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Abstract Hazard function estimation is an important part of survival analysis. Inter-
est often centers on estimating the hazard function associated with a particular cause
of death. We propose three nonparametric kernel estimators for the hazard function,
all of which are appropriate when death times are subject to random censorship and
censoring indicators can be missing at random. Specifically, we present a regres-
sion surrogate estimator, an imputation estimator, and an inverse probability weighted
estimator. All three estimators are uniformly strongly consistent and asymptotically
normal. We derive asymptotic representations of the mean squared error and the mean
integrated squared error for these estimators and we discuss a data-driven bandwidth
selection method. A simulation study, conducted to assess finite sample behavior,
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demonstrates that the proposed hazard estimators perform relatively well. We illus-
trate our methods with an analysis of some vascular disease data.

Keywords Imputation estimator · Inverse probability weighted estimator · Kernel
estimator · Regression surrogate estimator

1 Introduction

A common feature of survival data is the presence of right censored observations.
Censoring can occur, for example, if individuals withdraw from a study before dying
or if a study ends before all subjects have died. Additionally, when multiple causes
of death are operating, the time to death from one cause can be censored by a death
from a different cause. For instance, in a clinical trial one might distinguish between
deaths attributable to the disease of interest and deaths due to all other causes. Without
loss of generality, we focus on a particular cause of death and treat all other causes as
censoring mechanisms with respect to the death time of interest.

Let T and C (0) be random variables representing the time to death from the cause of
interest and the time to usual (right) censoring, respectively. Let T (1), T (2), . . . , T (r)

be the times to death from all other causes. In our problem, T may be censored by
C (0), T (1), . . . , T (r−1) or T (r). Let C = min(C (0), T (1), . . . , T (r)), where C denotes
the censoring random variable. We assume that T and C are independent and we
observe X = min(T, C) and δ = I (T ≤ C), where I (·) is the indicator function. Let
F , G, and L be the cumulative distribution functions for T , C , and X , respectively.
Finally, let λ(t) = limε→0+ P(t ≤ T < t + ε|T ≥ t)/ε be the hazard function for T .

Censored survival time problems frequently are characterized in terms of hazard
functions, and thus the estimation of λ(t) has received much attention. Suppose the data
consist of n independent and identically distributed pairs {(Xi , δi ) : i = 1, . . . , n}.
One type of non-parametric hazard estimation is based on kernel smoothers of the
form:

λn(t) = 1

hn

n∑

i=1

K

(
t − Xi

hn

)
δi

n − Ri + 1
, (1)

where Ri is the rank of Xi , K (·) is a kernel function, and hn is a sequence of bandwidths.
Clearly, λn(t) is a convolution of the kernel function and the nonparametric cumulative
hazard estimator of Nelson (1972). This class of estimators has been investigated by
several authors, including Blum and Susarla (1980), Tanner (1983), Ramlau-Hansen
(1983), Tanner and Wong (1983), Regina and John (1985), Diehl and Stute (1988),
and Wang (1999).

This paper addresses the problem in which cause of death is unknown for a subset
of individuals, and thus some of the censoring indicators are missing. For example,
van der Laan and McKeague (1998) describe epidemiological studies in which death
certificates were missing for some people, mainly due to emigration or inconclusive
hospital case notes and autopsy results. They point out that it can be impossible to
determine whether death was due to the cause of interest in these cases. Missing causes
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of death also arise in carcinogenicity experiments. In some studies only a subset of
animals are examined for tumors to cut costs; occasionally tissues autolyze or are
cannibalized by cage mates before a necropsy can be performed; and pathologists
are not always able to determine each tumor’s role in causing death. For example,
Kalbfleisch and Prentice (1980) provide data on mice that died from leukemia, other
known (non-leukemia) causes, or unknown causes; and Dinse (1986) presents data
on mice whose status of non-renal vascular disease at death was classified as absent,
incidental, fatal, or unknown. This last data set is analyzed in Sect. 6.

The general problem of analyzing censored survival data with missing cause-of-
death data (or missing censoring indicators) has received much attention. Dinse (1982)
derived the nonparametric maximum likelihood estimator of the survival function in
this situation; see, also, the estimators of Dinse (1986), Lo (1991), McKeague and
Subramanian (1998), van der Laan and McKeague (1998), and Subramanian (2004,
2006). Other authors have considered hypothesis testing and regression modeling.
Goetghebeur and Ryan (1990) derived a modified log-rank test to compare survival
rates in two groups; Dewanji (1992) suggested an improvement to that approach;
and Goetghebeur and Ryan (1995) extended their earlier results to the proportional
hazards regression model. Tsiatis et al. (2002) used multiple imputation methods to
evaluate treatment differences in survival. Recently, Gao and Tsaitis (2005) developed
a semi-parametric procedure to estimate regression coefficients in a linear transforma-
tion competing risks model. Klein and Moeschberger (2003, Chapter 6) point out the
importance of kernel estimation for hazard functions in the presence of censored data.
In this paper, we concentrate on non-parametrically estimating the hazard function,
λ(t), by extending well-known kernel smoothing methods to allow for missing data.

Suppose that X is always observed, but the censoring indicator δ is missing for
some subjects. Define a missingness indicator ξ which is 1 if δ is observed and is
0 otherwise. Therefore, we observe either {X, δ, ξ = 1} or {X, ξ = 0}. Throughout
this paper, we assume that δ is missing at random (MAR), which implies that ξ and
δ are conditionally independent given X : P(ξ = 1|X, δ) = P(ξ = 1|X). The MAR
assumption is common in statistical analyses involving missing data and is reasonable
in many practical situations; see, for example, Little and Rubin (1987, Chapter 1).

When some censoring indicators are missing, the hazard estimator in (1) cannot be
applied directly. One simple solution is to use only the complete cases, {X, δ, ξ = 1},
and to ignore all subjects with missing indicators, {X, ξ = 0}. However, the resulting
complete case (CC) estimator is highly inefficient if there is a significant degree of
missingness; see, e.g., van der Laan and McKeague (1998). Also, the CC estimator is
consistent and unbiased only when the censoring indicators are missing completely at
random (MCAR), which is a special case of MAR where ξ is independent of both X
and δ: P(ξ = 1|X, δ) = P(ξ = 1); see, e.g., Tsiatis et al. (2002).

Imputation has become a popular method for handling missing data; see, for exam-
ple, Rubin (1987), Lipsitz et al. (1998), Robins and Wang (2000), and Wang and
Rao (2002). The popularity of this approach stems largely from the fact that once the
missing values are imputed, standard techniques for analyzing complete data can be
readily applied. The inverse probability weighted procedure is also widely used in
missing data situations; see, for example, Robins and Rotnitzky (1992); Robins et al.
(1994), and Zhao et al. (1996). These two approaches are usually applied to regression
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problems with missing responses or covariates, but here we adapt them to handle miss-
ing censoring indicators.

This paper develops three kernel estimators for the hazard function: a regression
surrogate estimator, an imputation estimator, and an inverse probability weighted esti-
mator. The regression surrogate estimator is based on a particular expression for λ(t),
and the imputation estimator and inverse probability weighted estimator are motivated
by the regression surrogate estimator. All three estimators are of the form given in (1),
except that some or all of the δi values are replaced by other quantities. The regression
surrogate estimator replaces every δi , known or unknown, by an estimator of the condi-
tional expectation of δi given Xi . The imputation estimator replaces only the unknown
values of δi by estimators of their conditional expectations. The inverse probability
weighted estimator replaces each unknown δi by its estimated conditional expectation
and each known δi by a weighted sum of δi and its estimated conditional expectation.
Existing non-parametric methods for estimating hazard functions assume complete
censoring information, while non-parametric methods that allow missing censoring
indicators focus on the simpler problem of estimating survival functions rather than
hazard functions. The main contributions of this paper are the development of non-
parametric approaches for estimating hazard functions with missing censoring indi-
cators and the theoretical results derived for the proposed estimators.

The paper is organized as follows. Section 2 defines three nonparametric hazard
estimators. Section 3 shows that these estimators are uniformly strongly consistent and
asymptotically normal under the MAR assumption, and derives asymptotic represen-
tations for the mean squared error (MSE) and mean integrated squared error (MISE).
Section 4 gives a data-driven bandwidth selection procedure. Section 5 reports simu-
lation results for evaluating finite sample performance; Sect. 6 illustrates our methods
by applying them to data from an animal experiment; and Sect. 7 provides a few
concluding remarks. Finally, the main results are proved in the Appendices.

2 Estimation

The hazard function of interest, λ(t), can be expressed as

λ(t) = f (t)

1 − F(t)
= [1 − G(t)] f (t)

1 − L(t)
= 1

1 − L(t)

dL1(t)

dt
, (2)

where f (t) = dF(t)/dt and L1(t) = P(X ≤ t, δ = 1). As noted by Dikta (1998), we
can write L1(t) = ∫ t

0 m(s)dL(s), where m(s) = P(δ = 1|X = s) is the conditional
expectation of the censoring indicator given the observation time, and thus (2) yields

λ(t) = m(t)

1 − L(t)

dL(t)

dt
. (3)

Given (3), we use kernel smoothing to define a regression surrogate estimator of λ(t):

λ̂n,S(t) = 1

hn

∫
K

(
t − s

hn

)
mn(s) dLn(s)

1 − Ln(s−)
, (4)
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where mn(s)=∑n
i=1 ξiδi W

(
s−Xi

bn

)
/
∑n

i=1 ξi W
(

s−Xi
bn

)
, Ln(s)=n−1∑n

i=1 I (Xi ≤
s), and s− is the time just before s. Here mn(s) is the Nadaraya–Watson kernel regres-
sion estimator of m(s), where W (·) is a kernel function and bn is a bandwidth sequence.

As n[1 − Ln(Xi−)] = n − Ri + 1, the estimator in (4) can be rewritten as

λ̂n,S(t) = 1

hn

n∑

i=1

K

(
t − Xi

hn

)
mn(Xi )

n − Ri + 1
. (5)

If no censoring indicators are missing, the regression surrogate estimator in (5) reduces
to a pre-smoothed Nelson–Aalen type estimator (Cao et al. 2005; Cao and Jácome
2004; Jacome et al. 2008). Similarly, the basic kernel estimator in (1), which is appro-
priate when none of the censoring indicators are missing, coincides with the regression
surrogate estimator in (5) if every δi is replaced by mn(Xi ), an estimator of the condi-
tional expectation of δi given Xi . Intuitively, however, it seems reasonable to replace
only the missing censoring indicators with estimators of their conditional expecta-
tions. If we use this logic and only replace δi by mn(Xi ) in (1) if ξi = 0, we obtain
our imputation estimator of λ(t):

λ̂n,I (t) = 1

hn

n∑

i=1

K

(
t − Xi

hn

)
ξi δi + (1 − ξi ) mn(Xi )

n − Ri + 1
. (6)

Finally, define π(x) = P(ξ = 1|X = x), plus its Nadaraya–Watson kernel regres-

sion estimator πn(x) =
∑n

i=1 ξi �
(

x−Xi
γn

)
/
∑n

i=1 �
(

x−Xi
γn

)
, where �(·) is a kernel

function and γn is a bandwidth sequence. Our inverse probability weighted estimator
of λ(t) is

λ̂n,W (t) = 1

hn

n∑

i=1

K

(
t − Xi

hn

) [ξi/πn(Xi )] δi + [1 − ξi/πn(Xi )] mn(Xi )

n − Ri + 1
. (7)

In this case, δi in (1) is replaced by mn(Xi ) if ξi = 0 and by a weighted average of δi

and mn(Xi ) if ξi = 1, where each weight is inversely proportional to πn(Xi ), which
is an estimator of the conditional expectation of ξi given Xi .

Just like other nonparametric kernel methods, our methods are robust to the choice
of kernel functions. Some common kernel functions include the uniform, biweight,
and Epanechnikov kernel functions. Bandwidth selection for hn and robustness of our
methods with respect to bn and γn are discussed in subsequent sections.

All three of our hazard estimators use a non-parametric estimator for m(x). One
natural alternative is a semi-parametric approach that assumes a specific paramet-
ric model, say m(x |θ), where θ is a finite-dimensional parameter and m(·|·) is a
known function. Another alternative for handling missing data is the use of multiple
imputation. Conditional on any observation time Xi for which the censoring indi-
cator is missing (ξi = 0), generate ν independent Bernoulli random variables, say
{δ∗

i j : j = 1, . . . , ν}, each of which is 1 with probability mn(Xi ). An individual
imputation estimator, say λn, j (t), can be obtained by replacing each missing δi with
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δ∗
i j in (1) for j = 1, . . . , ν. As this is equivalent to replacing mn(Xi ) with δ∗

i j in
(6), we could define two other estimators by performing the same replacement in (5)
and (7). In any of these three cases, the multiple imputation estimator is the average:
ν−1∑ν

j=1 λn, j (t). We plan to investigate these two approaches in a separate paper.

3 Asymptotic properties

This section discusses asymptotic properties of the estimators proposed in Sect. 2. Let
λ̂n(t) denote any one of the estimators in (5)–(7). The following theorem, which is
proved in Appendix A, establishes the uniform strong consistency of λ̂n(t).

Theorem 1 Under the assumptions given in Appendix A, we have

sup
0≤t≤τ

∣∣̂λn(t) − λ(t)
∣∣ a.s.−→ 0 ,

where 0 < τ < τL and τL = inf{t : L(t) = 1}.
The next theorem, which is proved in Appendix B, establishes the asymptotic nor-

mality of λ̂n(t).

Theorem 2 Under the assumptions given in Appendix B, we have

√
nhn

(
λ̂n(t) − λ(t) − (−1)k λ(k)(t)hk

n

k!
∫

uk K (u) du

)
L−→ N

(
0, σ 2(t)

)

for any fixed 0 < t < τL , where λ(k)(t) is the kth derivative of λ(t).

The asymptotic variance, σ 2(t), in the above theorem is

σ 2(t) = λ(t)

1 − L(t)

∫
K 2(u) du + [1 − π(t)]m(t)[1 − m(t)]l(t)

π(t)[1 − L(t)]2

∫
K 2(u) du, (8)

where l(t) = dL(t)/dt . A consistent estimator of σ 2(t), say σ̂ 2
n (t), can be obtained by

replacingλ(t), L(t), π(t), m(t) and l(t) in (8) by estimators λ̂n(t), Ln(t), πn(t), mn(t)

and ln(t), where ln(t) is the kernel density estimator ln(t) = (n hn)−1∑n
i=1 K

(
t−Xi

hn

)
.

It is easy to see that the asymptotic variance reduces to that of the standard kernel haz-
ard function estimator λn(t) in (1) if there are no missing censoring indicators, in
which case π(t) = 1.

The previous theorem implies that the asymptotically optimal bandwidth for a fixed
value of t , which minimizes the asymptotic mean squared error, is

hopt,t =
(

σ 2(t)

[λ(k)(t)/k!]2 [∫ uk K (u) du]2

) 1
2k+1

n− 1
2k+1 .

This result also can be obtained by applying part (i) of the following theorem, which
establishes the asymptotic MSE and MISE representations, as derived in Appendix C.
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Theorem 3 Under the assumptions given in Appendices B and C:

(i) We have for any fixed 0 < t < τL:

E [̂λn(t)−λ(t)]2 =h2k
n

(
λ(k)(t)

k!
∫

uk K (u)du

)2

+ σ 2(t)

nhn
+o((nhn)−1)+o(h2k

n ).

(ii) If
∫

λ(t)w(t)/[1 − L(t)]dt < ∞ and
∫

l(t)w(t)/[1 − L(t)]2dt < ∞, we have:

E
∫

[̂λn(t) − λ(t)]2w(t)dt = h2k
n

(∫
[λ(k)(t)/k!]2w(t)dt

)(∫
uk K (u)du

)2

+(nhn)
−1
∫

σ 2(t)w(t)dt+o((nhn)−1)+o(h2k
n ),

where w(t) is a weight function used to eliminate endpoint effects. A typical
weight function is w(t) = 1 for t in some interval, say [τL , τU ], and w(t) = 0
otherwise.

As a consequence of Theorem 3(ii), the asymptotically optimal bandwidth that
minimizes the asymptotic mean integrated squared error is

hopt =
( ∫

σ 2(t)w(t)dt
[∫

(λ(k)(t)/k!)2w(t)dt
] [∫

uk K (u)du
]2

) 1
2k+1

n− 1
2k+1 . (9)

Obviously, hopt depends on the unknowns σ 2(t) and λ(k)(t). One simple and direct way
to obtain an estimator of hopt, say ĥopt, is to substitute consistent estimators of σ 2(t)

and λ(k)(t), say σ̂ 2
n (t) and λ̂

(k)
n (t), into (9). Clearly, ĥopt defines a consistent estimator

of hopt , but we need another bandwidth selection procedure because ĥopt depends

on bandwidths through σ̂ 2
n (t) and λ̂

(k)
n (t). Further research is required to assess the

effect of bandwidth selection on ĥopt and to investigate its asymptotic optimality in
the context of ĥopt asymptotically minimizing the integrated weighted squared error.
Theoretical research on this problem is beyond the scope of this paper, but the next
section discusses one data-driven approach to selecting bandwidths. We conclude this
section with the following remark.

Remark 1 Theorem 3 shows that the choice of bandwidths bn and γn does not affect
the first-order term of the mean squared error, though it might affect higher order
terms. Consequently, the selection of bn and γn is not critical to the estimator λ̂n(t),
a result which is also verified in our simulation study. Thus, in the next section, we
consider the selection of hn only.

4 Data-driven bandwidth selection

Cross-validation techniques based on least squares regression have been applied to
density estimation for censored data by Marron and Padgett (1987). These techniques

123



422 Q. Wang et al.

were extended to hazard estimation by Sarda and Vieu (1991) and Patil (1993a) for
uncensored data, and by Patil (1993b) and González-Manteiga et al. (1996) for cen-
sored data. We further extend the least squares cross-validation approach to the case
of hazard estimation for censored data with missing censoring indicators.

In our situation, the least squares cross-validated bandwidth is the minimizer of

CV (hn) =
∫

λ̂2
n(t)w(t)dt − 2

n

n∑

i=1

λ̂
(−i)
n (Xi )

1 − Ln(Xi )
w(Xi )Qn(Xi , δi , ξi ), (10)

where λ̂n(t) is one of the estimators in (5)–(7) and λ̂
(−i)
n (t) is the “leave-one-out”

version of that estimator. Here Qn(Xi , δi , ξi ) denotes mn(Xi ), ξiδi + (1− ξi )mn(Xi ),
or ξiδi/πn(Xi ) + [1 − ξi/πn(Xi )]mn(Xi ), respectively, according to whether λ̂n(t)
represents λ̂n,S(t), λ̂n,I (t), or λ̂n,W (t). Define the cross-validated bandwidth hopt,n
to be the minimizer of the score function in (10). Similar to Patil (1993a), one can
establish asymptotic optimality, in the sense that

ISEw(hopt,n)

infhn∈Hn ISEw(hn)

a.s.−→ 1,

where Hn is a set of bandwidths satisfying certain regularity conditions and ISEw is
the integrated weighted squared error: ISEw(h) = ∫ [̂λn(t) − λ(t)]2w(t)dt .

5 Simulation study

We conducted a simulation study to compare the finite sample properties of our estima-
tors with those of the complete case estimator, say λ̂CC (t), and the standard estimator
λn(t) in (1). Recall that λ̂CC (t) is obtained by applying formula (1) to the subset of
the data for which we observe δ. In practice we cannot compute λn(t) if any of the
censoring indicators are missing, but each δ is known in a simulation and thus we
use λn(t) as a “gold standard” for our comparisons. We now report the results of our
simulation, conducted using Fortran and R programs.

The Weibull distribution is very flexible and is often used to analyze lifetime data.
Thus, we generated the failure time T and censoring time C from a Weibull distri-
bution with shape parameter τ and scale parameter η, denoted by W (τ, η). Given
T and C , we defined X = min(T, C) and δ = I (T ≤ C) for each subject. We
fixed (τ, η) = (3, 1) for T , and we specified (τ, η) = (2, 1.96) for C to obtain a
20% censoring rate, (τ, η) = (2, 1.25) for C to obtain a 40% censoring rate, and
(τ, η) = (2, 0.74) for C to obtain a 70% censoring rate. We used the logistic model
π(x) = [1 + exp(−θ1 − θ2x)]−1 to classify some of the censoring indicators as miss-
ing. Given X = x , the missingness indicator ξ was set to 1 with probability π(x);
otherwise ξ was set to 0 (and δ was treated as missing). We denoted π(x) by π1(x) or
π2(x) when the corresponding average missingness rate was approximately 20 or 40%,
respectively. When the censoring rate (CR) was 20%, we set (θ1, θ2) to (0.7, 0.87)

for π1(x) and (0.32, 0.1) for π2(x). Similarly, for CR = 40%, we set (θ1, θ2) to
(0.7, 0.98) for π1(x) and (0.33, 0.1) for π2(x); and for CR = 70%, we set (θ1, θ2) to
(0.7, 1.28) for π1(x) and (0.33, 0.13) for π2(x). We generated 1,000 samples of size
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n = 30, 60, and 120 for each choice of CR and π(x). We used the biweight kernel
function K (u)= 15

16 (1 − u2)2 if |u| ≤ 1 and K (u) = 0 otherwise, and the uniform
kernel functions W (u) = �(u) = 1

2 if |u| ≤ 1 and W (u) = �(u) = 0 otherwise.
Finally, we took w(t) = 1 if t ∈ [0, 2], and 0 otherwise.

First, we investigated how the bandwidth hn obtained via least squares cross-
validation varied with bandwidths bn and γn . Note that λ̂n,W (t) depends on both
bn and γn , whereas λ̂n,S(t) and λ̂n,I (t) depend only on bn , and λ̂CC (t) and λn(t) do
not depend on either bn or γn . A cross-validation bandwidth hopt,n , the minimizer
of CV (hn) in (10), was calculated for each pair (bn, γn) in a 50 × 50 grid on the
(0, 1] × (0, 1] plane. For every combination of n, CR, and π(x), this was repeated
for all estimators in each of the 1,000 samples; then the corresponding 1,000 val-
ues of hopt,n were averaged. Figure 1a shows the results for λ̂n,W (t) when n = 60,
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Fig. 1 a CV-Optimal bandwidth hopt,n against bandwidths bn and γn . The hopt,n surface is the average
hopt,n over 1,000 replicate samples of size n = 60, with a censoring rate of CR = 20% and a missingness
rate given by π2(x). These results are for λ̂n,W (t). b MISE-optimal bandwidth hopt,n against bandwidths
bn and γn . The hopt,n surface is the average hopt,n over 1,000 replicate samples of size n = 60, with a
censoring rate of CR = 20% and a missingness rate given by π2(x). These results are for λ̂n,W (t)
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CR = 20%, and π(x) = π2(x). The average values of hopt,n ranged from 0.6616 to
0.6899, indicating that bn and γn had little effect on the optimal choice of bandwidth
hn for λ̂n,W (t). Similarly, the optimal choice of hn for λ̂n,S(t) and λ̂n,I (t) did not vary
much with bn . These results were consistent across different values of n, CR, and π(x).

Alternatively, an optimal bandwidth hn can be obtained by minimizing the mean
integrated squared error; refer to the left part of the equation in Theorem 3(ii) and
notice that the true hazard function is known to be λ(t) = 3t2 in our study. We also
investigated how this MISE-bandwidth hn varied with respect to (bn, γn), each pair of
which came from a 50 × 50 grid on the (0, 1] × (0, 1] plane. For every combination
of n, CR, and π(x), this was repeated for all estimators in each of the 1,000 samples;
then the corresponding 1,000 values of hopt,n were averaged. Figure 1b shows the
results for λ̂n,W (t) when n = 60, CR = 20%, and π(x) = π2(x). The average values
of hopt,n ranged from 0.6642 to 0.6727, indicating that bn and γn had little effect on
the optimal choice of bandwidth hn for λ̂n,W (t).

Second, we studied the effects of bn and γn on MISE. We set hn equal to the the-
oretically MISE-optimal bandwidth corresponding to (bn, γn) = (n−1/3, n−1/3). For
each combination of n, CR, and π(x), we generated 1,000 samples and calculated the
MISE from 1,000 simulated values of the five estimators for each pair (bn, γn) from a
50 × 50 grid on the (0, 1] × (0, 1] plane. Figure 2 shows the results for λ̂n,W (t) when
n = 60, CR = 40%, π(x) = π2(x), and hMISE = 0.6704. The MISE values in Fig. 2
ranged from 1.5763 to 1.8274, which shows that the choices of bn and γn were not
critical for λ̂n,W (t). Similarly, the choice of bn in our simulation had little impact for
λ̂n,S(t) and λ̂n,I (t). These results support Remark 1.

Next, Table 1 gives the MISE values for all estimators and every combination of

n, CR, and π(x). We used (bn, γn) = (n− 1
3 , n− 1

3 ), and we set hn equal to the MISE-
optimal bandwidth. In most cases, regardless of the choice of n, CR, and π(x), the
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Fig. 2 Mean integrated squared error as a function of bandwidths bn and γn . The MISE surface is calcu-
lated from 1,000 simulated values of λ̂n,W (t), with n = 60, a censoring rate of CR = 20%, a missingness
rate given by π2(x), and a bandwidth of hn = 0.6693. These results are for the inverse probability weighted
estimator λ̂n,W (t)
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Table 1 Mean integrated squared error (MISE) by sample size (n), censoring rate (CR), and missingness
rate (π ) for five hazard estimators

n Estimators CR = 20% CR = 40% CR = 70%

π1(x) π2(x) π1(x) π2(x) π1(x) π2(x)

30 λn 1.8190 1.9377 2.7336 2.7266 8.2347 8.1571

λ̂n,S 1.9690 2.1791 2.9608 3.0690 8.3381 10.6707

λ̂n,I 1.9705 2.1508 2.8103 2.9978 8.7351 11.3675

λ̂n,W 1.9889 2.1740 2.8054 3.0194 8.8184 11.7497

λ̂CC 2.8129 3.9094 3.6486 6.5770 9.5875 12.7147

60 λn 0.9218 0.9405 1.4787 1.5136 6.6776 6.6125

λ̂n,S 0.9723 1.1282 1.6166 1.6238 7.3996 10.7629

λ̂n,I 0.9694 1.1125 1.5496 1.5530 7.5676 11.1837

λ̂n,W 0.9728 1.1337 1.5480 1.5508 7.6300 11.4496

λ̂CC 1.6155 3.1192 2.2758 4.8462 8.9250 12.8148

120 λn 0.5241 0.5431 0.9289 0.9148 5.0455 5.0376

λ̂n,S 0.5221 0.6662 0.9866 1.0507 6.0436 10.3842

λ̂n,I 0.5424 0.6936 0.9927 1.0698 6.2026 10.6587

λ̂n,W 0.5503 0.7220 1.0051 1.1281 6.2808 10.8424

λ̂CC 1.0394 2.5448 1.5864 4.1596 8.1533 12.7515

Each entry is calculated from 1,000 simulated values of the corresponding estimator

MISE values for the three proposed estimators were fairly similar to each other and
were usually close to the MISE for the gold standard, λn(t). As expected, the MISE
values decreased (i.e., performance improved) as the sample size increased and as
the censoring percentage decreased. Except for λn(t), which always used the com-
plete censoring information, the MISE values also decreased as the missingness rate
decreased (as expected). The MISE values for λn(t) differed slightly from π1(x) to
π2(x) simply as a result of random fluctuation in the data generated in the two sets
of 1000 samples. In every situation, all three of our proposed estimators performed
better than the complete case estimator, as illustrated by their smaller MISE values.

Finally, plots of the true hazard rate and average curves associated with all five
estimators are presented in Fig. 3 for samples of size n = 60. In each of the four
subplots, which correspond to the four combinations of π(x) and the lower two cen-
soring rates, the dotted line shows the true hazard rate λ(t) = 3t2. The other curves are
time-specific averages of the 1000 hazard estimates corresponding to λn(t), λ̂n,S(t),
λ̂n,I (t), λ̂n,W (t), and λ̂CC (t). Overall, the complete case estimator is the worst of the
five estimators, as should be expected when a substantial amount of data is ignored.
The proposed estimators lead to average curves that are nearly identical to each other
and to the gold standard λn(t). It is very interesting that the so-called “gold standard” is
not much better than the proposed estimators with missing cause-of-death. As pointed
out by one of the referees, one reason could be the improvement attributable to the
“presmoothing” already observed in the literature; see, e.g., Cao and Jácome (2004)
and Cao et al. (2005). As the amount of censoring increases, the proposed estimators

123



426 Q. Wang et al.

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

(x) = 2(x) ,  CR = 20%

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

H
az

ar
d 

E
st

im
at

e

(x) = 1(x) ,  CR = 20%

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time

(x) = 2(x) ,  CR = 40%

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

H
az

ar
d 

E
st

im
at

e

Time

(x) = 1(x) ,  CR = 40%

Fig. 3 True hazard rate and average curves for five hazard estimators. The true hazard function, λ(t) = 3t2,
is shown by the wide-dot line. The other curves are time-specific averages of estimates based on 1,000 rep-
licate samples of size n = 60. We depict λn(t), λ̂n,S(t), λ̂n,I (t), λ̂n,W (t), and λ̂CC(t) by solid, small-dot,
short-dash, dot-dash, and long-dash lines, respectively. For bandwidths, we use bn = γn = n−1/3 and hn
is the minimizer of CV(hn). The plots on the left correspond to π(x) = π1(x) and those on the right to
π(x) = π2(x). The upper plots correspond to 20% censoring and the lower plots to 40% censoring

diverge from the true curve at the largest times, but they are not nearly as biased as
the complete case estimator. Also, the average curves for the proposed estimators are
not affected by an increase in the amount of missingness, but the bias of the complete
case estimator increases appreciably in these situations.

6 Vascular disease application

This section illustrates our methods by applying them to some data from an animal
experiment. These data were previously analyzed by Dinse (1986), who reported the
survival time and disease status at death for 58 female mice. At necropsy, each mouse
was examined for non-renal vascular disease (NRVD). Survival was measured in days
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Fig. 4 Hazard estimates for death due to non-renal vascular disease (NRVD) for 33 female mice with
NRVD. We depict λ̂n,S(t), λ̂n,I (t), λ̂n,W (t), and λ̂CC (t) by dotted, dot-dash, dashed, and solid lines,

respectively. For bandwidths, we use bn = γn = 100n− 1
3 ∼= 31 days and hn is the minimizer of CV (hn)

and NRVD status at death was classified as absent, incidental, unknown, or fatal. An
occurrence of NRVD was considered incidental if it was present but not responsible
for death and fatal if the mouse died as a direct or indirect result of its disease. In some
cases, NRVD was found to be present, but its role in causing death was unknown.

We applied our methods to estimate the hazard function for death due to NRVD,
say λ(t), among the subset of mice with the disease. Time to death (X ) was known for
all mice. We used the same kernel functions and cross-validation bandwidth selection
method as in Sect. 5. Also, we used w(t) = I (X(1) < t < X(n)), where X(1) =
min{X1, X2, . . . , Xn} and X(n) = max{X1, X2, . . . , Xn}. Of the 33 mice that died
with NRVD present, 8 died from their disease (δ = 1), 19 died from other known
causes (δ = 0), and 6 had an unknown cause of death (δ missing). Thus, 18% of the
mice had a missing censoring indicator, and among mice with a known cause of death,
70% of the death times were censored with respect to the cause of interest. Figure 4
displays estimates of λ(t) based on the proposed kernel estimators and the complete
case estimator. All four curves are bell shaped and peak between 750 and 800 days. The
three proposed hazard estimates are nearly identical to each other, whereas the com-
plete case estimate is smaller, which is consistent with the simulation results plotted
in Fig. 3.

7 Concluding remarks

Theoretically, all three proposed estimators have the same asymptotic representation
(see Lemma 1 in Appendix B) and hence they all have the same asymptotic normal
distribution (see Theorem 2). This asymptotic equivalence is similar to that obtained
by Cheng (1994) for the marginal average estimator and the imputation estimator in
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the nonparametric regression context, and to that obtained by Wang et al. (2004) for
the marginal average estimator, the regression imputation estimator, and the marginal
propensity score weighted estimator in the semi-parametric regression context. Fur-
thermore, it is shown that our estimators have the same asymptotic MSE and MISE
representations (see Theorem 3). In small samples, however, simulation results show
that λ̂n,S(t) and λ̂n,I (t) have slightly smaller MISE values than λ̂n,W (t). In addition,
unlike λ̂n,W (t), neither λ̂n,S(t) nor λ̂n,I (t) depends on estimating π(x). Hence, for
these reasons, one may prefer λ̂n,S(t) and λ̂n,I (t) to λ̂W (t).

On the other hand, the inverse probability weighted approach enjoys the so-called
“double robustness” property (see Scharfstein et al. 1999). That is, if m(x) and π(x) are
specified by parametric models m(x |θ) and π(x |β), respectively, the corresponding
weighted estimator is consistent as long as one of the two models is specified cor-
rectly, where θ and β are finite dimensional parameters. This property implies that the
weighted estimator is consistent if either m(x) or π(x) is estimated non-parametrically
and the other is specified to be a known function, regardless of whether the specifica-
tion is correct or not. However, the efficiency of the weighted estimator depends on
the bias between the specified model and the true one; the larger the bias, the larger
the loss of efficiency. The regression surrogate and imputation methods do not share
this property.

Appendix A: Proof of Theorem 1

We begin by making the following assumptions:

(A.mπ ): m(·) and π(·) are uniformly continuous functions.
(A.lλ): l(·) and λ(·) are continuous functions.
(A.K): K (·) is a probability density kernel function with bounded support and

bounded variation.
(A.W�): W (·) and �(·) are bounded kernel functions with bounded support.

(A.hn): hn → 0 and h−1
n n− 1

2
√

log log n → 0.
(A.bn): bn → 0 and nbn → ∞.
(A.γn): γn → 0 and nγn → ∞.

Proof First we prove that Theorem 1 is true for λ̂n,I (t). Similar arguments prove that
Theorem 1 is also true for λ̂n,S(t) and λ̂n,W (t). Initially we write

λ̂n,I (t) − λ(t) =
[

1

hn

n∑

i=1

K

(
t − Xi

hn

)
ξiδi + (1 − ξi )m(Xi )

n − Ri + 1
− λ(t)

]

+
[

1

hn

n∑

i=1

K

(
t − Xi

hn

)(
ξiδi + (1 − ξi )mn(Xi )

n − Ri + 1
− ξiδi + (1 − ξi )m(Xi )

n − Ri + 1

)]

:= Tn1(t) + Tn2(t). (11)
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As n[1 − Ln(Xi−)] = n − Ri + 1, the first term in (11) can be rewritten as

Tn1(t) =
[

1

hn

n∑

i=1

K

(
t − Xi

hn

)
δi

n − Ri + 1
− λ(t)

]

+
[

1

nhn

n∑

i=1

(ξi − 1)[δi − m(Xi )]
1 − Ln(Xi−)

K

(
t − Xi

hn

)]

:= Tn11(t) + Tn12(t). (12)

Based on the results of Wang (1999), by (A.lλ), (A.K) and (A.hn) we have for the first
term in (12):

sup
0≤t≤τ

|Tn11(t)| a.s.−→ 0. (13)

The second term in (12) can be rewritten as

Tn12(t) =
[

1

nhn

n∑

i=1

(ξi − 1)[δi − m(Xi )]
1 − L(Xi )

K

(
t − Xi

hn

)]

+
[

1

nhn

n∑

i=1

(ξi − 1)[δi − m(Xi )][Ln(Xi−) − L(Xi )]
[1 − Ln(Xi−)][1 − L(Xi )] K

(
t − Xi

hn

)]

:= T [1]
n12(t) + T [2]

n12(t). (14)

Define the following shorthand notation: Ln1(t) = 1
n

∑n
i=1 I [Xi ≤ t, δi = 1],

L̃n1(t) = 1
n

∑n
i=1 I [Xi ≤ t, ξi = 1], Ln11(t) = 1

n

∑n
i=1 I [Xi ≤ t, δi = 1,

ξi = 1], L̃1(t) = P(X ≤ t, ξ = 1) and L11(t) = P(X ≤ t, δ = 1, ξ = 1). The
first term in (14) can be written

T [1]
n12(t) = 1

hn

∫
K

(
t − s

hn

)[
dLn11(s) − m(s)dL̃n1(s) − dLn1(s) + m(s)d Ln(s)

1 − L(s)

]
.

As dL1(s) = m(s)dL(s) by definition, and dL11(s) = m(s)dL̃1(s) under the MAR
assumption, this same term also can be rewritten as

T [1]
n12(t) = 1

hn

∫
K

(
t − s

hn

)[
d[Ln11(s) − L11(s)]

1 − L(s)
− m(s)d[L̃n1(s) − L̃1(s)]

1 − L(s)

− d[Ln1(s) − L1(s)]
1 − L(s)

+ m(s)d[Ln(s) − L(s)]
1 − L(s)

]
. (15)

Denote by L∗(·) the distribution or sub-distribution function L(·), L1(·), L̃1(·),
or L11(·); and denote by L∗

n(·) the corresponding empirical function Ln(·), Ln1(·),
L̃n1(·), or Ln11(·). Using the law of the iterated logarithm for empirical distribution
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and sub-distribution functions: sup0≤s<∞ |L∗
n(s)−L∗(s)| = O(n− 1

2
√

log log n), a.s.,
integration by parts, and the bounded variation of K , it follows that

sup
0≤t≤τ

|T [1]
n12(t)| = O(h−1

n n− 1
2
√

log log n) , a.s. (16)

With respect to T [2]
n12(t), similar to (16) it can be shown that sup0≤t≤τ |T [2]

n12(t)|
a.s.−→ 0.

This together with (16) proves that sup0≤t≤τ |Tn12(t)| a.s.−→ 0 , and thus, together with

(13), we have sup0≤t≤τ |Tn1(t)| a.s.−→ 0. To prove Theorem 1, it remains to prove that

sup0≤t≤τ |Tn2(t)| a.s.→ 0. First, we rewrite Tn2(t) as

Tn2(t) = 1

nhn

n∑

i=1

K

(
t − Xi

hn

)
(1 − ξi )[mn(Xi ) − m(Xi )]

1 − Ln(Xi−)
.

Then, by (A.lλ), (A.mπ ), (A.W�) and (A.bn), we have

sup
0≤t≤τ

|Tn2(t)| ≤ sup
0≤x≤τ

|mn(x) − m(x)| sup
0≤t≤τ

∣∣∣∣∣
1

nhn

n∑

i=1

K

(
t − Xi

hn

)
1

1 − Ln(Xi −)

∣∣∣∣∣ (17)

This proves Theorem 1 for λ̂n,I (t) and thus also for λ̂n,S(t). By similar arguments,
together with the conditions listed in Appendix A and the fact that sup0≤s≤τ |πn(s) −
π(s)| a.s.−→ 0, we can also prove that Theorem 1 is true for λ̂n,W (t). 
�

Appendix B: Proof of Theorem 2

We assume that the following conditions are true:

(B.mlπλ): m(·), l(·), π(·), and λ(·) have bounded derivatives of order k > 1.
(B.K): K (·) is a continuous kernel function of order k > 1 with bounded

support.
(B.W�): W (·) and �(·) are bounded kernel functions of order k > 1 with

bounded support.
(B.hn): nhn → ∞, nh2k+1

n = O(1).
(B.hnbn): bn/hn → 0.
(B.hnγn): γn/hn → 0.

(B.hnbnγn): nbnγn/hn → ∞, nhnb2k
n → 0, nhnγ

2k
n → 0, hnbnγ

− 1
2

n → 0,

hnb
− 1

2
n γn → 0.

Remark 2 Conditions (B.hn), (B.hnbn), (B.hnγn), and (B.hnbnγn) are clearly satisfied

for k = 2 and hn = O(n− 1
5 ), bn = O(n− 1

3 ), and γn = O(n− 1
3 ).
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Lemma 1 If λ̂n(t) denotes any one of the proposed estimators λ̂n,S(t), λ̂n,I (t), or
λ̂n,W (t), then under the above assumptions, we have

λ̂n(t) − λ(t) = f̃n(t) − E f̃n(t)

1 − L(t)
+ 1

nhn

n∑

i=1

[ξi − π(Xi )][δi − m(Xi )]
π(Xi )[1 − L(Xi )] K

(
t − Xi

hn

)

+(−1)khk
n
λ(k)(t)

∫
uk K (u)du

k! + op

(
(nhn)

− 1
2

)
,

where f̃n(t) = 1
hn

∫
K
(

t−s
hn

)
dLn1(s).

Proof (a) First we prove that Lemma 1 is true for λ̂n,S(t). We can write

λ̂n,S(t) − λ(t) =
[

1

hn

n∑

i=1

K

(
t − Xi

hn

)
δi

n − Ri + 1
− λ(t)

]

+ 1

hn

n∑

i=1

K

(
t − Xi

hn

)
m(Xi ) − δi

n − Ri + 1

+ 1

hn

n∑

i=1

K

(
t − Xi

hn

)
mn(Xi ) − m(Xi )

n − Ri + 1

:= Un1(t) + Un2(t) + Un3(t). (18)

The first term in (18) can be rewritten as

Un1(t) =
[

1

hn

∫
K

(
t − s

hn

)
dF̂n(s)

1 − F̂n(s)
− 1

hn

∫
K

(
t − s

hn

)
dF(s)

1 − F(s)

]

+
[

1

hn

∫
K

(
t − s

hn

)
dF(s)

1 − F(s)
− λ(t)

]

:= Un11(t) + Un12(t), (19)

where F̂n(t) is the Kaplan–Meier product-limit estimator (Kaplan and Meier 1958).
Based on the results of Diehl and Stute (1988), we have

Un11(t) = f̃n(t) − E f̃n(t)

1 − L(t)
+ Op

(
(nhn)

−1
)

+ Op

(
n− 1

2

)
. (20)

Under conditions (B.mlπλ) and (B.K), the second term in (19) can be written

Un12(t) = 1

hn

∫
K

(
t − s

hn

)
λ(s)ds − λ(t)

= (−1)k hk
nλ(k)(t)

k!
∫

uk K (u)du + o
(

hk
n

)
. (21)
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As n[1 − Ln(Xi−)] = n − Ri + 1 and sups |Ln(s) − L(s)| a.s.→ 0, the second term in
(18) can be written as

Un2(t) = 1

nhn

n∑

i=1

K

(
t − Xi

hn

)
m(Xi ) − δi

1 − L(Xi )
+ op

(
(nhn)

− 1
2

)
, (22)

and under conditions (B.mlπλ) and (B.W�), the third term in (18) is

Un3(t) = 1

nhn

n∑

i=1

K

(
t − Xi

hn

) 1
nbn

∑n
j=1 ξ j [δ j − m(X j )]W

(
Xi −X j

bn

)

[1 − L(Xi )]π(Xi )l(Xi )

+ 1

nhn

n∑

i=1

K

(
t − Xi

hn

) 1
nbn

∑n
j=1 ξ j [m(X j ) − m(Xi )]W

(
Xi −X j

bn

)

[1 − L(Xi )]π(Xi )l(Xi )

+ op

(
(nhn)−

1
2

)

:= Un31(t) + Un32(t) + op

(
(nhn)

− 1
2

)
. (23)

Under conditions (B.K), (B.W�), and (B.hnbn), the first term in (23) is

Un31(t) = 1

nhn

n∑

j=1

ξ j [δ j − m(X j )]
π(X j )[1 − L(X j )] K

(
t − X j

hn

)
+ op

(
(nhn)−

1
2

)
. (24)

Under conditions (B.mlπλ), (B.K), and (B.W�), and following steps similar to those
in the proof of equation (17) in Wang and Rao (2002), we can show that

Un32(t) = op

(
(nhn)−

1
2

)
. (25)

Taken together, Eqs. (23), (24), and (25) prove

Un3(t) = 1

nhn

n∑

j=1

ξ j [δ j − m(X j )]
π(X j )[1 − L(X j )] K

(
t − X j

hn

)
+ op

(
(nhn)−

1
2

)
, (26)

and Eqs. (18)–(22) and (26) prove Lemma 1 for λ̂n,S(t). �
(b) Next we prove that Lemma 1 is true for λ̂n,I (t). We start by noting that the first

term in (12) equals the first term in (18):

Tn11(t) = Un1(t). (27)
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Based on Eq. (14), conditions (B.K) and (B.mlπλ), and the MAR assumption, it is
straightforward to prove

Tn12(t) = 1

nhn

n∑

i=1

(ξi − 1)[δi − m(Xi )]
1 − L(Xi )

K

(
t − Xi

hn

)
+ op

(
(nhn)−

1
2

)
. (28)

Under Eqs. (12), (19), (20), (21), (27) and (28), it follows that

Tn1(t) = f̃n(t) − E f̃n(t)

1 − L(t)
+ 1

nhn

n∑

i=1

(ξi − 1)[δi − m(Xi )]
1 − L(Xi )

K

(
t − Xi

hn

)

+(−1)k hk
nλ(k)(t)

k!
∫

uk K (u)du + op

(
(nhn)

− 1
2

)
. (29)

Similar to Eq. (26), we can show that

Tn2(t) = 1

nhn

n∑

i=1

ξi [1 − π(Xi )][δi − m(Xi )]
π(Xi )[1 − L(Xi )] K

(
t − Xi

hn

)
+ op

(
(nhn)

− 1
2

)
. (30)

Together Eqs. (11), (29), and (30) prove that Lemma 1 is true for λ̂n,I (t). �
c) Finally, we prove that Lemma 1 is true for λ̂n,W (t). First note that

λ̂n,W (t) − λ(t) =
⎡

⎣ 1

hn

n∑

i=1

K

(
t − Xi

hn

)
ξi δi /πn(Xi ) + [1 − ξi /πn(Xi )]mn(Xi )

n − Ri + 1

− 1

hn

n∑

i=1

K

(
t − Xi

hn

)
ξi δi /πn(Xi ) + [1 − ξi /πn(Xi )]m(Xi )

n − Ri + 1

⎤

⎦

+
⎡

⎣ 1

hn

n∑

i=1

K

(
t − Xi

hn

)
ξi δi /πn(Xi ) + [1 − ξi /πn(Xi )]m(Xi )

n − Ri + 1

− 1

hn

n∑

i=1

K

(
t − Xi

hn

)
ξi δi /π(Xi ) + [1 − ξi /π(Xi )]m(Xi )

n − Ri + 1

⎤

⎦

+
⎡

⎣ 1

hn

n∑

i=1

K

(
t−Xi

hn

)
ξi δi /π(Xi )+[1−ξi /π(Xi )]m(Xi )

n−Ri +1
−λ(t)

⎤

⎦

:= Rn1(t) + Rn2(t) + Rn3(t). (31)
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Under conditions (B.K), (B.mlπλ), (B.W�), (B.hnbn), and (B.hnbnγn), we have

Rn1(t) = 1

hn

n∑

i=1

K

(
t − Xi

hn

) [1 − ξi/πn(Xi )][mn(Xi ) − m(Xi )]
n − Ri + 1

= 1

n

n∑

j=1

ξ j [δ j − m(X j )] 1

hnbn

∫
K

(
t − s

hn

) 1−π(s)
π(s) W

(
s−X j

bn

)

[1 − L(s)]π(s)
ds

+op

(
(nhn)−

1
2

)

= Op(n
− 1

2 ) + op

(
(nhn)−

1
2

)
= op

(
(nhn)−

1
2

)
. (32)

The second term in (31) can be rewritten as

Rn2(t) = 1

nhn

n∑

i=1

K

(
t − Xi

hn

)
ξi [δi − m(Xi )][π(Xi ) − πn(Xi )]

[1 − Ln(Xi−)]π(Xi )π̂n(Xi )
.

Using arguments similar to those used to derive (26), we can prove that

Rn2(t) = op

(
(nhn)

− 1
2

)
. (33)

The third term in (31) can be rewritten as

Rn3(t) = 1

hn

n∑

i=1

K

(
t − Xi

hn

)
m(Xi )

n − Ri + 1
− λ(t)

+ 1

hn

n∑

i=1

K

(
t − Xi

hn

)
ξi [δi − m(Xi )]

π(Xi )(n − Ri + 1)

= f̃n(t) − E f̃n(t)

1 − L(t)
+ 1

nhn

n∑

i=1

[ξi − π(Xi )][δi − m(Xi )]
π(Xi )[1 − L(Xi )] K

(
t − Xi

hn

)

+ hk
n
(−1)kλ(k)(t)

∫
uk K (u)du

k! + op

(
n− 1

2

)
. (34)

Equations (31)–(34) together prove that Lemma 1 is true for λ̂n,W (t). 
�
Proof of Theorem 2 By the Lyapounov central limit theorem, we have

√
nhn

f̃n(t) − E f̃n(t)

1 − L(t)
L−→ N

(
0, σ 2

1 (t)
)

(35)

and

1√
nhn

n∑

i=1

[ξi − π(Xi )][δi − m(Xi )]
π(Xi )[1 − L(Xi )] K

(
t − Xi

hn

)
L−→ N

(
0, σ 2

2 (t)
)

, (36)
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where

σ 2
1 (t) = λ(t)

1 − L(t)

∫
K 2(u)du

and

σ 2
2 (t) = 1 − π(t)

π(t)

m(t)[1 − m(t)]l(t)
[1 − L(t)]2

∫
K 2(u)du.

Under the MAR assumption, we can prove

Cov

(
√

nhn
f̃n(t)−E f̃n(t)

1−L(t)
,

1√
nhn

n∑

i=1

[ξi −π(Xi )][δi −m(Xi )]
π(Xi )[1−L(Xi )] K

(
t−Xi

hn

))
= 0.

(37)

Equations (35)–(37), together with Lemma 1, prove that Theorem 2 is true. 
�

Appendix C: Proof of Theorem 3

We start by making the following assumption:
(C.π ): inf x π(x) > 0.
First we prove that Theorem 3 is true for λ̂n,I (t). Similar proofs can be constructed
for λ̂n,S(t) and λ̂n,W (t). Recall the definitions of Tn11(t), Tn12(t), and Tn2(t) in (11)
and (12). Note that Tn11(t) = λn(t) − λ(t), where λn(t) is the standard kernel hazard
function estimator given in (1). By Wang (1999), we have

ET 2
n11(t) = 1

nhn

(
λ(t)

1 − L(t)

∫
K 2(u)du

)
+ h2k

n

(
λ(k)(t)

k!
∫

uk K (u)du

)2

+o

(
1

nhn

)
+ o

(
h2k

n

)
. (38)

Under the MAR assumption, we have

E

(
(ξi − 1)[δi − m(Xi )]

1 − Ln(Xi−)
K

(
t − Xi

hn

)∣∣∣∣ X1, X2, . . . , Xn

)
= 0,

which leads to the following result:

ET 2
n12(t)= 1

n2h2
n

n∑

i=1

E

{
E

([
(ξi −1)[δi −m(Xi )]

1−Ln(Xi−)
K

(
t−Xi

hn

)]2
∣∣∣∣∣ X1, X2,. . ., Xn

)}

= 1

nhn

[1 − π(t)]m(t)[1 − m(t)]l(t)
[1 − L(t)]2

∫
K 2(u)du + o

(
1

nhn

)
. (39)
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For Tn2(t), we have

ET 2
n2(t)= E

⎧
⎨

⎩
1

nhn

n∑

i=1

K

(
t−Xi

hn

)
(1−ξi )

1−Ln(Xi−)

⎡

⎣
∑n

j=1 ξ j δ j W
(

Xi−X j
bn

)

∑n
j=1 ξ j W

(
Xi−X j

bn

) −m(Xi )

⎤

⎦

⎫
⎬

⎭

= Mn(t) + o((Mn(t)), (40)

where

Mn(t) = E

⎡

⎣ 1

nhn

n∑

j=1

ξ j [δ j − m(X j )] 1

nbn

n∑

i=1

K

(
t − Xi

hn

) (1 − ξi )W
(

Xi −X j
bn

)

[1 − L(Xi )]π(Xi )l(Xi )

⎤

⎦
2

.

Under conditions (B.K), (B.W�) and (C.π ), and the fact that bn/hn → 0, it follows
that

Mn(t) = E

⎧
⎨

⎩

[
1

nhn

n∑

i=1

ξi [δi − m(Xi )]K
(

t − Xi

hn

)
1 − π(Xi )

[1 − L(Xi )]π(Xi )

]2
⎫
⎬

⎭

+ o

(
1

nhn

)

= 1

nhn

[1 − π(t)]2m(t)[1 − m(t)]l(t)
[1 − L(t)]2π(t)

∫
K 2(u)du + o

(
1

nhn

)
. (41)

Equations (11), (12), and (38)–(41) together prove Theorem 3 for λ̂n,I (t). The proofs
for λ̂n,S(t) and λ̂n,W (t) follow along similar lines. �
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