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Abstract Bayesian analysis for a covariance structure has been in use for decades.
The commonly adopted Bayesian setup involves the conjugate inverse Wishart prior
specification for the covariance matrix. Here we depart from this approach and adopt
a novel prior specification by considering a multivariate normal prior for the elements
of the matrix logarithm of the covariance structure. This specification allows for a
richer class of prior distributions for the covariance structure with respect to strength
of beliefs in prior location hyperparameters and the added ability to model potential
correlation amongst the covariance structure. We provide three computational methods
for calculating the posterior moment of the covariance matrix. The moments of interest
are calculated based upon computational results via Importance sampling, Laplacian
approximation and Markov Chain Monte Carlo/Metropolis–Hastings techniques. As a
particular application of the proposed technique we investigate educational test score
data from the project talent data set.
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1 Introduction

Multivariate analysis is of particular relevancy when the goal is inference for a covari-
ance matrix. In this way, the correlation structure amongst observations can most
appropriately be modeled. In addition, formal Bayesian analysis has long been used in
multivariate analysis. However, in contrast to the common Bayesian method we will
not make use of the inverse Wishart conjugate prior distributional specification for the
covariance matrix for reasons stated below.

The Wishart distribution arises quite naturally in multivariate statistics. Suppose
we have a random sample of p dimensional multivariate normal random vectors

Y1, . . . , Yn
iid∼ Np (θ,�), where Np denotes the p dimensional multivariate normal

distribution, θ is a (p × 1) mean vector and � is a (p × p) symmetric positive defi-
nite covariance matrix. Define the (p × 1) sample mean vector as Y = n−1∑n

i=1 Yi .

It follows that the (p × p) matrix
∑n

i=1

(
Yi − Y

) (
Yi − Y

)T
is distributed

Wp (n − 1,�) for n > p, where Wp denotes the p dimensional Wishart distribu-
tion, the degree of freedom parameter is equal to (n − 1) and the (p × p) matrix � is
the scale matrix parameter.

If the (p × p) random matrix M ∼ Wp (ν,�), then M−1 exists almost surely and
M−1 ∼ IWp

(
ν,�−1

)
where IWp denotes the p dimensional inverse Wishart distri-

bution (Dawid 1981). Note that the inverse Wishart is fully parameterized by a single
degree of freedom parameter ν and a scale matrix parameter �. Smaller values of
the degree of freedom parameter imply an increasingly more diffuse distribution. On
the other hand, larger values for the degree of freedom parameter yield a more highly
concentrated distribution about the scale matrix parameter.

In Bayesian statistics, the inverse Wishart distribution is commonly used in multi-
variate analysis to provide a convenient conjugate prior distribution for the multivar-
iate normal covariance matrix (Chen 1979; Dickey et al. 1985; Evans 1965). Since
the inverse Wishart distribution is a conjugate prior, it is both analytically convenient
and tractable. However, the inverse Wishart is limited in its flexibility to model prior
information. There are two main shortcomings of the inverse Wishart when used as a
prior distribution specification for a covariance matrix.

The first disadvantage is that the degree of freedom hyperparameter ν is the sole
expression of the confidence level in all the elements of the prior hyperparameter
matrix. That is, one value represents the strength of prior beliefs for the entire prior
scale matrix. This is unappealing in settings where the strength of prior information
about the covariance structure is not homogeneous. We may possibly have more or
less certainty in our prior knowledge with respect to the location of the elements of the
random matrix of interest. Unfortunately, the inverse Wishart prior distribution does
not possess the means by which to model this asymmetric level of confidence.
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Bayesian estimation of a covariance matrix 321

The second shortcoming of the inverse Wishart prior distribution is that it does
not allow for the ability to flexibly model any potential interdependency amongst the
elements of the covariance matrix. That is, the inverse Wishart prior specification does
not provide the ability to easily model the correlation within the covariance structure.

Leonard and Hsu (1992) presented an alternative approach that remedies both of
these shortcomings and allows for greater flexibility in the prior specification. In a
univariate normal model setting, the normal distribution has long been used as a prior
distribution for the logarithm of the variance parameter (Berger 1985, p. 400). In
this same vein, Leonard and Hsu consider the matrix logarithm transformation of the
covariance matrix for the multivariate case. Making use of a result from Bellman (1970,
p. 171), it can be demonstrated that the exponential terms of a multivariate normal like-
lihood function can be expressed in the form of a linear Volterra integral equation. An
approximation of the likelihood function can then be obtained via Bellman’s iterative
solution to the linear Volterra integral equation. The resulting approximate likelihood
function has a multivariate normal form with respect to the unique elements of the
matrix logarithm of the covariance matrix. This allows a multivariate normal prior
specification to act as a conjugate prior distribution, thereby yielding an approximate
multivariate normal posterior distribution for the covariance structure.

One of the primary benefits of such a technique is the ability to specify varying
degrees of confidence in each element of the prior hyperparameter mean vector via the
variance terms of the prior hyperparameter covariance matrix. Obviously, larger vari-
ance terms in the prior hyperparameter covariance matrix indicate a lack of confidence
in the corresponding prior location hyperparameter. Another chief advantage of this
method is the ability to model beliefs about any possible interdependency between the
covariance parameters. This can be accomplished by specifying the covariance terms
of the prior hyperparameter covariance matrix. Note that in this way both the interre-
lationships and the strength of prior beliefs with respect to the covariance parameters
can be modeled.

Leonard and Hsu computed posterior moments using importance sampling meth-
ods. Here we focus on two other competing techniques for computing posterior
moments. We first demonstrate how a Laplacian approximation procedure can be
utilized to calculate posterior moments. We then turn to Markov Chain Monte Carlo
(MCMC) techniques for computing posterior moments. Specifically, we employ a
Metropolis–Hastings algorithm within a Gibbs sampling routine (Gelman et al. 2005,
p. 291).

The general outline of the article is as follows. We begin with a few brief comments
concerning three various loss functions and their respective Bayesian estimators. We
then introduce the likelihood function for the covariance matrix under the assump-
tion that the mean vector is known. We report how an approximation can be made
with respect to the unique elements of the matrix logarithm of the covariance struc-
ture. The resulting approximate likelihood function for the covariance structure will
be a multivariate normal form. Then we proceed with the Bayesian analysis under
the assumption of vague prior information for the covariance structure. We will tran-
siently discuss the results from Leonard and Hsu (1992) wherein which they calculated
the posterior moments via Importance sampling. In addition, we introduce a Lapla-
cian approximation technique for calculating the posterior mean of the covariance
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structure under vague prior information. From there we proceed with the hierarchical
Bayesian analysis. Specifically, we assume a multivariate normal prior specification
for the unique elements of the matrix logarithm of the covariance structure. Com-
putationally, we calculate the posterior mean for the covariance matrix employing
Importance sampling, a Laplacian approximation technique as well as MCMC proce-
dures. With respect to the Laplacian approximation technique a novel methodology
for approximating the likelihood function of the covariance structure is discussed.
Finally, we conclude the article by analyzing the more general setup with an unknown
mean vector and hierarchical prior specification. The numerical results in that section
will be accomplished via MCMC techniques.

2 Loss functions and Bayes risk

With respect to a covariance matrix three common loss functions are utilized. Specif-
ically, pseudoentropy loss with respect to �, quadratic loss and pseudoentropy loss

with respect to �−1, which are given by L�1
(
�̂,�

) = tr
(
�̂

−1
�
)
− log

∣
∣
∣�̂

−1
�

∣
∣
∣− p,

L�2
(
�̂,�

) = tr
(
�̂�−1 − Ip

)2
and L�3

(
�̂,�

) = tr
(
�̂�−1

) − log
∣
∣�̂�−1

∣
∣ − p,

respectively (Ni and Sun 2005). The three associated Bayes estimators that mini-
mize the Bayes risk for these three loss functions are given by �̂1 = E

[
� | y

]
,

Vec
(
�̂2
) = [

E
[ (

�−1 ⊗ �−1
) ∣
∣ y
]]−1

Vec
(
E
[
�−1

∣
∣ y
])

and �̂3 = E
[
�−1

∣
∣ y
]
,

respectively, where Vec (·) is the standard matrix operator that stacks the columns of
its argument. Notice that under the pseudoentropy loss with respect to �, denoted by
L�1, the Bayes estimator is given by the posterior mean of the covariance matrix. We
will in fact make use of this result for our analysis here. The practitioner may use dif-
ferent estimators when different loss functions are considered. For further discussion
of Bayesian estimation of a covariance matrix from a decision theoretic viewpoint
please refer to such references as Dey and Srinivasan (1985) and Yang and Berger
(1994).

3 Likelihood function

Suppose we have a random sample of size n such that Y1, . . . , Yn | θ,�
i id∼ Np (θ ,�)

where Np denotes the p dimensional multivariate normal distribution and � is a
(p × p) positive definite symmetric covariance matrix. For this section, we will
assume that θ is known and without loss of generality that θ = 0. Later we will
relax this assumption and treat the more general case with an unknown mean vector.

If we denote the realizations of the random sample as y = [
y1, . . . , yn

]
then the

exact likelihood function for � can be expressed as

l (�| y)=(2π)−
np
2 |�|− n

2 exp

{

−1

2

n∑

i=1

yT
i �−1yi

}

=(2π)−
np
2 |�|−n

2 exp
{
−n

2
tr
[
S�−1

]}

(1)
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where the maximum likelihood estimator of � is given by S = n−1∑n
i=1 yi yT

i and
tr (·) is the standard trace operator from matrix algebra.

Leonard and Hsu (1992) demonstrate that the likelihood function (1) can be approx-
imated via Bellman’s iterative solution to the linear Volterra integral equation. The
chief benefit of such a procedure is that the approximate likelihood function can be
expressed in terms of a multivariate normal distribution with respect to the unique
elements of the matrix logarithm of the covariance matrix. As we will later see below
this allows for a multivariate normal distribution to act as a conjugate prior distribution
for the covariance structure.

In Bayesian analysis for a univariate normal model, the logarithm of the variance
parameter has long been modeled by a univariate normal prior distribution (Berger
1985, p. 400). In a multivariate setting the matrix logarithm of a covariance matrix
has also been investigated by Chiu et al. (1996). Along these same lines, we con-
sider the matrix logarithm of � and S, A

(p×p)
= log (�) = E

[
log (D)

]
ET �

(p×p)
=

log (S) = E0
[
log (D0)

]
ET

0 where E is a (p × p) orthonormal matrix whose columns
are normalized eigenvectors and D is a (p × p) diagonal matrix of the corresponding
normalized eigenvalues associated with �. E0 and D0 are defined analogously for S. It
is understood that the diagonal matrices log (D) and log (D0) are defined to be equal to
the matrices whose diagonal elements are equal to the logarithm of the corresponding
diagonal elements of the matrices D and D0, respectively, and all off diagonal ele-
ments of log (D) and log (D0) are equal to zero. Note that we have clearly define the
matrix logarithm which makes use of the spectral decomposition of a matrix, rather
than simply the element-wise logarithm of a matrix. Using the fact that A = log (�)

and noting that |�| = exp {tr [A]} we can express the exact likelihood function (1) in
the following equivalent fashion.

l (A| y ) = (2π)−
np
2 exp

{
−n

2
tr
[
A + S exp {−A}]

}
(2)

Note that by the invariance property for maximum likelihood estimators (2) is maxi-
mized when A = �.

We now define the following unconventional matrix operator Vec∗ (·).
Let ai j be the (i, j)th element of the matrix A, then α

(q×1)
= Vec∗ (A) =

[
a11, a22, . . . , app a12, a23, . . . , ap−1,p . . . a1,p−1, a2p a1p

]T where α =
[
α1, . . . , αq

]T is a (q × 1) vector and q = 1
2 p (p + 1). The elements of α are equal

to the upper triangular elements of A starting with the first p main diagonal elements
and then moving successively upward and to the right of the main diagonal. We anal-
ogously define the (q × 1) vector λ = Vec∗ (�).

The term exp {−A} in the exponent of (2) can be expressed as a linear Volterra
integral equation (Bellman 1970, p. 175). An approximation of the likelihood func-
tion for α can then be obtained via Bellman’s iterative solution to the linear Volterra
integral equation. Leonard and Hsu (1992) demonstrate that the approximate likeli-
hood function based upon a second-order expansion of said linear Volterra integral
equation about A = � is given by
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l∗ (α | y) = (2πe)−
np
2 |S|− n

2 exp

{

−1

2
(α − λ)T Q (α − λ)

}

(3)

where Q(q×q) = n
2

∑p
i=1 fi i fT

i i +n
∑p ∑p

i < j
ξi j fi j fT

i j is the likelihood information matrix

of α such that: ξi j = (di −d j)
2

di d j [log(di )−log(d j)]2 , fi j = ei ∗ e j denotes the (q × 1) vector

that satisfies the condition αT
(
ei ∗ ej

) = ei
TAej and d j and e j are the jth normalized

eigenvalue and eigenvector, respectively, of S for j = 1, . . . , p.
We see that the approximate likelihood function (3) is a multivariate normal form

with respect to α. Specifically, the approximate likelihood function for α is a q dimen-
sional multivariate normal distribution with mean vector equal to λ and covariance
matrix equal to Q−1. This functional form of the approximate likelihood function in
Eq. (3) will be the driving mechanism in the Bayesian analysis for α. For further details
of the derivation of the approximate likelihood function please refer to Leonard and
Hsu (1992).

Observe that by combining the approximate likelihood function as given in Eq. (3)
with a multivariate normal prior specification for α, this will result in a multivar-
iate normal posterior distribution for α. This lends itself quite nicely to analytical
tractability. We first address the vague prior specification for α and discuss a novel
generalization of the finite sampling likelihood approximation technique that will be
utilized in the Laplacian approximation. The hierarchical multivariate normal prior
specification will be addressed below.

4 Vague prior specification

In this section we begin the formal Bayesian analysis. We follow Leonard and Hsu
(1992) and assume a vague prior specification for α. Formally, a priori we assume that
π (α) ∝ 1. This is mainly done for ease of exposition and comparison purposes with
the hierarchical prior specification we outline below.

Combining this vague prior distribution with the exact and approximate likelihood
functions we observe that the exact and approximate posterior distributions for α will
in fact simply be proportional to Eqs. (2) and (3), respectively.

π (α | y) ∝ π (α | y) = (2π)−
np
2 exp

{
−n

2
tr
[
A + S exp {−A}]

}
(4)

π∗ (α | y) ∝ π∗ (α | y) = (2πe)−
np
2 |S|− n

2 exp

{

−1

2
(α − λ)T Q (α − λ)

}

(5)

Posterior moments can then be calculated via importance sampling. For an overview
of importance sampling please refer to Rubinstein (1981), Leonard et al. (1994) and
Robert and Casella (2004, p. 92).
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4.1 Laplacian approximation under vague prior specification

As an alternative to the Importance sampling procedure consider calculating the
posterior mean via a Laplacian approximation technique. The general Laplacian
approximation procedure is widely used throughout applied mathematics and is first
attributed to Laplace (Laplace 1986; Stigler 1986). In particular, the method can be
used to approximate marginal posterior densities of any single parameter from a mul-
tivariate distribution. Leonard (1982), Leonard et al. (1989), Kass et al. (1989) and
Leonard and Hsu (1999) discuss the Laplacian approximation technique as it relates
to deriving posterior distributions.

Tierney and Kadane (1986) consider the posterior expected value of g (φ) where
g (·) is a smooth, positive function on the parameter space and φ represents a general
parameter vector of interest. They note that the posterior mean of g (φ) can be written
as

E
[
g (φ)| y

] =
∫
φ g (φ) l (φ | y ) π (φ) dφ
∫
φ l (φ | y ) π (φ) dφ

=
∫
φ exp {nL∗ (φ)} dφ
∫
φ exp {nL (φ)} dφ

(6)

where L∗ (φ) = 1
n log

[
g (φ) l (φ | y) π (φ)

]
and L (φ) = 1

n log
[
l (φ | y) π (φ)

]
. Then

applying Laplace’s technique to both the numerator and denominator in Eq. (6), they
approximate the posterior expected value of g (φ) by

E
[
g (φ)| y

] ≈
( | |�∗|

| |�|
) 1

2

exp
{

n
[

L∗( φ̂
∗ )− L

(
φ̂
)]}

(7)

where φ̂
∗

and φ̂ maximize L∗ (φ) and L (φ), respectively, and |�∗ and |� are minus
the inverse Hessians of L∗ (φ) and L (φ) evaluated at φ̂

∗
and φ̂, respectively.

However, if the function g (·) is not a positive function bounded away from zero
then applying Laplace’s approximation technique to the numerator of Eq. (6) may
not be appropriate. Hence, the approximation method from Eq. (7) for calculating
posterior moments is not directly applicable. Tierney et al. (1989) suggested that we
may overcome this by considering the moment generating function E

[
exp {g (φ) t}]

where |t | < h for some h > 0, since exp {g (φ) t} is a nonnegative function. Therefore,
for our case here we can calculate the posterior moment generating function of g (α)

via

Mg(α) | y (t) =
∫
α exp {g (α) t} π (α | y ) dα

∫
α π (α | y ) dα

(8)

where π (α | y ) is defined in Eq. (4). Numerically we may calculate posterior moments
of g (α) by making use of the definition of the derivative for the posterior moment
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generating function of g (α). For a sufficiently small value of t we have

E
[
g (α) | y

] = lim
t→0

[
Mg(α) | y (t) − Mg(α) | y (0)

t

]

≈ 1

t

[∫
α exp {g (α) t} π (α | y ) dα

∫
α π (α | y ) dα

− 1

]

. (9)

However, the integrals involved in Eq. (9) are not tractable. For the integral in the
denominator, an obvious choice is to consider the approximate posterior distribution
as given in Eq. (5). The integral in the numerator will require a generalization of the
finite sample likelihood approximation technique as was previously outlined above
and will be discussed in greater detail below.

Recall that the approximate posterior distribution for α as given in Eq. (5) is of a
multivariate normal form. Thus, the integral in the denominator of (9) can be approx-
imated by

∫

α

π (α | y) dα ≈
∫

α

π∗ (α | y ) dα = e− np
2 |S|− n

2 |Q|− 1
2 (10)

where π (α | y) and π∗ (α | y) are as in Eqs. (4) and (5), respectively, and Q is defined
in Eq. (3). The integral in the numerator of Eq. (9)

∫

α

exp {g (α) t} π (α | y) dα

=
∫

α

(2π)−
np
2 exp

{
g (α) t − n

2
tr
[
A + S exp {−A}]

}
dα (11)

is more involved. We require a generalization of the finite sample likelihood func-
tion approximation technique as originally set forth by Leonard and Hsu (1992). To
approximate the term exp {−A} they consider exp {−Aω} where 0 < ω < ∞. Bellman
(1970, p. 171) shows that exp {−Aω} = X (ω) where X (ω) satisfies the linear Volterra
integral equation

X (ω) = S∗−ω −
∫ ω

0

(
A − �∗)X (v) dv 0 < ω < ∞ (12)

and �∗ = log (S∗) maximizes the integrand of Eq. (11) with respect to A. A Taylor
series expansion of X (ω), about A = �∗, is now available by successively substitut-
ing the right side of Eq. (12) for the function X (·) in the integrand. When ω = 1, this
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yields

exp {−A} = X (1) = S∗−1 −
∫ 1

0
S∗v−1 (A − �∗)S∗−v dv

+
∫ 1

0

∫ v

0
S∗v−1 (A − �∗) S∗u−v (A − �∗) S∗−u du dv

+ cubic and higher order terms.

Ignoring the cubic and higher order terms of this expansion for exp {−A} we have

tr
[
S exp {−A}] ≈ tr

[
SS∗−1

]
−
∫ 1

0
tr
[
SS∗v−1 (A − �∗)S∗−v

]
dv

+
∫ 1

0

∫ v

0
tr
[
SS∗v−1 (A − �∗) S∗u−v (A − �∗) S∗−u

]
du dv. (13)

Define the spectral decomposition of S∗ = E∗D∗E∗T where E∗ is a matrix of the
normalized eigenvectors of S∗ and D∗ is a diagonal matrix of the eigenvalues of S∗.
Furthermore, if we let B = E∗T (A − �∗) E∗ and C = E∗TSE∗ then the single integral
in Eq. (13) can be expressed as

∫ 1

0
tr
[
SS∗v−1 (A − �∗)S∗−v

]
dv

=
∫ 1

0
tr
[
D∗v−1BD∗−vC

]
dv

=
∫ 1

0

p∑

i=1

p∑

j=1

d∗
i

v−1d∗
j
−vbi j c ji dv

=
p∑

i=1

bii cii

d∗
i

+
p∑

i, j :i 	= j

bi j c ji

(
d∗

i − d∗
j

)

d∗
i d∗

j

[
log

(
d∗

i

)− log
(

d∗
j

)] (14)

where d∗
i denotes the ith eigenvalue of S∗ and bi j and ci j denote the (i, j) th ele-

ment of the matrices B and C, respectively. Recall that B = E∗T (A − �∗) E∗ so that
bi j = e∗

i
T (A − �∗) e∗

j where e∗
i is the ith normalized eigenvector of S∗. Analogous

to fi j from Sect. 3.2, define the operator f∗
i j = e∗

i ∗ e∗
j where e∗

i ∗ e∗
j is the (q × 1)

vector that satisfies the condition αT
(

e∗
i ∗ e∗

j

)
= e∗

i
TAe∗

j . Therefore, making use of

these definitions we can express the last line of Eq. (14) as

∫ 1

0
tr
[
SS∗v−1 (A − �∗)S∗−v

]
dv = (α − λ∗)T L (15)
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where λ∗ = Vec∗ (�∗) and L = ∑p
i=1

cii
d∗

i
f∗

i i +
∑p

i, j :i 	= j
c ji

d∗
j log(d∗

i )−log
(

d∗
j

) f∗
i j . The inte-

grand in the double integral (13) can be simplified using the same notation as above

tr
[
SS∗v−1 (A − �∗) S∗u−v (A − �∗) S∗−u

]
= tr

[
D∗u−vBD∗−uCD∗v−1B

]
. Making

use of the fact that bi j = e∗
i

T (A − �∗) e∗
j and the operator f∗

i j we can express the
double integral as

∫ 1

0

∫ v

0
tr
[
SS∗v−1 (A − �∗) S∗u−v (A − �∗)S∗−u

]
du dv

= (
α − λ∗)T Q∗ (α − λ∗) , (16)

where

Q∗
(q×q)

=
p∑

i=1

ξ
(1)
i f∗

i i f
∗
i i

T+
p∑

i,l:i 	=l

ξ
(2)
il f∗

il f
∗
i i

T+
p∑

i, j :i 	= j

ξ
(3)
i j f∗

i j f
∗
j i

T

+
∑

i, j :i 	= j

ξ
(4)
i j f∗

i i f
∗
j i

T+
p∑

i, j,l:i 	= j 	=l

ξ
(5)
i jl f∗

il f
∗
j i

T
, (17)

and

ξ
(1)
i = cii

2d∗
i
, ξ

(2)
il = cli

d∗
i

⎡

⎢
⎣

1
[
log

(
d∗

i
d∗

l

)]2

(
d∗

i

d∗
l

− 1

)

− 1

log
(

d∗
i

d∗
l

)

⎤

⎥
⎦,

ξ
(3)
i j = c j j

d∗
j

⎡

⎢
⎢
⎢
⎣

1

log

(
d∗

i
d∗

j

) + 1
[

log

(
d∗

i
d∗

j

)]2

(
d∗

j

d∗
i

− 1

)
⎤

⎥
⎥
⎥
⎦

,

ξ
(4)
i j = ci j

d∗
j

⎡

⎢
⎢
⎢
⎣

d∗
j

d∗
i

log

(
d∗

j

d∗
i

)

− 1
[

log

(
d∗

j
d∗

i

)]2

(
d∗

j

d∗
i

− 1

)
⎤

⎥
⎥
⎥
⎦

,

ξ
(5)
i jl = cl j

d∗
j

⎡

⎢
⎢
⎣

1

log
(

d∗
i

d∗
l

)
log

(
d∗

j
d∗

l

)

(
d∗

j

d∗
l

− 1

)

− 1

log
(

d∗
i

d∗
l

)
log

(
d∗

j
d∗

i

)

(
d∗

j

d∗
i

− 1

)
⎤

⎥
⎥
⎦.

However, Q∗ is not necessarily symmetric. If Q∗ is in fact not symmetric we can

always make it symmetric by simply replacing Q∗ with 1
2

(
Q∗ + Q∗T

)
, which will
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always be symmetric. Combining the results from Eqs. (13), (15) and (16) we have
the following expression for the approximation to the integrand in Eq. (11)

exp {g (α) t}π (α | y ) ≈ (2π)−
np
2 exp

{
g (α) t + αTUA − n

2
tr
[
SS∗−1

]

+ n

2

(
α − λ∗)T L − n

2

(
α − λ∗)T Q∗ (α − λ∗)} (18)

where UA is a (q × 1) vector with the first p elements equal to − n
2 and the remain-

ing elements zero. For details concerning the approximation procedure refer to Hsu
(2001). The posterior mean of g (α) can be approximated via the technique from
Eq. (9) by utilizing the integral of Eq. (18) with respect to α and Eq. (10). The integral
over Eq. (18) with respect to α can be calculated analytically for specific functional
forms of g (α). Without loss of generality, assume the parameter of interest is α1. We
can take g (α) = α1 = αTc1 where c1 is a (q × 1) vector with one in the first element
and the remaining elements zero. Then in this case the integral in the numerator of
Eq. (9) can be approximated by

∫

α

eα1tπ (α | y ) dα

≈
∫

α

(2π)−
np
2 exp

{
tαTc1 + αTUA − n

2
tr
[
SS∗−1

]
+ n

2

(
α − λ∗)T L

−n

2

(
α − λ∗)T Q∗ (α − λ∗)} dα

≈ ∣
∣nQ∗∣∣− 1

2 exp

{

− n

2
tr
[
SS∗−1

]
+ λ∗T

(UA + c1t)

+1

8
UT

1

(
nQ∗)−1 U1

}

, (19)

where U1 = −2 (UA + c1t) − nL. Therefore, based upon the results from Eqs. (9),
(10) and (19), we can approximate the posterior mean of α1, E

[
α1 | y

]
, by

1

t

[
|nQ∗|− 1

2

e− np
2 |S|− n

2 |Q|− 1
2

exp

{

−n

2
tr
[
SS∗−1

]
+λ∗T

(UA+c1t)+ 1

8
UT

1

(
nQ∗)−1 U1

}

−1

]

(20)

where t is chosen sufficiently small. We found t = 10−6 to be sufficient. In practice,
we may successively employ smaller values of t until the estimates do not change
within the third significant digit. For instance, t = 10−6 and t = 10−7 produced the
same value for E

[
α1| y

]
within the third significant digit. The posterior variance can

be calculated in a similar fashion.
It is important to point out that all posterior estimates of the covariance matrix are

guaranteed to be positive definite. This is true because upon taking the matrix expo-
nential transformation based upon the spectral decomposition the eigenvalues must all
be positive since the exponential function is a strictly positive function. Furthermore,

123



330 C.-W. Hsu et al.

Table 1 Posterior mean of A with vague prior via Laplacian approximation

1 2 3 4 5 6 7 8

1 −5.287 0.693 0.378 0.475 0.395 0.298 0.019 0.405

2 0.693 −4.631 0.304 0.504 0.139 0.219 0.355 0.056

3 0.378 0.304 −5.631 0.390 0.047 −0.034 0.091 0.527

4 0.475 0.504 0.390 −4.055 0.453 0.189 0.306 0.441

5 0.395 0.139 0.047 0.453 −3.707 0.363 0.190 0.210

6 0.298 0.219 −0.034 0.189 0.363 −3.937 0.438 0.352

7 0.019 0.355 0.091 0.306 0.190 0.438 −3.593 0.316

8 0.405 0.056 0.527 0.441 0.210 0.352 0.316 −4.097

it should be noted that it is generally the case that Bayesian estimators approach max-
imum likelihood estimators as the sample size increases in nitely. In turn, maximum
likelihood estimators are consistent estimators. Thus, not only are we guaranteed a
positive definite estimator we are also assured a consistent estimator.

4.2 Project talent data set description

Throughout we will make use of the project talent data set (Flanagan and Tiedeman
1979) for application of the specific computational techniques. The project talent data
has been extensively analyzed by Cooley and Lohnes (1971, p. 14) and a more detailed
description of the data set can be found therein. The project talent survey was adminis-
tered to high school students throughout the United States. A stratified random sample
of the country’s high schools was carefully obtained to ensure adequate representa-
tion of all types of schools (Cooley and Lohnes 1971, p. 14). Here we will utilize a
subset of the data from the Project Talent study. In particular, we use the data generated
from 18-year-old individuals who participated in the survey of which there were 70,
80 students.

Specifically, we will make use of eight standardized test scores in a number of
fields including two general informational tests (parts I and II), an English test, a read-
ing and comprehension test, creativity test, a mechanical reasoning test, an abstract
reasoning test and a mathematics test. Please refer to Table 1 for the posterior mean
of A calculated via Laplacian approximation under the vague prior specification.

In comparison to the importance sampling estimation procedure as described in
Leonard and Hsu (1992), the Laplacian approximation technique produces quite simi-
lar numerical results as we would expect. The great advantage of the Laplacian approx-
imation technique is its rapidity. Since no simulation routines are involved, posterior
moments can be computed virtually instantaneously with modern statistical software.
The disadvantage of this methodology, as its name implies, is that the technique is
of course approximate. However, judging from the results of the two methods the
approximation seems to be reasonable. In contrast, the Importance sampling routine
is in fact an exact technique. However, its main disadvantage is the length of time to
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convergence. Depending upon the particular application this can take quite a bit of
computational time and resources. In our particular application we obtained conver-
gence after two million simulations which took approximately three hours of runtime.
We used the statistical and mathematical programming language R. The specifications
of the hardware that the computations were made on are the following: Dual Quad-
Core Intel Xeon with central processing unit E5450 at 3.0 GHz (8 cores) with 32 GB
of memory, SAS hard drive and running MOSIX clustering software with ten nodes.
The other nodes are comprised of Dual 2.2 GHz Intel Xeon processors with 2 GB of
random access memory.

5 Hierarchical prior specification

We have already seen that the approximate likelihood function for α possesses a
multivariate normal form. Combining the multivariate normal approximate likelihood
function with a multivariate normal prior distribution for α will of course result in
an multivariate normal approximate posterior distribution. In this way, the approxi-
mate likelihood function allows a multivariate normal prior specification to act as a
conjugate prior for the covariance structure. In general, we will assume a priori that
α | η,ϒ ∼ N q (η,ϒ) where η is a (q × 1) prior mean location hyperparameter vector
and ϒ is a (q × q) covariance hyperparameter matrix. In this way we can combine the
approximate likelihood function (3) with a multivariate normal prior distribution to
obtain a multivariate normal approximate posterior distribution for α. Thus, conjugacy
is achieved, as will be demonstrated below, through use of the approximate likelihood
function and a multivariate normal prior distribution.

The multivariate normal provides a very rich and flexible family of prior
distributions for the matrix logarithm of the covariance structure. This adds far greater
flexibility than the conventional inverse Wishart prior specification while at the same
time maintaining the tractability of conjugacy. Since the multivariate Normal is fully
parameterized by a mean vector and covariance matrix, we have the ability to model
more complex prior information. In particular, we can specify different prior mean
values for each element of α via the elements of the location hyperparameter η. More-
over, we have the ability to model varying degrees of strength of the prior belief
in each of the q elements of η through the q diagonal elements of the covariance
hyperparameter matrix ϒ. In contrast, the inverse Wishart prior is fully parameter-
ized by a scale hyperparameter matrix and a single degree of freedom hyperparam-
eter that only allows for one sole specification of the overall degree of confidence
in all the elements of the hyperparameter scale matrix. In addition, with the mul-
tivariate normal prior we are able to model potential interdependency among the
elements of α because we can specify non-trivial covariance terms in the covari-
ance hyperparameter matrix. That is, the off diagonal elements of ϒ can be used
to specify any potential correlations amongst the elements of α. In comparison, the
inverse Wishart provides no means by which to model interdependency within the
covariance structure. In short, we are now able to craft a more complex and accurate
prior specification for the covariance structure with the convenience and tractability
of conjugacy.
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5.1 Simulation study to investigate flexible prior specification

To further investigate the flexible prior specification we constructed the following
simulation study. Suppose Y1, . . . , Y100 constitutes a random sample of size n = 100
from a bivariate normal distribution with zero mean vector 0 = [0, 0]T and covariance
matrix �. Assume that the true prior distribution of α = [α1, α2, α3]T = [a, b, c]T

is a multivariate normal distribution with mean vector equal to η = [1, 9, 2]T and
covariance matrix ϒ, where

A
(2×2)

= log (�) =
[

a c

c b

]

and ϒ
(3×3)

=
⎡

⎣
1 0.9 0

0.9 1 0
0 0 4

⎤

⎦ .

Note that under this prior specification a and b are highly correlated and the variance of
c is significantly larger than the variances of a and b. We make use of the pseudoentropy

loss with respect to � which is given by L�1
(
�̂,�

) = tr
(
�̂

−1
�
)
− log

∣
∣
∣�̂

−1
�

∣
∣
∣− p,

where in this case p = 2 is the dimension of �. As discussed above under this loss
function the Bayes estimator that minimizes the Bayes risk is given by the posterior
mean. Posterior means using the inverse Wishart priors with the mean equal to the true
prior mean E [�] and a wide range of degree of freedom parameters ν are compared
to the posterior mean when the true prior is used. Please note that the inverse Wishart
mean is valid only when ν − p − 1 = ν − 3 > 0.

In our study, a random sample of 1,000 α’s were simulated from the true prior
multivariate normal distribution given by N3 (η,ϒ). Then for each simulated α, or
equivalently � = eA, a random sample of 100 y’s were simulated from a multivariate
normal distribution given by N2 (0,�). Five Bayes estimators were considered for
comparison: �̂1 is the posterior mean, when the true prior is used, �̂2, �̂3, �̂4 and �̂5
are the posterior means using the inverse Wishart priors, with the mean equal to the
prior mean of �, and ν = 3.1, 4, 10 and 100 degrees of freedom, respectively. The
average losses over 1,000 α’s were 0.02904, 0.91566, 2.66477, 4.47883 and 6.65841
for �̂1, . . . , �̂5, respectively. The averaged losses using the inverse Wishart priors,
which possess the same mean as the true mean for a wide range of ν’s, are significantly
higher than the one using the true prior. This indicates that the inverse Wishart family
is restrictive and cannot fully describe the situation when we have different degrees
of confidence for the covariance components or when the components are correlated.

5.2 Flexible prior specification

A subjective Bayesian may in fact wish to specify all q + 1
2 q (q + 1) hyperparameters.

In this way the practitioner can fully take advantage of any relevant prior information
through use of the flexible multivariate normal prior specification for the covariance
structure. Alternatively, we can opt to model η = η (μ) and ϒ = ϒ (σ ), where μ

and σ are of smaller order than η and ϒ, respectively. That is, a priori we may wish
to only model certain subsets of the covariance structure. An obvious choice is to
consider the variance components as one subset and the covariance components as
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another. However, we stress the point that the fully general multivariate normal prior
specification can be utilized in its totality. Here we will consider the so called intra-
class matrix form for the prior specification as an example of the fully generalized
multivariate normal prior distribution. Specifically, we will consider the first p ele-
ments of α separate from the remaining (q − p) terms. That is, we wish to model the
variance components separately from the covariance components of α. Formally, we
assume α | μ,� ∼ Nq (Jμ,�) for the prior distribution. We have the following prior
distributional form,

π (α | μ,� ) ∝ |�|− 1
2 exp

{

−1

2
(α − Jμ)T �−1 (α − Jμ)

}

(21)

where the (2 × 1) vector μ = [μ1, μ2]T and

J
(q×2)

=
[

1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1

]T

�
(q×q)

=
[
σ 2

1 Ip 0
0 σ 2

2 Iq−p

]

. (22)

Note that J is a (q × 2) matrix whose first p elements of the first column are equal to
one and the remaining (q − p) terms of the first column are equal to zero. The second
column of J consists of the first p elements equal to zero and the remaining (q − p)

elements equal to one. Thus, μ1 and σ 2
1 are the location and variance hyperparameters,

respectively, for the variance components of α. Analogously, μ2 and σ 2
2 are the loca-

tion and variance hyperparameters for the covariance components of α. In this way
we can specify two location hyperparameters and two different levels of confidence in
our choice of location hyperparameters for the variance components separately from
the covariance components.

It should be noted that this particular prior specification relies upon an exchange-
ability condition for the random vectors Y1, . . . , Yn . In our particular application, it is
reasonable to assume that the standardized test scores for various subject area exams
from the project talent (Flanagan and Tiedeman 1979) data set satisfy this requirement.

For the hyperparameters μ = [μ1, μ2]T and � = h
(
σ 2

1 , σ 2
2

)
we will assume a

vague prior distribution π (μ,�) ∝ 1. Note here that the vague prior specification can
be viewed as a limiting case of a multivariate normal and inverse Wishart prior specifi-
cation for μ and �, respectively. Furthermore, the analysis could in fact accommodate
such non-trivial specifications quite easily.

Having stated all the prior distributional assumptions we turn to the posterior
Bayesian analysis. We begin this by first examining the exact joint posterior distribu-
tion. The complexity of the functional form of the exact joint posterior will motivate
our consideration of the computational procedures described in detail below.

5.3 Exact joint posterior distribution

The exact joint posterior distribution for all parameters and hyperparameters will be
proportional to the product of Eq. (2) the exact likelihood function, Eq. (21) the prior
distribution for α and the vague prior distribution for μ and �. Note that here we will
use α interchangeably with A.
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π (α,μ,� | y)∝|�|− 1
2 exp

{

−n

2
tr
[
A + S exp {−A}]− 1

2
(α−Jμ)T �−1 (α−Jμ)

}

.

We clearly see that the exact joint posterior distribution is in fact not analytically
tractable. This is the driving motivation behind the implementation of the numerical
techniques.

5.4 Approximate conditional posterior distribution for α Given �

The prior distribution for α and � can be obtained by integrating over Eq. (21) with
respect to μ. The resulting prior distribution for α and � is

π (α,�) ∝ |�|− 1
2

∣
∣
∣JT�−1J

∣
∣
∣
− 1

2
exp

{

−1

2
αTG∗α

}

(23)

where G∗
(q×q)

=
[
Iq − J

(
JT�−1J

)−1 JT�−1
]T

�−1
[
Iq − J

(
JT�−1J

)−1 JT�−1
]

and

Iq is a (q × q) identity matrix. Note that with respect to α Eq. (23) is a multivariate
normal form. The approximate joint posterior distribution for α and � will be pro-
portional to the product of the approximate likelihood function (3) and the joint prior
distribution (23).

π∗ (α,� | y) ∝
(
σ 2

1

)− p−1
2
(
σ 2

2

)− q−p−1
2

× exp

{

−1

2

[
(α − λ)T Q (α − λ) + αTG∗α

]}

(24)

Recall that λ = Vec∗ (�) where � the matrix logarithm of the sample covariance
matrix as defined above. We complete the square for the terms in the exponent of (24).
Subsequent to that a proportionality is taken with respect to the terms that involve α

to yield the following approximate posterior distribution for α conditional on �.

π∗ (α | y,�) ∝ π∗ (α | y,�) = exp

{

−1

2

(
α − α∗)T (Q + G∗) (α − α∗)

}

(25)

where the (q × 1) vector α∗ = (Q + G∗)−1 Qλ. Recall that Q and G∗ are as defined
in (3) and (23), respectively. Thus, we have the following approximate posterior dis-
tribution for α conditional on �.

α | y,� ∼ Nq

(
α∗,

(
Q + G∗)−1

)
(26)

This demonstrates the conjugacy of utilizing the approximate likelihood function.
Approximate posterior moments for α can easily be calculated. In addition, numerical
methods such as Importance sampling, Laplacian approximation and MCMC proce-
dures can readily be implemented by making use of (26). In short, we have developed
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a highly flexible while at the same time tractable Bayesian methodology for the covari-
ance structure.

5.5 Exact conditional posterior distribution for α given �

As previously mentioned above since our MCMC procedure makes use of an approx-
imate posterior distribution for α it is appropriate to include a Metropolis–Hastings
accept reject algorithm with respect to simulated candidate values for α (Gelman et al.
2005, p. 291). To implement the Metropolis–Hastings algorithm we need the exact
posterior distribution for α conditional on �. This exact posterior distribution will
in fact be proportional to the product of (2) the exact likelihood function multiplied
by (23) the joint prior distribution for α and �. Note that again here we will use α

interchangeably with A.

π (α | y,�) ∝ π (α | y,�) = exp

{

−n

2
tr
[
A + S exp {−A}]− 1

2
αTG∗α

}

(27)

In contrast to (25), we clearly see that (27) is not a multivariate normal form with
respect to α. Analytically calculating posterior moments for α based upon Eq. (27) is
not feasible.

5.6 Importance sampling under hierarchical prior specification

To implement both the importance sampling and the Laplacian approximation pro-
cedures we require the posterior distribution for �. However, the exact posterior
distribution for � is analytically difficult to obtain. Therefore, we consider the approx-
imate posterior distribution for � which can be obtained by integrating over the joint
approximate posterior distribution with respect to both α and μ. The joint approximate
posterior distribution will be proportional to the product of Eq. (3) the approximate
likelihood function, Eq. (21) the prior distribution for α given μ and � and the vague
prior distribution for μ and �. Thus, we have

π∗ (�| y ) ∝
∫

α

∫

μ
|Q| 1

2 |�|− 1
2

× exp

{

−1

2

[
(α − λ)T Q (α − λ) + (α − Jμ)T �−1 (α − Jμ)

]}

dμ dα

∝ |�|− 1
2

∣
∣
∣JT�−1J

∣
∣
∣
− 1

2 ∣∣Q + G∗∣∣− 1
2 exp

{

−1

2
λTQ

(
Q + G∗)−1 G∗λ

}

where Q and G∗ have been previously defined in Eqs. (3) and (23), respectively. The
constant of integration for the above posterior density can be obtained via numerical
techniques. Please refer to Ogata (1989) for a discussion of numerical integration in
higher dimensionality.
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Now under the hierarchical prior specification the Importance sampling proce-
dure will have to be performed via iterated expectations E

[
g (α) | y

] = E� | y[
E
[
g (α) | y,�

] ]
. We first calculate the inner expectation for various values of σ 2

1
and σ 2

2 chosen over a grid on R
2, then perform two dimensional numerical integration

with respect to σ 2
1 and σ 2

2 for the outer expectation.

5.7 Laplacian approximation under hierarchical prior specification

In this section, we demonstrate how we can again use the Laplacian approximation
technique to calculate posterior moments under a hierarchical prior specification. The
analysis here follows closely to that of Sect. 4.1. The key difference here is the pres-
ence of the hyperparameter �. The hyperparameter μ does not play a role since we
have already shown that it can be integrated out. As with the importance sampling
routine we need to make use of the conditional posterior distribution of α given �.

Note that the functional form for the posterior mean of g (α, ) conditional on a
given value of �, will be exactly the same as in Eq. (9) except that here we replace
π (α | y) with π (α | y,�) as defined in Eq. (27). As we have previously done before
we need to find the two maximizers, which we denote here as �∗

N = log
(
S∗

N

)
and

�∗
D = log

(
S∗

D

)
, of the integrands in both the numerator and denominator of the

expression for the posterior moment generating function, respectively. Furthermore,
we let λ∗

N = Vec∗ (�∗
N

)
and λ∗

D = Vec∗ (�∗
D

)
.

Assume without loss of generality that the primary parameter of interest is α1. Then,
for various values of σ 2

1 and σ 2
2 chosen over a grid on R

2, the required integrals can
be approximated by

∫

α

π (α | y,� ) dα ≈ ∣
∣nQ∗

D + G∗∣∣− 1
2 exp

{

− n

2
tr
[
SS∗

D
−1
]

+λ∗
D

TUA − 1

2
λ∗

D
TG∗λ∗

D + 1

8
UT

3

(
nQ∗

D + G∗)−1 U3

}

(28)

∫

α

eα1tπ (α | y,� ) dα ≈ ∣
∣nQ∗

N + G∗∣∣− 1
2 exp

{

− n

2
tr
[
SS∗

N
−1
]

+ λ∗
N

T
(UA + c1t)

− 1

2
λ∗

N
TG∗λ∗

N + 1

8
UT

4

(
nQ∗

N + G∗)−1 U4

}

(29)

where analogous to Eq. (17), Q∗
N and Q∗

D are functions of the normalized eigenvalues
of �∗

N and �∗
D , respectively, U3 = −2UA − nLD + 2G∗λ∗

D , U4 = −2UA − 2tc1 −
nLN −4λ∗

N1tc1, LN and LD are defined analogously to Eq. (15), but based on S∗
N and

S∗
D , respectively, UA was defined in Eq. (18) and c1 was defined in Eq. (19) and λ∗

N1 is
the first element of the vector λ∗

N . Therefore, the posterior mean of α1 conditional on
�, that is E

[
α1 | y,�

]
, can be approximated by utilizing Eqs. (28) and (29) in a sim-

ilar fashion as was done above in Eq. (20) under the vague prior specification. We can
then numerically integrate over � in order to obtain the unconditional posterior mean
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Table 2 Posterior mean of A with hierarchical prior via Laplacian approximation

1 2 3 4 5 6 7 8

1 −5.224 0.539 0.345 0.426 0.367 0.302 0.127 0.367

2 0.539 −4.623 0.291 0.426 0.200 0.247 0.334 0.154

3 0.345 0.291 −5.611 0.341 0.122 0.072 0.148 0.433

4 0.426 0.426 0.341 −4.052 0.395 0.237 0.308 0.390

5 0.367 0.200 0.122 0.395 −3.755 0.336 0.231 0.248

6 0.302 0.247 0.072 0.237 0.336 −3.971 0.384 0.331

7 0.127 0.334 0.148 0.308 0.231 0.384 −3.641 0.312

8 0.367 0.154 0.433 0.390 0.248 0.331 0.312 −4.113

E
[
α1| y

] = E� | y
[
E
[
α1| y,�

]] ≈
∫

σ 2
1

∫

σ 2
2

E
[
α1| y,�

]
π∗ (� | y) dσ 2

1 dσ 2
2 .

Please refer to Table 2 for the posterior mean of A calculated via Laplacian approx-
imation under the hierarchical prior specification. The estimate presented in Table 2
exhibits the intra-class form, up to some rounding error, as we expect. To observe
this first note that the mean of the on diagonal elements of Table 1 is approximately
equal to −4.367. In comparison, the associated diagonal elements of Table 2 shrink
towards this mean. Similarly, the off diagonal elements of Table 2 are pulled towards
the mean of the off diagonal elements of Table 1 which is approximately equal to
0.304. In this way, we can observe the shrinkage impact of the intra-class hierarchical
prior specification on the posterior mean.

5.8 Exact conditional posterior distribution for � given α

To implement the MCMC procedures we require the exact posterior distribution for
� conditional on α. This will in fact be proportional to (23) the joint prior distribution
for α and �. Note that the exact likelihood function (2) does not depend upon � and
thus can be omitted entirely.

π (� | y,α ) ∝ |�|− 1
2

∣
∣
∣JT�−1J

∣
∣
∣
− 1

2
exp

{

−1

2
αTG∗α

}

∝
(
σ 2

1

)− p−1
2
(
σ 2

2

)− q−p−1
2

exp

⎧
⎨

⎩
− 1

2σ 2
1

p∑

i=1

(αi − αv)
2

− 1

2σ 2
2

q∑

i=p+1

(αi − αc)
2

⎫
⎬

⎭

where αv = p−1∑p
i=1 αi and αc = (q − p)−1∑q

i=p+1 αi are the arithmetic means
of the variance and covariance components of α, respectively. We recognize that the
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posterior distributions for σ 2
1 and σ 2

2 conditional on α are independent inverse Gamma
density functions.

σ 2
1

∣
∣
∣ y,α ∼ Inverse Gamma

(
p − 3

2
,

1

2

p∑

i=1

(αi − αv)
2

)

(30)

σ 2
2

∣
∣
∣ y,α ∼ Inverse Gamma

⎛

⎝q − p − 3

2
,

1

2

q∑

i=p+1

(αi − αc)
2

⎞

⎠ (31)

This result is theoretically appealing in that the posterior distribution for σ 2
1 , the vari-

ance hyperparameter for the location hyperparameter μ1, depends only on the variance
terms α1, . . . , αp. Whereas, the posterior distribution for σ 2

2 , the variance hyperpa-
rameter for the location hyperparameter μ2, depends only on the covariance terms
αp+1, . . . , αq . This draws out the intra-class matrix form wherein which we model
the variance components separate from the covariance components. In addition, the
inverse Gamma is highly tractable and lends itself to the numerical procedures in the
subsequent section.

5.9 Markov Chain Monte Carlo under hierarchical prior specification

Based upon the theoretical results derived above in this section we outline the proce-
dure for implementing the MCMC algorithm. From Eqs. (26), (27), (30) and (31), we
have a formal setup for implementing a MCMC procedure with a Metropolis–Hastings
accept reject algorithm (Gelman et al. 2005, p. 291). Below we delineate the specific
steps involved.

1. Simulate σ 2
1

(t)
and σ 2

2
(t)

from Eqs. (30) and (31), respectively.

2. Simulate a candidate value α̃ from Eq. (26) based upon σ 2
1

(t)
and σ 2

2
(t)

from step
one. Then let

α(t+1) =
{

α̃ with probability min (ρ, 1)

α(t) otherwise

where ρ = π
(
α̃
∣
∣ y,�(t)

)

π∗(α̃ | y,�(t) )

/
π
(
α(t)

∣
∣ y,�(t)

)

π∗(α(t) | y,�(t) )
and π∗ (· |· ) and π (· |· ) are as defined in

(25) and (27), respectively. Please refer to Tables 3 and 4 for the posterior mean of
A and �, respectively, calculated via MCMC procedures under the hierarchical prior
specification.

The chief advantage of the MCMC sampling algorithm is the relative ease of imple-
mentation. Since the analysis is done solely with respect to the conditional posterior
distributions the theoretical Bayesian analysis is somewhat simplified. Most modern
statistical software programs greatly facilitate MCMC sampling techniques since they
include many of the popular distributions for simulation purposes. Despite the use of
the approximate posterior distribution for α as given in Eq. (25), which is of course
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Table 3 Posterior mean of A with hierarchical prior via MCMC/Metropolis–Hastings algorithm

1 2 3 4 5 6 7 8

1 −5.235 0.539 0.344 0.424 0.366 0.301 0.125 0.368

2 0.539 −4.634 0.289 0.426 0.200 0.247 0.333 0.153

3 0.344 0.289 −5.626 0.344 0.120 0.069 0.149 0.431

4 0.424 0.426 0.344 −4.065 0.396 0.237 0.307 0.390

5 0.366 0.200 0.120 0.396 −3.768 0.335 0.230 0.246

6 0.301 0.247 0.069 0.237 0.335 −3.985 0.384 0.332

7 0.125 0.333 0.149 0.307 0.230 0.384 −3.653 0.312

8 0.368 0.153 0.431 0.390 0.246 0.332 0.312 −4.130

Table 4 Posterior mean of � with hierarchical prior via MCMC/Metropolis–Hastings algorithm

1 2 3 4 5 6 7 8

1 0.01382 0.01142 0.00675 0.01450 0.01317 0.01158 0.01113 0.01239

2 0.01142 0.01888 0.00710 0.01571 0.01255 0.01209 0.01418 0.01165

3 0.00675 0.00710 0.00763 0.00989 0.00751 0.00663 0.00785 0.00938

4 0.01450 0.01571 0.00989 0.03238 0.01905 0.01576 0.01807 0.01802

5 0.01317 0.01255 0.00751 0.01905 0.03489 0.01638 0.01591 0.01522

6 0.01158 0.01209 0.00663 0.01576 0.01638 0.02946 0.01768 0.01529

7 0.01113 0.01418 0.00785 0.01807 0.01591 0.01768 0.03794 0.01643

8 0.01239 0.01165 0.00938 0.01802 0.01522 0.01529 0.01643 0.02796

appropriately accounted for by inclusion of the Metropolis–Hastings accept reject
algorithm, the final numerical results are exact. In contrast to the importance sam-
pling and Laplacian approximation procedures the MCMC sampling estimates are in
fact the most accurate. The reason for this is twofold. The first reason is due to the
numerical integration that was involved in both the Importance sampling and the
Laplacian approximation. The numerical integration can potentially be an added
source of diminished accuracy. Note however that this is entirely avoided under the
MCMC sampling routine. In addition, recall that numerical integration was over the
approximate posterior distribution for �. The use of this approximate posterior dis-
tribution in its own right can also lead to a lack of accuracy. Recall that the MCMC
sampling algorithm used the exact posterior distribution for � conditional on α thus
avoiding the use of any further approximate posterior distributions. The numerical
results of the MCMC algorithm seem quite reasonable in comparison to the other
methods. The disadvantage of MCMC methods is of course the relatively lengthly
time spent until satisfactory convergence is attained.

6 Hierarchical Bayesian analysis with unknown mean vector

In this section, we relax the assumption of a known mean vector. Formally, we treat the

case where we have a random sample such that Y1, . . . , Yn | θ,�
i id∼ Np (θ ,�). Here

123



340 C.-W. Hsu et al.

θ is an unknown p dimensional mean vector and � is a (p × p) unknown positive def-
inite symmetric covariance matrix. Thus, we have the following familiar multivariate
Normal likelihood function for θ and �.

l (θ ,� | y) = (2π)−
np
2 |�|− n

2 exp

{

−1

2

n∑

i=1

(yi − θ)T �−1 (yi − θ)

}

In addition to the prior specifications for α and � as previously stated above we
further assume θ | μ∗,�∗ ∼ Np (μ∗,�∗). As a limiting case of this prior specification
we consider π (θ) ∝ 1. Analogous to Eq. (27) we have the following exact posterior
distribution for α given θ and �

π (α | y, θ ,�) ∝ exp

{

−n

2
tr
[
A + W exp {−A}]− 1

2
αTG∗α

}

(32)

where W
(p×p)

= 1
n

∑n
i=1 (yi − θ) (yi − θ)T = 1

n

∑n
i=1 (yi − y ) (yi − y )T + (θ − y )

(θ − y )T. Then under a vague prior specification for θ the exact posterior distribution
for θ conditional on � will be proportional to the exact likelihood function.

π (θ | y,� ) ∝ exp
{
−n

2
(θ − y )T �−1 (θ − y )

}

Therefore, we see that the exact posterior distribution for θ conditional on � is given
by the following.

θ | y,� ∼ Np

(
y, n−1�

)
(33)

The posterior distributions for σ 2
1 and σ 2

2 , the only two unknown hyperparameters
involved in �, will be identical to the previously derived posterior distributions as
stated in Eqs. (30) and (31). Thus, the MCMC will be the same as the algorithm that
was previously outlined above except here will include one additional step which is
to simulate θ according to Eq. (33).

Note that based upon Eq. (33) the posterior mean of θ is in fact equal to the sample
mean vector y. In particular, we computed the following posterior means for the vari-
ous exams 0.5138, 0.4958, 0.7840, 0.6773, 0.4551, 0.4461, 0.6017 and 0.4103, where
all values are represented as proportions. Posterior moments for the other parameters
of interest can be calculated based upon the results from the MCMC. Please refer
to Table 5 for the posterior mean of A calculated via MCMC sampling under the
hierarchical prior specification with an unknown mean vector.

7 Conclusion

We have estimated the covariance structure of a multivariate normal distribution from
a Bayesian perspective. In contrast to the usual inverse Wishart conjugate prior spec-
ification we have made use of a highly flexible and tractable multivariate normal
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Table 5 Posterior mean of A with an unknown mean under hierarchical prior via MCMC/Metropolis–
Hastings algorithm

1 2 3 4 5 6 7 8

1 −5.235 0.540 0.344 0.425 0.366 0.300 0.125 0.368

2 0.540 −4.635 0.289 0.427 0.200 0.248 0.333 0.153

3 0.344 0.289 −5.626 0.344 0.120 0.069 0.149 0.432

4 0.425 0.427 0.344 −4.066 0.396 0.237 0.308 0.391

5 0.366 0.200 0.120 0.396 −3.770 0.334 0.230 0.246

6 0.300 0.248 0.069 0.237 0.334 −3.984 0.384 0.332

7 0.125 0.333 0.149 0.308 0.230 0.384 −3.652 0.311

8 0.368 0.153 0.432 0.391 0.246 0.332 0.311 −4.130

prior specification for the unique elements of the matrix logarithm of the covariance
matrix. In this way we have been able to model varying degrees of confidence in the
prior location hyperparameters as well model potential interdependencies amongst
the covariance structure. An approximation of the likelihood function for the covari-
ance matrix based upon a second-order expansion of a linear Volterra integral equa-
tion was made. In this way the approximate likelihood function can be expressed
in a multivariate normal form. Thus, we achieved approximate conjugacy. Under
this Bayesian formulation we computed posterior moments via Importance sampling,
Laplacian approximation and finally MCMC sampling. With respect to the Laplacian
approximation we demonstrated how a generalized finite sample likelihood function
approximation could be utilized to facilitate the required integration. In addition, a
Metropolis–Hastings algorithm was employed in the MCMC sampling procedures to
account for the approximation. We applied the estimation procedures to standardized
test scores from the Project Talent educational data set.
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