′ =
(

1 0 x′
0 1 0

)
,

then through variable substitution, (7)–(9) can be written together as

E(Y T |W ) =
∫

x̃h(α + β ′x;ϕ) fU (x − H W ; θ)dx, (16)

where h(α + β ′x;ϕ) = ( f (α + β ′x), g(α + β ′x;ϕ))′.
We define γ = (α, β ′, θ ′, ϕ)′ and the parameter space to be 
 = A × B ×�×�.

The true parameter value of the model is denoted by γ0 ∈ 
. For every v ∈ R
p and
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γ ∈ 
, define

m(v; γ ) =
∫

x̃h(α + β ′x;ϕ) fU (x − v; θ)dx. (17)

Then it is clear that m(H W ; γ0) = E(Y T |W ).
Suppose (Y j , Z j ,W j ), j = 1, 2, . . . , n, is an i.i.d. random sample, and ρ̂ j (γ ) =

Y j Tj − m(Ĥ W j ; γ ), then the method of moments estimator (MME) for γ is defined
as

γ̂n = argmin
γ∈


Qn(γ ) = argmin
γ∈


n∑
j=1

ρ̂′
j (γ )D j ρ̂ j (γ ), (18)

where D j = D(W j ) is a nonnegative definite matrix which may depend on W j . Note
that for the binary response Y , we have E(Y |W )= E(Y 2|W ), f (x)= g(x, ϕ) and
ϕ= 1. In this case the first two elements of ρ j (γ ) are identical. This redundancy can
be eliminated by setting the first row and first collum of D(W j ) to be zeros. However, to
simplify presentation in the following we present results in terms of general response Y .
To prove the consistency of γ̂n , we assume the following regularity conditions, where
μ denotes Lebesgue measure.

Assumption 2 The parameter space 
 = A × B × � × � is compact in R
p+k+2.

Furthermore, E ‖D(W )‖ (‖Y Z‖2 + Y 4) < ∞, and EW W ′ is nonsingular.

Assumption 3 f (α + β ′x) and g(α + β ′x;ϕ) are measurable functions of x for
each α ∈ A, β ∈ B and ϕ ∈ �. Furthermore, f (α + β ′x) fU (x − H W ; θ) and
g(α + β ′x;ϕ) fU (x − H W ; θ) are uniformly bounded by a function η(x, w), which
satisfies E ‖D(W )‖ (‖W‖ ∫

η(x,W )(‖x‖ + 1)dx
)2
< ∞.

Assumption 4 E[ρ(γ ) − ρ(γ0)]′D(W )[ρ(γ ) − ρ(γ0)] = 0 if and only if γ = γ0,
where ρ(γ ) = Y T − m(H W ; γ ).

The above assumptions are common in nonlinear inference literature. In particular,
Assumption 4 is a high-level assumption for parameter identifiability. For example,
if the weight D(W ) is an identity or positive definite matrix then this assumption
becomes that moment Eqs. (7)–(9) holds only for γ = γ0. In practice this can be
checked on case by case bases as demonstrated in examples 2.1–2.3.

Theorem 1 Under Assumptions 1– 4, γ̂n
a.s.−→ γ0, as n → ∞.

To derive the asymptotic normality for γ̂n , we assume additional regularity condi-
tions as follows.

Assumption 5 There exists an open subset γ0 ∈ 
0 ⊂ 
, in which all partial deriva-
tives of orders 1 and 2 of f (α+β ′x) fU (x−H W ; θ) and g(α+β ′x;ϕ) fU (x−H W ; θ)
w.r.t. γ are uniformly bounded by a function K (x, w), which satisfies E ‖D(W )‖(‖W‖ ∫

K (x,W )(‖x‖ + 1)dx
)2
< ∞.
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Assumption 6 The matrix

κ = E

[
∂ρ′(γ0)

∂γ
D(W )

∂ρ(γ0)

∂γ ′

]

is nonsingular.

These assumptions are equivalent to the ones that are needed for consistency and
asymptotic normality of an M-estimator (see e.g., van der Vaart 2000, Sects. 5.2 and
5.3).

Theorem 2 Under Assumptions 1–6,
√

n(γ̂n − γ0)
L→ N (0, κ−1CτC ′κ−1) as

n → ∞, where

C =
[

Ip+k+2, E

(
∂ρ′(γ0)

∂γ
D(W )

∂ρ(γ0)

∂ψ ′

) (
EW W ′ ⊗ Ip

)−1
]
,

and

τ =
(
τ11 τ12
τ ′

12 τ22

)
,

τ11 = E

[
∂ρ′(γ0)

∂γ
D(W )ρ(γ0)ρ

′(γ0)D(W )
∂ρ(γ0)

∂γ ′

]
,

τ12 = E

[
∂ρ′(γ0)

∂γ
D(W )ρ(γ0)

(
(Z − H W )′ ⊗ W ′)]

and τ22 = E
[
W W ′ ⊗ (Z − H W )(Z − H W )′

]
.

The above asymptotic covariance matrix depends on the weight D(W ). It is of
interest to choose an appropriate D(W ) to obtain the most efficient estimator. It can
be shown (Abarin 2008, Abarin and Wang 2006) that the most efficient choice of
weight is D = F−1, where F = E(ρ(γ0)ρ

′(γ0) | W ) which leads to the asymptotic
covariance matrix

E

[
∂ρ′(γ0)

∂γ
F−1 ∂ρ(γ0)

∂γ ′

]−1

. (19)

In practice, F is a function of unknown parameters and therefore needs to be estimated.
This can be done using the following two-stage procedure. First, minimize Qn(γ )with
identity matrix D = Ip+2 to obtain the first-stage estimator γ̂n . Secondly, estimate F
by F̂ = 1

n

∑n
j=1 ρ j (γ̂n)ρ

′
j (γ̂n) or alternatively by a nonparametric estimator, and then

minimize Qn(γ ) again with D = F̂−1 to obtain the second-stage estimator ˆ̂γn . Since
F̂ is consistent for F , the asymptotic covariance of ˆ̂γn is given by (19). Consequently
ˆ̂γn is asymptotically more efficient than the first-stage estimator γ̂n .
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4 Simulation-based estimator

When the explicit form of m(v; γ ) exists, the numerical computation of MME γ̂n can
be done using the usual optimization methods. However, sometimes the integrals in
(17) do not have explicit forms. In this section, we use a simulation-based approach
to overcome this problem. The simulation-based approach is used to approximate
the multiple integrals in which they are simulated by Monte Carlo methods such as
importance sampling.

We start with choosing a known density l(x) and generate independent random
points {x js, s = 1, 2, . . . , 2S, j = 1, 2, . . . , n} from l(x). Then we can approximate
m(H W j ; γ ) by Monte Carlo simulators

mS(H W j ; γ ) = 1

S

S∑
s=1

x̃ jsh(α + β ′x js;ϕ) fU (x js − H W j ; θ)
l(x js)

(20)

and

m2S(H W j ; γ ) = 1

S

2S∑
s=S+1

x̃ jsh(α + β ′x js;ϕ) fU (x js − H W j ; θ)
l(x js)

, (21)

where

x̃′
js =

(
1 0 x′

js
0 1 0

)
.

Finally, the simulation-based estimator (SBE) for γ is defined by

γ̂n,S = argmin
γ∈


Qn,S(γ ) = argmin
γ∈


n∑
j=1

ρ̂′
j,S(γ )D j ρ̂ j,2S(γ ), (22)

where ρ̂ j,S(γ )= Y j Tj − mS(Ĥ W j ; γ ) and ρ̂ j,2S(γ )= Y j Tj − m2S(Ĥ W j ; γ ).
We notice that by construction, E[mS(H W j ; γ )|W j ] = E[m2S(H W j ; γ )|W j ] =

m(H W j ; γ ), and therefore mS(H W j ; γ ) and m2S(H W j ; γ ) are unbiased simu-
lators for m(H W j ; γ ). Moreover, Qn,S(γ ) is an unbiased simulator for Qn(γ ),
because Qn,S(γ ) and Qn(γ ) have the same conditional expectation given the sample
(Y j , Z j ,W j ).

Alternatives to 20 and 21 which generally yield more stable estimates are

m′
S(H W j ; γ ) =

∑S
s=1 x̃ jsh(α + β ′x js;ϕ) fU (x js − H W j ; θ)/ l(x js)∑S

s=1 fU (x js − H W j ; θ)/ l(x js)
(23)
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and

m′
2S(H W j ; γ ) =

∑2S
s=S+1 x̃ jsh(α + β ′x js;ϕ) fU (x js − H W j ; θ)/ l(x js)∑2S

s=S+1 fU (x js − H W j ; θ)/ l(x js)
, (24)

where we have replaced S with the sum of the weights. Since (1/S)
∑S

s=1 fU (x js −
H W j ; θ)/ l(x js) ≈ 1, when S is large enough, m′

S(H W j ; γ ) ≈ mS(H W j ; γ ) and
m′

2S(H W j ; γ ) ≈ m2S(H W j ; γ ). Although these simulators are biased, the biases are
small, and the improvement in variance makes them preferred alternatives to 20 and 21.
(See Lemma 4.3 of Robert and Cassella 2004.) We will compare the estimators in
Sect. 4.

Theorem 3 Suppose that the support of l(x) covers the support of h(α + β ′x;ϕ)
fU (x − v; θ) for all v ∈ R

p and γ ∈ 
. Then the simulation estimator γ̂n,S has the
following properties:

1. Under Assumptions 1–4, γ̂n,S
a.s.−→ γ0, as n → ∞.

2. Under Assumptions 1–6,
√

n(γ̂n,S − γ0)
L→ N (0, κ−1CτSC ′κ−1), where C is

defined as in Theorem 2, τS,12 = τ12, τS,22 = τ22 and

2τS,11 = E

[
∂ρ′

1,S(γ0)

∂γ
D1ρ1,2S(γ0)ρ

′
1,2S(γ0)D1

∂ρ1,S(γ0)

∂γ ′

]

+E

[
∂ρ′

1,S(γ0)

∂γ
D1ρ1,2S(γ0)ρ

′
1,S(γ0)D1

∂ρ1,2S(γ0)

∂γ ′

]
.

Although asymptotically, the importance density l(x) does not have an effect on the
efficiency of γ̂n,S , however, the choice of l(x)will affect the finite sample variances of
the simulators mS(H W j ; γ ) and m2S(H W j ; γ ). In addition, similar to Wang (2004)
we can show that the efficiency loss caused by simulation is of magnitude O(1/S).

5 Simulation studies

In this section we present simulation studies on three generalized linear models of
Examples 2.1–2.3, to demonstrate how the proposed estimators can be calculated and
their performance in finite sample sizes.

First, consider the Gamma loglinear model in Example 2.1 where U ∼ N (0, θ).
We calculated conditional moments (7)–(9) for this model in Sect. 2. Therefore, the
method of moments estimators (MME) can be computed by minimizing Qn(γ ) in (18).
Specifically, the estimators are computed in two steps, using the identity and the esti-
mated optimal weighting matrix, respectively.

To compute the simulation-based estimators (SBE), we choose the density of
N (0, 2) to be l(x js), and generate independent points x js, s = 1, 2, . . . , 2S, j =
1, 2, . . . , n using S = 2,000. Furthermore, the simulated moments mS(H W j ; γ ) and
m2S(H W j ; γ ), and m′

S(H W j ; γ ) and m′
2S(H W j ; γ ) are calculated according to
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Table 1 Gamma loglinear
model with measurement error
in covariate

α = −0.2 β = 0.3 θ = 0.8 ϕ = 0.1

MME −0.206 0.299 0.810 0.101
STD 0.001 0.001 0.006 0.001
MSE 0.002 0.002 0.033 0.001
SBE1 −0.206 0.299 0.814 0.101
STD 0.001 0.001 0.006 0.001
MSE 0.002 0.002 0.034 0.001
SBE2 −0.206 0.298 0.815 0.101
STD 0.001 0.001 0.006 0.001
MSE 0.002 0.002 0.034 0.001
z1 0.450 0.515 0.312 0.058
z2 0.223 0.134 1.355 0.333

(20) and (21), and (23) and (24) respectively. The two-step SBE1 γ̂n,s is calculated
by minimizing Qn,S(γ ), using the identity and the estimated optimal weighting
matrix, and mS(H W j ; γ ) and m2S(H W j ; γ ). Similarly the two-step SBE2 γ̂n,s is
calculated by minimizing Qn,S(γ ), using the identity and the estimated optimal
weighting matrix, and m′

S(H W j ; γ ) and m′
2S(H W j ; γ ). The data have been gen-

erated using W and δ from a standard normal distribution, and parameter values
α = −0.2, β = 0.3, θ = 0.8, ϕ = 0.1. In all the simulation studies, we assumed
that H is known and equal to one. We also generated the response variable from a
Gamma distribution with parameters 1/ϕ andϕ exp(α+βX), respectively. N = 1,000
Monte Carlo replications have been carried out and, in each replication, n = 400 sam-
ple points (Y j , Z j ,W j ) have been generated. The computation has been done using
MATLAB on a workstation running LINUX operating system.

Table 1 shows the summaries of the results for the Gamma loglinear model. As we
can see in the table, estimators show their asymptotic properties. However, both SBE1
and SBE2 converge slower for θ . The results for α is not satisfying and it shows that
estimators have finite sample bias. We used the mean squared errors (MSE) to compare
the efficiency of the estimators. There is not any significant difference between the
estimators efficiencies.

To test the difference between the MME and SBE1, we calculated z statistic for
the test. As we can see in the table, z1 shows that there is no significant difference
between the MME and SBE1 for each parameter. Similarly, we calculated z2 to test
the difference between SBE1 and SBE2. The results show that there is no significant
difference between them.

Next, we consider the Poisson loglinear model in Example 2.2, where U ∼ N (0, θ).
We calculated conditional moments (7)–(9) for this model in Sect. 2. Parameters
are α = −0.2, β = 0.3, and θ = 1, and we choose the density of N (0, 2) to be
l(x js). We generated the response variable from a Poisson distribution with parameter
exp(α + βX).

Table 2 shows the summaries of the results for the Poisson loglinear model. As we
can see in the table, all the estimators show their asymptotic properties. The mean
squared errors (MSE) of the estimates show that the MME and both SB estimators
perform equally, for all the parameters. Furthermore, the test statistic values imply
that there is no significant difference between the estimators.

123



486 T. Abarin, L. Wang

Table 2 Poisson Loglinear
model with measurement error
in covariate

α = −0.2 β = 0.3 θ = 1

MME −0.201 0.295 0.998
STD 0.002 0.002 0.006
MSE 0.003 0.005 0.030
SBE1 −0.201 0.296 0.999
STD 0.002 0.002 0.006
MSE 0.003 0.005 0.031
SBE2 −0.201 0.295 0.999
STD 0.002 0.002 0.006
MSE 0.003 0.005 0.030
z1 0.281 0.641 0.445
z2 0.224 0.570 0.411

Table 3 Logistic model with
measurement error in covariate

α = 0.5 β = 0.3 θ = 0.8

SBE1 0.506 0.306 0.811
STD 0.004 0.004 0.008
MSE 0.018 0.014 0.037
SBE2 0.507 0.307 0.809
STD 0.004 0.004 0.007
MSE 0.017 0.014 0.035
z 0.515 0.294 0.446

Finally we consider the logistic model in Example 2.3, where U ∼ N (0, θ). For this
model, conditional moments (7)–(9) do not have closed forms. Therefore, we were only
able to compute SBE1 and SBE2. Parameter values for this model areα= 0.5, β = 0.3,
and θ = 0.8, and we choose the density of N (0, 2) to be l(x js). We generated the
response variable from a binary distribution with parameter (1+exp(−(α+βX)))−1.

Table 3 shows the summaries of the results for the logistic model. The mean squared
errors (MSE) of the estimates show that SBE1 and SBE2 perform equally well, except
for slightly more efficiency in SBE2, for θ . Furthermore, the test statistic values imply
that there is no significant difference between the estimators.

6 Conclusions and discussion

Estimation of generalized linear errors-in-variables models with multivariate predictor
variables and possibly nonnormal random errors have being considered for decades.
Since these models are quite challenging, most researchers rely on restrictive condi-
tions to achieve consistent estimation. Moreover, most methods in the literature are
designed for the case where either validation or replicate data are available, which can
be restrictive in many applications.

In this work, we generalized the method of Wang (2003, 2004) to the case of classi-
cal measurement error and the heterogeneous response variable given the covariates.
This case which is applicable to different fields of health science, allows researchers to
apply generalized linear models to data sets with this property. We used the instrumen-
tal variable approach to study generalized linear models, where the predictor variable
is multivariate and the distributions of the measurement error is parametric, but not
necessarily normal. Moreover, our method does not need any parametric assumption
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on the distribution of the unknown covariates. This makes the method less restrictive
than some other methods that need either parametric distribution of the covariates,
or to estimate it using some extra information. We developed consistent and asymp-
totic normal estimators for the model, using the method of moments. Moreover, we
addressed the practical computational issue of finding explicit form of a function that
involves multiple integrals, using methods of simulated moments. Simulation studies
show that the estimators perform satisfactorily in some finite sample situations.

7 Proofs

As we mentioned before, it is straightforward to estimate H using (5) and least squares
method. In practice, one can estimate H as well as other parameters, using the main
sample. In this case, the asymptotic variances can be obtained by the so-called delta-
method (as we presented in Theorems 2 and 3). However, if H is estimated using
an external sample or a subset of the main sample, and other parameters are esti-
mated using the rest of the main sample, then the asymptotic covariance matrices have
simpler forms and the theoretical results may be regarded as conditional on the pre-
estimated H . In fact, the asymptotic covariance matrix of γ̂n will reduce to κ−1τ11κ

−1,
and for the simulation-based estimator to κ−1τS,11κ

−1. To avoid complicated nota-
tions and lengthy proofs, here we present the proofs only for the case H = 1. The
proofs for the more general case where H is unknown can be found in Abarin (2008).

7.1 Proof of Theorem 1

To prove the consistency, we use the Uniform Law of Large Numbers (ULLN, Jennrich
1969, Theorem 2). The idea is to show that E supγ |Qn(γ )| ≤ ∞. By Assumptions
2 and 3, and the Dominated Convergence Theorem,

E sup
γ

∣∣ρ′
1(γ )D1ρ1(γ )

∣∣ ≤ E ‖D1‖ sup
γ

‖ρ1(γ )‖2

≤ 3E ‖D1‖ (‖Y1 Z1‖2 + Y 4
1 )

+3E ‖D1‖
(∫

sup
γ

∣∣ f (α + β ′x)
∣∣ fU (x − W1; θ)(‖x‖ + 1)dx

)2

+3E ‖D1‖
(∫

sup
γ

∣∣g(α + β ′x;φ)∣∣ fU (x − W1; θ)dx

)2

< ∞.

It follows from the ULLN that

sup
γ

∣∣∣∣∣∣
1

n

n∑
j=1

ρ′
j (γ )D jρ j (γ )− Q(γ )

∣∣∣∣∣∣
a.s.−→ 0, (25)
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where Q(γ ) = Eρ′
1(γ )D1ρ1(γ ). Therefore,

sup
γ

∣∣∣∣1

n
Qn(γ )− Q(γ )

∣∣∣∣ a.s.−→ 0. (26)

Now for the next step, we use Lemma 3 of Amemiya (1973) to show that γ̂n
a.s.−→ γ0.

Since E(ρ1(γ0)|W1)= 0 and ρ1(γ )− ρ1(γ0) depends on W1 only, we have

E[ρ′
1(γ0)D1(ρ1(γ )− ρ1(γ0))] = E[E(ρ′

1(γ0)|W1)D1(ρ1(γ )− ρ1(γ0))] = 0,

which implies Q(γ ) = Q(γ0) + E[(ρ1(γ ) − ρ1(γ0))
′D1(ρ1(γ ) − ρ1(γ0))]. By

Assumption 4, Q(γ ) ≥ Q(γ0) and equality holds if and only if γ = γ0. Thus, Q(γ )

attains a unique minimum at γ0 ∈ γ , and it follows from the Lemma that γ̂n
a.s.−→ γ0.

��

7.2 Proof of Theorem 2

In the first step of the proof, using Lemma 4 of Amemiya (1973), we need to show that

E supγ

∥∥∥ ∂2 Qn(γ )
∂γ ∂γ ′

∥∥∥ < ∞. By Assumptions 3–5 and the Dominated Convergence The-

orem, the first derivative ∂Qn(γ )/∂γ has the first-order Taylor expansion in the open
neighborhood 
0 ⊂ 
 of γ0. Since ∂Qn(γ̂n)/∂γ = 0 and γ̂n

a.s.−→ γ0, for sufficiently
large n we have

∂Qn(γ0)

∂γ
+ ∂2 Qn(γ̃ )

∂γ ∂γ ′ (γ̂n − γ0) = 0, (27)

where ‖γ̃ − γ0‖ ≤ ∥∥γ̂n − γ0
∥∥. The first and the second derivative of Qn(γ ) in (27) is

given by

∂Qn(γ )

∂γ
= 2

n∑
j=1

∂ρ′
j (γ )

∂γ
D jρ j (γ ), (28)

and

∂2 Qn(γ )

∂γ ∂γ ′ = 2
n∑

j=1

[
∂ρ′

j (γ )

∂γ
D j
∂ρ j (γ )

∂γ ′ + (ρ′
j (γ )D j ⊗ Ip+k+2)

∂vec(∂ρ′
j (γ )/∂γ )

∂γ ′

]
,

respectively. Assumptions 2–5 imply that

E sup
γ

∥∥∥∥∂ρ′
1(γ )

∂γ
D1
∂ρ1(γ )

∂γ ′

∥∥∥∥ < ∞.
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and

(
E sup

γ

∥∥∥∥(ρ′
1(γ )D1 ⊗ Ip+k+2)

∂vec(∂ρ′
1(γ )/∂γ )

∂γ ′

∥∥∥∥
)2

< ∞.

Since ∂vec(∂ρ′
1(γ0)/∂γ )/∂γ

′ depends on W1 only and therefore

E

[(
ρ′

1(γ0)D1 ⊗ Ip+k+2
) ∂vec(∂ρ′

1(γ0)/∂γ )

∂γ ′

]

= E

[(
E(ρ′

1(γ0)|W1)D1 ⊗ Ip+k+2
) ∂vec(∂ρ′

1(γ0)/∂γ )

∂γ ′

]
= 0,

it follows from the ULLN and Amemiya (1973, Lemma 4) that

1

2n

∂2 Qn(γ )

∂γ ∂γ ′
a.s.−→ E

[
∂ρ′

1(γ0)

∂γ
D1
∂ρ1(γ0)

∂γ ′ + (
ρ′

1(γ0)D1 ⊗ Ip+k+2
) ∂vec(∂ρ′

1(γ0)/∂γ )

∂γ ′

]
= κ. (29)

Now, we know that
∂ρ′

j (γ )

∂γ
D jρ j (γ ), j = 1, 2, . . . , n are i.i.d.with the mean vector

zero and the variance covariance matrix τ , where τ is given in Theorem 2. Therefore,
by Slutsky’s Theorem, we have

√
n(γ̂n − γ0)

L→ N (0, κ−1τκ−1). (30)

��

7.3 Proof of Theorem 3

Since ρ1,S(γ ) and ρ1,2S(γ ) are conditionally independent given (W1,Y1, Z1), it
follows from Assumptions 2 and 3 that

E sup
γ

∣∣ρ′
1,S(γ )D1ρ1,2S(γ )

∣∣ < ∞.

Therefore by the ULLN,

sup
γ

∣∣∣∣∣∣
1

n

n∑
j=1

ρ′
j,S(γ )D jρ j,2S(γ )− Eρ′

1,S(γ )D1ρ1,2S(γ )

∣∣∣∣∣∣
a.s.−→ 0, (31)
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where

Eρ′
1,S(γ )D1ρ1,2S(γ ) = E

[
E

(
ρ′

1,S(γ )|W1,Y1, Z1
)

D1 E
(
ρ′

1,2S(γ )|W1,Y1, Z1
)]

= Eρ′
1(γ )D1ρ1(γ )

= Q(γ ).

Therefore,

sup
γ

∣∣∣∣1

n
Qn,S(γ )− Q(γ )

∣∣∣∣ a.s.−→ 0. (32)

We showed in the proof of Theorem 1 that Q(γ ) attains a unique minimum at γ0 ∈ 
.
Therefore γ̂n,S

a.s.−→ γ0 follows from Amemiya (1973, Lemma 3). ��
To prove the second part of Theorem 3, first, ∂Qn,S(γ )/∂γ has the first-order Taylor

expansion in an open neighborhood 
0 ⊂ 
 of γ0:

∂Qn,S(γ0)

∂γ
+ ∂2 Qn,S(γ̃ )

∂γ ∂γ ′ (γ̂n,S − γ0) = 0, (33)

where ‖γ̃ − γ0‖ ≤ ∥∥γ̂n,S − γ0
∥∥. The first and the second derivative of Qn,S(γ ) is

given by

∂Qn,S(γ )

∂γ
=

n∑
j=1

[
∂ρ′

j,S(γ )

∂γ
D j ρ̂ j,2S(γ )+ ∂ρ′

j,2S(γ )

∂γ
D jρ j,S(γ )

]
,

and

∂2 Qn,S(γ )

∂γ ∂γ ′ =
n∑

j=1

[
∂ρ′

j,S(γ )

∂γ
D j
∂ρ j,2S(γ )

∂γ ′ +(ρ′
j,2S(γ )D j ⊗ Ip+k+2)

∂vec(∂ρ′
j,S(γ )/∂γ )

∂γ ′

]

+
n∑

j=1

[
∂ρ′

j,2S(γ )

∂γ
D j
∂ρ j,S(γ )

∂γ ′ +(ρ′
j,S(γ )D j ⊗ Ip+k+2)

∂vec(∂ρ′
j,2S(γ )/∂γ )

∂γ ′

]
,

respectively. Similar to (29), we can show that 1
n
∂2 Qn,S(γ )

∂γ ∂γ ′ converges a.s. to

E

[
∂ρ′

1,S(γ0)

∂γ
D1
∂ρ1,2S(γ0)

∂γ ′ + (ρ′
1,2S(γ0)D1 ⊗ Ip+k+2)

∂vec(∂ρ′
1,S(γ0)/∂γ )

∂γ ′

]

+E

[
∂ρ′

1,2S(γ0)

∂γ
D1
∂ρ1,S(γ0)

∂γ ′ + (ρ′
1,S(γ0)D1 ⊗ Ip+k+2)

∂vec(∂ρ′
1,2S(γ0)/∂γ )

∂γ ′

]
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uniformly for all γ ∈ 
. Since

E

[
∂ρ′

1,S(γ0)

∂γ
D1
∂ρ1,2S(γ0)

∂γ ′

]
= E

[
∂ρ′

1(γ0)

∂γ
D1
∂ρ1(γ0)

∂γ ′

]
= κ

and

E

[
(ρ′

1,2S(γ0)D1 ⊗ Ip+k+2)
∂vec(∂ρ′

1,S(γ0)/∂γ )

∂γ ′

]
= 0,

we have

1

n

∂2 Qn,S(γ )

∂γ ∂γ ′
a.s.−→ 2κ. (34)

Further, by the Central Limit Theorem we have

1

2
√

n

∂Qn,S(γ )

∂γ

L→ N (0, τS), (35)

where

τS = 1

4
E

[(
∂ρ′

1,S(γ0)

∂γ
D1ρ1,2S(γ0)+ ∂ρ′

1,2S(γ0)

∂γ
D1ρ1,S(γ0)

)

×
(
ρ′

1,2S(γ0)D1
∂ρ1,S(γ0)

∂γ ′ + ρ′
1,S(γ0)D1

∂ρ1,2S(γ0)

∂γ ′

)]

= 1

2
E

[
∂ρ′

1,S(γ0)

∂γ
D1ρ1,2S(γ0)ρ

′
1,2S(γ0)D1

∂ρ1,S(ψ0)

∂γ ′

]

+1

2
E

[
∂ρ′

1,S(γ0)

∂γ
D1ρ1,2S(γ0)ρ

′
1,S(γ0)D1

∂ρ1,2S(γ0)

∂γ ′

]
,

Finally, the second part of Theorem 3 follows from (34) and (35), and Slutsky’s
Theorem. ��
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